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SYNOPSIS

The aim of this investigation is the proposal of 3D mesh

generation method based on the Delaunay triangulation.

The method is valid for the finite element modelling of

any convex 3D domain into tetrahedra with optimum

geometrical configuration. This paper includes the mathe­

matical background of the mesh "generation method, its

detail, proposal of some efficient tools for faster and

more rigorous computations, and some examples of the mesh

generation.

1. INTRODUCTION

The mesh generation method determines the utility of the finite

element method, and effective tools have been developed in recent

years. Especially, in case of 3 dimensional problems effective mesh

generator is inevitable at the application of FEM.

Preferable 3D mesh generator should be

(1) fully automated,

(2) reliable for the results,

(3) the one which can give good finite elements,

(4) applicable for arbitrary node distribution, and

(5) fast.
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At present we have two basic ideas for 3D mesh generation, which are

the Octree method and the Delaunay triangulation. The comparison of

their functions clarifies that the latter is superior in forming

finite elements under the conditions of (3) and (4). [1, 2, 3]

The Delaunay triangulation is the dual problem of the Voronoi tes­

selat,ion, and they can fill the domain occupied by distributed data

points by using tetrahedra and convex polyhedra, respectively. Each

polyhedron generated by the Voronoi tesselation includes a data point,

and each polygon on the surface of the polyhedron locates at the

middle plane between neighbouring two data points. Then, four data

points which are separated by three intersecting polygons on a surface

of the polyhedron locate on a same circumsphere of the tetrahedron

formed by these four data points. If every four among all data points

are selected to form tetrahedron whose circumsphere does not include

any other data point within it, the tetrahedra necessarily shows good

geometrical configuration.

The purpose of this investigation is to give an algorithm of the

Delaunay triangulation which can be applied for 3D space. For this

purpose the authors firstly give several mathmatical theorems on the

geometry of the Voronoi tesselation and the Delaunauy triangulation,

and the results are directly used for the mesh generation method of 3­

dimensional domain. A number of useful tools are also given for the

f a s tan d rig 0 r 0 usc 0 mp uta t ion and the g e n era liz a t ion 0 f the met hod .

Proposed method is the direct application of the Delaunay triangula­

tion, and it can be applied only to any 3-dimensional domain with con­

vex boundary configuration.

2. MATHEMATICAL BACKGROUND OF 3D MESH GENERATION

Suppose the positions of n distinct points are given, and we assume

that the Delaunay triangulations are completed for these data points.

Then, each circumsphere does not include any other data points inside

the sphere. Our aim is to find new Delaunay triangulation occured by

the addition of new data point. A part of following mathematical

results are already proved by T.J. Baker.[4] For the simplicity we use

following notations.

Tet(ABCD) A tetrahedron decided by nodes, A, B, C and D.

Sph(ABCD) A circumsphere of Tet(ABCD)
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Tri(ABC) A triangle decided by nodes, A, B, and C.

#1 The tetrahedra whose circumspheres include the additional point P

are adjacent each other through faces.

[Proof]

Assume that a data point P newly set in the domain locates in

Tet(ABCD). Then, Sph(ABCD) obviously includes P.

Here, we assume that P is also included in Sph(IJKL) of another

tetrahedron Tet(IJKL) which is not adjacent to Tet(ABCD). Then,

Sph(IJKL) must penetrate all tetrahedra locating between Tet(ABCD) and

Tet(IJKL) without including any data points which construct these

penetrated tetrahedra.

Let one of these tetrahedra penetrated by Sph(IJKL) be Tet(EFGH).

Then,

Sph(IJKL) n Sph(EFGH) = ¢
Tet(ABCD),

Sph(EFGH).

as shown in Fig.l. From the geometrical relation between

Tet(EFGH) and Tet(IJKL), P must be located in Sph(IJKL)

Then, P must be included in Sph(EFGH).

Above relation between Sph(EFGH) and Sph(IJKL) is valid for all

tetrahedra locating between Tet(ABCD) and Tet(IJKL), and P is included

in all of their circumspheres. Then, all of these tetrahedra are con­

nected each other, since their faces are penetrated by Sph(IJKL).

Since the tetrahedra obtain

trianglar faces, they form a

which locate between them.

in #1 are connected each other through

polyhedron by removing all triangles

Sph(IJKL)
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[Proof]

It is obvious that the surface of

the polyhedron is covered by triangle­

s. Then, the proof completes if three

nodes of any triangle on the polyhedr-

Fig.l Relation between Two Circumspheres

#2. The polyhedron of #1 can be fill­

ed by tetrahedra each of which is

formed by using three nodes of a

triangle on the surface of the poly­

hedron and the new data point P.
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on can be connected with P by straight lines.

The polyhedron is originally filled by tetrahedra whose circum­

spheres include P. Pick up a tetrahedron amo~g them. Then, all nodes

of the tetrahedron locate on the surface 6f its circumsphere, and P

locates inside of the sphere. Then, P can be connected with these

nodes by straight lines. This logic is valid for all tetrahedra con­

structing the polyhedron.

#3. The tetrahedra obtained in #2 is the Delaunay triangulation for

n+1 nodes.

[Proof]

Firstly we prove that the tetrahedra in the polyhedron obtained in

#2 is the Delaunay triangulation. If P is not used for' forming new

tetrahedra in the polyhedron, then new tetrahedra must be formed by

using data points on the surface of the polyhedron. But, their circum­

spheres obviously include other nodes (for example, P) inside of it.

Then, one node of any tetrahedron newly formed in the polyhedron must

be P.

Successively, we show that new Delaunay triangulation for the

polyhedron never give influence to the construction of tetrahedra out­

side of the polyhedron. Consider a pair of tetrahedra which locate in­

side and outside of the polyhedron and face each other. Let these two

tetrahedra be Tet(ABCP) and Tet(ABCD). Then, two nodes, P and D, lo­

cate on opposite side of Tri(ABC), because Tet(ABCD) is a Delaunay

triangulation and P locates inside of the polyhedron. If we assume

that Sph(ABCP) includes the point D, P must be also included in

Sph(ABCD). This shows the contradiction of the assumption that

Sph(ABCD) never includes P. Then, the part of Sph{ABCP) outside of the

polyhedron must be included within Sph(ABCD), and it never includes

D.

Above mathematical results indicate the modification m~thod of the

Delaunay triangulations due to the addition of another data point in

the domain filled by tetrahedra in the sense of the Delaunay trian­

gulation. That is, if the Delaynay triangulation is obtained for a

set of data points, new Delaunay triangulation after adding another

data point into the domain can be obtained by the triangulation of the

subdomain which is occupied by the tetrahedra whose circumspheres in-
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elude the added point. And, new tirangulations complete by connecting

all data points on the surface of the sub domain to dew data point P.

4. MESH GENERATION OF 3D DOMAIN

4.1 Preparation of 3D Mesh Generation

Three mathematical results in previous section directly lead to the

mesh generation procedure of 3-dimensional space as following: Assume

that a number of data points are set and the domain occupied by these

points are divided into tetrahedra of the Delaunay triangulation.

And, we give another data point in the domain at arbitrary position.

Then, following steps can lead to new Delaunay triangulation.

Step 1. Find circumspheres which include the new data point.

Step 2. Remove all the triangles which locate between adjacent

tetrahedra, and form a polyhedron.

Step 3. Form new tetrahedra by using all triangles on the

surface of the polyhedron to the new data point.

Above procedure is the main part of the Delaunay triangulation, and

we consider on its realization as the algorithm.

(1) Scaling of the domain occupied by data points.

Data points are arbitrarily distributed in 3D space, and the size

of the domain along x, y, and z axes depends on the problem. In order

to use the Delaunay triangulation as a general-purpose tool we intro­

duce the scaling of the domain. For this purpose, we find the maximum

length of the domain along x, y and z axes, and divide the lengthes

along three directions by the maximum value.

(2) Setting of Supertetrahedron

The mathematical procedure of the Delaunay triangulation given in

this section is the repetition of partial modification of the sub­

domain filled by tetrahedra. Then, the tetrahedron which includes new

data point must be, at least, modified.

Set an imaginary tetrahedron which can enclose whole of the domain

occupied by data points, and start to divide the domain into

tetrahedra by giving data points one by one. The setting of the first
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data point into this imaginary tetrahedron necessarily divides it into

four smaller tetrahedra. Same subdivision of a tetrahedron into four

may occure at the set of successive data points.

As obvious from above explanation the introduction of the imaginary

tetrahedron can simplify and standardize the procedure of the Delaunay

triangulation. We call this imaginary tetrahedron the super­

tetrahedron.

(3) Searching of the tetrahedron including new data point

Those tetrahedra whosecircumspheres include new data point must

be found at every setting of new data point. For this purpose we

propose following method.

Let Tet(ABCD) be a tetrahedron including new data point. Then, the

summation of the volume of four small tetrahedra which are constructed

by the set of the data point in Tet(ABCD) is equal to the volume of

Tet(ABCD). But, it is time-consuming directly to introduce this method

for finding a tetrahedron including new ·data point, because it

requires numerous number of volume calculations. In order to decrease

the number of repetitions of this searching procedure, we begin the

searching from the tetrahedra which are generated at the last stage.

Assume that we could find out the tetrahedron which includes new

data point. Then, for finding the tetrahedra whose circunspheres in­

clude the data point, we use following prosedure: By using the ad­

jacency relationship between generated tetrahedra and the tree­

searching technique we find such tetrahedron that the square of its

radius is larger than the square of the distance between the circum­

center and the data point.

(4) Treatment of Degeneracy

The generacy is the case where several optimum tetrahedra simul­

taneously occure at the setting of new data point. [2,3] In our method

the final state of the subdivision into tetrahedra by setting a data

point is left for the successive stage.

4.2 Input and Output Data

Assume that we treat n data points which are distributed in 3D

space. Then, the input data are 1) the number of data points (NODE),

and 2) their x, y, and z coordinates (PX, PY, PZ, respectively).
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After the Delaunay triangulation we have to prepare the data for

the finite element analysis which are 1) the number of tetrahedra, 2)

the elemen"t-node relations, and 3) the coordinates of data points.

The last item is given as input data. For giving the boundary condi­

tion of the finite element analyssis we are often required the nodes

locating on the surfaces of the domain. This data is easily obtained

from the data generated through this procedure.

4.3 Mesh Generation Procedure

[Step 1] Input of data

Prepare the data of NODE, PX, PY, and PZ, and input them.

[Step 2] Setting of Supertetrahedron

Calculate the maximum size along x, y and z axes of the domain oc­

cupied by all of data points, and reset the coordinates of all data

points so that the maximum size is equal to 1. And, set the super­

tetrahedron so that the data points occupy its central area. Here, we

set the radius of the supertetrahedron to be 10.

[Step 3] Setting {)f a data point and Searching the tetrahedra which

must be modified by the addition of the point.

Pick up a data point, and find those tetrahedra whose circunspheres

include the point. This search consists of two methods which are ex­

plained in previous &ection. These tetrahedra form only one polyhedron

by removing all common triangles which locate between two adjacent

tetrahedra.

[Step 4] Triangulation of the polyhedron

The polyhedron obtained in Step 3 is triangulated by using tri­

angles on the surface of the polyhedron and new data point.

(Steps 3 and 4 are repeated till all of the data points are intro­

duced for the triangulation.)

[Step 5] Removal of all tetrahedra which include the forming points of

the supertetrahedron

Among the generated tetrahedra we remove all tetrahedra which in­

clude the points forming the super tetrahedron, and the residual

tetrahedra are the necessary finite elements.

4.4 Recognition of the results

Proposed method is based on the mathematical investigation and it
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must be rigorous theoretically, but the occurance of numerical error

cann't be overcome as far as some numerical operations are introduced

into the procedure. Since some errors may occure through the mesh gen­

eration process, we have to prepare how to examine the result of the

mesh generation. For this purpose we p~opose following methods:

(1) The examination whether the generated tetrahedra are optimum.

This examination can be done by surveying whether each cirsumsphere

does not include any other data point inside of the sphere.

(2) The examination whether the domain is filled by tetrahedra.

If a pair of tetrahedra are adjacent each other, same triangle ap­

pears in different two tetrahedra. On the other hand, if a triangle

can be found in only one tetrahedron, it must be the one on the sur­

face of the domain. By gathering all triangles which appear only once,

we can examine whether the domain is filled by tetrahedra. This ex­

amination method can be easily visualized by using the stereoscopic

figures.

5. EXAMPLES OF 3D MESH GENERATION

The first example of the mesh generation is for the recognition of

the dual relation between the Voronoi tesselation and the Delaunay

triangulation. As shown in Fig.2 we place eight data points in 3D

space, and the domain is divided into tetrahedra by using the proposed

method. Fig.2 illustrates both of the Voronoi tesselation and the

Delaunay triangulaticon using the stereoscopic figures. From the figure

the domain is successfully divided into polyhedra of the Voronoi tes­

selation and also into tetrahedra of the Delaunay triangulation.

Fig.2 Voronoi Tesselation and Delaunay Triangulation
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Fig.3 Delaunay Triangulation
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Several figures of the Delaunay triangulation are also given .in

Fig.3. Since too many data points are placed in 3D space, these

figures show only the triangulations on their surfaces. These figures

can be good examples of the examination method given in Section 4.4.

30 problems are used for testing tqe proposed method, and the

results are summarized as a graph which shows the relation between the

required CPU time and the number of data points. (See Fig.4) This

figure shows that the CPU time increases almost linearly in accorance

with the number of data points, but for some cases the mesh generation

procedure requires relatively long execution time. They are the cases

that all data points are placed only on the surface of spheres, and,

therefore, most of the execution time is consumed for the occurence

of the degeneracy. That is, in case of sphere the tetrahedra cover­

ing the sphere have the same circumsphere (i.e. the original sphere),

and every setting of new data point the phenomenon of the degeneracy

occure. The data points are systematically generated for some test

problems ( * in Fig.4) and randomly done for the residuals ( 0 in the

graph). But, as obvious from the graph, the diff.erence between these

methods does not give serious influence to the CPU time. This shows

the proposed method is effective for actual mesh generation method for

3D problem. We should note that these tests are done by using a 16-bit

personal computer.
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In this investigation the authors proposed the Delaunay triangula­

tion method for 3-dimensional domain, which is directly applied as the

mesh generator for 3D finite element analysis.

Proposed method is based on the Voronoi teselation and the Delaunay

triangulation, and, therefore, they require only the location of data

poin ts. Then, there exis t s no concept 0 f "boundaries" of the domain,

and we cann't introduce the geometrical property of the boundaries of

the domain which is used for the finite element analysis. That is, th~

convexity on the surface of the domain cann't be recognized, and the

convex subdomain is also filled by tetrahedra after the mesh gener­

ation. This suggests that the definition and the recognition of the

concept of "boundaries" are necessary for the development of more

general-purpose mesh generator based on the Delaunay triangulation.
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