氏 名 馬 加彬

授与した学位 博士

専攻分野の名称 エ 学

学位授与番号 博甲第3134号

学位授与の日付 平成18年 3月24日

学位授与の要件 自然科学研究科基盤生産システム科学専攻

(学位規則第4条第1項該当)

学位論文の題目 Rolling Contact Fatigue of Alumina Ceramics Coating Sprayed on

Steel Roller

(アルミナセラミックス溶射皮膜鋼ローラの転がり疲れ)

論文審査委員 教授 吉田 彰 教授 宇野 義幸 教授 塚本 眞也

助教授 藤井 正浩

学位論文内容の要旨

With superior properties of electric insulation, wear resistance, and corrosion resistance, thermal-sprayed alumina ceramics coating is widely applied into various industrial machines. However, because the fracture toughness of the alumina ceramics is low, there are hardly any applications to rolling contact machine elements except for some rolls under low contact pressure.

In this research, the rolling contact fatigue of thermal-sprayed alumina ceramics coating with a nominal composition of Al₂O₃-2.3mass%TiO₂ was investigated with a two-roller test machine under pure rolling contact condition with oil lubricant, aiming for the application of the coating to various rolling contact machine elements with lubrication. The influences of several factors, which are surface sealing with epoxy resin, undercoating of Ni based alloy and coating thickness, on the rolling contact fatigue failure and life of the coating were examined. The surface sealing had no obvious contribution to the improvement of the rolling contact fatigue life. For a relatively thicker coating thickness as compared with the subsurface failure depth, the influence of undercoating on the rolling contact fatigue life was little. However, for a relatively thinner coating thickness, the undercoating could improve the rolling contact fatigue strength.

The failure mode was spalling caused by subsurface cracking. The elastic modulus of the alumina ceramics coating evaluated with the nano-indentation method was around 85GPa. The depths of observed subsurface cracks agreed almost with those of the maximum values of orthogonal shear stress or maximum shear stress analyzed by the finite element method (FEM), assuming that the alumina ceramics coating are isotropic or orthotropic. While, the influence of the anisotropic coating on the subsurface shear stresses was little.

論文審査結果の要旨

本研究では、耐腐食性、耐摩耗性および電気絶縁性などに優れた特性を持つアルミナセラミックス溶射皮膜をロール等の転がり接触機械要素へ適用する上で重要な溶射皮膜の転がり疲れ強さ、損傷形態などについて検討している。実機への適用を考えて、アルミナ溶射ローラの転がり疲れ強さに及ぼす母材材質の影響、溶射皮膜厚さの影響、ならびに溶射皮膜の密着強度および環境遮断を目的に行われる下地溶射の有無の影響について実験的に詳細に検討するとともに、下地溶射の有無およびアルミナ溶射皮膜の機械的性質の直交異方性などを考慮した数値解析結果により考察を加え、アルミナ溶射転がり接触機械要素の設計法について論じている。

これらの実験、解析結果より、アルミナ溶射ローラの損傷形態はニッケル基合金の下地溶射の有無によらず、表面下のき裂発生に起因するスポーリング損傷であり、そのスポーリングき裂の発生深さは、計算された表面下の最大せん断応力および直交せん断応力の最大値の発生深さとほぼ一致することを見出している。また、表面下の最大せん断応力および直交せん断応力の最大値の発生深さに比べてアルミナ溶射皮膜厚さが十分大きい場合には転がり疲れ強さに及ぼす下地溶射の影響はないこと、一方、表面下のせん断応力の最大値の発生深さの2~3倍程度のアルミナ溶射皮膜厚さの場合、下地溶射のない場合ではアルミナ溶射皮膜の全面剥離が生じ易く転がり疲れ強さが低いことを明らかにしている。さらに、ローラに施したアルミナ溶射皮膜の半径方向と円周方向でその機械的性質が異なる直交異方性の表面下せん断応力や転がり疲れに及ぼす影響は大きくないことなどを明らかにしている。

以上のように、本研究では表面下のせん断応力がアルミナ溶射皮膜においても転がり疲れ強さを評価する場合に最も重要な因子のひとつであることを示しており、アルミナ溶射皮膜を転がり接触機械要素へ適用する際の設計法に実験的、理論的な知見を与えている。これらの成果は実機製紙ロールにも適用されており、本論文は博士(工学)に値するものと認められる。