高利得心電図について

岡山大産医学部第一内科教室(主任:小坂淳夫教授)

講	師	原	岡	昭	
副	手	佐	藤	迪	彦
大学院学生		椎	名		宏
副	手	井	谷		昭
大学院学生		橋	本	宏	之

[昭和40年12月27日受稿]

緒言

心電計および心電図学の進歩には著しいものがあ るが、現在なお未解決の問題が残されており、なか でも基線近傍における微小電位の変化であるP波、 U波および ST 部分に関してはその判定が困難な場 合がある.すなわち現在普及している心電計の感度 が ORS 棘波波の記録に適当な1mVの電位を10mm に記録するように設計されているため、主として1 mm以下に記録される微小な波形(ST部分、U波、 P波等)については深く追求されていない.

しかし最近2,3の研究者達¹⁾²⁵⁾によつて,高利 得心電計を用いて普通感度心電図における微小棘波 る拡大して観察する誠みがなされている.しかし上 述の研究者により試作された高利得心電計は振幅制 禦の装置が設置されていないか,あるいは設置され ていても筋電図の混入や呼吸性の基線動揺によつて 充分な拡大率を得ていないものがある.

今回著者らの試作した高利得心電計は後述のよう な振幅制禦装置を併置することによつて,きわめて 安定な波形を得ることに成功したので,2,3の症 例とともにその特徴的所見について述べる.

検査対象および方法

前置増幅器を一般心電計と組合わせて高利得心電 計を製作した.そのブロック・ダイヤグラムは図1 に示す如くである.入力選択器の周波数特性は JIS 規格に準じて設計し,総合利得は100dB とした.

また一般心電計においては入力が 2.5mV 以上加 わると,熱ペン,ガルバノメーター等の破損,ある いは波形の歪が生じることがある.これを防ぐため に,心電計に振幅制禦装置(クリッパー)として接

合型シリコンダイオード(RD-6A)2個を用い, これをグリット回路に入れることによつて入力電圧 を 2.5mV 以内におさえた.これはシリコン・ダイ オードの逆方向特性における降伏現象を定電圧素子 として利用したもので,定電圧特性がきわめて良好 であることが最大の特徴である.

対象は健常者30例の他, 心疾患患者数例である. 全例について, 標準感度および高利得心電図をそれ ぞれ標準12誘導および Frank 法による Scalar 誘 導について記録した.

なお高利得心電図の記録紙送り速度は毎秒 50mm で拡大率は10倍とした。

成 績

I)P波の形態

健常者のP波の形態についてはすでに大宅¹), 三 戸²) が報告している如く,著者らの成績においても, 標準感度心電図で通常みられるような単一なP波は 高利得心電図ではほとんどの場合みられなかつた. すなわち多くの例に図2,3に示す二峰性,二相性 P波が認められた.これらのP波は各誘導ともそれ ぞれ5種類に大別された.胸部誘導V1においては 二相性P波,II誘導においては二峰性P波,X,Y 誘導では二峰性の陽性P波,Z誘導では二峰性の陰

性 P波が主として認められた. これは左右心房の P 波ベクルトの発生の時間差に記因するものと考えられる.

Ⅱ) Pの瞬時ベクトル

図4は高利得 Scalar 心電図(Frank 誘導)にお いて0.02秒ごとの瞬時値よりP波の3平面投影を作 図したものである. このようにして空間ベクトルを 構成すると, P波のベクトル環の回転方向,最大ベ クトルの方向およびその大きさを詳細に知ることが

できる.

Ⅲ) Ρ波高の計測値の比較

Scalar 誘導X,Y,Z(Frank 誘導)およびII誘 導における高利得心電図と標準感度心電図のP波高 の計測値を比較した.

標準感度心電図において 0.1mV 以下の波高は1 mm 以下に記録されるため, 微小な棘波を計測する 場合かなりの誤差が生ずることが推量される.実際 に標準感度と高利得心電図のP波の電位を測定比較

して上述の推量を明らかにした. すなわち図5,6, 7,8,に示す如く,0.1mV(1mm)以上のP波に ついては両心電図ともその計測値はほぼ一致するが, 0.1mV以下の微小な波高になると両者の間には著 しい誤差が生じた. これは 0.1mV以下の測定にお いては,高利得心電図の場合では充分波高の計測が できるにもかかわらず,標準感度心電図では波高が 低いため計測が困難となり,実際よりも小さな値と して測定される傾向が生じるためと考えられる. さ らに標準感度に心電図では痕跡を認めるのみで0.01 mV内外としか推定できないようなP波でも高利得 心電図では波高も正確に測定できる.したがつて

0.05m▼ 以下の波高では両心電図の間の計測値の誤 差が一層顕著となつた.

IV) PQ および QT 時間の計測値の比較

PQ および QT 時間ともに, Scalar 誘導 X, Y, Z およⅡ誘導について両心電図の計測値を比較した。

PQ 時間にづいては図 9, 10, 11, 12 に示す如く, 両心電図の計測値はほぼ一致する.他方 QT 時間の 場合では図 13, 14, 15, 16 が示す如く, どの誘導 においても著しい差が認められた.これは PQ 時間 の場合は P 波の立ち上り Q 波の始りまで,すなわち 計測の開始と終末点が明確であるが,他方 QT 時間

229

の場合は T 波の終末部の零線へ移行する点が区別し にくいためと考えられる.すなわち高利得心電図で は標準感度心電図よりも微細なところまで追求でき るため,零線への復帰点すなわち終末部をより一層 明確に識別できるからである.

V) 症例

つぎに2,3の症例について述べる.

1) 完全房室ブロック(心房性T波)

標準感度心電図の場合は心房性T波の識別は困難 であるが、高利得心電図を用いると健常者の場合で もP波の陰性相と心房性T波の識別はほとんどの場 合可能である.図17に示す如く、房室ブロックの場

合は心房性 T 波がより一層識別され,その形態もよく観察できた.

2) 僧帽閉鎖不全症(左房肥大型P)

図18に示す如く, 左房肥大型 P は I 誘導において 標準感度心電図の場合でも高利得心電図の場合でも 識別することができるが,後者の場合ではさらに左 右心房の興奮極期のずれが一層明確である.

3) 低カリウム血症(U波)

T波とU波の鑑別は標準感度心電図の場合には困 難なことが多いが,高利得心電図ではU波の認知は 容易であつた(図19).

考 按

従来心電図棘波の微小な電位変化の追求にはブラ ウン管上の拡大,拡大レンズの使用,写真拡大等が 行われてきた.しかしこれらの方法では心電図を本 質的に分析することは困難である.

一方高利得心電計はあらかじめ電気的増幅を行な い,振幅制禦装置によつて必要な部分のみを記録す るために図形の分解能力をより一層たかめることが きる.したがつて高利得心電図を用いると標準感度 心電図における微小な電位変化が拡大され,高速度 記録と相まつて詳細な波形が正確に記録されるので ある.

元来 P波あるいは Pベクトル環については報告が 少く,その系統的研究は 2,3の発表があるに過ぎ ない ³⁰ 4). これは現在実用されている心電計の感度 では P波高が著しく小さく,また一般のベクトル心 電図では P波は QRS 環に重複し経時的計測もやや 困難であるため,P波の分析解明が至難であつたと 考えられる.しかるに高利得心電図においては上述 の如く,P波の形態が明確に記録され,P波高およ びその持続時間を正確に計測しうる利点がある.し かも高利得 Frank 誘導 Scalar 心電図において,単 位時間ごとの瞬時値より P波の 3 平面投影を作図す れば,空間ベクトル環を構成することができ,瞬時 ベクトルによる経時的な追求が可能である.したが

文

- 1) 大宅ほか: 内科 13:551, (1964)
- 三戸: The Medical Electro Times 6:187, 251, 279, (1964)
- Cacers, C. A., & Kelsen, G.: Am. J. Cardiol.
 3, 499, (1959)

附 特殊心電計前置增幅器

1. 目 的

この装置は一般心電計を組合せて高利得心電計と して用い.主として P,U 波などの微小棘波を観察, 分析する.

2. 構成

一般心電計と組合せて用いる.ブロック・ダイヤ グラムは前述の如くである.

3. 性能

つて P 波の分析解明には高利得 心電図 Scalar 誘導 からの計測およびベクトル環構成による方法がより 適当であると考えられる.

つぎに時間測定値の比較であるが、PQ 時間は高 利得心電図と標準感度心電図の間には著しい測定誤 差は生じなかつたが、他方 QT 時間は両者の間に著 しい誤差が生じた. これは標準感度心電図では PQ 時間は計測の終末点が明確であるが、QT 時間は零 線近傍における移行点が不明瞭であることに起因し ている. この事実によつても高利得心電図の基線近 傍の拡大の有用性を強調しうるのである.

語

高利得心電図の有用性について標準感度心電図と 比較検討した。

対象は健常者30例および心疾患患者数例であつた.

拡大率は標準感度心電図の10倍にした.

結

正常 P 波について高利得心電図を用い形態を分類 し、また瞬時ベクトル環を構成した.

PQ, QT 時間の計測値を高利得および標準感度心 電図で比較し,両者間の測定値の誤差について検討 を加えた.

さらに2,3の症例につき呈示した.

(小坂教授の御校閲を深謝する)

献

- Scheuer, J. et al. : Am. Heart J. 60: 33, (1960)
- 5) Caser, A. et al. : Circulation. 20 : 229, (1959)

本装置の諸性能は次の通りである。

- イ.電源 6V硫酸蓄電池 1 90V積層乾電池 2
- ロ.入力選択器 JIS規格(T1202-1960)の4.4 項に準じる、
- ハ. 入カインピーダンス 2MQ×2以上
- ニ. 増幅度 20dB 以上
- ホ. 時定数 1.8 sec 以上

- へ.感度調整器 連続可変式
- ト. 較正電圧 100µV 直角波
- 4. 附属品
- イ.電源コード 1
- □.6V硫酸蓄電池 1
- ハ. 誘導コード
- ニ. 出力コード 1
- 5. 心電計の振幅制限(クリッパー)回路について.

1

一般の心電計では、熱ペンの振幅を約±25mm 位 にしているが、これを入力換算電圧にすると2.5mV 位になる.これ以上の電圧が入力に加わると、熱ペ ンの破損、波形の歪を生じることがある.

これを防ぐために、心電計に振幅制限(クリッパ ー)を入れることにした.既存の心電計にクリッパ ーを入れるため回路を簡単に設計し、動作状態が安 定であるように設計した.

入力電圧を約 2mV に抑えて, これ以上の電圧を 制限した. そのため接合型シリコン・ダイオード(ゼナー・ダイオード)を使用した. これはシリコン ・ダイオードの逆方向特性における降伏現象を定電 圧素子として利用したもので, 次のような特徴があ

る.

① 定電圧特性が極めて良好である。

 約4 ∇の低電圧から40 V までの任意の電圧が 得られる.

③ 動作電流が数 10µA から数 10 mA までの広範囲にとれる。

④ 飽和電流が非常に小さい.

⑤ 極めて安定性がよく,長寿命である.

⑥ 非常に小形で取扱いが容易である.

この回路には、主として①の特徴を用いて一般心 電計の増幅器の真空管のグリッド回路に挿入した.

真空管のグリッド電圧がわかれば,その電圧以上 の電圧を制限すればよいので,図 1,2 のように結 線すればよい.

即ちRの両端の電圧を Eo とすると, Eo 以上の電 圧はDの方を通して流れ, 真空管 T のグリッドは Eo 以上にならない.

心電計の増幅器に平衡差動型を用いるので、この ゼナー・ダイオードを2個互に逆方向につないで用 いる.

この場合 D₁, D₂ のゼナー・ダイオードの特性が 同じものを選べば, 点①, 点② の電圧は E₀ の電圧 より高くならない. ①が③より高くなるときは, D₁ の逆方向行持性を利用し, ②が①より高くなるとき は, D₂の逆方向行持性が利用される.

この制限回路を使用しないときは、スイッチSで 操作できるようにしてある.

図の場合①と②の電圧(制限電圧)を測定してお けば、ゼナー・ダイオードを選ぶことができる。例

†B

えは Eo を6 Vにすれば, ゼナー・ダイオ ードを RD-6A を用い, 7 Vにすれば RD -7A を利用することになる. したがつて 真空管 T2 のプレート電流は, ある一定の 電流しか流れないわけである. Eo 以内の 電圧では歪はほとんど問題にならない.

On the augmented Electrocardiogram

Syoichi Haraoka Michihiko Sato Hiroshi Shiina Akira Itani Hiroyuki Hashimoto

The First Department of Internal Medicine Okayama University Medical School (Chief : Prof. K. Kosaka)

A newly developed augmented electrocardiogram was tested. (x1O) Using this electrocardiogram. the P wave, PR interval and QT duration were studied. Utilization of the augmented electrocardiogram was reported.