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Optical fibers or integrated optical waveguides have arbitrary cross-sectional index or

refraction distribution. An efficient finite element method for analyzing the propagation

characteristics of dielectric / optical waveguides with open boundary is presented. The

propagation modes are hybrid, for which a variational expression is formulated in terms of the

longitudinal electric and magnetic field components. Infinite elements are introduced to

consider open boundary or to extend the region to infinity. Several specific examples are given

and the results are compared with those obtained by other approximate methods. Very close

agreements have been found.

1. INTRODUCTION

Optical fibers have been widely used as one of the major transmission media for long distance telecommunication,

with very low loss and broad bandwidth. In the design of their structure, it is important to calculate the propagation

characteristics of the guided modes, and to do that, several numerical analysis methods have been proposed. Among them,

the finite element method has emerged as one of the most generally applicable and versatile methods for the analysis of

waveguides. With FEM, the waveguide is treated as an eigenvalue problem with inhomogeneous index variation in the

cross-sectional plane. As the dielectric / optical waveguides are of open-type structure, it is required to extend the problem

domain to infmity. In extending the FEM to handle open-type waveguides, a particular scheme is needed to accommodate

the infinite domain. In this connection, a variety of approaches have been proposed [1-3] introducing the use of infinite

elements or the analytical solution for the exterior domain.

For the analysis of open waveguides, Yeh [3] uses the FEM with parametric infinite elements which incorporates a

radial decay function of the form 'Y=exp(-ar) where a>O. The asymptotic field behavior is therefore specified by the·

decay length Va, which is globally defmed for the whole problem. One drawback of the formulation is that as at the outset

the correct decay is unknown, an outer iteration loop is added to the FEM in which a parameter for each mode of interest is

optimized.

The present formulation incorporates the unbounded region by employing infinite elements, which are combined

with the standard finite elements. Since within the exterior unbounded domain, the general solutions to the field

components are used as the interpolation function for the so called hybrid infinite elements, it eliminates the need for the

outer iteration loop, which is imperative in Yeh's formulation. Adaptation of the two-node infinite elements to the finite
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elements for the bounded domain doesn't increase the order or the bandwidth of the system matrix. Kishi [4] also makes

use of the general solution for selecting the interpolation function for the infinite domain, but in that case, the system matrix

turns into a full matrix. The present method provides a smooth combination of the infinite domain by utilizing formulations

based on the hybrid variational principle. The governing and the discretized equations are presented in the following

sections. Application of the formulation is made to some examples where the computed solutions are compared with the

ones obtained by other methods.

2. VARIATIONAL FORMULATION

The cross-sectional geometry of a dielectric waveguide structure under consideration is shown in Fig.1, where the

core is shown to be surrounded by the clad region which extends to infinity. The material properties of separate cross­

sectional regions are assumed to be uniform along the direction of propagation. Consequently, the waveguiding problem

could be defined by the two-dimensional eigenvalue formulation for the cross-section, where the variational formulation is

derived by employing the longitudinal components of E and H. The governing equation for the longitudinal fields

(assuming that Ez and Hz are not zero at the same time) of a guided wave propagating along the z direction can be

represented [2] by the Helmholtz equation as

L V
2
• + k~ N' = 0

where 4J= { 4JH, l} ={Hz' (~olf3 ) E z }, L = 't N, with 't =(l-Eejf)/(Er-Eeff) and

N = [ 1 0], where Eejf= (13 cp/m)' :effective dielectric, Er : relative permittivity
o Eef~r

k~= (mlcp )2(1-Eeff) : wave number, m : angular frequency, Cp: speed of light and 13 :propagation constant

The electromagnetic fields are assumed to be propagating along the z direction with expU(m t - 13 z) }. On the interface­

boundary D between the core and the clad regions, the components (Es and Hs ) of the fields tangential to the boundary,

are to be continuous. The continuity conditions for the tangential field components are given by

(2)
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Fig.! Cross-section of an open-type dielectric waveguide

Here! and 2 represent the separate cross-sectional regions of different material properties. In the variational formulation,

the longitudinal components of E and H are coupled at the interface boundaries.

As shown in Fig. 1, the domain of the problem is divided into finite region QF and infinite region Q[ by imposing a
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virtual boundary on the domain. At this instance, conventional finite elements are applied to the finite region ilF, while the

infinite region ill is represented by hybrid-type infmite elements.

2.1 Finite Region Formulation

The variational formulation corresponding to the propagation problem defmed by Eq.(l) is given by

The discretized finite element formulation is obtained by assuming linear triangular elements so that after applying

variational principle, the element formulation for the nodal unknowns of magnetic field tPlf and electric field tPeE is given

by
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(4)

where Se = II V'i V'i dxdy, Me = II 'i~dxdy, Ce = I 'i;~ dl
e e D.

and Qe = j(£ek51f3 ) It;", dl with Q: = j(£e k51f3 ) I'il/dl ,(a =E, H)

r· r.

Here S e, Me, and Ce are the stiffness, mass and coupling matrices respectively, Qe is the boundary driving term and 'i,i

are the area coordinates. The element formulation given by Eq.(4) can be assembled for the entire domain to yield the

global discretized formulation as

where

F, =Q

-reeJjC

£.Jj£,(rS - kJM

(5)

Q is driving term only on the boundary (Q = Q r) so that Eq.(5) can be partitioned as

(5')

Qr equals zero when there is no driving source on the virtual boundary of the domain, in which case, the system of the

matrix equation given by Eq.(5) represents a standard eigenvalue problem.

2.2 Infinite Region Formulation

The formulations associated with the hybrid-type infinite element is based on the hybrid variational principle [5].

The related hybrid functional IH (,) corresponding to Eq.(l) for the infinite region ill is given by

(6)

In Eq.(6), , and q (= dtP / an) are the potential and the flux respectively within the domain ill, ij is the flux directed
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nonnal to the boundary T(n is nonnal unit vector directed outward from the region ill to the region ilF), and ~ is the

-
unknown potentials defined on the boundary. The continuity of the electric field component E. and magnetic field

component iI• .which are tangential to the virtual boundary between finite and infinite regions, are incorporated in the

fonnulation by employing the equation

a~ - -alp . - hL- =14= M-+ jK..", werean as iY= { ijIl, II} = {iI., (meol /3) E.} (7)

(8)

Therefore, executing partial differentiation on the functional and making use of Eq.(I) leads to the equation given by

IH(.) =_1. f .TLqd1 + f~TLqdl - f~TMaa~dl- jf ~TKVtdl
2 r r r S r

As can be seen from Eq.(8),the functional for the infinite domain !q is expressed only by line integrals along the boundary

T. Dividing the virtual boundary into a number of boundary elements and employing linear interpolation function'

(whose components are given in details in section 2.2.2), for the boundary element Te, the discretized expression for ~e'

defined on the boundary is given for the element as

(9)

where ",comprises the nodal potentials located at the tenninals of the element Te . For the infinite domain, the potential •

is expressed by the general solution to the Helmholtz equation with the fonn of an expanded series as

• =bTA (10)

(14)

where the vectorsb and A represent respectively the undetennined multiplier and the general solution to the Helmholtz

equation, which are given in detail in the later section. Accordingly, the flux q along the nonnal direction is given by

a. T
q= an =b All (11)

where Anis the nonnal derivative of A. Substituting Eqs.(9)-(II) in the functional leads to the expression

1 T -T -T - ~ ~T -
IH (.)=--b LHrb+. LGr b -. MXr .-. PQr (12)• 2·.·e. e .e e •

for elemente, situated adjacent to the boundary. The matrix tenns of Eq.(12) are defined as

Gr, = fA..,Td1 , Hr, =J~(AA; +A"AT)dl , Xr, = f ,:;dl, Qr, = j(EejJ t;lf3>f'iYdl (13)
r, r, r, r,

At this stage, discretizing the fonnulation for the boundary element Te of the finite region and thereby, making it stationary

for 41! and ~, we obtain

[
TYr, 'fEejJXr , ]{j/.,} {{g,}

'fEejJXf, 'fEejJE,Yr , #, =-Qf!,.

This is a set of simultaneous equations associated with the nodes on boundary re , on which the effect of the exterior

domain is expressed. In Eq.(14), the tenn

G T -IGYr , = r,Hr , r, (15)

is a hybrid-type infinite element matrix which is the admittance of the infinite region seen from boundary Te • By

assembling Eq.(14), the equations for the entire boundary T yields the global discretized infinite element fonnulation
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given by I rr fr = Qr for the entire infinite domain. Combining the infinite discretized formulation with the finite one given

by Eq.(5)' leads to the [mal discretized formulation for the entire domain of the problem incorporating both the finite and

the infinite regions. The compatibility conditions tPr = tPr and Qr = -Qr yield

[
FlF FFr ]{iPF} {O}
FrF Frr +Irr tPr - 0

In the above hybrid formulation, the realization of the infinite region is made feasible by terminating the boundary of the

finite region with the admittance Irr .

2.2.1 Two Node Infinite Element

The two-dimensional general solution [4] for IfJH and t/JE of the infinite region n/ is given in terms of polar

coordinate as
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N N
IfJH = boKo(xr) + I,bmKm(xr)sin(mO + p) , IfJE = boKo(xr) + I,bmKm(Xr)cos(mO +p)

m=' m='
(17)

bm is a coefficient to be determined, K m (Xr) is the Bessel function of second kind, m order, r is the distance from the

origin to the point of interest, p is the phase angle which depends on the condition of symmetry of the corresponding eigen

mode, and X = [/32 - ( OJ/ c)2 ]1/2.

Here we consider some particular modes for which the parameters are chosen in accordance with the condition of

Ez as shown in the Table 1.

Table 1 Selection of Parameters

Condition of Mode Type Parameter
symmetry for E z

x axis yaxis ----- m p

Unsymm
x 0Symm. Ell odd

Unsymm Symm.
y

odd rr/2Ell

While considering EX mode, as we are concerned about the lower modes, truncation is made for which we take

only two terms in Eq.(17) so that

(18)

Accordingly, A H = {Ko sK,} , A E = {Ko cK,} , b = {bo b,} where the abbreviations used are given by

c=cosO= x s=sinO=· Y K·=K·(Xr ) K(J·)=K.('Yr.)12 2' 122' I I 'I IN)

yX +Y yX +Y

As shown in Fig.2, instead of considering the infinite region asa single element, it is divided radially to create infinite

elements, which have two nodes on the boundary for each element. The other two nodes are supposed to be at infinity,

where tP ~ 0 as r ~ 00. The infinite element matrix Y re (Eq.(15» is now evaluated or integrated for the boundary (1-2-3-

4) surrounding the region shown in Fig.2. The integration scheme for the edge-components of G re and H re is carried out
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as

(19)

y

r
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Fig.2 Two node infinite element

At frrst, the fmite boundary 1-2 is considered where the general solution of the vector A and its normal derivative An take

the following form

H E
An ={An" A",} , An" =.4;;. =-X(Cllx +sny)KI ,

H (KI ) (-s c)An =xs(cnx+sny ) -Ko-- +c -nx+-ny KI ,
I Xr r r

E (KI) (s C}An =xc(cnx+sny) -Ko-- +s -nx--ny I
1 xr r r

(20)

(21)

Here nx =(Y2 - YI ) / 112, ny =( Xl - X2) /112, where 112 is the length of the boundary element re, and nx and ny are the

cosine angles made respectively with the X and y axes. Accordingly, G12 is given as

G =.!.1 JI [A"o~1 Ano~21dJ:
12 2 '12 -I .4,,1~I .4,,1 ~2J ':>

Here ~ I =(1- ~ ) / 2 and ~2 =(1+ ~ ) / 2 for the linear intetpolation assumed where ~ is the local coordinate (-1 :5 ~ :5 1) .

(22)

Note that the integration in the above equations can easily be carried out by using Gaussian quadrature formula. However,

since the integration along the infinite interelement boundary or edge 2-3 is directed radially along r, cylindrical coordinate

system is introduced. Realizing i) / i) n =(-1/ r) i) / i) 0, 0 =O2 and dl = dr, we obtain

AH={Ko .\2KI},AE ={Ko C2KI}, A:={O ~IC2KI},A:={0 ';S2KI} (23)

where Cj =cos 0 j, Sj =sin OJ, ~23 = ( 0 Ko / Ko(2) }. Again for the edge 4-1, ~l = ( Ko / Ko(l) 0 }, i) / i) n =( 1

/ r) i) / i) 0 , 0 = 01 and dl = dr so that the expressions for A and An are obtained by just replacing the subscript of the

expressions for the edge 2-3 and putting 01 = O2 yielding

(24)
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And accordingly, the part of the matrices G and H that correspond to the infinite edges (interelement boundaries) 2-3 and

4-1 are given by

[ 0 0] [. 0 0]
G H GH C -c G E GE -s S

23 + 41 = I J 2 J ' 23 + 41 = I 1 2 1
Ko(1) 011 Ko(2) 012 Ko(l) 011 Ko(2) 012
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l

0
nH HH .

23 + 41 = _c2 cI-J012 +-JOII
2 2

(25)

so that J111 and J 112 are the only terms for which numerical integrations are needed to be carried out. G re and H re are

evaluated from Eq.(l9) and Y re is evaluated from Eq.(15). Note that the corresponding two node infinite element matrix

attains the order of 2x2 for node 1 and 2.

2.2.3 EY Mode

As shown for the EXmode, for N =1 and p =1t /2, the following expressions are obtained for the E Y mode.

cpH =boKo(zr) + blKl (zr)sin(O +1t/2) =boKo(xr )+bIKI(Xr)cosO

cpE =boKo(zr) + blKl (zr)cos(O +1C /2) = boKo(xr)-bIKI(xr)sinO
(26)

(27)

(28)

Regarding the [mite edge 1-2, the expressions for vector A and its normal derivative An are given by

-< =~ = -x(cnx +sny)KI , A~ = xc(cnx +sny{-Ko-;)+s0 nx -';ny)K1

and A~ =-xs(cnx +sny{ -Ko- ~)+c(; nx-;ny'l
G 12 and H12 are evaluated using the Eqs.(21) and (22) respectively, and the part of the matrices G and H that correspond

to the infinite edges 2-3 and 4-1 are given by

G~ +Gft =[ _SIO J ~ J ] G~ +G~ =[ _CIO 1 C2 0 1 ]
Ko(l) 011 Ko(2) 012 Ko(l) 011 Ko(2) 012

3. NUMERICAL EXAMPLES

In order to demonstrate the application and quality of the method presented in the previous section, the solutions for

a couple of sample problems are given and are compared with the solutions obtained by different methods. The first

example taken is that of a circular step-index fiber (shown in Fig.3), for which the modal solution is obtained. The



70 Marcos KOSHIMOTO, Zaheed MAHMOOD and Yukio KAGAWA

boundary conditions and the element divisions are shown in Fig.4. For symmetry, only one quarter of the structure is

taken for the analysis. The infmite elements are applied at the boundary Ro. The dispersion curve for the propagating mode

HE~ I with nj = -r;;=1.0, n2 =~ =1.01 and Ro / a = 5.0 is shown in Fig.5.
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/ nl "-
/ \
I \
\ I
\ /

\ R o /
" /..........~_/

Fig. 3 Step-index fiber

Fig. 4 Finite element model

Note that HE~ I is a hybrid mode where Hz> Ez and the superscript y indicates the direction along which the electric field

is dominant. In Fig.5, + symbol represents the solutions obtained by the present hybrid formulation employing both finite

and infinite elements, 0 represents the one obtained by employing only the finite elements having the domain bounded by

imposing the boundary condition Ez :::: 0 at the virtual boundary and A represent the spurious solutions encountered by the

Fig.5 Dispersion curve for the step-index fiber
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Fig.6 Field distribution at !3cp/ro=1.0005
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Fig.7 Spurious modes at!3 cp/ro =1.002
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present method. The solutions obtained by the present method are compared with the exact ones [6] and the ones obtained

by Yeh [3]. The accuracy of the present method has been found satisfactory. However, from the figure, it looks that the

outer boundary condition doesn't have much effect on the dispersion curve.

In Ref.[3], Yeh uses decay-type infinite elements and employs 157 and 588 quadrilateral elements for a Ro / a of

14 and 42 respectively. It is quite evident that to achieve good accuracy at low frequency solution by Yeh's method, large

finite domain (a large value of R 0 / a as well as a large number of elements) is required. Regarding the present

formulation, due to the presence of the frequency term in the infinite element matrix, inclusion of the effect of the infmite

domain destroys the standard eigenvalue matrix expression. To obtain eigenvalues, the determinant search technique must

be used. What make the present method very efficient are that inclusion of the infinite elements doesn't increase the

bandwidth, and that small number of elements are required for reasonable accuracy.

In Fig.6, the magnetic and the electric field distributions for an effective dielectric of f3 cp/w = 1.0005 are shown.

In the figure, the dotted lines represent the field distributions for the bounded case obtained by employing only the finite

elements and the solid lines represent the one for the unbounded case obtained by employing both the finite and the infinite

elements. It is quite clear from the figure that for the bounded case, the fields confine inside the assumed boundary while

for the unbounded case, the fields spread out towards the infinite region. The difference will be more pronounced for the

core with lower refractive index. In the present analysis, we encounter the spurious modes. The field distributions for a

spurious mode is shown in Fig.7, which could be noticed and removed without difficulty. There are reports [2, 7]

regarding the places of occurrence, origin and elimination of the spurious modes.

Hybrid-type
infmite element
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Fig. 8 Rectangular dielectric waveguide
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Fig. 9 Finite-element model

Next, employing the present method, simulation is carried out for the rectangular dielectric waveguide of Fig.8.

The boundary conditions and the element divisions are shown in Fig.9. The dispersion curve, shown in Fig. 10 is obtained

Bibliog.[8] (Circular harmonic expansion tech.)
Bibliog.[9] (Marcatili's method)

B=(w /cp ) bJ n;- n; 11t :Normalized frequency

p2= [(f3cp/w) 2 - n; ] / (n; - n;) : Normalized propagation

constant

1.0 EX.. 4~
0.8 e:-e --

" x
N 0.6 ",/ ~l

Q.., 41
0.4 41

1

~
0.2 I

0.0
0 1 2 3 4

B

Fig. 10 Dispersion curve for the rectangular dielectric waveguide
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for the propagating mode EZ (where Ez and Hy are the major field components) taking one quarter of the symmetric

structure for the simulation with nj =1.0, n2 =1.5 and a Ib =1. For comparison, solutions obtained by other methods [8,

9] are also shown which are found to be in well agreement with- the ones obtained by the present method. Though

dispersion characteristic with similar accuracy can be obtained by the finite element solutions assuming the guide to be

bounded by the conducting boundary, as in the previous case, the electric field distributions obtained from the bounded

solutions are less practical than the one obtained by the unbounded solutions employing both finite and infinite elements. In

Fig.ll, the electromagnetic field distributions are shown for the modes E~ 1and E;1 .
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------,
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L I

Magnetic field Electric field Magnetic field Electric field

4. CONCLUSIONS

2
Fig. 11 Field Distribution at P = O. 1

A finite element method for the propagation analysis of unbounded, arbitrarily shaped, dielectric I optical

waveguide structures has been proposed where the unbounded region is accommodated through the use of hybrid infmite

elements. Numerical analysis is carried out for a circular step-index fiber and a rectangular dielectric I optical waveguide,

where the incorporation of the unbounded region is shown feasible for symmetric waveguide structures. The merit of the

present method is, extension of the finite element formulation to accommodate the infinite elements doesn't cause any

change in the order of the system matrix and also in the bandwidth. The solution procedure is therefore very efficient

despite the fact that the hybrid formulation can't be solved by the standard eigenvalue solver as the wave number spreads

out in the formulation in a scattered manner, and determinant search technique must be used. What offsets the merits is the

occurrence of spurious modes along with the physical ones. But again, the spurious modes could be detected easily and

removed thereby.
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