Fig.V-9 Geological map and localities of samples of the Katsuma quartzdiorite.

1: Quarternary system, 2: Katsuma quartzdiorite, 3: Ochiai granite, 4: Hetrogeneous granite, 5: Takato granite, 6: Minakata granodiorite, 7: Hiji quartzdiorite, 8: Amphibolite, 9: pelitic-psammitic metamorphic rocks, 10: Sambagawa metamorphic rocks, 11: fault, 12: foliation.

mi: Mibu River, sn: Shinzan River, on: Onnasawa River, os: Osokura River, si: Shingu River, do: Dodomeki River.

GA: Gatsuzo-yama mountain, MI: Mitsukai-yama mauntain, TO: Tokura-yama mauntain.

MTL: Median Tectonic Line, ISTL: Itoigawa-Shizuoka Tectonic Line.

Whole rock chemical compositions of these samples are given in TableV-3. The Rb-Sr and Sm-Nd data are given in TableV-4.

In the whole-rock samples, FUJ-05 is substantially altered, and most of biotites were changed to chlorite by chloritization. MU-05 includes block of pelitic metamorphic rock. These samples are off the differentiation trend in SiO₂-oxides and SiO₂-minor element diagrams, and do not plotted on the isochron. ON-28 and ON-32 are leucocratic rock, which is included in this body, is mainly composed of plagioclase and a small amount of quartz, hornblende and biotite. ON-28 is substantially altered, and most of biotites were changed to chlorite. The chemical compositions of ON-28 and ON-32 are highly rich in Al₂O₃, CaO and Na₂O, and are similar to that of andesine. These four samples are excluded from the regression. The eight samples define an isochron age of 121±26Ma(MSWD(mean square of weighted deviates)=0.52) with a SrI of $0.70754\pm0.00011(2\sigma)$ (Fig.V-10). The same examination as the Otagiri granites suggests that this isochron is not pseudo-isochron. The leucocratic inclusion(ON-32) does not plotted on this isochron. This suggests that these leucocratic inclusions are not early stage cumulate of this body. In the Sm-Nd system, an isochron age of 172±44Ma was calculated(Fig.V-11), but the difference between this age and Rb-Sr whole rock isochron age is not clear thinking the range of error. ¹⁴³Nd/¹⁴⁴Nd ratios of samples were within 0.000035 (from 0.512271 to 0.512306). Therefore importance of 172Ma is not emphasized, because each ratio has an average error of 0.000011 in measurement.

Ichida granite

The whole-rock samples were collected from the Ichida granite(Fig.V-12). Table V-3 Whole-rock chemical compositions of the Katsuma quartzdiorite.

Sample No.	FUJ-05	RY-01	MU-05	0N-27	ON-28	ON-29	0N-30	0N-31	ON-32	0S-06	0S-11	NA-03
Si02	59.09	60.65	62.83	57.13	58.68	56.52	52.40	54.86	57.15	58.67	58.06	54.73
TiO2	0.90	0.80	0.86	0.97	0.22	0.84	1.07	1.05	0.14	0.80	06.0	1.06
A12O3	16.87	16.79	16.22	18.03	23.42	19.51	18.24	18.37	25.67	17.21	17.32	18.42
Fe203	0.82	1.41	1.17	0.67	0.26	0.99	0.63	2.75	0.26	0.67	0.33	0.03
FeO	5.66	4.30	4.86	6.21	0.58	4.85	7.73	4.88	0.28	5.14	5.75	6.87
MnO	0.12	60.0	0.11	0.12	0.02	0.10	0.16	0.13	0.01	0.11	0.11	0.11
MgO	3.69	2.81	2.82	4.04	0.40	3.56	5.20	4.32	0.34	3.30	3.62	4.27
CaO	3.76	6.02	5.83	7.48	7.48	7.90	8.67	7.67	9.39	6.46	6.93	7.69
Na2O	2.72	2.92	3.22	2.70	60.9	3.35	2.71	2.83	5.98	2.86	2.77	2.89
K20	2.32	1.23	0.79	1.12	0.54	1.01	0.92	0.95	0.27	1.70	1.56	1.27
P205	0.15	0.14	0.15	0.17	0.04	0.15	0.17	0.19	0.04	0.14	0.17	0.20
L.0.I.	3.83	2.01	1.60	2.31	2.07	1.88	2.77	1.78	0.47	1.81	1.88	2.17
Total	99.94	99.17	100.47	100.97	99.80	100.67	100.66	99.78	100.01	98.86	99.40	99.71
Ba	583	510	287	306	122	241	266	246	119	411	335	284
Cr	62	32	27	47	n.d.	33	52	42	n.d.	47	50	48
Cu	17		4	17	5	12	33	17	n.d.			16
Nb	6	5	8	9	n.d.	9	7	7	n.d.	8	8	7
Ni	19	13	13	19	3	13	24	19	7	17	16	19
Rb	84	37.5*	23	34.0*	16	29.6*	23.3*	26.4*	8	55.8*	52.7*	39.8*
Sr	346	401*	421	411*	626	452*	401*	418*	693	369*	365*	424*
Λ	172	133	137	172	18	137	175	190	15	154	159	181
Y	29	14	27	20	4	25	19	25	4	22	22	21
Zn	78		82	86	13	71	109	91	11			06
Zr	148	131	194	65	62	101	38	153	41	119	88	114
*determined by L.O.I.:Loss on	isotope dilu gnition, n.d	ltion metho	d sted.									

Sample No.	Rb(ppm)	Sr(ppm)	⁸⁷ Rb/ ⁸⁶ Sr	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}(2\sigma)$	Sm(ppm)	Nd(ppm)	147Sm/144Nd	$143 \text{Nd}/144 \text{Nd}(2\sigma)$	*IbN
FUJ-05	84**	346**	0.7058	0.70828(1)	5.05	20.7	0.1477	0.512265(11)	
RY-01	37.5	401	0.2706	0.70806(1)	2.45	12.4	0.1195	0.512281(10)	0.512187
MU-05	23**	421**	0.1595	0.70848(1)					
0N-27	34.0	411	0.2394	0.70798(1)	3.71	16.7	0.1342	0.512291(10)	0.512185
Biotite	543	13.4	118.9	0.81386(3)	0.0641	0.367	0.1056	0.512284(36)	
Hornblende	4.05	70.4	0.1663	0.70786(1)	9.54	37.1	0.1555	0.512262(12)	
Felsic f.	11.9	745	0.04625	0.70783(1)	0.161	1.42	0.06872	0.512219(14)	
ON-28	16**	626**	0.07580	0.70794(1)	0.489	3.13	0.09445	0.512291(11)	0.512216
0N-29	29.6	452	0.1893	0.70793(1)	4.42	19.1	0.1399	0.512303(12)	0.512193
Biotite	470	21.8	62.60	0.76260(3)	0.163	0.780	0.1268	0.512228(30)	
Hornblende	4.93	74.4	0.1919	0.70786(1)	12.8	46.5	0.1663	0.512282(12)	
Felsic f.	16.5	601	0.06742	0.70784(1)	0.268	2.16	0.07524	0.512301(14)	
0N-30	23.3	401	0.1678	0.70779(1)	3.55	19.7	0.1091	0.512274(10)	0.512188
0N-31	26.4	418	0.1826	0.70780(1)	4.65	19.9	0.1410	0.512306(10)	0.512195
ON-32	8**	693**	0.03423	0.70774(1)	0.551	3.83	0.08714	0.512247(17)	0.512178
0S-06	55.8	369	0.4378	0.70831(1)	4.13	21.7	0.1153	0.512271(10)	0.512180
0S-11	52.7	365	0.4182	0.70822(1)	3.62	16.2	0.1351	0.512303(11)	0.512196
Biotite	705	5.87	357.8	1.01763(6)					
Hornblende	3.66	68.3	0.1551	0.70801(1)	8.08	32.0	0.1525	0.512308(11)	
Felsic f.	11.4	559	0.05915	0.70792(1)					
NA-03	39.8	424	0.2721	0.70797(1)	3.83	17.0	0.1358	0.512304(10)	0.512197
Biotite	687	13.4	149.9	0.83090(4)					
Hornblende	4.15	93.3	0.1286	0.70784(1)	8.88	33.0	0.1629	0.512295(11)	
Felsic f.	5.53	685	0.02335	0.70773(1)	0.261	2.27	0.07043	0.512272(14)	
Felsic f.: Felsic *corrected by I	tractions th-Sr whole re	ock isochron a	age:121 Ma, **;	analyzed by XRI	IT.				

Table V-4 Trace element concentrations and isotopic data of the Katsuma quartzdiorite.

1 1

Fig.V-10 Rb-Sr whole-rock isochron for the Katsuma quartzdiorite.

Fig.V-11 Sm-Nd whole-rock isochron for the Katsuma quartzdiorite.

Fig.V-12 Sample localities of the Ichida granite. na:Nakatagiri River, yo:Yotagiri River, ka:Katagirimatsu River, os: Osawa River, no:Nosoko River. Ne:Nenjyo-dake mountain, Ho:Hontakamori-yama mountain. Chemical compositions of these whole rock samples are given in TableV-5. The Rb-Sr and Sm-Nd data of these samples are given in TableV-6.

SiO₂-oxides diagrams and SiO₂-minor element diagrams are given in FiguresV-13 and 14.

The sample selection is carried out in the way shown in Figure V-1. The six samples selected from the northern body form an isochron indicating an age of 100 ± 24 Ma with a SrI of $0.70818\pm0.00022(2\sigma)$ (Fig.V-15).

Takato granite

The Takato granite is divided into two bodies, northern and southern bodies, based on their distribution in the field(Fig.V-16). The southern body is composed of biotite hornblende tonalite and granodiorite. The northern body is composed mainly of biotite granite, but partly includes hornblende.

The whole-rock samples were collected from the Takato granite(Fig.V-17). Two samples were collected from the two-mica granite that is exposed as small body in the Sawa River. A sample is collected from the Tomigata granite(Kawachi et al., 1983) too.

Whole rock chemical compositions of these samples are given in Table V-7. The Rb-Sr and Sm-Nd data are given in TableV-8.

SiO₂-oxides diagrams and SiO₂-minor element diagrams are given in FiguresV-18 and 19. Rb and Sr contents of northern body are obviously different from those of southern one. The northern body is characterized by high Rb and Sr, and the southern body is characterized by low Rb and Sr. In southern part of the northern body, there are rocks that are poor in Rb. These samples include hornblende. It is thought that these rocks derive from the southern body. In this area, both facies exist. Thus, there is a possibility that these rocks mixed. This is supported by that these Table V-5 Whole-rock chemical compositions of the Ichida granite.

Sample No.	Y0-01	NAK-48	NE-54	OH-02	NAK-51	KAT-07	NAK-05	OSI-04	MOS-01	OSI-03	NAK-47	KAT-06
Si02	65.65	67.12	67.2	1 67.2	7 67.38	3 67.76	68.00	68.21	68.31	69.13	\$ 69.75	69.93
TiO2	0.55	0.62	0.62	2 0.5	8 0.64	4 0.36	0.46	0.38	0.45	0.38	8 0.53	0.31
A1203	16.45	16.92	15.9(0 16.6	7 16.60	5 16.10	16.12	15.49	15.07	15.21	16.12	15.08
FeO*	4.02	3.87	3.75	5 3.9	2 4.10	3.03	3.26	3.02	3.86	2.98	3.28	2.61
OuM	0.08	0.08	0.0	7 0.0	6 0.00	5 0.07	0.08	0.07	0.07	0.07	0.08	0.07
MgO	1.25	1.49	1.3(0 1.4	5 1.52	2 0.89	1.12	0.87	06.0	0.79	1.40	0.70
CaO	3.96	3.67	3.8(3.9	5 4.2	3.40	3.25	3.32	3.69	3.01	3.39	2.70
Na2O	3.36	3.48	3.4]	1 3.2	4 3.17	7 3.50	3.64	3.49	3.58	3.40	3.56	3.41
K20	2.34	2.27	2.03	3 2.4	1 2.28	3 2.54	2.24	2.41	1.78	3.03	3 2.40	3.05
P205	0.19	0.25	0.15	5 0.2	1 0.2	0.12	0.16	0.12	0.13	0.13	8 0.17	0.10
IOI		1.11	1.1(0.0 0	8 0.9	-	1.17				0.86	
Total	98.27	100.90	99.4	4 100.8	4 101.27	7 98.10	09.60	97.72	98.28	98.44	101.62	98.25
Ba	702	416	623	3 65.	2 654	4 757	406	613	498	939	345	518
Cu	n.d.	n.d.	p.u	. n.c	i. n.d	. n.d.	n.d.	n.d.	n.d.	p.u	. n.d.	n.d.
Cr	9											
Nb	11	12	5	9 1	1 1() 10	10	6	11	10) 13	11
Ni	6)	10	41	2	9	4 3	5	9	L	5	7	7
Rb	65.7	104	66.7	7 72.	8 67.	1 67.1	91	62.1	LL	71.4	4 78	77.6
Sr	487	427	425	5 50	7 496	5 425	402	429	318	404	4 385	353
V								19	26	22		17
Y	13	18	5	9 1	7 14	4 16	17	17	28	15	18	17
Zn	69	16	8.	3 7	2 7:	5 58	99	58	LL	63	68	55
Zr	232	216	193	3 22	0 24() 170	189	161	263	154	l 188	142
LOI: Loss on	ignition, n.c	l.: not detec	ted.									

Table V-5 (conitued).

-

Sample No.	KAT-04	KAT-02	OSI-05	90-ISO	NOS-01	KAT-08	KAT-05
Si02	70.29	70.30	70.38	70.88	71.30	71.88	73.05
Ti02	0.33	0.30	0.34	0.28	0.30	0.25	0.21
A1203	14.92	15.06	14.66	14.88	14.49	14.25	14.28
FeO*	2.77	2.54	2.78	2.46	2.31	2.09	1.94
MnO	0.07	0.06	0.06	0.06	0.06	0.05	0.05
MgO	0.73	0.65	0.70	0.55	0.63	0.50	0.38
CaO	2.89	2.45	2.67	2.46	2.74	1.61	1.89
Na2O	3.49	3.17	3.16	3.38	3.54	3.23	3.24
K20	2.42	3.58	3.24	3.27	2.54	3.87	3.57
P205	0.11	0.10	0.11	0.08	0.07	0.08	0.06
IOI							
Total	98.31	98.50	98.42	98.57	98.25	98.04	98.90
Ba	393	985	305	866	488	701	726
			7 4	7 4	7 4		2 4
C. C.	п.а.	п.а.	п.ц.	п.а.	п.u.	п.а.	п.ч.
Nb	11	10	6	10	13	15	11
Ni	4	5	9	8	5	6	9
Rb	72.2	81.5	71.6	82.4	50	118	85.7
Sr	354	375	375	342	424	232	287
V	17	16		17	20	16	12
Y	19	12	13	16	18	19	20
Zn	59	52	56	49	54	52	42
Zr	149	140	153	145	152	152	145

Table V-6 Trace element concentrations and isotopic data of the Ichida granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(2σ)	*IbN
YO-01	65.7	487	0.3907	0.70901(1)	5.77	34.3	0.1016	0.512316(10)	
NAK-48	104*	427*	0.7068	0.70952(1)					
NE-54	66.7	425	0.4539	0.70903(1)	3.79	21.8	0.1052	0.512314(9)	
OH-02	72.8	507	0.4161	0.70895(1)	5.83	36.2	0.09750	0.512291(11)	
NAK-51	67.1	496	0.3917	0.70892(1)	5.89	36.6	0.09724	0.512232(11)	
KAT-07	67.1	425	0.4572	0.70887(1)	4.44	24.0	0.1120	0.512286(11)	0.512213
NAK-05	91*	402*	0.6548	0.70917(1)					
OSI-04	62.1	429	0.4192	0.70889(1)					
MOS-01	78*	385*	0.5859	0.70958(1)					
OSI-03	71.4	404	0.5108	0.70897(1)	4.01	22.3	0.1088	0.512272(11)	0.512201
NAK-47	78*	385*	0.5859	0.70958(1)					
KAT-06	77.6	353	0.6362	0.70906(1)	3.59	18.0	0.1203	0.512311(11)	0.512232
KAT-04	72.2	354	0.5906	0.70902(1)	3.77	18.2	0.1251	0.512245(10)	
KAT-02	81.5	375	0.6293	0.70902(1)	3.45	18.6	0.1118	0.512262(11)	
10-SON	50*	424*	0.3412	0.70911(1)					
OSI-05	71.6	375	0.5523	0.70894(1)	3.73	19.9	0.1130	0.512334(11)	0.512260
90-ISO	82.4	342	0.6973	0.70893(1)	4.40	23.8	0.1120	0.512282(10)	0.512209
KAT-08	118	232	1.472	0.71010(1)	5.88	31.2	0.1140	0.512268(11)	
KAT-05	85.7	287	0.8639	0.70946(1)	4.57	23.8	0.1162	0.512270(9)	0.512194
*corrected by	Rb-Sr whole-r	ock isochron	age:100Ma, **	analyzed by XF	RF.				

Fig.V-14 SiO2-minor element diagrams for the Ichida granite.

Fig.V-15 Rb-Sr whole-rock isochron for the Ichida granite.

Fig.V-16 Geological map of the area north of the Takato Town. 1:Quaternary system, 2:Takato granite, 3:Two-mica granite, 4:pelitic-psammitic metamorphic rocks, 5:foliation.

sa:Sawa River, ta:Tanasawa River, mi:Mibu River, fu:Fujisawa River.

Fig.V-17 Sample localities of the Takato granite. sa:Sawa River, ta:Tanasawa River, mi:Mibu River, fu:Fujisawa River.

Sample No.	TAN-13	TAN-17	SAW-08	SAW-15	TAN-19	TAR-07	SAW-18	TAN-25	TAN-15	SAW-25	TER-07	SAW-14b
SiO2	61.66	62.51	65.11	65.71	65.97	66.00	66.08	66.69	66.84	68.56	69.16	69.66
TiO2	0.86	0.75	0.64	0.58	0.53	0.63	0.28	0.54	0.50	0.37	0.42	0.38
Al2O3	17.23	16.69	15.72	15.91	15.95	15.64	17.49	16.16	15.55	14.67	14.96	14.68
FeO*	5.22	4.76	4.95	4.90	4.59	5.04	2.45	3.50	4.21	3.23	3.61	3.25
MnO	0.09	0.09	0.09	0.11	0.08	0.09	0.06	0.07	0.08	0.08	0.08	0.07
MgO	2.43	2.14	1.35	1.29	1.07	1.34	0.71	1.43	1.02	0.77	0.93	0.79
CaO	5.77	4.91	2.82	3.20	2.67	3.11	2.59	3.75	2.49	1.73	2.19	1.82
Na2O	3.83	3.77	3.29	4.46	3.56	3.46	4.68	3.98	3.60	3.27	3.82	3.27
K2O	1.00	1.47	3.07	1.95	3.03	2.58	3.82	1.76	3.53	4.12	3.33	4.50
P2O5	0.20	0.16	0.23	0.21	0.18	0.19	0.10	0.13	0.17	0.12	0.13	0.13
Total	98.29	97.26	97.26	98.33	97.63	98.08	98.26	98.00	98.00	96.91	98.64	98.56
Ba	403	480	784	310	764	628	614	536	820	721	596	888
Cu	3		2		5	8		23	2			
Cr												
Nb	7	7	15	15	13	13	8	8	11	12	11	11
Ni	8	11	10	7	7	11	5	6	7	6	5	6
Rb	26	43	122	142	117	114	127	42	122	154	128	157
Sr	616	549	333	263	286	350	356	490	324	225	263	250
V	71	76	73	58	59	67	27	46	52	36	38	40
Y	12	14	33	31	21	15	17	15	24	25	25	24
Zn	87	85	74	73	68	68	38	60	61	50	52	50
Zr	164	153	146	241	234	264	139	130	218	171	175	175

Table V-7 Whole-rock chemical compositions of the Takato granite.

Table V-7 (continued).

3.76 0.07 1.59 7 37.9 553 553 14 140 140 65.35 0.62 6.42 4.47 3.72 1.57 0.15 494 TAN-05 0.08 1.86 8 15 551 551 54 54 15 81 81 159 65.14 16.52 4.42 4.24 4.02 1.71 0.18 0.77 507 98.92 INO-05 INO-06 INO-04 64.57 4.26 4.27 1.62 513 8 10 560 51 13 13 77 77 168 0.69 16.73 4.17 0.07 1.78 0.17 98.33 0.08 1.88 4.67 3.96 1.61 64.45 0.75 16.92 4.37 0.18 514 6 9 39.1 581 581 58 58 14 84 84 84 162 59 10 81 162 0.07 2.09 503 7 8 31.2 614 0.79 16.81 4.56 4.75 3.58 1.29 0.19 63.31 97.44 TAN-27 MI-21 35.9 4.72 3.87 598 63.21 0.85 17.22 4.58 0.08 2.11 1.45 0.21 98.31 28.5 0.75 4.06 0.08 1.95 5.05 4.24 1.27 0.20 637 63.06 MI-22 8 8 535.9 59 59 14 14 80 80 4.83 3.59 1.51 63.03 0.79 16.77 4.64 0.08 0.18 97.31 449 4 TAN-21 SAW-24 SAW-17 SAW-10 MI-17 6 7 1117 2117 13 13 13 19 86 73.80 0.15 14.35 0.04 0.33 1.72 3.52 3.95 0.05 91.66 292 14.16 2.72 0.06 0.75 1.63 3.21 3.89 10 7 1127 31 31 31 20 37 37 167 71.56 0.10 607 0.31 564 6 12 13 13 148 156 34 34 25 25 25 134 0.33 13.94 2.93 0.07 0.74 2.89 3.96 0.12 70.48 1.74 97.20 10 4 1156 216 35 35 35 35 35 41 41 1157 70.39 1.65 3.58 3.82 574 0.33 14.67 2.97 0.08 98.28 0.11 Sample No. A1203 FeO* MnO MgO CaO Na2O K2O Ti02 Si02 P205 Total Ba Cu Cr Cr Cr Sr Zn Zr Zr

Table V-7 (continued).

TAN-1326**616**TAN-1743**549**TAN-1743**549**SAW-08122**333**SAW-15122**333**SAW-19117**263**TAN-19117**266**TAN-19117**286**TAN-19117**286**TAN-25127**356*TAN-25127**356*TAN-25127**356*TAN-25127**356*TAN-25127**354**TAN-25122**263TAN-21157250TAN-21156216SAW-24127250TAN-21156216SAW-14b156216SAW-14b157250TAN-21157250TAN-21157263SAW-17127201SAW-17127201SAW-17127263TAN-2131.2614MI-1735.9583MI-2131.2614MI-2237.9553TAN-2735.9553TAN-2735.9563MI-2735.9563MI-2735.9563MI-2735.9563MI-2735.9563MI-2735.9563MI-2837.9563MI-2937.9563MI-2735.9563MI-2837.9563MI-29<	0.1203 0.2251 1.060 1.562 1.184 0.9425 1.032	0.70882(1)		A A A			TOLT
TAN-1743**549**SAW-08122**333**SAW-15142**263**SAW-15142**263**TAN-19117**286**TAN-25117**286**TAN-25117**286**SAW-18127**356*SAW-18127**356*SAW-18127**356*TAN-25122**324**TAN-25122**324**TAN-25122**324**TAN-21128263SAW-14b157250TAN-21128263SAW-14b156216SAW-14b156216SAW-24128263TAN-21127201SAW-17127201SAW-17127201MI-1735.9586MI-2131.2614MI-2237.9553TAN-2735.9563TAN-2735.9563TAN-2735.9563	0.2251 1.060 1.562 1.184 0.9425 1.032	0 70878(1)					
SAW-08 122** 333** SAW-15 142** 333** TAN-19 117** 263** TAN-19 117** 286** TAN-19 117** 286** TAN-19 117** 286** TAN-19 114** 350** SAW-18 127** 356* TAN-25 42** 490** TAN-25 127** 356* TAN-25 127** 356* TAN-25 122** 324** SAW-25 122** 324** TAN-21 157 250 SAW-14b 157 250 TAN-21 157 250 SAW-14b 157 250 TAN-21 156 216 SAW-14b 157 250 TAN-21 156 216 SAW-14b 127 201 SAW-14b 156 263 SAW-17 128 263 MI-17 31.2 614 MI-21 31.2 637 <t< td=""><td>1.060 1.562 1.184 0.9425 1.032</td><td>(=)</td><td></td><td></td><td></td><td></td><td></td></t<>	1.060 1.562 1.184 0.9425 1.032	(=)					
SAW-15 142** 263** TAN-19 117** 286** TAN-19 117** 286** TAN-25 114** 350** SAW-18 127** 356* SAW-18 127** 356* TAN-25 42** 490** TAN-15 127** 356* TAN-25 42** 490** TAN-15 122** 324** TAN-15 122** 324** TAN-15 122** 324** SAW-25 154 225 TAN-21 128 263 SAW-14b 157 250 TAN-21 156 216 SAW-14b 156 216 SAW-17 128 263 SAW-17 127 201 SAW-17 127 201 SAW-10 156 164 MI-17 31.2 614 MI-21 31.2 614 MI-22 37.9 553 TAN-27 35.9 553	1.562 1.184 0.9425 1.032	0.71022(1)					
TAN-19117**286**TAR-07114**350**TAR-07114**350**SAW-18127**356*TAN-25127**356*TAN-15127**354**TAN-15127**324**TAN-25154225TAN-25154225SAW-25154250SAW-25154250TAN-21157263SAW-14b157250TAN-21156216SAW-14b157250TAN-21156216SAW-17127201SAW-17127201SAW-17127201MI-1735.9586MI-2131.2614MI-2237.9583TAN-2735.9553TAN-2735.9553TAN-2735.9561	1.184 0.9425 1.032	0.70971(1)					
TAR-07114**350**SAW-18127**356*SAW-18127**356*TAN-2542**356*TAN-15122**324**TAN-15122**324**TAN-25122**324**TAN-21128263TER-07128263TAN-21157250TAN-21157250TAN-21156216SAW-17156216SAW-17127201SAW-17127201MI-1735.9586MI-2131.2614MI-2237.9553TAN-2735.9563TAN-2735.9598TAN-2735.9598	0.9425 1.032	0.70916(1)					
SAW-18 127** 356* TAN-25 42** 356* TAN-15 122** 354** TAN-15 122** 324** TAN-15 122** 324** SAW-25 154 225 SAW-25 154 225 TER-07 128 263 SAW-14b 157 250 TAN-21 157 250 SAW-14b 157 250 SAW-14b 157 250 SAW-24 148 156 SAW-24 148 156 SAW-17 127 201 SAW-17 127 201 SAW-10 117 217 MI-17 31.2 614 MI-21 31.2 614 MI-22 37.9 58.5 TAN-05 37.9 58.5 TAN-27 35.9 553	1.032	0.70952(1)					
TAN-2542**490**TAN-15122**324**TAN-15122*324**SAW-25154225TER-07128263TER-07128263SAW-14b157250TAN-21156216SAW-17156216SAW-17127201SAW-17127201SAW-17127201SAW-17127201SAW-17127201MI-1735.9586MI-2131.2614MI-2237.9553TAN-2735.9598MO.5737.9553TAN-2735.9598		0.70922(1)					
TAN-15122**324**SAW-25154225SAW-25154225TER-07128263SAW-14b157250TAN-21156216SAW-17156216SAW-17148156SAW-17127201SAW-17127201SAW-17127201MI-1735.9586MI-2131.2614MI-2131.2614M1-2228.5637TAN-2735.9553TAN-2735.9598MO.6630.1501	0.2498	0.70894(1)					
SAW-25 154 225 TER-07 128 263 TER-07 128 263 SAW-14b 157 250 TAN-21 156 216 SAW-14b 157 250 TAN-21 156 216 SAW-17 148 156 SAW-17 127 201 SAW-17 127 201 SAW-10 117 217 MI-17 35.9 586 MI-21 31.2 614 MI-21 31.2 614 M1-22 37.9 553 TAN-05 35.9 553 TAN-27 35.9 553	1.090	0.70940(1)					
TER-07 128 263 SAW-14b 157 250 TAN-21 156 216 SAW-17 156 216 SAW-17 148 156 SAW-17 148 156 SAW-17 127 201 SAW-17 127 201 MI-17 35.9 586 MI-21 31.2 614 MI-21 31.2 614 MI-21 31.2 614 M1-21 31.2 614 M1-21 31.2 614 M1-21 31.2 614 M1-21 31.2 58.5 M1-22 33.9 58.5 TAN-05 35.9 553 TAN-27 35.9 568	1.981	0.71012(1)	3.88	18.3	0.1280	0.512335(10)	0.512262
SAW-14b 157 250 TAN-21 156 216 SAW-24 148 156 SAW-17 127 201 SAW-17 127 201 SAW-17 127 201 SAW-10 117 217 MI-17 35.9 586 MI-21 31.2 614 MI-22 37.9 585 M1-22 37.9 585 M1-22 37.9 553 TAN-27 35.9 553 TAN-27 35.9 5614	1.408	0.70944(1)	5.41	27.9	0.1170	0.512300(11)	0.512233
TAN-21 156 216 SAW-24 148 156 SAW-17 148 156 SAW-17 127 201 SAW-17 127 201 SAW-17 127 201 SAW-10 117 217 MI-17 35.9 586 MI-21 31.2 614 MI-21 31.2 614 M1-21 31.2 614 M1-21 31.2 614 M1-22 28.5 637 TAN-05 35.9 553 TAN-27 35.9 598	1.819	0.70991(1)	5.87	30.6	0.1159	0.512302(12)	0.512236
SAW-24 148 156 SAW-17 127 201 SAW-10 117 217 SAW-10 117 217 MI-17 35.9 586 MI-21 31.2 614 MI-21 31.2 614 MI-21 31.2 614 M1-21 31.2 614 M1-22 28.5 637 TAN-05 35.9 553 TAN-27 35.9 598	2.086	0.71030(1)	6.94	35.9	0.1167	0.512302(12)	0.512235
SAW-17 127 201 SAW-10 117 217 SAW-10 35.9 586 MI-17 31.2 614 MI-21 31.2 614 MI-21 31.2 614 MI-22 28.5 637 TAN-05 37.9 553 TAN-27 35.9 598 MO.05 30.1 501	2.756	0.71068(1)	4.40	20.5	0.1298	0.512296(11)	
SAW-10 117 217 MI-17 35.9 586 MI-21 31.2 614 MI-21 31.2 614 MI-22 28.5 637 TAN-05 37.9 553 TAN-27 35.9 598 MO.05 30.1 501	1.830	0.70993(1)	5.43	28.2	0.1166	0.512339(10)	0.512272
MI-17 35.9 586 MI-21 31.2 614 MI-22 28.5 637 MI-22 28.5 637 TAN-05 37.9 553 TAN-27 35.9 598 MO.66 30.1 501	1.557	0.70965(1)	3.06	14.6	0.1271	0.512299(13)	
MI-21 31.2 614 MI-22 28.5 637 MI-22 28.5 637 TAN-05 37.9 553 TAN-27 35.9 598 MODE 20.1 501	0.1775	0.70885(1)	2.82	14.4	0.1181	0.512262(10)	0.512195
MI-22 28.5 637 TAN-05 37.9 553 TAN-27 35.9 598	0.1472	0.70889(1)	2.82	15.4	0.1105	0.512253(12)	0.512190
TAN-05 37.9 553 TAN-27 35.9 598 TAN-27 30.1 591	0.1295	0.70895(1)	3.01	15.2	0.1197	0.512268(11)	0.512200
TAN-27 35.9 598	0.1983	0.70891(1)	3.05	14.5	0.1277	0.512239(10)	0.512166
TNO 05 201 501	0.1736	0.70882(1)	3.03	16.4	0.1120	0.512281(11)	0.512217
10C 1.4C CU-UNI	0.1949	0.70895(1)	2.82	12.7	0.1339	0.512291(12)	0.512215
INO-06 40.1 560	0.2070	0.70887(1)	3.48	19.6	0.1076	0.512252(10)	0.512191
INO-04 39.0 551	0.2046	0.70897(1)	2.71	11.9	0.1383	0.512288(11)	0.512209
SAW-04 132** 225**	1.698	0.71035(1)					
SAW-05 141** 201**	2.030	0.71084(1)					
MI-18 196** 85**	6.677	0.71561(1)					

Table V-8 Trace element concentrations and isotopic data of the Takato granite.

Fig.V-20 Rb-Sr whole-rock isochron for the Takato granite.

Fig.V-21 Sample localities of the Kisokoma granodiorite. sh:Shozawa River, og:Oguro River, ku:Kurokawa River, ot:Otagiri River, in:Ina River. KI:Kisokoma-ga-take mountain, UT:Utsugi-dake mountain. Table V-9 Whole-rock chemical compositions of the Kisokoma granodiorite.

Sample No.	OT-95	0G-10	SHO-04	OT-92	SHO-08	SHO-05	OT-94	SHO-06	INA-05	0T-91	0G-08	OTK-20
SiO2	51.77	54.33	55.51	60.68	62.84	63.12	63.35	63.36	63.44	63.90	64.53	64.87
TiO2	1.18	0.74	0.99	0.69	0.67	0.63	0.63	0.63	0.62	0.68	0.57	0.58
A1203	16.81	15.70	17.10	16.62	15.95	15.95	16.01	16.22	16.10	15.68	16.21	15.34
FeO*	8.80	7.52	7.58	5.62	5.33	5.08	5.00	4.93	4.73	5.25	4.46	4.43
MnO	0.18	0.17	0.13	0.10	0.10	0.0	0.09	0.0	0.08	0.09	0.0	0.0
MgO	4.31	4.35	4.52	2.77	2.51	2.33	2.29	2.30	2.15	2.45	1.51	1.55
CaO	8.74	7.42	7.72	6.10	5.06	5.03	5.25	5.17	4.76	5.13	4.29	4.15
Na2O	2.96	2.80	2.86	3.07	2.91	2.93	2.88	2.96	3.24	2.94	. 3.66	3.44
K20	1.22	3.86	1.67	1.52	2.38	2.25	1.89	2.20	2.07	1.69	2.12	2.40
P205	0.20	0.12	0.19	0.15	0.13	0.12	0.14	0.13	0.15	0.14	0.15	0.13
Total	96.16	97.01	98.27	97.32	97.88	97.53	97.53	79.79	97.34	97.93	97.60	96.96
Ba	427	1561	487	444	605	579	590	590		588		
Cu	25	26	24	6 1	3	n.d.	n.d.	3		9		
Cr	18	68	101	46	40	38		36		40		
Nb	15	9	80	6	8	8	L	8		6		
Ni	8	11	19	10	11	11	6	12		8		
Rb	39	129	63	51	82.7	62	64.0	76.5	78.0	LL	17.3	80.8
Sr	360	288	383	383	322	327	360	334	331	332	348	332
V	194	161	150	108	91	89		85		91		
Y	37	27	18	22	23	22	21	21		19		
Zn	114	101	88	74	. 66	65	63	65		72		
Zr	121	107	150	165	145	152	151	156		147		
LOI: Loss on	ignition, n.d	.: not detec	ted.									

Fable V-9 (continue)	1)	
----------------------	----	--

Sample No.	SHO-03	OG-09	OG-07	SHO-02
SiO2	65.38	66.54	66.99	67.09
TiO2	0.57	0.47	0.48	0.47
Al2O3	15.89	15.78	15.52	16.05
FeO*	4.54	3.80	3.99	3.85
MnO	0.08	0.07	0.08	0.07
MgO	1.61	1.28	1.19	1.27
CaO	4.30	3.92	3.84	3.98
Na2O	3.15	3.28	3.19	3.24
K2O	2.42	2.37	2.44	2.51
P2O5	0.13	0.11	0.11	0.11
Total	98.06	97.62	97.83	98.64
Ba	677	602	610	612
Cu	n.d.	5	n.d.	n.d.
Cr	17	9	7	11
Nb	9	8	8	8
Ni	7	7	11	6
Rb	85	83	87.0	95.0
Sr	324	308	305	302
V	68	51	48	54
Y	24	23	24	24
Zn	66	57	58	57
Zr	182	158	169	166

Table V-10 Trace element concentrations and isotopic data of the Kisokoma granodiorite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
OT-95	39*	360*	0.3135	0.70946(1)				
0G-10	129*	288*	1.296	0.71065(1)				
SHO-04	63*	383*	0.4760	0.71025(1)				
OT-92	51*	383*	0.3853	0.70941(1)				
SHO-08	82.7	322	0.7447	0.70982(1)	4.51	22.8	0.1197	0.512183(11)
SHO-05	*6L	327*	0.6991	0.70985(1)				
OT-94	64.0	360	0.5149	0.70973(1)	4.21	21.5	0.1185	0.512183(9)
90-OHS	76.5	334	0.6627	0.70979(1)				
OT-91	*17*	332*	0.6712	0.70969(1)				
SHO-03	85*	324*	0.7592	0.71023(1)				
60-D0	83*	308*	0.7799	0.71035(1)				
0G-07	87.0	305	0.8267	0.71046(1)	4.88	26.7	0.1108	0.512152(10)
SHO-02	95.0	302	7606.0	0.71038(1)	5.30	30.3	0.1057	0.512162(10)
OTK-20	80.8	332	0.7051	0.71028(1)	5.00	21.30	0.1423	0.512174(11)
INA-05	78.0	331	0.6809	0.70993(1)	4.23	20.4	0.1255	0.512179(11)
INA-07	106	259	1.184	0.71060(1)				
OGW-02	115	242	1.375	0.71078(1)	5.29	29.3	0.1091	0.512177(11)
0G-08	77.3	348	0.6419	0.71039(1)	4.34	23.1	0.1135	0.512155(11)
*analyzed by >	KRF							

Fig.V-22 SiO2-oxides diagrams for the Kisokoma granodiorite.

Fig.V-23 SiO2-minor element diagrams for the Kisokoma granodiorite.

samples disperse from the differentiation trend of the northern body between 65wt% of SiO2 and 67% in SiO2-MgO, CaO and K2O diagrams.

The five samples, which are selected using the way shown in Figure V-1, from the northern body form an isochron indicating an age of 87.3 ± 7.8 Ma with a SrI of 0.70768 ± 0.00020 (Fig.V-20). The age can not be given from the samples of southern body, because the variations in 87Sr/86Sr ratios and 87Sr/86Sr ratios are small. These samples are not on the isochron of the northern body(Fig.V-20). However, the inclination of the arrangement of these samples is similar to one of the isochron from northern body. This suggests that the age of the southern body is similar to one of northern body. However SrI and NdI of the southern body corrected by 87.3Ma of the northern body are different from ones of latter(Table V-8). The samples, which might mix, are plotted between the isochron of the northern body and the southern body. This suggests that these rocks were formed by mixing of both bodies.

Kisokoma granodiorite

The Kisokoma granodiorite contains numerous mafic inclusions(Tsuchiya, 1967a,b). The sizes of these inclusions are variable from a few mm to dozens' cm. According to Tsuchiya(1967b), these mafic inclusions were formed as a gabbroic rock prior to the Kisokoma granodiorite, and were later included the subsequently formed Kisokoma granodiorite, and the metasomatic interactions took place between the granodiorite and the gabbroic inclusions. Thus, rocks of the Kisokoma

Whole rock chemical compositions of samples from the Kisokoma granodiorite(Fig.V-21) are given in Table V-9. The Rb-Sr and Sm-Nd data are given in Table V-10.

 SiO_2 -oxides diagrams and SiO_2 -minor element diagrams are given in Figures V-22 and 23. On these diagram, though there is a gap between

SiO₂ contents of the Kisokoma granodiorites and mafic inclusions, mafic inclusions is on the extent of trend of the Kisokoma granodiorite in several elements. Thus, it is possible that trend of the Kisokoma granodiorite shows mixing line of them. The sample of OG-10 is rich in K₂O and Rb. This might be caused by formation of biotite by reaction with granodioritic magma. These samples of mafic inclusions belong to the biotite porphyritic facies or the biotite and plagioclase porphyritic facies by Tsuchiya(1967a). According to Tsuchiya(1967a), these facies were formed by interaction between gabbroic inclusion and granodioritic magma. The Rb-Sr whole-rock isochron diagram is shown in Figure V-24. An isochron can not be diffident because whole-rock samples disperse. These are plotted within the range surrounded by mafic inclusions. This is caused by mixing of gabbroic rocks and granodioritic magma.

To give a whole-rock isochron age of this body, it is necessary to investigate more samples that contain a rock including no mafic inclusions and mafic inclusions remained original texture and composition.

Metamorphic rock

Sr and Nd isotope ratios of some samples, which were collected from the zones II, III and IV, were analyzed. The Rb-Sr and Sm-Nd data are given in Table V-11.

The Rb-Sr and Sm-Nd isochron diagrams are shown in Figure V-25. The isochron can not be defined because the samples from all area disperse. The isochron can not be also defined in each area.

Migmatite

The Rb-Sr and Sm-Nd data of migmatite are given in Table V-12.

Result is shown in the isochron diagrams(Fig.V-26). An isochron can not be defined because all the whole-rock samples from migmatite disperse in Rb-Sr system. In Sm-Nd system, the isochron age can not be

Sample No.	87Rb/86Sr	87Sr/86Sr(2o)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(2o)
KU-04	2.662	0.72011(1)	6.26	33.0	0.1148	0.512084(10)
MIT-57	6.453	0.72273(1)	11.5	61.6	0.1133	0.512012(8)
ON-21	1.723	0.71739(1)	7.64	40.6	0.1137	0.512035(10)
SN-48	3.161	0.72121(1)	7.72	40.8	0.1142	0.512089(9)
MI(T)-44	2.254	0.72252(1)	6.37	33.1	0.1164	0.511953(13)
SN-13	2.837	0.72308(1)				
MI-14	1.880	0.71843(1)	7.69	41.1	0.1130	0.512038(9)
KU-27	2.602	0.71976(1)	6.79	36.6	0.1121	0.512078(10)
OS-01	2.893	0.72265(1)	6.83	35.6	0.1161	0.512019(9)
OT-32	2.938	0.72107(1)	6.29	32.9	0.1156	0.512057(11)
JI-10	1.988	0.72016(1)	6.68	34.7	0.1164	0.512043(10)
SN-26	2.764	0.72306(1)	6.31	33.4	0.1140	0.511943(10)
OTK-15	3.383	0.72108(1)	6.72	35.9	0.1131	0.512086(11)
KU-41	2.416	0.71765(1)	5.98	31.2	0.1159	0.512057(11)
KU-28	1.726	0.71775(1)	5.73	30.4	0.1140	0.512107(11)
KU-36	1.832	0.71968(1)	5.52	29.2	0.1143	0.512112(11)
KU-72	1.468	0.72110(1)	5.84	31.3	0.1128	0.511919(11)
INU-05	2.965	0.71879(1)	6.45	33.3	0.1171	0.512098(10)
OT-55	2.410	0.71992(1)	5.95	31.7	0.1134	0.512059(12)
NE-05	3.009	0.71827(1)	5.62	29.0	0.1171	0.512066(11)
OS-16	2.275	0.71820(1)	6.61	34.3	0.1165	0.512022(10)
NE-32	8.304	0.72515(1)	5.44	28.9	0.1139	0.512098(9)
NE-09	2.946	0.71631(1)	4.77	26.1	0.1101	0.512054(11)
OT-45	1.961	0.72213(1)	5.45	29.3	0.1124	0.511908(11)
NE-21	1.930	0.71704(1)	4.15	22.1	0.1137	0.512080(11)
OT-39	1.417	0.71870(1)	4.95	27.5	0.1089	0.511982(11)
NE-60	4.365	0.71759(1)	3.77	20.2	0.1130	0.512098(11)
TN-07	4.266	0.72148(1)	4.15	22.3	0.1124	0.512097(10)
ON-19a	4.345	0.72451(1)				
FU-13	0.5711	0.71725(1)	2.63	14.8	0.1074	0.512035(12)
OT-11	1.580	0.71759(1)	2.62	15.2	0.1042	0.511950(11)

Table V-11 Trace element concentrations and isotopic data of metamorphic rocks.

Fig.V-25 Rb-Sr and Sm-Nd whole-rock isochron diagrams for the metamorphic rocks.

West: the area west of the Komagane City, East: the area east of the Tenryu River.

Table V-12 Trace element concentrations and isotopic data of the migmatite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
IO-HNT	170*	142*	3.462	0.71889(1)	4.29	22.8	0.1141	0.512053(13)
TNH-02	144*	207*	2.014	0.71824(1)	4.23	22.4	0.1140	0.512038(7)
TNH-03	142*	214*	1.922	0.71767(1)				
TNH-04	109*	234*	1.343	0.71773(1)	5.05	26.8	0.1138	0.512052(8)
JNH-06	128*	202*	1.833	0.71815(1)	5.32	27.9	0.1153	0.512073(9)
TNH-07	195*	222*	2.543	0.72018(1)	5.23	28.0	0.1129	0.512084(7)
TNH-08	40*	181*	0.6348	0.71863(1)				
ON-20	125*	211*	1.718	0.71820(1)				
0N-21	146*	245*	1.723	0.71739(1)				
ON-22	137*	197*	2.007	0.71852(1)				
KI-02	147*	202*	2.107	0.71897(1)	5.98	32.4	0.1116	0.512053(11)
JI-II	157*	183*	2.493	0.72011(1)				
JI-13	141*	*661	2.048	0.71914(1)				
JI-14	172*	141*	3.551	0.72084(1)				
JI-24	165	144	3.311	0.72038(1)	5.90	31.6	0.1127	0.512069(12)
JI-25	157	156	2.916	0.72005(1)	5.03	26.8	0.1133	0.512067(11)
JI-26	150	154	2.833	0.71993(1)	5.90	32.1	0.1111	0.512066(9)
JI-27	155	143	3.141	0.72026(1)	5.78	31.5	0.1108	0.512087(10)
JI-28	169	147	3.329	0.72026(1)	7.13	38.4	0.1123	0.512047(11)
JI-29	144	140	2.985	0.71964(1)	5.64	29.9	0.1139	0.512073(8)
JI-30	85.7	140	1.767	0.71876(1)	5.46	29.5	0.1120	0.512164(10)
JI-31	181	168	3.111	0.71794(1)	6.34	34.3	0.1117	0.512028(11)
JI-33	156	141	3.194	0.72021(1)	5.92	32.0	0.1119	0.512075(10)
JI-34	162	138	3.403	0.71990(1)	5.70	30.5	0.1129	0.512074(9)
JI-35	149	134	3.214	0.71979(1)	6.42	34.8	0.1113	0.512077(10)
TN-36	119*	198*	1.746	0.71954(1)				
TN-43	178*	281*	1.832	0.71445(1)				
WAM-01	176*	160*	3.178	0.71959(1)				
*analyzed by 2	KRF.							

Fig.V-26 Rb-Sr and Sm-Nd whole-rock isochron diagrams for the migmatite.

given too. These suggest that isotopic homogenization that extended all over the body could not take place at the time of formation of migmatite. This might be caused by partially formation of melt, and mixing of melt and metamorphic rocks with various rates.

Kamihara tonalite

Kamihara tonalite occurs as concordant sheets in the Ryoke metamorphic rocks(Sakakibara, 1967; Kagami, 1968; Kutsukake, 1970, 1977). This is fine to medium grained and a conspicuously gneissic rock. The main mineral assemblage is plagioclase, quartz, biotite and hornblende with minor amounts of K-feldspar and cummingtonite. The samples analyzed in this study are exposed in the Toyone Village and Lake Sakuma area(Kutsukake, 1993). Particular petrography of this tonalite is described in Kutsukake(1993).

Sr and Nd isotope ratios of six samples from this tonalite are analyzed. The Rb-Sr and Sm-Nd data are given in Table V-13. Whole rock chemical compositions of these samples were given in Table 2a of Kutsukake(1993).

Sr concentrations of the sample of KVII and KVIII differ from other samples. These samples are excluded from the regression. The four samples that are on the differentiation trend of all element form an isochron indicating an age of 93.4 ± 5.1 Ma with a SrI of 0.70749 ± 0.00006 (Fig.V-27). However it is necessary to do more detailed studies.

Gabbro

Three gabbroic masses, Inoshikori, Tashika and Ohata mass, occur in the Toyone Village, Aichi Prefecture(Kutsukake, 1974).

The Ohata mass, which occurs in the Tenryukyo granite, mainly composed of pyroxene-hornblende gabbro and hornblende gabbro(Kutsukake, 1974).
TT 1 1	X T	10		1		1		1 .	C	. 1	TZ '1	1.
Tabla	1/	1.7	roco	alamont	concentrations	and	1coton1/	a data	ot	tho	Komihoro	tonolito
1 ane	V -	- 1 7	IACE	element	CONCERNATIONS	anu	ISOLUDIO	uala	()1		Naimiaia	IUIIAIIIC.
I GOIC		10	IIuce	CICILICITE	e one entre actorio	COLL CO	10000pr	e creaces	~	CT T	T POLITICAL CO	contract.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)	NdI*
KII	57.1	276	0.5990	0.70830(1)	and the second			0.512373(10)	
KIII	55.0	279	0.5703	0.70824(1)	12.1	44.6	0.1635	0.512384(8)	0.512284
KV	90.6	274	0.9566	0.70874(1)				0.512377(9)	
KVI	106	252	1.220	0.70912(1)	4.76	27.3	0.1055	0.512322(10)	0.512258
KVII	67.6	362	0.5401	0.70806(1)				0.512335(10)	
KVIII	90.8	354	0.7416	0.70742(1)				0.512410(10)	E. S. Contraction

*corrected by Rb-Sr whole-rock isochron age:93.4Ma.

Fig.V-27 Rb-Sr whole-rock isochron for the Kamihara tonalite.

Five samples were collected from this mass(Fig.V-28). The Rb-Sr and Sm-Nd data are given in Table V-14.

These samples form an isochron indicating an age of 87 ± 42 Ma with SrI=0.70762±0.00010(Fig.V-29). However this isochron has large error. It is not certain whether this isochron is pseudo-isochron or resetting age at present. In Sm-Nd system, the age can not be given because the variations in ¹⁴³Nd/¹⁴⁴Nd and ¹⁴⁷Sm/¹⁴⁴Nd ratios are small.

The Inoshikori mass occurs in metamorphic rocks in sillimanite zone, and is intruded by the Kamihara tonalite(Kutsukake, 1974). This mass is composed of several rock types, ranging from olivine norite to quartz gabbro through norite and hornblende norite. They would be formed through the fractional crystallization of noritic magma.

The two samples were collected from the Inoshikori mass. The Rb-Sr and Sm-Nd data are given in Table V-14. In both of Rb-Sr system and Sm-Nd system, isochron age can not be given.

Aji granite

The Aji granite is fine to medium grained massive biotite granite exposed in the Yashima and the Aji Peninsula, the Shikoku(Kutsukake et al., 1979). This is composed of K-feldspar, plagioclase, quartz, biotite with accessory allanite, apatite, zircon and sphene, and rarely is hornblende bearing. K-Ar biotite age of 80Ma(Kawano and Ueda, 1966) has reported about this body.

Nine samples were collected from this body(Fig. V-30).

Whole rock chemical compositions of these samples are given in Table V-15. The Rb-Sr and Sm-Nd data are given in Table V-16.

SiO₂-oxides diagrams and SiO₂-minor elements diagram are given in FiguresV-31 and 32. The six samples, which are on the differentiation trend of all element, form an isochron indicating an age of 88 ± 17 Ma with a SrI of 0.70769 ± 0.00015 (Fig.V-33).

Fig.V-28 Geological map and sampling localities of the Toyone Village area. (after Kutsukake, 1976)

Fig.V-28 Geological map and sampling localities of the Toyone Village area(after Kutsukake, 1976).

1: Alluvium, 2: Debris, 3: Terrace deposit, 4: Basalt and andesite, 5: Dacite, 6: Rhyolite, 7: Tertiary sediments, 8: Sambagawa schists, 9: Busetsu granite, 10: Inagawa granite, 11: Mitsuhashi granite, 12: Tenryukyo granodiorite, 13: Kamihara tonalite, 14: Fine-grained biotite granodiorite, 15: Mylonite, 16: "Hälleflinta", 18: Metabasite, 19: Hornfels (pelitic and psammitic), 20: Hornfels derived from chert, 21: Mica schist (pelitic), 22: Mica schist (psammitic), 23: Quartz schist, 24: Gneiss (pelitic), 25: Gneiss (psammitic), 26: Quartz gneiss, 27: Nebulitic gneiss, 28: Metamorphic rock derived from "Schalstein", 29: Marble, 30: Fault.

M.T.L.: Median Tectonic Line, I.S.L.: Itoigawa-Shizuoka Line.

Locality name As: Asakusa, Ch: Chausu-yama, Fu: Futto, Ha: Hanareyama, Ho: Hongo, Hy: Hiyosawa, Ih: Ichihara, In: Inoshikori, Ka: Kami-Awashiro, Ko: Kobayashi, Kt: Kakinotaira, Ky: Kashiyage, Md: Midashi, Mk: Makinoshita, Ms: Misono, Ni: Niino-toge, Ns: Naka-Shitara, Nt: Nihon-katsuka-yama, Od:Odachi, Oh: Ohata, Oi: Oiwa-dake, Os: Osawa, Ot: Otani, Oz; Ozasa-yama, Sk: Shimo-Kurokawa, So: Sogawa, Su: Sakauba, Tk: Tashika, Ts: Tsugawa, Tw: Tawagane-toge, Uk: Urakawa, Ur: Ure, Us: Urushijima, Yd: Yatsudake-yama, Zn: Zinno-yama.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(2o)
Ohata mass				and a start			a had a start of the	
OHA-01	35.2	382	0.2665	0.70798(1)	3.60	13.7	0.1570	0.512302(13)
OHA-02	3.43	409	0.02432	0.70767(1)	0.683	2.70	0.1531	0.512327(13)
OHA-03	12.7	462	0.07934	0.70778(1)	2.40	9.51	0.1527	0.512312(13)
OHA-04	28.5	387	0.2127	0.70787(1)	1.15	3.39	0.2051	0.512346(14)
Hornblende	4.21	29.1	0.4191	0.70813(1)	0.576	1.69	0.2058	0.512390(14)
Felsic fraction	40.4	850	0.1375	0.70780(1)				
OHA-05	11.9	425	0.08095	0.70764(1)	2.32	8.55	0.1642	0.512344(12)
Hornblende	1.32	18.6	0.20520	0.70778(1)	0.822	2.59	0.1918	0.512374(10)
Felsic fraction	13.8	771	0.05163	0.70761(1)	0.885	4.50	0.1190	0.512369(20)
Inoshikori m.								
INS-03	20.7	222	0.2703	0.70790(1)	1.33	5.48	0.1471	0.512329(12)
INS-04	14.8	279	0.1533	0.70808(1)	1.33	5.51	0.1456	0.512264(11)

Table V-14 Trace element concentrations and isotopic data of the gabbroic rocks.

Fig.V-29 Rb-Sr whole-rock isochron for the Ohata mass.

Fig.V-30 Sample localities of the Aji granite (partly modified from Kutsukake et al., 1979). GO: Goken-zan mountain.

Sample No.	SR-05	SR-02	SR-10	SR-04	SR-06	SR-03	SR-09	SR-07	SR-08
SiO2	69.30	69.95	69.99	70.47	70.98	71.53	72.34	72.37	72.97
TiO2	0.35	0.39	0.35	0.32	0.24	0.29	0.25	0.27	0.24
Al2O3	16.45	16.55	15.88	16.69	16.08	15.78	15.71	15.84	15.56
FeO*	2.35	2.59	2.58	2.08	2.22	2.17	1.99	2.02	1.93
MnO	0.06	0.06	0.06	0.05	0.06	0.06	0.05	0.06	0.05
MgO	0.71	0.86	0.94	0.68	0.47	0.59	0.56	0.61	0.56
CaO	2.67	2.79	2.84	2.73	2.44	2.47	2.13	2.17	2.11
Na2O	3.74	3.80	3.48	3.93	3.69	3.66	3.78	3.59	3.59
K2O	2.67	2.47	3.08	2.65	2.94	2.76	3.10	3.11	3.38
P2O5	0.11	0.10	0.09	0.09	0.08	0.09	0.08	0.09	0.07
Total	98.40	99.55	99.29	99.69	99.18	99.39	100.00	100.15	100.46

Table V-15 Whole-rock chemical compositions of the Aji granite.

Table V-16 Trace element concentrations and isotopic data of the Aji granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(26)	*IbN
SR-05	71.1	369	0.5577	0.70845(1)					
SR-02	55.5	404	0.3976	0.70816(1)	3.48	19.1	0.1105	0.512342(20)	0.512278
SR-10	85.8	285	0.8703	0.70866(1)					
SR-04	59.6	426	0.4053	0.70791(1)					
SR-06	63.2	360	0.5081	0.70832(1)	3.54	19.0	0.1129	0.512327(44)	0.512262
SR-03	64.5	340	0.5484	0.70840(1)	4.00	22.2	0.1090	0.512341(26)	0.512278
SR-09	T.TT	317	0.7079	0.70863(1)					
SR-07	78.4	324	0.6998	0.70856(1)					
SR-08	83.5	302	0.8005	0.70862(1)					
*corrected by	Rb-Sr whole-1	rock isochron	age:88Ma.						

Fig.V-32 SiO2-minor element diagrams for the Aji granite.

Fig.V-33 Rb-Sr whole-rock isochron for the Aji granite.

C. Rb-Sr whole-rock and mineral isochron age Otagiri granite

Biotite, muscovite and felsic fraction(mixture of plagioclase, quartz, K-feldspar) were separated from the two samples, INU-20 and NAK-50 by flotation, and isodynamic separation. Biotite and felsic fraction were separated from OT-88 that was collected from same locality of OT-01. Accessory minerals (e.g. apatite with high REE content) were not totally excluded from these fractions. The Rb-Sr and Sm-Nd data are given in Table V-17.

Biotite, felsic fraction and a whole-rock sample from INU-20 define a Rb-Sr whole-rock and mineral isochron age of 52.2 ± 0.5 Ma(Fig.V-34). Muscovite separated from INU-20 do not plot on this whole-rock and mineral isochron, but gives Rb-Sr whole-rock and muscovite isochron age of 67.5 ± 0.04 Ma(Fig.V-34). Biotite, felsic fraction and a whole-rock sample from OT-88 define an isochron age of 54.7 ± 0.5 Ma(Fig.V-34). Biotite, felsic fraction and a whole-rock sample from OT-88 define an isochron age of 54.7 ± 0.5 Ma(Fig.V-34). Biotite, felsic fraction and a whole-rock sample from NAK-50 define an isochron age of 54.6 ± 0.4 Ma(Fig.V-34). Muscovite separated from this sample is plotted on this isochron.

Katsuma quartzdiorite

Biotite, hornblende and felsic fraction were separated from the four samples, ON-27, ON-29, OS-11 and NA-03, respectively.

The Rb-Sr and Sm-Nd data are given in Table V-14.

Mineral samples and a whole-rock sample define a Rb-Sr whole-rock and mineral isochron age of 62.7 ± 0.7 Ma(ON-27), 61.7 ± 0.8 Ma(ON-29), 60.9 ± 0.2 Ma(OS-11) and 57.9 ± 0.3 Ma(NA-03), respectively(Fig.V-35). On the other hand, hornblendes do not plot on these isochrons. In the Sm-Nd system, the age can not be given, because 143Nd/144Nd ratios of minerals agree with each other in the range of error.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd
INU-20	in the second	32.2.2.7.5						
Biotite	1096	2.96	1162	1.57362(5)	12.6	82.5	0.09243	0.511935(17)
Muscovite	506	16.1	91.62	0.80030(2)				
Felsic f.	130	200	1.884	0.71455(1)	1.12	6.51	0.1041	0.511929(12)
OT-88	49.1	515	0.2758	0.71075(1)	5.56	29.8	0.1127	0.512137(11)
Biotite	284	13.3	62.30	0.75892(2)				
Felsic f.	10.3	592	0.0505	0.71055(1)				
NAK-50								
Biotite	588	9.71	177.6	0.84853(2)	24.2	132	0.1110	0.512265(10)
Muscovite	366	17.3	61.54	0.75768(2)	6.66	32.8	0.1228	0.512263(14)
Felsic f.	115	137	2.416	0.71257(1)				

Table V-17 Trace element concentrations and isotopic data of the Otagiri granites.

Ichida granite

Biotite and felsic fraction were separated from the seven samples, respectively.

The Rb-Sr and Sm-Nd data of these samples are given in Table V-18. Mineral samples and a whole-rock sample define an Rb-Sr whole-rock and mineral isochron ages of 57.0±0.5Ma(YO-01), 53.5±0.1Ma(KAT-07), 48.8±0.1Ma(KAT-08), 58.9±0.5Ma(OSI-03), 56.9±0.1Ma(OSI-04), 58.1±0.1Ma(OSI-05) and 51.8±0.7Ma(OSI-06), respectively(Figs.V-36 and 37). In the Sm-Nd system, the age can not be given, because the variations in ¹⁴³Nd/¹⁴⁴Nd and ¹⁴⁷Sm/¹⁴⁴Nd ratios are small.

Takato granite

The Rb-Sr and Sm-Nd data of these samples are given in Table V-19.

Mineral samples and a whole-rock sample define Rb-Sr whole-rock and mineral isochron age of 57.7 ± 0.1 Ma(TAN-05), 84.1 ± 0.2 Ma(INO-04), 59.3 ± 0.3 Ma(MI-17), 53.6 ± 0.1 Ma(TAN-27), 59.3 ± 0.6 Ma(MI-22), respectively(Fig.V-38 and 39). In the Sm-Nd system, the age can not be given, because the variations in 143 Nd/ 144 Nd and 147 Sm/ 144 Nd ratios are small.

Hiji quartzdiorite

The Hiji quartzdiorite in study area is deformed and has a compositional layering with a thickness of about several cm. Then, two samples having a compositional layering, MU-02 and ON-33, were taken from the Hiji quartz diorite. The sample MU-02 is divided into seven whole-rock samples(MU-02A-G), which were collected from each different layer, as shown in Figure V-40. The sample ON-33 is divided into four whole-rock samples(ON-33A-D). Biotite, hornblende and felsic fraction were separated from ON-33.

The Rb-Sr and Sm-Nd data are given in Table V-20.

Table V-18 Trace element concentrations and isotopic data of the Ichida granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd
YO-01								
Biotite	321	10.8	86.42	0.77857(1)	1.45	5.56	0.1577	0.512322(24)
Felsic f.	21.0	582	0.1042	0.70868(1)	0.277	1.38	0.1212	0.512263(14)
KAT-07								
Biotite	406	9.37	126.6	0.80475(2)				
Felsic f.	24.2	467	0.1502	0.70866(1)				
OSI-04								
Biotite	360	11.2	93.94	0.78448(1)				
Felsic f.	23.0	431.0	0.1545	0.70866(1)				
OSI-03								
Biotite	499	5.96	247.0	0.91515(3)				
Felsic f.	23.20	344	0.19470	0.70862(1)				
OSI-05								
Biotite	404	10.2	115.3	0.80363(1)	0.900	2.60	0.2093	0.512301(23)
Felsic f.	26.2	415	0.1826	0.70862(1)	0.206	1.04	0.1201	0.512264(14)
90-ISO								
Biotite	494	5.90	246.7	0.89018(1)	2.09	11.9	0.1062	0.512237(24)
Felsic f.	45.0	349	0.3733	0.70883(1)	0.325	1.93	0.1020	0.512235(13)
KAT-08								
Biotite	637	5.89	320.1	0.93087(2)				
Felsic f.	76.9	239	0.9297	0.70971(1)	1.56	9.01	0.1046	0.512243(14)

Table V-19 Trace element concentrations and isotopic data of the Takato granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
MI-17								
Biotite	219	3.21	200.7	0.87774(2)				
Hornblende	3.61	41.9	0.2492	0.70918(3)	32.8	117	0.1702	0.512281(10)
Felsic f.	6.61	735	0.02604	0.70868(1)	0.191	1.38	0.08329	0.512223(19)
MI-22								
Biotite	196	15.4	37.01	0.73997(1)				
Felsic f.	6.21	758	0.02368	0.70877(1)				
TAN-05								
Biotite	250	4.15	176.8	0.85372(2)				
Felsic f.	5.27	626	0.02435	0.70878(1)				
TAN-27								
Biotite	209	11.6	52.14	0.74840(1)				
Felsic f.	5.71	738	0.02237	0.70872(1)				
INO-04								
Biotite	228	4.69	142.8	0.87903(2)				
Felsic f.	6.10	670	0.02637	0.70878(1)				

Fig.V-38 Rb-Sr whole-rock and mineral isochrons for the Takato granite. Bio: biotite, F.f.: felsic fraction, Hb: hornblende, W.R.: whole-rock.

250

200

150

100

50

0

0.70

0.75

87Rb/86Sr

SrI = 0.70868 ± 0.00004

MSDW = 0.18

D

Fig.V-39 Rb-Sr whole-rock and mineral isochrons for the Takato granite. Bio: biotite, F.f.: felsic fraction, W.R.: whole-rock.

Table V-20 Trace element concentrations and isotopic data of the Hiji quartzdiorite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
MU-02	71.2	217	0.9493	0.70861(1)	3.74	13.5	0.1674	0.512372(10)
MU-02A	73.8	242	0.8829	0.70862(1)	4.36	15.9	0.1658	0.512409(9)
MU-02B	73.3	212	0.9992	0.70865(1)	3.34	12.1	0.1665	0.512387(11)
MU-02C	15.0	221	0.1972	0.70784(1)	0.600	2.94	0.1236	0.512346(11)
MU-02D	87.7	209	1.214	0.70882(1)	4.92	17.4	0.1705	0.512403(12)
MU-02E	38.7	224	0.5003	0.70817(1)	1.39	6.61	0.1275	0.512328(12)
MU-02F	64.9	207	0.9059	0.70858(1)	3.58	12.6	0.1724	0.512380(11)
MU-02G	36.2	194	0.5399	0.70830(1)	1.78	4.55	0.2358	0.512394(10)
ON-33	39.4	366	0.3116	0.70806(1)	12.3	46.6	0.1599	0.512386(11)
Biotite	376	5.17	214.0	0.88740(2)	0.431	1.14	0.2289	0.512272(80)
Hornblende	7.23	40.2	0.5211	0.70824(1)	28.8	78.2	0.2226	0.512360(10)
Felsic f.	22.8	420	0.1572	0.70791(1)	0.196	0.728	0.1630	0.512318(19)
ON-33A	27.5	378	0.2106	0.70798(1)	12.2	41.1	0.1788	0.512360(11)
ON-33B	66.7	362	0.5335	0.70828(1)	12.1	43.1	0.1697	0.512361(12)
ON-33C	61.4	365	0.4870	0.70820(1)	9.07	32.5	0.1686	0.512379(9)
ON-33D	44.1	375	0.3404	0.70807(1)	10.4	35.9	0.1748	0.512359(11)

The eight samples(MU-02 and MU-02A-G) form an isochron that indicates an age of 67.5 ± 8.2 Ma with a SrI of $0.70771\pm 0.00010(2\sigma)$ (Fig.V-41). In the Sm-Nd system, the isochron age is not given because of small variation on 147 Sm/ 144 Nd.

ON-33 and four samples(ON-33A-D) form an isochron that indicates an age of 63.3 ± 10.0 Ma with a SrI of $0.70778\pm0.00006(2\sigma)$ (Fig.V-42). Further, mineral samples (biotite, hornblende and felsic fraction) and a whole-rock sample separated from ON-33 define an isochron age of 59.1 ± 0.1 (Fig.V-43). The agreement of both ages within range of error suggests that the composition of separated layers depend on amount of minerals(in particular, biotite, hornblende and felsic fraction). Thus, the ages of 67.5Ma and 63.3Ma do not indicate timing of formation of compositional layerings, but cooling age.

Kisokoma granodiorite

Biotite, hornblende and felsic fraction were separated from the nine samples, respectively.

The Rb-Sr and Sm-Nd data are given in Table V-21.

Mineral samples(biotite and felsic fraction) and a whole-rock sample define Rb-Sr whole-rock and mineral isochron ages of 54.1 ± 0.3 Ma(SHO-02), 60.0 ± 0.1 Ma(SHO-06), 58.4 ± 0.3 Ma(SHO-08), 57.6 ± 0.4 Ma(OG-07), 58.7 ± 0.02 Ma(OT-94), 62.8 ± 0.1 Ma(OG-08), 58.5 ± 0.2 Ma(OTK-20), 60.88 ± 0.1 Ma(INA-05), 64.2 ± 0.2 Ma(INA-07), respectively(Figs.V-44-46). In the Sm-Nd system, the age can not be given, because the variations in 143Nd/144Nd and 147Sm/144Nd ratios are small.

Kise granite

The Kise granite is medium grained (hornblende) biotite granodiorite and granite that is exposed along the Tenryu River in the north of Kise(Murayama and Katada, 1957). The amount of hornblende is very little.

Fig.V-41 Rb-Sr isochron for the sample MU-02 from the Hiji quartzdiorite.

Fig.V-42 Rb-Sr isochron for the Hiji quartzdiorite.

Fig.V-43 Rb-Sr whole-rock and mineral isochron for the Hiji quartzdiorite. Bio: biotite, F.f.: felsic fraction, Hb: hornblende, W.R.: whole-rock.

n'
t
I
×
Y
-
5
50
on
B
5
П
0
V
0
~
~
Y
1)
16
t -
f
0
T
t
a
D
0
2
H
0
S
20
1.
_
0
H
3
12
I
0
÷
B
1
E
SIL
ent
Icent
ncent
oncent
concent
t concent
nt concent
ent concent
nent concent
ment concent
ement concent
lement concent
element concent
element concent
se element concent
nce element concent
race element concent
race element concent
Trace element concent
Trace element concent
11 Trace element concent
21 Trace element concent
'-21 Trace element concent
V-21 Trace element concent
V-21 Trace element concent
e V-21 Trace element concent
ole V-21 Trace element concent
the V-21 Trace element concent
able V-21 Trace element concent
Table V-21 Trace element concent

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20
SHO-08								
Biotite	409	3.65	333.6	0.98600(1)	0.631	2.75	0.1389	0.512173(12)
Hornblende	4.15	24.1	0.4437	0.70929(1)	32.0	128	0.1514	0.512171(10)
Felsic f.	38.3	356	0.3116	0.70952(1)	0.445	3.01	0.08935	0.512161(11)
OT-94								
Biotite	332	2.86	345.8	0.99756(3)				
Hornblende	2.71	27.3	0.2870	0.70956(2)	30.8	112	0.1667	0.512188(9)
Felsic f.	23.2	421	0.1599	0.70943(1)	0.294	2.30	0.07708	0.512100(13)
SHO-06								
Biotite	421	2.46	516.8	1.14987(2)				
Hornblende	5.47	22.6	0.7014	0.70983(5)				
Felsic f.	23.9	390	0.1772	0.70936(1)				
0G-07								
Biotite	511	3.72	411.1	1.04605(4)	0.621	2.08	0.1804	0.512183(17)
Felsic f.	32.0	338	0.2742	0.70991(1)	0.502	3.06	0.09930	0.512148(14)
SHO-02								
Biotite	538	5.73	277.5	0.92293(2)	1.03	4.28	0.1460	0.512169(14)
Hornblende					48.6	151	0.1947	0.512172(10)
Felsic f.	43.6	318	0.3963	0.70993(1)	0.450	2.79	0.09753	0.512118(12)
OTK-20					5.000	21.30	0.1423	0.512174(11)
Biotite	429.0	4.29	296.3000	0.955780(2)				
Felsic f.	28.0	353	0.2296	0.70985(1)				
INA-05								
Biotite	426	7.00	178.7	0.86390(1)				
Felsic f.	20.7	409	0.1462	0.70948(1)				
INA-07								
Biotite	598	2.78	659.3	1.31123(2)				
Felsic f.	52.0	245	0.6138	0.71011(2)				

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(2σ)
0GW-02								
Biotite	590	4.11	433	1.12468(2)				
Felsic f.	37.7	345	0.3166	0.70774(1)				
0G-08								
Biotite	446	2.73	494	1.15075(5)				
Felsic f.	20.3	393	0.1493	0.70996(1)				

Fig.V-44 Rb-Sr whole-rock and mineral isochrons for the Kisokoma granodiorite. Bio: biotite, F.f.: felsic fraction, Hb: hornblende, W.R.: whole-rock.

Fig.V-45 Rb-Sr whole-rock and mineral isochrons for the Kisokoma granodiorite. Bio: biotite, F.f.: felsic fraction, Hb: hornblende, W.R.: whole-rock.

cu

Fig.V-46 Rb-Sr whole-rock and mineral isochron for the Kisokoma granodiorite. Bio: biotite, F.f.: felsic fraction, W.R.: whole-rock.

The three whole-rock samples, TN-44, TN-45 and TN-51, were collected from the Kise granite(Fig.V-47). Biotite and felsic fraction were separated from these samples.

Whole rock chemical compositions of these samples are given in Table V-22. The Rb-Sr and Sm-Nd data are given in Table V-23.

Biotite, felsic fraction and a whole-rock sample define Rb-Sr whole-rock and mineral isochron ages of 59.0 ± 0.4 Ma(TN-44), 58.4 ± 0.1 Ma(TN-45) and 61.3 ± 0.5 Ma(TN-51)(Fig.V-48).

Hissori granite

The five samples, KI-03, KI-07, JI-22, JI-23 and AS-01, were collected from the Hissori granite(Fig.V-49). Biotite, hornblende and felsic fraction were separated from three samples.

Whole rock chemical compositions of these samples are given in Table V-24. The Rb-Sr and Sm-Nd data are given in Table V-25.

Biotite, felsic fraction and a whole-rock sample define Rb-Sr whole-rock and mineral isochron ages of 64.5 ± 0.1 Ma(JI-22), 61.0 ± 0.1 Ma(JI-33) and 65.2 ± 0.3 Ma(KI-03)(Fig.V-50).

Basic metamorphic rock

Biotite and felsic fraction were separated from basic gneiss(MIT-60 and 61). This basic gneiss is five to forty centimeters thick, and composed mainly biotite, orthopyroxene, plagioclase and quartz.

The Rb-Sr and Sm-Nd data of these fractions and whole-rock sample are given in Table V-26. These samples were collect from the Mibu River nearby the Takato.

Mineral samples and a whole-rock sample define a Rb-Sr whole-rock and mineral isochron age of 61.3 ± 1.0 Ma(MIT-60) and 57.8 ± 1.1 Ma(MIT-61)(Fig.V-51). These isochron have slightly large error and MSWD, but conform the Rb-Sr whole-rock and biotite isochron ages reported by Okano(1982) in this area.

Fig.V-47 Sample localities of the Kise granite. Topographic map is part of 1/10,000 map sheet "Komagane city (Ryuto 2)" of the Komagame city.

Sample No.	TN-44	TN-45	TN-51
SiO2	70.04	70.98	68.02
TiO2	0.43	0.44	0.50
Al2O3	14.75	14.28	15.55
FeO*	3.03	2.99	3.26
MnO	0.06	0.06	0.08
MgO	0.91	0.88	1.13
CaO	3.04	3.22	3.37
Na2O	3.13	3.17	4.01
K2O	2.65	2.37	2.17
P2O5	0.11	0.11	0.13
Total	98.15	98.51	98.22
Ва	862	615	
Cu			
Nb	8	8	
Ni	4	4	
Rb	65.1	61.2	84.9
Sr	368	359	361
Y	17	18	
Zn	58	55	
Zr	165	163	

Table V-22 Whole-rock chemical compositions of the Kise granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	$87Sr/86Sr(2\sigma)$	Sm(ppm)	Nd(ppm)	147Sm/144Nd	$143Nd/144Nd(2\sigma)$
TN-44	65.1	368	0.5121	0.70901(1)	3.87	19.3	0.1214	0.512351(9)
Biotite	403	7.05	167.5	0.84882(2)	1.96	3.81	0.3101	0.512324(12)
Felsic f.	22.6	359	0.1820	0.70867(1)	0.330	1.37	0.1454	0.512314(16)
TN-45	61.2	359	0.4936	0.70898(1)	4.82	26.4	0.1102	0.512353(10)
Biotite	405	6.86	173.3	0.85272(2)				
Felsic f.	17.3	324	0.1543	0.70869(1)				
TN-51	84.9	361	0.6805	0.70901(1)	4.36	21.3	0.1241	0.512316(11)
Biotite	452	3.96	340.2	1.00474(4)				
Felsic f.	15.2	354	0.1241	0.70861(1)				

Table V-23 Trace element concentrations and isotopic data of the Kise granite.

Fig.V-49 Sample localities of the Hissori granite.

Sample No.	KI-07	KI-03	JI-22	JI-23
SiO2	65.10	65.13	65.70	67.04
TiO2	0.59	0.63	0.57	0.45
Al2O3	16.09	16.13	15.84	15.49
FeO*	3.22	3.57	3.12	2.50
MnO	0.07	0.08	0.07	0.05
MgO	1.79	1.97	1.80	1.35
CaO	3.92	3.78	3.35	2.90
Na2O	5.03	4.86	4.87	4.69
K2O	2.01	2.45	2.45	2.65
P2O5	0.23	0.24	0.21	0.16
Total	98.05	98.84	97.96	97.28

Table V-24 Whole-rock chemical compositions of the Hissori granite.

Table V-25 Trace element concentrations and isotopic data of the Hissori granite.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
KI-03	74.6	1148	0.1881	0.70449(1)	4.78	30.1	0.09599	0.512574(11)
Biotite	592	9.50	183.3	0.87409(2)				
Felsic f.	27.5	1343	0.05923	0.70433(1)				
JI-22	85.8	1054	0.2356	0.70442(1)	4.62	28.3	0.09856	0.512565(11)
Biotite	680	4.24	484.0	1.14775(2)				
Felsic f.	28.1	1215	0.06690	0.70428(1)				
JI-23	73.2	1061	0.1995	0.70440(1)	3.68	22.0	0.1014	0.512586(13)
Biotite	637	5.78	327.3	0.98773(1)				
Felsic f.	32.6	1155	0.08174	0.70431(1)				
AS-01	72.1	1102	0.1892	0.70454(1)	3.03	18.2	0.1006	0.512586(10)

Table V-26 Trace element concentrations and isotopic data of the basic metamorphic rocks.

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(20)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)
MIT-60	108	370	0.8422	0.70691(1)	4.91	22.6	0.1315	0.512697(11)
Biotite	426	60.6	137.3	0.82569(1)	0.472	1.95	0.1459	0.512679(14)
Felsic fraction	32.0	627	0.1477	0.70614(1)	1.54	7.35	0.1267	0.512670(14)
MIT-61	127	328	1.121	0.71028(1)	5.08	23.4	0.1310	0.512287(12)
Biotite	459	8.71	154.3	0.83591(1)	0.804	3.98	0.1221	0.512286(14)
Felsic fraction	9.65	760	0.03673	0.70920(1)	1.19	7.78	0.0924	0.512277(14)

Fig.V-51 Rb-Sr whole-rock and mineral isochrons for the basic metamorphic rocks.

Bio:biotite, F.f.:felsic fraction, W.R.:whole-rock.

Ikuta granite

One sample(KSB-01) was collected from the Ikuta granite. The sample locality is shown in Figure V-52. Biotite, hornblende and felsic fraction were separated from KSB-01.

The Rb-Sr and Sm-Nd data of these fractions and whole-rock sample are given in Table V-27.

Mineral samples and a whole-rock sample give a Rb-Sr whole-rock and mineral isochron age of 60.5±0.2Ma(Fig.V-53).

Kiyosaki granite

The Kiyosaki granite mainly consists of medium grained hornblende biotite granodiorite and quartz diorite(Koide, 1949). This granite is exposed in the area nearby Kiyosaki, Shidara Town, Aichi Prefecture. K-Ar biotite ages of 70-100Ma(Banno and Miller, 1965; Ozima et al., 1967) and U-Pb zircon age of approximately 100Ma(Banks and Shimizu, 1969) have been reported about this body.

One sample(KNS-01) was collected from this body. The sample locality is shown in Figure V-54. Biotite, hornblende and felsic fraction were separated from KNS-01.

The Rb-Sr and Sm-Nd data of these fractions and whole-rock sample are given in Table V-28.

Mineral samples and a whole-rock sample give Rb-Sr whole-rock and mineral isochron ages of 63.5±0.3Ma(Fig.V-55).

Gabbro

Hornblende and felsic fraction were separated from two samples, OHA-04 and OHA-05, collected from the Ohata mass. These samples are medium grained hornblende gabbro that is composed of plagioclase, hornblende, cummingtonite and biotite with small amount of quartz.

The Rb-Sr and Sm-Nd data of these fractions and whole-rock sample are given in Table V-14.

Fig.V-52 Sample locality of the Ikuta granite. Topographic map is part of 1/25,000 map sheet "Inaojima" of Geographical Survey Institute of Japan.

-
A)
U.
t
•
-
0
5
50
OD
~
0
+
-
-
~
_
ž
+
H
-
0
-
1
00
0
-
1)
0
0
1
0
0
+
0
0
50
•
_
-
-
0
0
-
-
-
_
a
ral
ral
trai
ntrat
ntrat
entrat
central
central
ncentral
ncentral
oncentral
oncentral
concentrat
concentral
t concentral
it concentral
nt concentral
ent concentral
ent concentral
nent concentral
nent concentral
ment concentral
ement concentral
ement concentral
lement concentral
element concentrat
element concentrat
element concentrat
e element concentral
ce element concentral
ice element concentral
ace element concentrat
race element concentral
race element concentral
Frace element concentral
Trace element concentral
Trace element concentral
7 Trace element concentral
7 Trace element concentral
27 Trace element concentral
27 Trace element concentral
-27 Trace element concentral
⁷ -27 Trace element concentral
V-27 Trace element concentral
V-27 Trace element concentral
V-27 Trace element concentral
e V-27 Trace element concentral
e V-27 Trace element concentral
le V-27 Trace element concentral
ole V-27 Trace element concentral
ble V-27 Trace element concentral
able V-27 Trace element concentral
able V-27 Trace element concentral

Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20
KSB-01	100	310	0.9360	0.70831(1)	4.30	22.3	0.1166	0.512305(10)
Biotite	069	3.61	580.2	1.20598(2)				
Felsic f.	36.80	345	0.30890	0.70774(1)				

Fig.V-53 Rb-Sr whole-rock and mineral isochron for the Ikuta granite. Bio:biotite, F.f.:felsic fraction, W.R.:whole-rock.

Fig.V-54 Sample locality of the Kiyosaki granite. Topographic map is part of 1/25,000 map sheet "Ebi" of Geographical Survey Institute of Japan. Table V-28 Trace element concentrations and isotopic data of the Kiyosaki granite.

ppm) 147Sm/144Nd 143Nd/144Nd(2	27.7 0.1353 0.512379(10)		
Sm(ppm) Nd(I	6.21		
87Sr/86Sr(20)	0.70799(1)	1.55710(4)	0.70738(1)
87Rb/86Sr	0.7964	942.6	0.05939
Sr(ppm)	305	1.39	407
Rb(ppm)	83.8	417	8.35
Sample No.	KNS-01	Biotite	Felsic f.

Fig.V-55 Rb-Sr whole-rock and mineral isochron for the Kiyosaki granite. Bio:biotite, F.f.:felsic fraction, W.R.:whole-rock.

Mineral samples and a whole-rock sample define Rb-Sr whole-rock and mineral isochron age of 83.8 ± 9.6 Ma(OHA-04) and 78.3 ± 2.3 Ma(OHA-05)(Fig.V-56). The age of OHA-04, which has large error, discords K-Ar hornblende age of same sample. However, age of OHA-05 agrees with K-Ar age in the range of error.

Shirotori granite

The Shirotori granite consists of seven rock types from granodiorite to granite(Kutsukake et al., 1979). This granitic body is exposed in the southern part of the Sanuki region. Kutsukake et al.(1979) defined this granite as massive granite being similar to the Hiroshima granites. K-Ar biotite ages of 83Ma, 77Ma(Kawano and Ueda, 1966) and 87.3Ma(Shibata, 1979) have been reported about this granite. Rb-Sr whole-rock isochron age of $93\pm28Ma$ (SrI=0.70745 \pm 0.00077) was reported by Kagami et al.(1988).

One sample(SR-01) was collected from this body. The sample locality is shown in Figure V-57. Biotite, hornblende and felsic fraction were separated from SR-01.

The Rb-Sr and Sm-Nd data of these fractions and whole-rock sample are given in Table V-29.

Mineral samples and a whole-rock sample give a Rb-Sr whole-rock and mineral isochron age of 85.1±0.04Ma(Fig.V-58). This age is within range of reported K-Ar biotite ages.

Data of Kagami et al.(1988) and SR-01 define an isochron age of 91 ± 29 Ma. The K-Ar hornblende age of SR-01, which was obtained in this study, is 93.4 ± 0.9 Ma(Table V-30). Thus, NdI of this sample is calculated presuming that age of formation of this body to be 95Ma.

D. K-Ar hornblende age

Fig.V-56 Rb-Sr whole-rock and mineral isochrons for the Ohata mass.

Fig.V-57 Sample locality of the Shirotori granite. Topographic map is part of 1/25,000 map sheet "Kawahigashi" of Geographical Survey Institute of Japan. Table V-29 Trace element concentrations and isotopic data of the Shirotori granite.

								and the second se	No. of Street,
Sample No.	Rb(ppm)	Sr(ppm)	87Rb/86Sr	87Sr/86Sr(2σ)	Sm(ppm)	Nd(ppm)	147Sm/144Nd	143Nd/144Nd(20)	*IDN
SR-01	97.4	184	1.529	0.70967(1)	5.92	30.7	0.1166	0.512350(17)	0.512290
Biotite	353	5.55	188.0	0.93526(2)					
Felsic f.	68.7	183	1.087	0.70914(1)					
* compated by.	USN.								

*corrected by 95Ma.

Fig.V-58 Rb-Sr whole-rock and mineral isochron for the Shirotori granite. Bio:biotite, F.f.:felsic fraction, W.R.:whole-rock.

Sample No.	K	36Ar	40Ar/36Ar	40Arrad	Age	Air fraction
	(wt%)	(10-10cc/g)		(10-8cc/g)	(Ma)	(%)
Takato Gr.				- and a second		
MI-17	0.2967	5.31±0.13	1732±27	76.23±0.77	64.8±0.7	17.09
	0.2984					
MI-22	0.2751	4.33±0.12	1908±36	69.99±0.70	64.1±0.7	15.51
	0.2777					
TAN-05	0.4311	4.79±0.13	2638±51	112.3±1.1	65.8±0.7	11.22
	0.4324					
TAN-27	0.2740	13.01±0.18	827.8±4.6	69.35±0.70	64.0±0.7	35.76
	0.2755					
Katsuma Qd.						
ON-27	0.3835	6.17±0.12	1937±26	101.3±1.0	66.3±0.8	15.28
	0.3890					
ON-29	0.3844	5.60±0.13	2126±34	102.6±1.0	67.1±0.8	13.92
	0.3891					
OS-11	0.3674	4.03±0.31	2553±100	96.7±2.4	66.5±1.6	11.60
	0.3678					
NA-03	0.4139	5.67±0.13	2263±37	111.6±1.2	67.9±0.8	13.08
	0.4172					
MU-08	0.3759	4.98±0.12	2304±41	100.1 ± 1.0	67.4±0.7	12.85
	0.3749					
Kisokoma Gr.						
SHO-02	0.4151	11.27±0.17	1323±11	115.8±1.2	68.3±2.2	22.38
	0.4414	10710 11	20/21/57	1110111	((1)10	0.00
SHO-06	0.4315	4.2/±0.11	2962±57	114.2 ± 1.1	66.1±1.0	9.99
SHO 08	0.4417	4 2 4 1 0 1 2	2022175	105 111 2	((())7	0.16
SHO-08	0.4748	4.24±0.13	3233±75	123.1±1.3	00.0±0.7	9.10
06.07	0.4746	4 27+0 12	33/3+72	130 8+1 3	68 5+0 8	8 85
00-07	0.4793	4.27±0.12	5545172	150.6±1.5	08.5±0.8	0.05
OG-08	0.5583	771+014	2333+28	157 6+1 6	71 2+0 7	12 69
00-00	0.5596	7.71±0.14	2333-20	137.0±1.0	/1.2±0./	12.07
OTK-20	0.5586	7 31+0 14	2342+31	150 1+1 5	67 7+0 7	12 64
0111 20	0.5620	7.5120.11	2012201	100.121.0	01.120.1	12.01
INA-05	0.4674	4.51+0.13	3093+65	126,1±1.3	67.6±0.9	9.57
	0.4762	10120110	0000000		01101019	2101
INA-07	0.5055	9.06±0.16	1788±19	135.5±1.4	68.2±0.8	16.56
	0.4986					

Table V-30 K-Ar age data of hornblende in the Ryoke granites, amphibolites and gabbros.

Sample No.	K	36Ar	40Ar/36Ar	40Arrad	Age	Air fraction
	(wt%)	(10-10cc/g)		(10-8cc/g)	(Ma)	(%)
Amphibolite						
SN-51	0.2992	6.45±0.14	1590±23	83.74±0.87	70.5±0.7	18.61
	0.3007					
ON-34	0.7371	3.95±0.11	5396±119	203.9±2.1	69.8±0.7	5.49
	0.7390					
ON-35	0.2559	6.65±0.14	1423±18	75.05±0.76	74.2±0.8	20.80
	0.2543					
NE-02	0.7100	6.62±0.14	3051±44	183.5±1.8	65.0±0.8	9.70
	0.7194					
OG-06	0.3102	6.49±0.14	1452±21	75.21±0.76	63.2±2.0	20.39
	0.2920					
902	0.7557	7.28±0.13	3177±40	210.7±2.1	70.6±0.7	9.32
	0.7529					
MA-10	0.0770	3.68±0.12	1048 ± 20	27.70±0.28	89.6±1.1	28.26
	0.0783					
Hiji Qd.						
ON-33	1.1914	4.83±0.12	7056±137	330.9±3.3	70.4±0.7	4.19
	1.1844					
Hissori Gr.						
KI-03	0.5843	6.06±0.13	2991±46	164.1±1.7	70.6±0.8	9.90
	0.5907					
JI-22	0.6016	4.29±0.12	4190±88	168.1±1.7	70.50.7	7.06
	0.6032					
JI-23	0.6203	5.93±0.13	3368±52	182.8±1.8	74.3±0.7	8.79
	0.6208					
Kise Gr.						
TN-45	0.4772	4.46±0.20	3152±88	127.0±1.4	67.0±0.8	9.39
	0.4817					
Gabbro						
OHA-04.2	0.2177	4.64±0.12	1465 ± 24	54.34±0.55	63.0±0.7	20.20
	0.2190					
OHA-05.1.5	0.2606	6.24±0.14	1565±23	79.37±0.80	76.7±0.8	18.91
	0.2614					
OHA-05.2	0.2159	6.28±0.13	1309±17	63.75±0.64	74.3±0.6	22.61
	0.2168					

Table V-30 (continued).

Sample No.	K	36Ar	40Ar/36Ar	40Arrad	Age	Air fraction
	(wt%)	(10-10cc/g)		(10-8cc/g)	(Ma)	(%)
Ikuta Gr.						
KSB-01	1.0587	3.83±0.12	7893±189	296.2±3.0	71.0±0.8	3.75
	1.0482					
Kiyosaki Gr.						
KNS-01	0.5035	4.24±0.12	3512±76	137.2±1.4	68.6±0.8	8.43
	0.5085					
Shirotori Gr.						
SR-01	0.7104	4.25±0.13	6451±150	264.7±2.7	93.4±0.9	4.59
	0.7131					

Table V-30 (continued).

K-Ar hornblende ages were determined for the Ryoke granite, amphibolite and gabbro. Potassium was determined by atomic absorption analysis. ⁴⁰Ar was analyzed by the isotope dilution method with ³⁸Ar as a tracer, using the mass spectrometer in ISEI, followed methods of Nagao et al.(1984) and Nagao and Itaya (1988). K-Ar age was calculated using the physical constant, $\lambda e=0.581 \times 10^{-10} y^{-1}$, $\lambda \beta=4.962 \times 10^{-10} y^{-1}$, ⁴⁰K/K=0.0001167(Steiger and Jäger, 1977).

The result is shown in Table V-30.

VI. Discussion

A:Genesis of the migmatite

The metamorphic P-T conditions of the zone IV are temperature of about 650°C and pressure of about 4.1kb. There is not possibility that the anatexis of pelitic-psammitic metamorphic rocks took place in this condition(Yuhara et al., 1992). However, the migmatitic rocks are exposed here and here in the area east of the Tenryu River. In particular, it is widely exposed in the area near the Hissori(Fig.VI-1). However, the base of migmatitic rock does not appear because of the anticline. Migmatitic rock intrudes metamorphic rock, and cut its foliation near the Hissori Bridge(Fig.VI-2). Thus, this migmatite is the sheet-like body intruded around the boundary between zones II and III.

Migmatitic rock includes many blocks of pelitic-psammitic metamorphic rock(Fig.VI-3a). The amount of block varies. The K-feldspar megacrysts are dotted in the matrix(Fig.VI-3a,b). Further, migmatitic rock includes a block where intrafolial fold is formed. This suggests that formation or/and intrusion of migmatitic rock were after the stage D2. Further, from the major geological structure of this migmatitic body, it is thought that this intruded before the stage D4. Matrix of the migmatitic rock is foliated and composed of quarts, plagioclase, K-feldspar, biotite, muscovite, cordierite and sillimanite with accessory apatite and zircon. Sillimanite is fibrolite, and most of it is included by cordierite(Fig.VI-4). Sometimes, it forms crenulation fold. These suggest that such cordierite is derived from the metamorphic rock which has undergone metamorphism of stage M3 and deformation of stage D2. Cordierites including biotites which show preferred shape orientation, also are derived from the metamorphic rock. Further, the dispersion of direction of preferred orientation suggests that cordierite moved in melt during movement of the migmatitic rock. However, prismatic and spherical cordierite that

Fig.VI-1 Geological map and localities of samples of the migmatite. H:Hissori.

Fig.VI-4 Photomicrograph of the migmatite. bio: biotite, cord: cordierite, sill: sillimanite. Length of scale bar is 1 mm. does not include such minerals. Plagioclase shows euhedral and subhedral shape with zonal structure. These minerals might crystallize from the melts. Thus, these textures suggest that the migmatites formed by mixing of melts formed by anatexis and the metamorphic rocks(restite) in the scale of mineral during movement and raise process of them. The mineral assemblage of matrix may depend on its emplace depth(cf. Shimura et al., 1992). Garnet probably disappeared during anatexis.

The whole-rock samples were collected from the migmatitic rocks(Fig.VI-1). Two of them are blocks of the metamorphic rocks.

Whole rock chemical compositions of these samples are given in Table VI-1.

SiO₂-oxides diagrams and SiO₂-minor element diagrams are given in Figures VI-5 and 6. On these diagrams, migmatitic rocks do not plot on the trend of the older Ryoke granites(Kawada and Yamada, 1957; Shibata et al., 1960; Kanisawa, 1961; Yamada, 1967; Kanisawa, 1975; Takagi, 1984; Kutsukake, 1993; and this study), but plot within the range of the pelitic-psammitic metamorphic rocks(Table VI-2). In particular, trends of CaO and Na₂O are remarkable. Rare earth element(REE) compositions of migmatitic rocks also compare with those of metamorphic rocks(Yuhara et al., 1992). Sr and Nd isotope ratios are higher and lower than ones of the granitic rocks expect the Otagiri granites, respectively. Furthermore, these ratios corrected by 100Ma are within the ranges of ones of the metamorphic rocks(Fig.VI-7). These suggest that the migmatitic rocks were formed from the metamorphic rocks.

The condition of formation of migmatitic rocks is estimated from the metamorphic conditions of metamorphic rocks that are exposed at present. The peak metamorphic P-T conditions of zone IV which is highest grade, were approximately 650°C and 4.1kb. Anatexis is greatly influenced by XH₂O besides temperature and pressure. In the Ina district,

Table VI-1 Whole-rock chemical compositions of the migmatite.

Sample No.	TNH-01	TNH-02	TNH-03	TNH-04	30-HNT	TNH-07	TNH-08	ON-19b	ON-20	ON-21	ON-22	KI-02
#	Matrix	Matrix	Matrix	Block	Matrix	Matrix	Matrix	Matrix	Matrix	Block	Matrix	Matrix
SiO2	69.61	73.25	67.28	66.65	66.79	66.59	80.82	79.12	64.93	61.76	65.63	68.03
Ti02	0.77	0.47	0.77	0.77	0.66	0.78	0.24	0.39	0.83	06.0	0.75	0.77
A1203	14.19	14.03	15.58	16.25	14.93	16.08	10.99	10.72	16.00	17.67	16.09	16.35
Fe203	0.66	0.27	0.11	0.28	0.39	0.40	0.37	0.86	2.40	0.57	0.74	0.94
FeO	4.14	2.23	4.26	4.39	3.73	3.57	1.09	2.27	3.32	5.17	4.34	3.91
MnO	0.13	0.06	0.09	0.10	0.08	0.07	0.06	0.18	0.15	0.20	0.12	0.06
MgO	1.91	1.01	1.84	2.14	1.60	1.61	0.67	1.16	2.21	2.27	1.99	2.03
CaO	0.76	1.12	1.43	2.26	1.38	0.73	1.75	09.0	1.36	1.44	1.29	1.05
Na2O	1.49	2.30	2.41	2.91	2.36	1.73	3.03	1.12	1.77	1.76	1.62	1.80
K20	3.42	3.89	3.29	1.73	3.14	6.16	1.05	2.86	3.28	3.73	3.69	3.61
P205	0.06	0.09	0.12	0.12	0.14	0.12	0.12	0.09	0.08	0.07	0.15	0.10
IOI	2.38	1.45	2.41	1.90	2.06	2.40	0.74	1.08	2.59	2.89	2.63	2.39
Total	99.53	100.17	09.60	99.52	100.29	100.25	100.94	100.47	98.92	98.44	99.04	101.05
Ba	612	734	453	146	457	1013	112	565	633	783	571	
Cu	5	5	10	7	20	14	8	n.d.	36	9	35	16
Nb	17	10	14	14	12	14	4	10	12	15	14	14
Ni	51	6	28	38	29	30	8	26	31	30	29	24
Rb	170	144	142	109	128	195	40	108	125	146	137	147
Sr	142	207	214	234	202	222	181	105	211	245	197	202
Y	22	18	23	20	22	23	6	20	27	26	29	21
Zn	66	49	93	98	74	83	23		90	101	94	94
Zr	153	193	212	171	208	200	106	98	204	197	183	197
LOI: Loss on	ignition, n.d.	: not detect	ed.									