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We present a Stochastic-Difference-Equation (SDE) approach to long time-scale molecular dy-
namics (MD) simulations, which are required for nanosecond-scale phenomena. In this method, the
MD trajectory in a fixed time period is obtained as a stationary solution of an action functional
based on an error accumulation of the equation of motion along the path, thus reducing the problem
to a boundary-value problem, instead of an initial-value problem in the ordinary MD method. We
apply the method to formation processes of Cu thin film via nanocluster deposition onto a sub-
strate. The applicability of the SDE algorithm to the problem and the effects of the choice of SDE
parameters on the optimization processes of configuration pathway are examined.

I. INTRODUCTION

Molecular Dynamics(MD) simulation plays impor-
tant roles as a powerful tool for studying the com-
plex many-body problems found not only in basic sci-
ence but also in various engineering fields. Despite
its usefulness, the MD method has been suffered from
a limitation on timescale, especially in the cases for
nanometer-scale phenomena. The short time step,
such as on the order of femtosecond, is necessary to
stabilize the numerical integration in many of MD sim-
ulations on materials. On the other hand, there are
the fundamental processes that evolve as slowly as
over hundreds of nanosecond. In such cases, unafford-
able computation time for the simulations is required.

To overcome this limitation, numerous im-
provements are suggested[1][2]. In this pa-
per, we employ the Stochastic-Difference-Equation
(SDE[2][3][4]) method for a long time-scale simulation,
and examine its applicability to a thin-film fomration
proccess which is a nanosecond-scale phenomenon.

II. BASIC FORMALISM

In the ordinary MD method, the Newton’s
equation-of-motion is solved numerically by the time
discretization, as an initial value problem. The time
step, ∆t, has to be small enough to approximate the

differentiation in the equation-of-motion by a finite
difference. The error vector, ε(ϵx, ϵy, ϵz), involved in
the estimation of time evolution of the coordinates is
defined as

Mi
Ri,k−1 + Ri,k+1 − 2Ri,k

∆t2
+

dUk

dRi,k
= εi,k (1)

where Mi and Ri(Rx
i , R

y
i , R

z
i ) are the mass and the

coordinates of ith particle, respectively. k denotes an
index of the time frame, and U represents the poten-
tial energy.

We define an action along a pathway as

Sc =
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0

dt

n∑
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·
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+

dU
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,

(2)
where n is the number of particles. Here the two
boundary points Ri(0) and Ri(T ) are fixed.

In the discrete representation of the time integra-
tion in Eq. (2), the action can be written as

S =
N∑

k=1

n∑
i=1

(εi,k · εi,k) , (3)

where N ≡ T/∆t is the total number of time steps.
The essence of the SDE algorithm is based on the fact
that in the limit of N → ∞ the true trajectory can be
obtained by minimizing the functional S with respect
to the trajectory Yi(= {Ri,k}N

k=1), and, therefore, we
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may extend the idea to the cases in the finite values
of N . The question is then reduced to how small N
can be taken without loss of gross feature of the true
trajectory.

To minimize the action efficiently, we solve the
equation-of-motion for fictitious dynamics,

d2Yi

dτ2
= −∇YiS, (4)

where τ is a fictitious time of optimization process in
the SDE method.

Table. I shows the procedure of the optimiza-
tion process in the SDE method. In the simulated-
annealing process, the fictitious kinetic energy, defined
with the fictitious velocity dY/dτ , is scaled to be con-
stant as

λ2
n∑

i=1

(
dYi

dτ

)
·
(
dYi

dτ

)
= NnTeff (5)

where λ denotes a scaling parameter and Teff de-
fines the fictitious temperature in the SDE simulation,
which has the dimension of (energy/length)2. The ac-
tual unit (eV/Å)2 for Teff is omitted in the following
descriptions.

TABLE I: Flow of the SDE algorithm

　　　　　　　　　　　　　　　　　　　　　　　　　(1) Set a presumed reaction path (initial, intermidiate,
and final states).

(2) Calculate the action S and its gradient on the path.

(3) Perform a simulated annealing by solving Eq. (4)
numerically.

(4) Minimize the action S by finding that the system
reached a stationary state.

　　　　　　　　　　　　　　　　　　　　　　　　　

For systems where atoms interact with each other
via a spherically symmetric pair potential V (r), that
is a function of distance rij between atoms i and j,
the total potential energy is written by

Etot =
1
2

∑
i

∑
j ̸=i

V (rij), (6)

and the force exerted on atom i is

Fi = −∂Etot

∂Ri

= −
∑
j ̸=i

dV (rij)
drij

∂rij
∂Ri

, (7)

where

∂rij
∂Ri

=
Ri − Rj

rij
. (8)

From Eqs. (1), (3), and (4), the driving force on
atom i in the fictitious dynamics of SDE process is
written by

Gi,k = − ∂S

∂Ri,k

= 2
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where
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and

α(l) = (Ri,k − Rj,k) · εl,k,

V ′(r) =
dV (r)
dr

,

V ′′(r) =
d2V (r)
dr2

. (12)

III. LENNARD-JONES POTETIAL

The Lennard-Jones (LJ) potential is well known as
one of the simplest model for spherically symmetric
interatomic potentials. In a normalized form, the po-
tential is represented by

V (r) =
1
12

(
1
r12

− 1
r6

)
, (13)

and the first and the second derivatives of the poten-
tial are

V ′ =
dV (r)
dr

=
(
− 1
r13

+
1

2r7

)
, (14)

V ′′ =
d2V (r)
dr2

=
(

13
r14

− 7
2r8

)
. (15)

From these equations, the SDE driving force with
LJ potential can be written explicitly by

Gi,k = 2

[∑
j ̸=i

{(
1
r14ij

− 1
2r8ij

)
(εi − εj)
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−β

(
14
r16ij

− 4
r10ij

)
(Ri,k − Rj,k)

}

− (εi,k+1 + εi,k−1 − 2εi,k)
∆t2

]
, (16)

where β = α(i) − α(j) = (Ri − Rj) · (εi − εj).

IV. MODEL

We simulate a long time process of Cu thin film for-
mation via deposition of Cu clusters onto a substrate.
The substrate with Cu(001) surface has 128 atoms per
atomic layer and consists of 16 layers (2048 atoms).
Atomic positions in the lower half of the substrate
are fixed, and the periodic boundary conditions are
imposed in the two directions parallel to the surface
plane. Initially, two Cu clusters with 55 atoms each
are deposited on the upper side of the surface. The
parameters of the LJ potential model for Cu, used in
the present study, are listed in Table II [5].

TABLE II: Parameters for LJ potential model of Cu [5].

Energy unit (ϵ) [eV] Length unit (σ)
[
Å

]
0.4093 2.338

In the SDE method, a presumed reaction path has
to be guessed before the simulation is started. Fig-
ure 2 shows the initial (after the two clusters are de-
posited) and the final states in the presumed path.
Additionally, we prepared the two intermediate states,
i.e., a sequential set of the systems with 4 and 3 atomic
layers on the surface. Seven identical configurations
are cloned for each state, and thus total of 28 states
are prepared as the presumed path. The time step
between each state is about 134[ps] and the total time
simulated is 3.6[ns].

The fictitious temperature Teff , defined in Eq. (5),
is set to be 2.69 × 10−5 or 4.03 × 10−5.

a) b)

FIG. 1: Atomic positions of (a)the initial and (b)the final
state. Gray balls represent Cu atoms of the substrate and
black balls are deposited atoms.

V. RESULTS

In the SDE simulations, we run 20000 SDE steps
to optimize the path. Figure 2 depicts the change of
the action S for the first 400 SDE steps with Teff =
4.03 × 10−5. The S decreases rapidly to the value
which corresponds to the fictitious kinetic energy in
Eq. (5).

Figure 3 shows the distribution of ε, defined in
Eq. (1), after the SDE run for Teff = 4.03 × 10−5.
The dispersion of the distribution is approximately√
Teff/2 = 4.49 × 10−3.
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FIG. 2: Change of S in SDE process
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FIG. 3: Error distribution

Figure 4 shows time evolutions of the potential en-
ergy in the presumed path and that after the SDE
optimization with different Teff . In Fig. 4(b), with
higher Teff , high potential barriers can be found
around 16-20×134 [ps]. Since the barriers are quite
high, it will take extremely long time in the ordinary
MD at low temperatures to observe that the system
evolves to the final state. It is thus demonstrated that
such a rare event can be explored by using the SDE
method with an appropriate choice of fictitious tem-
perature.
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FIG. 4: Potential energy vs. time in the presumed and
SDE optimized path for (a) Teff = 2.69× 10−5 and for (b)
Teff = 4.03 × 10−5.

We also calculate mean distances between the sur-
face of substrate and atoms in the clusters in order to
characterize the evolution of the film formation. Fig-
ure 5 depicts the time evolution of the mean distance
in the SDE optimized paths with different Teff , as well
as that in the presumed one.

As shown in Fig. 5, the ranges in the SDE search for
optimum path are relatively small in the case of low
Teff , whereas it undergoes wide range for the search
in the case of higher Teff .

VI. CONCLUSION

In this paper, we have presented basic methodology
of the SDE method, and have applied it to a long time
process of the Cu thin-film formation on substrate. It
is shown that using SDE approach a system evolution
for a few nanoseconds can be simulated with ∆t of as
large as 134[ps]. We have also demonstrated that the
rare event, which may be hardly found by an ordinary
MD, can be traced by choosing appropriate values of
the fictitious temperature Teff .
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FIG. 5: Mean distance between surface and deposited
atoms vs. time for (a) Teff = 2.69 × 10−5 and for (b)
Teff = 4.03 × 10−5.
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