start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs. en-copyright= kn-copyright= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuemoriKanto en-aut-sei=Suemori en-aut-mei=Kanto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaNaohiro en-aut-sei=Okada en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InoueHiroaki en-aut-sei=Inoue en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HashimotoNaoyuki en-aut-sei=Hashimoto en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Neutron Therapy Research Center, Okayama University Hospital kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=D?rrwaldRalf en-aut-sei=D?rrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-Ast?aJuliana en-aut-sei=Freitas-Ast?a en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesM?rcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=M?rcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=?klandArnfinn Lodden en-aut-sei=?kland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNo?l en-aut-sei=Tordo en-aut-mei=No?l kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Par? kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran? kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV. en-copyright= kn-copyright= en-aut-name=RubinoLuisa en-aut-sei=Rubino en-aut-mei=Luisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbrahamianPeter en-aut-sei=Abrahamian en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnWenxia en-aut-sei=An en-aut-mei=Wenxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArandaMiguel A. en-aut-sei=Aranda en-aut-mei=Miguel A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Ascencio-Iba?ezJos? T. en-aut-sei=Ascencio-Iba?ez en-aut-mei=Jos? T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BlouinArnaud G. en-aut-sei=Blouin en-aut-mei=Arnaud G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CandresseThierry en-aut-sei=Candresse en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CantoTomas en-aut-sei=Canto en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=CaoMengji en-aut-sei=Cao en-aut-mei=Mengji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=CarrJohn P. en-aut-sei=Carr en-aut-mei=John P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ChoWon Kyong en-aut-sei=Cho en-aut-mei=Won Kyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ConstableFiona en-aut-sei=Constable en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=DasguptaIndranil en-aut-sei=Dasgupta en-aut-mei=Indranil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DigiaroMichele en-aut-sei=Digiaro en-aut-mei=Michele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ElbeainoToufic en-aut-sei=Elbeaino en-aut-mei=Toufic kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FargetteDenis en-aut-sei=Fargette en-aut-mei=Denis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=FilardoFiona en-aut-sei=Filardo en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FischerMatthias G. en-aut-sei=Fischer en-aut-mei=Matthias G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FontdevilaNuria en-aut-sei=Fontdevila en-aut-mei=Nuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FoxAdrian en-aut-sei=Fox en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=Freitas-AstuaJuliana en-aut-sei=Freitas-Astua en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FuchsMarc en-aut-sei=Fuchs en-aut-mei=Marc kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=GeeringAndrew D.W. en-aut-sei=Geering en-aut-mei=Andrew D.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=GhafariMahan en-aut-sei=Ghafari en-aut-mei=Mahan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=Hafr?nAnders en-aut-sei=Hafr?n en-aut-mei=Anders kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=HammondJohn en-aut-sei=Hammond en-aut-mei=John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=HammondRosemarie en-aut-sei=Hammond en-aut-mei=Rosemarie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=Hasi?w-JaroszewskaBeata en-aut-sei=Hasi?w-Jaroszewska en-aut-mei=Beata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=HebrardEugenie en-aut-sei=Hebrard en-aut-mei=Eugenie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=Hern?ndezCarmen en-aut-sei=Hern?ndez en-aut-mei=Carmen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=HilyJean-Michel en-aut-sei=Hily en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=HosseiniAhmed en-aut-sei=Hosseini en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=HullRoger en-aut-sei=Hull en-aut-mei=Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=Inoue-NagataAlice K. en-aut-sei=Inoue-Nagata en-aut-mei=Alice K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=JordanRamon en-aut-sei=Jordan en-aut-mei=Ramon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=KreuzeJan F. en-aut-sei=Kreuze en-aut-mei=Jan F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=LeisnerScott en-aut-sei=Leisner en-aut-mei=Scott kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=LettJean-Michel en-aut-sei=Lett en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=LiChengyu en-aut-sei=Li en-aut-mei=Chengyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=LiFan en-aut-sei=Li en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=LiJun Min en-aut-sei=Li en-aut-mei=Jun Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=L?pez-LambertiniPaola M. en-aut-sei=L?pez-Lambertini en-aut-mei=Paola M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=Lopez-MoyaJuan J. en-aut-sei=Lopez-Moya en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MaclotFrancois en-aut-sei=Maclot en-aut-mei=Francois kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=M?kinenKristiina en-aut-sei=M?kinen en-aut-mei=Kristiina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MartinDarren en-aut-sei=Martin en-aut-mei=Darren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MassartSebastien en-aut-sei=Massart en-aut-mei=Sebastien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MillerW. Allen en-aut-sei=Miller en-aut-mei=W. Allen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MohammadiMusa en-aut-sei=Mohammadi en-aut-mei=Musa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=MollovDimitre en-aut-sei=Mollov en-aut-mei=Dimitre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=MullerEmmanuelle en-aut-sei=Muller en-aut-mei=Emmanuelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NagataTatsuya en-aut-sei=Nagata en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=Navas-CastilloJes?s en-aut-sei=Navas-Castillo en-aut-mei=Jes?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=NeriyaYutaro en-aut-sei=Neriya en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=Ochoa-CoronaFrancisco M. en-aut-sei=Ochoa-Corona en-aut-mei=Francisco M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=Pall?sVicente en-aut-sei=Pall?s en-aut-mei=Vicente kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=PappuHanu en-aut-sei=Pappu en-aut-mei=Hanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=PetrzikKarel en-aut-sei=Petrzik en-aut-mei=Karel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=PoogginMikhail en-aut-sei=Pooggin en-aut-mei=Mikhail kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=PrigigalloMaria Isabella en-aut-sei=Prigigallo en-aut-mei=Maria Isabella kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=Ramos-Gonz?lezPedro L. en-aut-sei=Ramos-Gonz?lez en-aut-mei=Pedro L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=RibeiroSimone en-aut-sei=Ribeiro en-aut-mei=Simone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=Richert-P?ggelerKatja R. en-aut-sei=Richert-P?ggeler en-aut-mei=Katja R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=RoumagnacPhilippe en-aut-sei=Roumagnac en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=RoyAvijit en-aut-sei=Roy en-aut-mei=Avijit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=?af??ov?Dana en-aut-sei=?af??ov? en-aut-mei=Dana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=SaldarelliPasquale en-aut-sei=Saldarelli en-aut-mei=Pasquale kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=Sanfa?onH?l?ne en-aut-sei=Sanfa?on en-aut-mei=H?l?ne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=SarmientoCecilia en-aut-sei=Sarmiento en-aut-mei=Cecilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=ScheetsKay en-aut-sei=Scheets en-aut-mei=Kay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=SchravesandeWillem E.W. en-aut-sei=Schravesande en-aut-mei=Willem E.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=SealSusan en-aut-sei=Seal en-aut-mei=Susan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=ShimomotoYoshifumi en-aut-sei=Shimomoto en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=S?meraMerike en-aut-sei=S?mera en-aut-mei=Merike kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=StavoloneLivia en-aut-sei=Stavolone en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=StewartLucy R. en-aut-sei=Stewart en-aut-mei=Lucy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=TeycheneyPierre-Yves en-aut-sei=Teycheney en-aut-mei=Pierre-Yves kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=ThomasJohn E. en-aut-sei=Thomas en-aut-mei=John E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=ThompsonJeremy R. en-aut-sei=Thompson en-aut-mei=Jeremy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=TiberiniAntonio en-aut-sei=Tiberini en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=TomitakaYasuhiro en-aut-sei=Tomitaka en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=TzanetakisIoannis en-aut-sei=Tzanetakis en-aut-mei=Ioannis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=UmberMarie en-aut-sei=Umber en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=UrbinoCica en-aut-sei=Urbino en-aut-mei=Cica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=van den BurgHarrold A. en-aut-sei=van den Burg en-aut-mei=Harrold A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=Van der VlugtRen? A.A. en-aut-sei=Van der Vlugt en-aut-mei=Ren? A.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=VarsaniArvind en-aut-sei=Varsani en-aut-mei=Arvind kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=VerhageAdriaan en-aut-sei=Verhage en-aut-mei=Adriaan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=VillamorDan en-aut-sei=Villamor en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=von BargenSusanne en-aut-sei=von Bargen en-aut-mei=Susanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WetzelThierry en-aut-sei=Wetzel en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=WylieStephen J. en-aut-sei=Wylie en-aut-mei=Stephen J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=YangCaixia en-aut-sei=Yang en-aut-mei=Caixia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZerbiniF. Murilo en-aut-sei=Zerbini en-aut-mei=F. Murilo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhangSong en-aut-sei=Zhang en-aut-mei=Song kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=2 en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory kn-affil= affil-num=3 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=4 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=5 en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University kn-affil= affil-num=6 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=7 en-affil=Plant Protection Department kn-affil= affil-num=8 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=9 en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC) kn-affil= affil-num=10 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= affil-num=11 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=12 en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University kn-affil= affil-num=13 en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University kn-affil= affil-num=14 en-affil=University of Delhi South Campu kn-affil= affil-num=15 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=16 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=17 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=18 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=19 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=20 en-affil=Virus South Data kn-affil= affil-num=21 en-affil=Queensland Department of Primary Industries kn-affil= affil-num=22 en-affil=Max Planck Institute for Marine Microbiology kn-affil= affil-num=23 en-affil=Plant Protection Department kn-affil= affil-num=24 en-affil=Fera Science Ltd (Fera), York Biotech Campus kn-affil= affil-num=25 en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation kn-affil= affil-num=26 en-affil=Plant Pathology, Cornell University kn-affil= affil-num=27 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=28 en-affil=Department of Biology, University of Oxford kn-affil= affil-num=29 en-affil=Swedish University of Agriculture kn-affil= affil-num=30 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=31 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory kn-affil= affil-num=32 en-affil=Institute of Plant Protection-NRI kn-affil= affil-num=33 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=34 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=35 en-affil=Institut Fran?ais de la Vigne et du Vin kn-affil= affil-num=36 en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection kn-affil= affil-num=37 en-affil=Retired from John Innes Centre kn-affil= affil-num=38 en-affil=Embrapa Hortali?as kn-affil= affil-num=39 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=40 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=41 en-affil=International Potato Center (CIP) kn-affil= affil-num=42 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=43 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=44 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=45 en-affil=Department of Biological Sciences, University of Toledo kn-affil= affil-num=46 en-affil=CIRAD, UMR PVBMT kn-affil= affil-num=47 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=48 en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University kn-affil= affil-num=49 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=50 en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=51 en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB) kn-affil= affil-num=52 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=53 en-affil=Department of Agricultural Sciences, University of Helsinki kn-affil= affil-num=54 en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town kn-affil= affil-num=55 en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege kn-affil= affil-num=56 en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University kn-affil= affil-num=57 en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources kn-affil= affil-num=58 en-affil=USDA-APHIS, Plant Protection and Quarantine kn-affil= affil-num=59 en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE kn-affil= affil-num=60 en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia kn-affil= affil-num=61 en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas kn-affil= affil-num=62 en-affil=Utsunomiya University kn-affil= affil-num=63 en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics kn-affil= affil-num=64 en-affil=Saga University kn-affil= affil-num=65 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=66 en-affil=Department of Plant Pathology, Washington State University kn-affil= affil-num=67 en-affil=Institute of Plant Molecular Biology kn-affil= affil-num=68 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD kn-affil= affil-num=69 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=70 en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo kn-affil= affil-num=71 en-affil=Embrapa Recursos Gen?ticos e Biotecnologia kn-affil= affil-num=72 en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics kn-affil= affil-num=73 en-affil=CIRAD, UMR PHIM kn-affil= affil-num=74 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA kn-affil= affil-num=75 en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University kn-affil= affil-num=76 en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc kn-affil= affil-num=77 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=78 en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada kn-affil= affil-num=79 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=80 en-affil=Strategic Planning Headquarters, NARO kn-affil= affil-num=81 en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University kn-affil= affil-num=82 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=83 en-affil=Natural Resources Institute, University of Greenwich kn-affil= affil-num=84 en-affil=Kochi Agricultural Research Center kn-affil= affil-num=85 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=86 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=87 en-affil=Currently unaffiliated kn-affil= affil-num=88 en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union kn-affil= affil-num=89 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=90 en-affil=Plant Health and Environment Laboratory kn-affil= affil-num=91 en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification kn-affil= affil-num=92 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=93 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=94 en-affil=INRAE, UR ASTRO kn-affil= affil-num=95 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=96 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=97 en-affil=Wageningen University and Research kn-affil= affil-num=98 en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University kn-affil= affil-num=99 en-affil=Rijk Zwaan Breeding B.V. kn-affil= affil-num=100 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=101 en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences kn-affil= affil-num=102 en-affil=The University of Queensland kn-affil= affil-num=103 en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz kn-affil= affil-num=104 en-affil=North Carolina State University kn-affil= affil-num=105 en-affil=Food Futures Institute, Murdoch University kn-affil= affil-num=106 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=107 en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa kn-affil= affil-num=108 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=120296 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications. en-copyright= kn-copyright= en-aut-name=KimuraRyota en-aut-sei=Kimura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ferr?-PujolPilar en-aut-sei=Ferr?-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Virus adsorption kn-keyword=Virus adsorption en-keyword=Dye adsorption kn-keyword=Dye adsorption en-keyword=Cationic polymer composites kn-keyword=Cationic polymer composites en-keyword=Adsorbent kn-keyword=Adsorbent en-keyword=Aggregation kn-keyword=Aggregation END start-ver=1.4 cd-journal=joma no-vol=351 cd-vols= no-issue= article-no= start-page=199522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamKazuyuki en-aut-sei=Maruyam en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TassiAline Daniele en-aut-sei=Tassi en-aut-mei=Aline Daniele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchoaRonald en-aut-sei=Ochoa en-aut-mei=Ronald kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Tropical Research and Education Center, University of Florida kn-affil= affil-num=7 en-affil=Systematic Entomology Laboratory, USDA kn-affil= affil-num=8 en-affil=College of Plant Protection, Northwest A&F University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhabdovirus kn-keyword=Rhabdovirus en-keyword=Plant kn-keyword=Plant en-keyword=Mite kn-keyword=Mite en-keyword=Vector kn-keyword=Vector en-keyword=Replication kn-keyword=Replication en-keyword=mRNA kn-keyword=mRNA en-keyword=Small RNA kn-keyword=Small RNA END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=1152 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240717 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined. en-copyright= kn-copyright= en-aut-name=UrzoMichael Louie R. en-aut-sei=Urzo en-aut-mei=Michael Louie R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GuintoTimothy D. en-aut-sei=Guinto en-aut-mei=Timothy D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BudotBernard O. en-aut-sei=Budot en-aut-mei=Bernard O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoriaMary Jeanie T. en-aut-sei=Yanoria en-aut-mei=Mary Jeanie T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JonsonGilda B. en-aut-sei=Jonson en-aut-mei=Gilda B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakawaMasao en-aut-sei=Arakawa en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=2 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=3 en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=4 en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Ba?os kn-affil= affil-num=5 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=6 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=7 en-affil=Faculty of Agriculture, Meijo University kn-affil= affil-num=8 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=9 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=dsRNA kn-keyword=dsRNA en-keyword=mycovirus kn-keyword=mycovirus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=metatranscriptome kn-keyword=metatranscriptome END start-ver=1.4 cd-journal=joma no-vol=99 cd-vols= no-issue=3 article-no= start-page=e02166-24 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA en-subtitle= kn-subtitle= en-abstract= kn-abstract=Capsidless yadokariviruses (members of the order Yadokarivirales) with (+)RNA genomes divert the capsid of their partner icosahedral double-stranded RNA (dsRNA) viruses in different families of the order Ghabrivirales into the replication site. A yadokarivirus, AfSV2, has been reported from a German strain of the ascomycete fungus Aspergillus foetidus coinfected by two dsRNA viruses, a victorivirus (AfSV1, family Pseudototiviridae) and an alternavirus (AfFV, family Alternaviridae). Here, we identified AfSV1 as the partner of AfSV2 in a Japanese A. foetidus strain after showing the infectiousness of AfSV2 in three forms: virus particles (heterocapsid), transforming full-length complementary DNA (cDNA), and purified replicated form (RF) dsRNA that is believed to be inactive as a translational template. Virion transfection of virus-free A. foetidus protoplasts resulted in the generation of two strains infected either by AfSV1 alone or by both AfSV1 and AfSV2. Transformants with AfSV2 full-length cDNA launched AfSV2 infection only in the presence of AfSV1, but not those with AfSV2 RNA-directed RNA polymerase mutant cDNA. The purified fractions containing AfSV2 RF dsRNA also launched infection when transfected into protoplasts infected by AfSV1. Treatment with dsRNA-specific RNase III, but not with proteinase K, S1 nuclease, or DNase I, abolished the infectivity of AfSV2 RF dsRNA. Furthermore, we confirmed the infectiousness of gel-purified AfSV2 RF dsRNA in the presence of AfSV1. Taken together, our results show the unique infectious entity of AfSV2 and the expansion of yadokarivirus partners in the family Pseudototiviridae and provide interesting evolutionary insights. en-copyright= kn-copyright= en-aut-name=FadliMuhammad en-aut-sei=Fadli en-aut-mei=Muhammad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NovoaGuy en-aut-sei=Novoa en-aut-mei=Guy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Cast?nJos? R. en-aut-sei=Cast?n en-aut-mei=Jos? R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnolog?a (CNB-CSIC), Campus de Cantoblanco kn-affil= affil-num=4 en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnolog?a (CNB-CSIC), Campus de Cantoblanco kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=yadokarivirus kn-keyword=yadokarivirus en-keyword=hetero-encapsidation kn-keyword=hetero-encapsidation en-keyword=partner dsRNA virus kn-keyword=partner dsRNA virus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=Aspergillus foetidus kn-keyword=Aspergillus foetidus en-keyword=neo-lifestyle kn-keyword=neo-lifestyle END start-ver=1.4 cd-journal=joma no-vol=234 cd-vols= no-issue= article-no= start-page=120015 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reversible chemical modifications of graphene oxide for enhanced viral capture and release in water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detecting low concentrations of viruses in sewage water is crucial for monitoring the spread of emerging viral diseases. However, current detection methods, which involve concentrating viruses using traditional materials such as gauze or cotton, have limitations in effectively accomplishing this task. This study demonstrates that graphene oxide (GO), a two-dimensional carbon material, possesses strong viral adsorption capabilities. However, it lacks efficiency for effective viral release. Therefore, we designed a series of new GO-based materials, which exhibited a viral adsorption similar to pristine GO, while significantly enhancing their release performance by attaching alkyl chains and hydrophilic functional groups. Among the synthesized materials, 1,8-aminooctanol grafted to GO (GO-NH2C8OH) has emerged as the most promising candidate, achieving a viral release rate higher than 50 %. This superior performance can be attributed to the synergistic effect of the alkyl chain and the terminal OH group, which enhances both its affinity for viruses and water dispersibility. Furthermore, we have successfully applied GO-NH2C8OH in a new protocol for concentrating viruses from sewage wastewater. This approach has demonstrated a 200-fold increase in virus concentration, allowing PCR detection of this type of pathogens present in wastewater below the detection limit by direct analysis, underscoring its significant potential for virus surveillance. en-copyright= kn-copyright= en-aut-name=Ferr?-PujolPilar en-aut-sei=Ferr?-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RayaJ?sus en-aut-sei=Raya en-aut-mei=J?sus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaHiroyuki en-aut-sei=Katayama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoTakashi en-aut-sei=Kato en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institut de Chimie, UMR 7177 CNRS, Universit? de Strasbourg kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Urban Engineering, School of Engineering, The University of Tokyo kn-affil= affil-num=6 en-affil=Research Center for Water Environment Technology, School of Engineering, The University of Tokyo kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Carbon nanomaterials kn-keyword=Carbon nanomaterials en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Adsorption kn-keyword=Adsorption en-keyword=Desorption kn-keyword=Desorption en-keyword=Pathogens kn-keyword=Pathogens END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=28 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local Control of Conjunctival Malignant Melanoma by Proton Beam Therapy in a Patient With No Metastasis in Six Years From in Situ to Nodular Lesions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Conjunctival malignant melanoma is extremely rare, with no standard of care established at moment. Here we report a 65-year-old woman, as a hepatitis B virus (HBV) carrier, who presented concurrently a liver mass and lower bulbar conjunctival pigmented lesions in the right eye. Needle liver biopsy and excisional conjunctival biopsy showed hepatocellular carcinoma and conjunctival malignant melanoma in situ, respectively. The priority was given to segmental liver resection for hepatocellular carcinoma after transcatheter arterial chemoembolization. In 1 year, she underwent second and third resection of bulbar conjunctival pigmented lesions, and the pathological examinations constantly showed melanoma in situ. In the course, she showed gradual widening of pigmented lesions to upper bulbar conjunctiva and lower palpebral conjunctiva and lower eyelid. About 2.5 years from the initial visit, the lower eyelid lesion was resected for a genomic DNA-based test of BRAF mutations which turned out to be absent, and then, she began to have intravenous anti-programmed cell death-1 (PD-1), nivolumab every 3 or 4 weeks. She developed iritis in the right eye with conjunctival melanoma as an immune-related adverse event, 3 months after the beginning of nivolumab, and so she used daily topical 0.1% betamethasone eye drops to control the intraocular inflammation. She showed no metastasis in 6 years of follow-up, but later in the course, 5 years from the initial visit, she developed abruptly a non-pigmented nodular lesion on the temporal side of the bulbar conjunctiva along the corneal limbus, accompanied by two pigmented nodular lesions in the upper and lower eyelids in a few months. She thus, underwent proton beam therapy toward the conjunctival melanoma and achieved the successful local control. Proton beam therapy is a treatment option in place of orbital exenteration, and multidisciplinary team collaboration is desirable to achieve better cosmetic and functional outcomes in conjunctival malignant melanoma. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgataTakeshi en-aut-sei=Ogata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakiTakahiro en-aut-sei=Waki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ocular surface kn-keyword=Ocular surface en-keyword=Conjunctiva kn-keyword=Conjunctiva en-keyword=Malignant melanoma kn-keyword=Malignant melanoma en-keyword=Proton beam therapy kn-keyword=Proton beam therapy en-keyword=Nivolumab kn-keyword=Nivolumab en-keyword=PD-1 inhibitor kn-keyword=PD-1 inhibitor en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=22 article-no= start-page=7382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microdetection of Nucleocapsid Proteins via Terahertz Chemical Microscope Using Aptamers en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several methods have been employed, including the detection of viral ribonucleic acid (RNA), nucleocapsid (N) proteins, spike proteins, and antibodies. RNA detection, primarily through polymerase chain reaction tests, targets the viral genetic material, whereas antigen tests detect N and spike proteins to identify active infections. In addition, antibody tests are performed to measure the immune response, indicating previous exposure or vaccination. Here, we used the developed terahertz chemical microscope (TCM) to detect different concentrations of N protein in solution by immobilizing aptamers on a semiconductor substrate (sensing plate) and demonstrated that the terahertz amplitude varies as the concentration of N proteins increases, exhibiting a highly linear relationship with a coefficient of determination (R2 = 0.9881), indicating that a quantitative measurement of N proteins is achieved. By optimizing the reaction conditions, we confirmed that the amplitude of the terahertz wave was independent of the solution volume. Consequently, trace amounts (0.5 μL) of the N protein were successfully detected, and the detection process only took 10 min. Therefore, this study is expected to develop a rapid and sensitive method for the detection and observation of the SARS-CoV-2 virus at a microdetection level. It is anticipated that this research will significantly contribute to reducing the spread of novel infectious diseases in the future. en-copyright= kn-copyright= en-aut-name=DingXue en-aut-sei=Ding en-aut-mei=Xue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiMana en-aut-sei=Murakami en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Hospital kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=terahertz chemical microscope kn-keyword=terahertz chemical microscope en-keyword=aptamers kn-keyword=aptamers en-keyword=N protein kn-keyword=N protein en-keyword=microdetection kn-keyword=microdetection END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dendritic cell maturation is induced by p53-armed oncolytic adenovirus via tumor-derived exosomes enhancing systemic antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) are crucial in cancer immunity, because they activate cytotoxic T cells by presenting tumor antigens. Recently, oncolytic virus therapy has been recognized as a systemic immune stimulator. We previously developed a telomerase-specific oncolytic adenovirus (OBP-301) and a p53-armed OBP-301 (OBP-702), demonstrating that these viruses strongly activate systemic antitumor immunity. However, their effects on DCs remained unclear. In the present study, the aim was to elucidate the mechanisms of DC activation by OBP-702, focusing particularly on tumor-derived exosomes. Exosomes (Exo53, Exo301, or Exo702) were isolated from conditioned media of human or murine pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and PAN02) after treatment with Ad-p53, OBP-301, or OBP-702. Exo702 derived from Panc-1 and MiaPaCa-2 cells significantly upregulated CD86, CD80, CD83 (markers of DC maturation), and IFN-γ in DCs in vitro. Similarly, Exo702 derived from PAN02 cells upregulated CD86 and IFN-γ in bone marrow-derived DCs in a bilateral PAN02 subcutaneous tumor model. This DC maturation was inhibited by GW4869, an inhibitor of exosome release, and anti-CD63, an antibody targeting the exosome marker. Intratumoral injection of OBP-702 into PAN02 subcutaneous tumors significantly increased the presence of mature DCs and CD8-positive T cells in draining lymph nodes, leading to long-lasting antitumor effects through the durable activation of systemic antitumor immunity. In conclusion, tumor-derived exosomes play a significant role in DC maturation following OBP-702 treatment and are critical for the systemic activation of antitumor immunity, leading to the abscopal effect. en-copyright= kn-copyright= en-aut-name=OhtaniTomoko en-aut-sei=Ohtani en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonKento en-aut-sei=Kumon en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiChiaki en-aut-sei=Yagi en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoRyoma en-aut-sei=Sugimoto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Oncolytic adenovirus kn-keyword=Oncolytic adenovirus en-keyword=p53 kn-keyword=p53 en-keyword=Dendritic cells kn-keyword=Dendritic cells en-keyword=Anti-tumor immunity kn-keyword=Anti-tumor immunity en-keyword=Exosome kn-keyword=Exosome END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=24968 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p? Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed.
Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= en-keyword=post-acute sequelae of SARS-CoV-2 infection kn-keyword=post-acute sequelae of SARS-CoV-2 infection en-keyword=PASC kn-keyword=PASC en-keyword=long Covid kn-keyword=long Covid en-keyword=persistent viruses kn-keyword=persistent viruses en-keyword=vaccine kn-keyword=vaccine en-keyword=antiviral drug kn-keyword=antiviral drug en-keyword=mathematical model kn-keyword=mathematical model en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future. en-copyright= kn-copyright= en-aut-name=Sa'diyahWasiatus en-aut-sei=Sa'diyah en-aut-mei=Wasiatus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoYan-Jie en-aut-sei=Zhao en-aut-mei=Yan-Jie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChibaYuto en-aut-sei=Chiba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BanSayaka en-aut-sei=Ban en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YaguchiTakashi en-aut-sei=Yaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrayamaSyun-Ichi en-aut-sei=Urayama en-aut-mei=Syun-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=3 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=7 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=8 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=9 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= en-keyword=Rhizopus microsporus kn-keyword=Rhizopus microsporus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=diversity kn-keyword=diversity en-keyword=new lineage kn-keyword=new lineage en-keyword=FLDS kn-keyword=FLDS END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=208 end-page=214 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anterior Uveitis After Discontinuation of Janus Kinase Inhibitor, Ruxolitinib en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary myelofibrosis shows widespread fibrosis in the bone marrow and is part of myeloproliferative neoplasms in which gene mutations in hematopoietic stem cells lead to abnormal clonal expansion of one or more lineage of myeloid and erythroid cells and megakaryocytes. Janus kinase (JAK) inhibitors are the main therapeutic regimen for primary myelofibrosis which harbors gene mutations, resulting in continuous activation of JAK-STAT signaling pathway. Since JAK inhibitors modulate immunological state, the administration would have a potential for uveitis. A 67-year-old patient presented with weight loss of 10 kg in the past 2 years after his retirement. He showed normocytic anemia with anisocytosis and abnormal shape, as well as hepatosplenomegaly. Suspected of hematological malignancy, bone marrow biopsy led to the diagnosis of primary myelofibrosis (grade 2) with bizarre megakaryocytes and relative maintenance of myeloid and erythroid lineage. He started to have blood transfusion. Genomic DNA analysis of the peripheral blood showed a pathogenic variant in the exon 9 of calreticulin (CALR) gene while pathogenic variants in Janus kinase-2 (JAK2), and myeloproliferative leukemia virus oncogene (MPL) were absent. He began to have oral ruxolitinib 10 mg daily at the timepoint of 5 months after the initial visit and the dose was increased to 20 mg daily 8 months later but was discontinued further 4 months later because he showed the limited effect of ruxolitinib. He had blood transfusion every week or every 2 weeks in the following 2 months until he noticed blurred vision in the right eye. The right eye showed thick fibrin membrane formation in the anterior chamber in front of the pupil which prevented the fundus from visualization. The left eye showed no inflammation and optic nerve atrophy, sequel to tuberculous meningitis in childhood. The patient started to use 0.1% betamethasone six times daily and 1% atropine once daily as eye drops. A week later, fibrin membrane disappeared and the pupillary area with total iris posterior synechia was visible in the right eye. He regained the vision in the right eye and did not show relapse of uveitis only with topical 0.1% betamethasone. Uveitis might be related with the administration and discontinuation of ruxolitinib. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaNaoto en-aut-sei=Ikeda en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MonobeYasumasa en-aut-sei=Monobe en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Kaneda Hospital kn-affil= affil-num=3 en-affil=Department of Pathology, General Medical Center, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Janus kinase inhibitor kn-keyword=Janus kinase inhibitor en-keyword=Ruxolitinib kn-keyword=Ruxolitinib en-keyword=Anemia kn-keyword=Anemia en-keyword=Myelofibrosis kn-keyword=Myelofibrosis en-keyword=Anterior uveitis kn-keyword=Anterior uveitis END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2322765121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=RNAi kn-keyword=RNAi en-keyword=Argonaute kn-keyword=Argonaute en-keyword=Dicer kn-keyword=Dicer en-keyword=fungal virus kn-keyword=fungal virus en-keyword=chestnut blight kn-keyword=chestnut blight END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2318150121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IchikawaHiroaki en-aut-sei=Ichikawa en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuwataRyusei en-aut-sei=Kuwata en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Agrobiological Sciences, National Agriculture and Food Research Organization kn-affil= affil-num=4 en-affil=Faculty of Veterinary Medicine, Okayama University of Science kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cross- kingdom infection kn-keyword=cross- kingdom infection en-keyword=partitivirus kn-keyword=partitivirus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=Plantae kn-keyword=Plantae en-keyword=Animalia kn-keyword=Animalia END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=2 article-no= start-page=85 end-page=88 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Membrane-Targeted palGFP Predominantly Localizes to the Plasma Membrane but not to Neurosecretory Vesicle Membranes in Rat Oxytocin Neurons en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advances in viral vector technology, specifically using adeno-associated virus (AAV) vectors, have significantly expanded possibilities in neuronal tracing. We have utilized the Cre/loxP system in combination with AAV techniques in rats to explore the subcellular localization of palmitoylation signal-tagged GFP (palGFP) in oxytocin-producing neurosecretory neurons. A distinctive branching pattern of single axons was observed at the level of the terminals in the posterior pituitary. Despite challenges in detecting palGFP signals by fluorescent microscopy, immunoelectron microscopy demonstrated predominant localization on the plasma membrane, with a minor presence on the neurosecretory vesicle membrane. These findings suggest that membrane-anchored palGFP may undergo exocytosis, translocating from the plasma membrane to the neurosecretory vesicle membrane. In this study, we observed characteristic axon terminal structures in the posterior pituitary of oxytocin neurons. This study indicates the importance of understanding the plasma membrane-specific sorting system in neuronal membrane migration and encourages future studies on the underlying mechanisms. en-copyright= kn-copyright= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InutsukaAyumu en-aut-sei=Inutsuka en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= en-keyword=GFP with a palmitoylation signal (palGFP) kn-keyword=GFP with a palmitoylation signal (palGFP) en-keyword=plasmalemma localization kn-keyword=plasmalemma localization en-keyword=neurosecretory vesicle kn-keyword=neurosecretory vesicle en-keyword=immunoelectron microscopy kn-keyword=immunoelectron microscopy en-keyword=oxytocin kn-keyword=oxytocin END start-ver=1.4 cd-journal=joma no-vol=1828 cd-vols= no-issue= article-no= start-page=148790 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protective effect of scallop-derived plasmalogen against vascular dysfunction, via the pSTAT3/PIM1/NFATc1 axis, in a novel mouse model of Alzheimer’s disease with cerebral hypoperfusion en-subtitle= kn-subtitle= en-abstract= kn-abstract=A strong relationship between Alzheimer’s disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD. en-copyright= kn-copyright= en-aut-name=ZhaiYun en-aut-sei=Zhai en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FengTian en-aut-sei=Feng en-aut-mei=Tian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BianZhihong en-aut-sei=Bian en-aut-mei=Zhihong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuHaibo en-aut-sei=Yu en-aut-mei=Haibo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TangYing en-aut-sei=Tang en-aut-mei=Ying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurology, The First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimer's disease kn-keyword=Alzheimer's disease en-keyword=Hypoperfusion kn-keyword=Hypoperfusion en-keyword=Cerebral vascular remodeling kn-keyword=Cerebral vascular remodeling en-keyword=Scallop-derived plasmalogen kn-keyword=Scallop-derived plasmalogen en-keyword=pSTAT3/PIM1/NFATc1 axis kn-keyword=pSTAT3/PIM1/NFATc1 axis END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=1 article-no= start-page=128 end-page=134 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240415 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spontaneous regression of multiple solitary plasmacytoma harboring Epstein?Barr virus: a case report and literature review en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a rare case of spontaneous regression (SR) in an elderly untreated patient with multiple solitary plasmacytoma (MSP). Diagnosis of MSP was confirmed through surgical resection of the left nasal cavity mass and subsequent biopsy of the right humerus. The patient was considered ineligible for chemotherapy due to poor performance status. At 3-month post-diagnosis, the patient’s condition worsened with deteriorating bone lesions and emergence of a new serum monoclonal protein. However, these clinical findings completely disappeared at 6 months, and positron emission tomography?computed tomography at 1 year confirmed complete metabolic remission. Notably, peripheral blood lymphocyte counts were inversely correlated with tumor progression and remission. Pathological re-evaluation of the initial biopsy specimens revealed programmed cell death protein 1 (PD-1) expression in tumor-infiltrating CD8+ T cells. In addition, tumor cells were infected with Epstein?Barr virus (EBV) but were negative for programmed cell death ligand 1 (PD-L1) expression, which is the most potent immune escape mechanism in tumor cells. While the mechanism underlying SR remains unclear, our findings suggest that host immune response as well as EBV infection may contribute to SR. Further studies are needed to elucidate the clinicopathologic mechanisms of tumor regression in plasma cell neoplasms. en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NodaMinori en-aut-sei=Noda en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsekiAkiko en-aut-sei=Iseki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoYumi en-aut-sei=Sato en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Otorhinolaryngology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= en-keyword=Plasmacytoma kn-keyword=Plasmacytoma en-keyword=Epstein?Barr virus kn-keyword=Epstein?Barr virus en-keyword=Spontaneous regression kn-keyword=Spontaneous regression END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=e17013 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterogeneity of the effect of the COVID-19 pandemic on the incidence of Metabolic Syndrome onset at a Japanese campus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background. The coronavirus disease 2019 (COVID-19) outbreak began in China in December 2019, with the World Health Organization declaring a state of emergency in January 2020. Worldwide implementation of lockdown measures to slow the spread of the virus led to reduced physical activity, disrupted eating habits, mental health issues, and sleep disturbances, which increased the risk of lifestyle -related diseases such as metabolic syndrome (MetS). During the COVID-19 pandemic, healthcare workers, especially intensive care workers, experienced longer working hours and burnout, which further increased the risk of lifestyle -related diseases. Accordingly, it is important to identify individuals at a risk of new -onset MetS during a pandemic, which could direct preventive interventions. This study aimed to assess the heterogeneous impact of the COVID-19 pandemic on the incidence of new -onset MetS based on the conditional average treatment effect (CATE) and to identify at -risk populations.
Methods. This study analyzed health checkup data obtained from Okayama University Shikata Campus workers using paired baseline and follow-up years. Baseline data encompassed 2017 to 2019, with respective follow-up data from 2018 to 2020. Furthermore, as the COVID-19 pandemic in Japan began in January 2020, workers who underwent follow-up health checkups in 2018 to 2019 and 2020 were considered as "unexposed"and "exposed,"respectively. As the Shikata campus has several departments, comparisons among departments were made. The primary outcome was new -onset MetS at follow-up. Predictor variables included baseline health checkup results, sex, age, and department (administrative, research, medical, or intensive care department). X -learner was used to calculate the CATE.
Results. This study included 3,572 eligible individuals (unexposed, n = 2,181; exposed, n = 1,391). Among them, 1,544 (70.8%) and 866 (62.3%) participants in the unexposed and exposed groups, respectively, were females. The mean age (+/- standard deviation) of the unexposed and exposed groups was 48.2 +/- 8.2 and 47.8 +/- 8.3 years, respectively. The COVID-19 pandemic increased the average probability of new -onset MetS by 4.4% in the overall population. According to the department, the intensive care department showed the highest CATE, with a 15.4% increase. Moreover, there was large heterogeneity according to the department. The high-CATE group was characterized by older age, urinary protein, elevated liver enzymes, higher triglyceride levels, and a history of hyperlipidemia treatment.
Conclusions. This study demonstrated that the COVID-19 pandemic increased the incidence of new -onset MetS, with this effect showing heterogeneity at a single Japanese campus. Regarding specific populations, workers in the intensive care department showed an increased risk of new -onset MetS. At -risk populations require specific preventive interventions in case the current COVID-19 pandemic persists or a new pandemic occurs. en-copyright= kn-copyright= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=Metabolic syndrome kn-keyword=Metabolic syndrome en-keyword=Healch check up kn-keyword=Healch check up en-keyword=Conditional average treatment effect kn-keyword=Conditional average treatment effect en-keyword=CATE kn-keyword=CATE en-keyword=Public health kn-keyword=Public health en-keyword=Pandemic kn-keyword=Pandemic END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=151 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=p53-Armed Oncolytic Virotherapy Improves Radiosensitivity in Soft-Tissue Sarcoma by Suppressing BCL-xL Expression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors’ growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors. en-copyright= kn-copyright= en-aut-name=KomatsubaraTadashi en-aut-sei=Komatsubara en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmoriToshinori en-aut-sei=Omori en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiuKazuhisa en-aut-sei=Sugiu en-aut-mei=Kazuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochizukiYusuke en-aut-sei=Mochizuki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DemiyaKoji en-aut-sei=Demiya en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=soft-tissue sarcoma kn-keyword=soft-tissue sarcoma en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=oncolytic adenovirus kn-keyword=oncolytic adenovirus en-keyword=p53 kn-keyword=p53 en-keyword=BCL-xL kn-keyword=BCL-xL END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=115 end-page=122 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impacts of Age and Gender on Brain Edema in a Mouse Water Intoxication Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Brain edema causes abnormal fluid retention and can be fatal in severe cases. Although it develops in various diseases, most treatments for brain edema are classical. We analyzed the impacts of age and gender on the characteristics of a water intoxication model that induces pure brain edema in mice and examined the model’s usefulness for research regarding new treatments for brain edema. C57BL/6J mice received an intraperitoneal administration of 10% body weight distilled water, and we calculated the brain water content by measuring the brain-tissue weight immediately after dissection and after drying. We analyzed 8-OHdG and caspase-3 values to investigate the brain damage. We also applied this model in aquaporin 4 knockout (AQP4?) mice and compared these mice with wild-type mice. The changes in water content differed by age and gender, and the 8-OHdG and caspase-3 values differed by age. Suppression of brain edema by AQP4? was also confirmed. These results clarified the differences in the onset of brain edema by age and gender, highlighting the importance of considering the age and gender of model animals. Similar studies using genetically modified mice are also possible. Our findings indicate that this water intoxication model is effective for explorations of new brain edema treatments. en-copyright= kn-copyright= en-aut-name=Nakamura-MaruyamaEmi en-aut-sei=Nakamura-Maruyama en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IrieKeiichiro en-aut-sei=Irie en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaritaKazuhiko en-aut-sei=Narita en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HimiNaoyuki en-aut-sei=Himi en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyamotoOsamu en-aut-sei=Miyamoto en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTakehiro en-aut-sei=Nakamura en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Physiology2, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Physiology2, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Physiology2, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Physiology2, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Physiology2, Kawasaki Medical School kn-affil= en-keyword=brain edema kn-keyword=brain edema en-keyword=water intoxication model kn-keyword=water intoxication model en-keyword=age kn-keyword=age en-keyword=gender kn-keyword=gender en-keyword=AQP4 kn-keyword=AQP4 END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=107 end-page=113 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the Efficacy and Safety of Tenofovir Disoproxil Fumarate in Intercepting Mother-to-Child Transmission of Hepatitis B Virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vertical transmission of hepatitis B virus (HBV), especially in Asia, is a key target in the global elimination of HBV. This study assessed the effects of tenofovir disoproxil fumarate (TDF) in pregnant women for mother-to-infant transmission of HBV. A total of 122 pregnant women at our hospital met the inclusion criteria for high HBV DNA viral loads. They were randomly divided into TDF-treatment (n=70) and placebo (n=52) groups. Maternal liver function and serum HBV DNA load were tested before and after treatment. Clinical and laboratory data of infants were assayed at delivery and 7-months post-partum visit and compared between the two groups. There was no difference in clinical characteristics of participants between the two groups. There were no significant differences in liver function markers, including alanine aminotransferase, total bilirubin, blood creatinine, and blood urea nitrogen levels before and after TDF treatment. The serum HBV DNA viral load of the TDF-treated group became significantly lower than those of the control group and their own pre-medication levels. Infants showed no significant difference in body growth, including weight, height, head size, and five-min Apgar score. At 7 months after birth, 94.29% of infants in the TDF group and 86.54% of control-group infants had protective HBsAb levels ? 10 mIU/ml (p>0.05). The HBV infection rate of infants in the TDF-treated group was lower than that in the non-treated group. In high-HBV-DNA-load pregnant women, TDF administered from 28 weeks gestational age to delivery was associated with a lower risk of mother-to-infant transmission of HBV. en-copyright= kn-copyright= en-aut-name=HanDongxiang en-aut-sei=Han en-aut-mei=Dongxiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DuJianxiu en-aut-sei=Du en-aut-mei=Jianxiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWei en-aut-sei=Wang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangCui en-aut-sei=Wang en-aut-mei=Cui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Obstetrics, Shijiazhuang Maternity & Child Healthcare Hospital kn-affil= affil-num=2 en-affil=Department of Laboratory Medicine, Shijiazhuang Maternity & Child Healthcare Hospital kn-affil= affil-num=3 en-affil=Department of Obstetrics, Shijiazhuang Maternity & Child Healthcare Hospital kn-affil= affil-num=4 en-affil=Department of Functional, Shijiazhuang Maternity & Child Healthcare Hospital kn-affil= en-keyword=mother-to-infant transmission kn-keyword=mother-to-infant transmission en-keyword=tenofovir disoproxil fumarate kn-keyword=tenofovir disoproxil fumarate en-keyword=hepatitis B virus kn-keyword=hepatitis B virus END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=95 end-page=106 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Roles of Neuropeptide Y in Respiratory Disease Pathogenesis via the Airway Immune Response en-subtitle= kn-subtitle= en-abstract= kn-abstract=The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases. en-copyright= kn-copyright= en-aut-name=ItanoJunko en-aut-sei=Itano en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=neuropeptide y kn-keyword=neuropeptide y en-keyword=Y1 receptor kn-keyword=Y1 receptor en-keyword=airway immune response kn-keyword=airway immune response en-keyword=bronchial epithelial cells kn-keyword=bronchial epithelial cells en-keyword=respiratory disease kn-keyword=respiratory disease END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=6 article-no= start-page=3523 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of Borna Disease Virus Replication during Its Persistent Infection Using the CRISPR/Cas13b System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Borna disease virus (BoDV-1) is a bornavirus that infects the central nervous systems of various animal species, including humans, and causes fatal encephalitis. BoDV-1 also establishes persistent infection in neuronal cells and causes neurobehavioral abnormalities. Once neuronal cells or normal neural networks are lost by BoDV-1 infection, it is difficult to regenerate damaged neural networks. Therefore, the development of efficient anti-BoDV-1 treatments is important to improve the outcomes of the infection. Recently, one of the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, CRISPR/Cas13, has been utilized as antiviral tools. However, it is still unrevealed whether the CRISPR/Cas13 system can suppress RNA viruses in persistently infected cells. In this study, we addressed this question using persistently BoDV-1-infected cells. The CRISPR/Cas13 system targeting viral mRNAs efficiently decreased the levels of target viral mRNAs and genomic RNA (gRNA) in persistently infected cells. Furthermore, the CRISPR/Cas13 system targeting viral mRNAs also suppressed BoDV-1 infection if the system was introduced prior to the infection. Collectively, we demonstrated that the CRISPR/Cas13 system can suppress BoDV-1 in both acute and persistent infections. Our findings will open the avenue to treat prolonged infection with RNA viruses using the CRISPR/Cas13 system. en-copyright= kn-copyright= en-aut-name=SasakiShigenori en-aut-sei=Sasaki en-aut-mei=Shigenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatohHirokazu en-aut-sei=Katoh en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=antiviral kn-keyword=antiviral en-keyword=antivirals kn-keyword=antivirals en-keyword=Borna disease virus kn-keyword=Borna disease virus en-keyword=CRISPR/Cas13b kn-keyword=CRISPR/Cas13b en-keyword=persistent infection kn-keyword=persistent infection END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=31 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploratory study of volatile fatty acids and the rumen-and-gut microbiota of dairy cows in a single farm, with respect to subclinical infection with bovine leukemia virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Subclinical infection with bovine leukemia virus (BLV) in cows can cause economic losses in milk and meat production in many countries, as BLV-related negative effects. The volatile fatty acids (VFAs) and microbiota present in the digestive tracts of cows can contribute to cow health. Here, we exploratorily investigated the VFAs and microbiota in the rumen and gut with respect to subclinical BLV infection using cows housed at a single farm.
Results We analyzed a herd of 38 cows kept at one farm, which included 15 uninfected and 23 BLV-infected cows. First, the analysis of the VFAs in the rumen, gut, and blood revealed an absence of statistically significant differences between the uninfected and BLV-infected groups. Thus, BLV infection did not cause major changes in VFA levels in all tested specimens. Next, we analyzed the rumen and gut microbiota. The analysis of the microbial diversity revealed a modest difference between the uninfected and BLV-infected groups in the gut; by contrast, no differences were observed in the rumen. In addition, the investigation of the bacteria that were predominant in the uninfected and BLV-infected groups via a differential abundance analysis showed that no significant bacteria were present in either of the microbiota. Thus, BLV infection possibly affected the gut microbiota to a small extent. Moreover, bacterial associations were compared between the uninfected and BLV-infected groups. The results of this analysis suggested that BLV infection affected the equilibrium of the bacterial associations in both microbiota, which might be related to the BLV-related negative effects. Thus, BLV infection may negatively affect the equilibrium of bacterial associations in both microbiota.
Conclusions Subclinical BLV infection is likely to affect the rumen and gut microbiota, which may partly explain the BLV-related negative effects. en-copyright= kn-copyright= en-aut-name=SuzukiTakehito en-aut-sei=Suzuki en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoReiichiro en-aut-sei=Sato en-aut-mei=Reiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgataMasaya en-aut-sei=Ogata en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SogawaKazuyuki en-aut-sei=Sogawa en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroho en-aut-sei=Ishida en-aut-mei=Hiroho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AtipairinApichart en-aut-sei=Atipairin en-aut-mei=Apichart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagaiMakoto en-aut-sei=Nagai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, University of Miyazaki kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=10 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=Bovine leukemia virus kn-keyword=Bovine leukemia virus en-keyword=Volatile fatty acids kn-keyword=Volatile fatty acids en-keyword=Rumen kn-keyword=Rumen en-keyword=Gut, Microbiota kn-keyword=Gut, Microbiota en-keyword=Cows kn-keyword=Cows END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=89 end-page=93 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ectopic Breast Cancer Arising within an Axillary Lymph Node en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report our experience with the diagnosis and treatment of an ectopic breast cancer arising within an axillary lymph node. The patient was a 65-year-old woman diagnosed breast cancer and axillary lymph node metastasis. We performed a partial mastectomy and axillary lymph node dissection. Postoperative pathology revealed no malignant lesions in the breast; however, a nodule in one of axillary lymph nodes had mixed benign and malignant components, leading to a diagnosis of invasive ductal carcinoma derived from ectopic mammary tissue. This case represents a very rare form of breast cancer, and the malignancy was difficult to distinguish from metastasis. en-copyright= kn-copyright= en-aut-name=ToshimaKei en-aut-sei=Toshima en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiYoko en-aut-sei=Suzuki en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamotoShogo en-aut-sei=Nakamoto en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UnoMaya en-aut-sei=Uno en-aut-mei=Maya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshiokaRyo en-aut-sei=Yoshioka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukiokiTakahiro en-aut-sei=Tsukioki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiYuko en-aut-sei=Takahashi en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwamotoTakayuki en-aut-sei=Iwamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwataniTsuguo en-aut-sei=Iwatani en-aut-mei=Tsuguo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Diagnostic Pathology, Okayama University Hospital kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=ectopic breast cancer kn-keyword=ectopic breast cancer en-keyword=axillary lymph node kn-keyword=axillary lymph node END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=29 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Regression of Necrotic Lesions after Methotrexate Withdrawal in Patients with Methotrexate-Associated Lymphoproliferative Disorders: A Retrospective CT Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=This retrospective study investigated whether necrotic lesions detected on a computed tomography (CT) scan are more regressive than non-necrotic lesions after methotrexate withdrawal in patients pathologically diagnosed with methotrexate-associated lymphoproliferative disorders (MTX-LPD). In total, 89 lesions extracted from 24 patients on CT scans were included in the analysis. All patients had been evaluated for the presence of necrosis within lesions via CT scan upon first suspicion of MTX-LPD (baseline CT scan). The percentage lesion size reduction between the baseline and initial follow-up CT scan was calculated. The association between necrosis within lesions and size changes was estimated via linear regression analyses using both crude and adjusted models. Necrosis was significantly more common in extranodal lesions (27 out of 30 lesions, 90%) than in nodal lesions (9 out of 59 lesions, 15%, p<0.001). In the crude model, the regression of necrotic lesions was 58.5% greater than that of non-necrotic lesions; the difference was statistically significant (p<0.001). Additionally, the longest diameter of necrotic lesions at the baseline CT scan was significantly greater than that of non-necrotic lesions (p<0.001). Based on the adjusted model, necrotic lesions showed 49.3% greater regression than non-necrotic lesions (p=0.017). Necrosis detected on a CT scan was found to be an independent predictor of regression after MTX withdrawal in patients with MTX-LPD. en-copyright= kn-copyright= en-aut-name=KitayamaTakahiro en-aut-sei=Kitayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakashi en-aut-sei=Tanaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanieYuichiro en-aut-sei=Kanie en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MarukawaYohei en-aut-sei=Marukawa en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KojimaKatsuhide en-aut-sei=Kojima en-aut-mei=Katsuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama City Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama Saiseikai General Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=methotrexate kn-keyword=methotrexate en-keyword=lymphoproliferative disorder kn-keyword=lymphoproliferative disorder en-keyword=computed tomography kn-keyword=computed tomography en-keyword=necrosis kn-keyword=necrosis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=11 article-no= start-page=e0294491 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis. en-copyright= kn-copyright= en-aut-name=TamuraShuta en-aut-sei=Tamura en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoriNaoto en-aut-sei=Hori en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LiYuncheng en-aut-sei=Li en-aut-mei=Yuncheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of Notch1 protein expression in methotrexate-associated lymphoproliferative disorders en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methotrexate (MTX)-associated lymphoproliferative disorder (MTX-LPD) is a lymphoproliferative disorder in patients treated with MTX. The mechanism of pathogenesis is still elusive, but it is thought to be a complex interplay of factors, such as underlying autoimmune disease activity, MTX use, Epstein-Barr virus infection, and aging. The NOTCH genes encode receptors for a signaling pathway that regulates various fundamental cellular processes, such as proliferation and differentiation during embryonic development. Mutations of NOTCH1 have been reported in B-cell tumors, including chronic lymphocytic leukemia/ lymphoma, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). Recently, it has also been reported that NOTCH1 mutations are found in post-transplant lymphoproliferative disorders, and in CD20-positive cells in angioimmunoblastic T-cell lymphoma, which might be associated with lymphomagenesis in immunodeficiency. In this study, to investigate the association of NOTCH1 in the pathogenesis of MTX-LPD, we evaluated protein expression of Notch1 in nuclei immunohistochemically in MTX-LPD cases [histologically DLBCL-type (n = 24) and classical Hodgkin lymphoma (CHL)-type (n = 24)] and de novo lymphoma cases [DLBCL (n = 19) and CHL (n = 15)]. The results showed that among MTX-LPD cases, the expression of Notch1 protein was significantly higher in the DLBCL type than in the CHL type (P < 0.001). In addition, among DLBCL morphology cases, expression of Notch1 tended to be higher in MTX-LPD than in the de novo group; however this difference was not significant (P = 0.0605). The results showed that NOTCH1 may be involved in the proliferation and tumorigenesis of B cells under the use of MTX. Further research, including genetic studies, is necessary. en-copyright= kn-copyright= en-aut-name=OkataniTakeshi en-aut-sei=Okatani en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EgusaYuria en-aut-sei=Egusa en-aut-mei=Yuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaSayako en-aut-sei=Yoshida en-aut-mei=Sayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=methotrexate-associated lymphoproliferative disorders kn-keyword=methotrexate-associated lymphoproliferative disorders en-keyword=other iatrogenic immunodeficiency-associated lymphoproliferative disorders kn-keyword=other iatrogenic immunodeficiency-associated lymphoproliferative disorders en-keyword=lymphoproliferative disorders arising in immune deficiency/dysregulation kn-keyword=lymphoproliferative disorders arising in immune deficiency/dysregulation en-keyword=NOTCH1 kn-keyword=NOTCH1 END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue= article-no= start-page=102337 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-throughput sequencing technologies have greatly expanded the RNA virome in general and have led to an exponential increase in new fungal viruses, also known as mycoviruses. Mycoviruses are omnipresent in fungi and usually induce symptomless infections. Some mycoviruses infecting fungi pathogenic to plants, insects, and mammals are known to modify host virulence positively and negatively and attract particular interests. In addition, fungal viruses continue to provide intriguing research materials and themes that lead to discoveries of peculiar viruses as infectious entities and insights into virus evolution and diversity. In this review, we outline the diversity and neolifestyle of recently discovered fungal RNA viruses, and phenotypic alterations induced by them. Furthermore, we discuss recent advances in research regarding the fungal antiviral defense and viral counterdefense, which are closely associated with host phenotype alterations. We hope that this article will enhance understanding of the interesting and growing fungal virology field. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Plant Sciences, University of Cologne kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=6 article-no= start-page=1208 end-page=1219 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nuclear Transformation of the Marine Pennate Diatom Nitzschia sp. Strain NIES-4635 by Multi-Pulse Electroporation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nitzschia is one of the largest genera of diatoms found in a range of aquatic environments, from freshwater to seawater. This genus contains evolutionarily and ecologically unique species, such as those that have lost photosynthetic capacity or those that live symbiotically in dinoflagellates. Several Nitzschia species have been used as indicators of water pollution. Recently, Nitzschia species have attracted considerable attention in the field of biotechnology. In this study, a transformation method for the marine pennate diatom Nitzschia sp. strain NIES-4635, isolated from the coastal Seto Inland Sea, was established. Plasmids containing the promoter/terminator of the fucoxanthin chlorophyll a/c binding protein gene (fcp, or Lhcf) derived from Nitzschia palea were constructed and introduced into cells by multi-pulse electroporation, resulting in 500 μg/mL nourseothricin-resistant transformants with transformation frequencies of up to 365 colonies per 108 cells. In addition, when transformation was performed using a new plasmid containing a promoter derived from a diatom-infecting virus upstream of the green fluorescent protein gene (gfp), 44% of the nourseothricin-resistant clones exhibited GFP fluorescence. The integration of the genes introduced into the genomes of the transformants was confirmed by Southern blotting. The Nitzschia transformation method established in this study will enable the transformation this species, thus allowing the functional analysis of genes from the genus Nitzschia, which are important species for environmental and biotechnological development. en-copyright= kn-copyright= en-aut-name=OkadaKoki en-aut-sei=Okada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorimotoYu en-aut-sei=Morimoto en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiraishiYukine en-aut-sei=Shiraishi en-aut-mei=Yukine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MayamaShigeki en-aut-sei=Mayama en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KadonoTakashi en-aut-sei=Kadono en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdachiMasao en-aut-sei=Adachi en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Advanced Support Center for Science Teachers, Tokyo Gakugei University kn-affil= affil-num=6 en-affil=Faculty of Agriculture and Marine Science, Kochi University kn-affil= affil-num=7 en-affil=Faculty of Agriculture and Marine Science, Kochi University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=9 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Diatom kn-keyword=Diatom en-keyword=Genetic transformation kn-keyword=Genetic transformation en-keyword=Nitzschia kn-keyword=Nitzschia en-keyword=Multi-pulse electroporation kn-keyword=Multi-pulse electroporation END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=1706 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies. en-copyright= kn-copyright= en-aut-name=KatohHirokazu en-aut-sei=Katoh en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=HERVs kn-keyword=HERVs en-keyword=LINEs kn-keyword=LINEs en-keyword=cancer kn-keyword=cancer en-keyword=innate immunity kn-keyword=innate immunity en-keyword=promoter kn-keyword=promoter en-keyword=enhancer kn-keyword=enhancer en-keyword=interferon signaling kn-keyword=interferon signaling END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=5 article-no= start-page=435 end-page=444 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic traces of Japanese malting barley breeding in two modern high-quality cultivars, ‘Sukai Golden’ and ‘Sachiho Golden’ en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two modern high-quality Japanese malting barley cultivars, ‘Sukai Golden’ and ‘Sachiho Golden’, were subjected to RNA-sequencing of transcripts extracted from 20-day-old immature seeds. Despite their close relation, 2,419 Sukai Golden-specific and 3,058 Sachiho Golden-specific SNPs were detected in comparison to the genome sequences of two reference cultivars: ‘Morex’ and ‘Haruna Nijo’. Two single nucleotide polymorphism (SNP) clusters respectively showing the incorporation of (1) the barley yellow mosaic virus (BaYMV) resistance gene rym5 from six-row non-malting Chinese landrace Mokusekko 3 on the long arm of 3H, and (2) the anthocyanin-less ant2 gene from a two-row Dutch cultivar on the long arm of 2H were detected specifically in ‘Sukai Golden’. Using 221 recombinant inbred lines of a cross between ‘Ishukushirazu’ and ‘Nishinochikara’, another BaYMV resistance rym3 gene derived from six-row non-malting Japanese cultivar ‘Haganemugi’ was mapped to a 0.4-cM interval on the proximal region of 5H. Haplotype analysis of progenitor accessions of the two modern malting cultivars revealed that rym3 of ‘Haganemugi’ was independently introduced into ‘Sukai Golden’ and ‘Sachiho Golden’. Residual chromosome 5H segments of ‘Haganemugi’ surrounding rym3 were larger in ‘Sukai Golden’. Available results suggest possibilities for malting quality improvement by minimizing residual segments surrounding rym3. en-copyright= kn-copyright= en-aut-name=TaketaShin en-aut-sei=Taketa en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiHidekazu en-aut-sei=Takahashi en-aut-mei=Hidekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YajimaShunsuke en-aut-sei=Yajima en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KoshiishiYuichi en-aut-sei=Koshiishi en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SotomeToshinori en-aut-sei=Sotome en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoTsuneo en-aut-sei=Kato en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Food and Agricultural Sciences, Fukushima University kn-affil= affil-num=4 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=5 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=6 en-affil=Tochigi Prefectural Agricultural Experiment Station kn-affil= affil-num=7 en-affil=Tochigi Prefectural Agricultural Experiment Station kn-affil= affil-num=8 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= en-keyword=genetic diversity kn-keyword=genetic diversity en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=RNA-sequencing kn-keyword=RNA-sequencing en-keyword=seed transcriptome kn-keyword=seed transcriptome en-keyword=single nucleotide polymorphism kn-keyword=single nucleotide polymorphism en-keyword=virus disease resistance genes kn-keyword=virus disease resistance genes END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=腫瘍融解ウイルスによる骨髄由来抑制細胞の減少は、ゲムシタビン耐性膵臓がんにおけるPD-L1阻害の有効性を高める kn-title=Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KAJIWARAYoshinori en-aut-sei=KAJIWARA en-aut-mei=Yoshinori kn-aut-name=梶原義典 kn-aut-sei=梶原 kn-aut-mei=義典 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=20 article-no= start-page=11308 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evolutionary-Game-Theory-Based Epidemiological Model for Prediction of Infections with Application to Demand Forecasting in Pharmaceutical Inventory Management Problems en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pharmaceuticals play a critical role in the eradication of infectious diseases. Effective pharmaceutical inventory management is important for controlling epidemics since medical resources such as pharmaceuticals, medical staff, and hospitals are limited. In this study, a novel epidemiological model is proposed to evaluate the resource requirements for pharmaceuticals and is applied to analyze different pharmaceutical inventory management strategies. We formulate the relationship between the number of infected individuals and the risk of infection to account for virus mutation. Evolutionary game theory is integrated into an epidemiological model to represent human behavioral choices. The proposed model can be developed to forecast the demand for pharmaceuticals and analyze how human behavior affects the demand of pharmaceuticals. This study found that making people aware of the risk of disease has a positive impact on both reducing the number of infections and managing the pharmaceutical inventory. The main contribution of this study is to enhance areas of research in pharmaceutical inventory management. This study revealed that the correct recognition of the risk of disease leads to appropriate pharmaceutical management. There are a few studies on the application of infectious disease models to inventory control problems. This study provides clues toward proper pharmaceutical management. en-copyright= kn-copyright= en-aut-name=NishihataYu en-aut-sei=Nishihata en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=inventory management kn-keyword=inventory management en-keyword=SEIR model kn-keyword=SEIR model en-keyword=evolutionary game theory kn-keyword=evolutionary game theory END start-ver=1.4 cd-journal=joma no-vol=291 cd-vols= no-issue=6 article-no= start-page=1119 end-page=1130 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes en-subtitle= kn-subtitle= en-abstract= kn-abstract=During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors ? such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 ? triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes. en-copyright= kn-copyright= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AriumiYasuo en-aut-sei=Ariumi en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University kn-affil= affil-num=3 en-affil=Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=double-stranded RNA kn-keyword=double-stranded RNA en-keyword=hepatitis C virus kn-keyword=hepatitis C virus en-keyword=innate immunity kn-keyword=innate immunity en-keyword=RIG-I-like receptor kn-keyword=RIG-I-like receptor en-keyword=RNA virus kn-keyword=RNA virus END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=65 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=COVID-19 and Spanish Flu, the Representative Pandemics of the 21st and 20th Centuries en-subtitle= kn-subtitle= en-abstract= kn-abstract=We are still in the early stage of 21st century and the two pandemics Spanish flu and COVID-19 are the presentative pandemics in 20th and 21st centuries, respectively. The Spanish flu pandemic raged from 1918 to 1920, just after World War I. It was the first influenza pandemic worldwide; since then, humankind has experienced many such pandemics. Spanish flu is caused by a virus. However, since virology was not well established at that time, the new clinical system was needed to cope with “unknown pathogen”; during the pandemic, high infection rates were recorded, but our predecessors managed to somehow tackle the situation. With respect to the ongoing COVID-19 pandemic, both the virus and its genome were clarified quickly. Nonetheless, it has turned out to be quite an intriguing infectious disease, with the high rates in developed countries, such as the US and those in Europe, which have aging societies, and low rates in developing countries such as those in Africa, where the population is largely young. Here, I compared and discuss the two pandemics, COVID-19 and Spanish flu. en-copyright= kn-copyright= en-aut-name=ShinodaSumio en-aut-sei=Shinoda en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Collaborative Research Center for Infectious Diseases in India, Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=vaccine kn-keyword=vaccine en-keyword=Spanish flu kn-keyword=Spanish flu en-keyword=influenza kn-keyword=influenza END start-ver=1.4 cd-journal=joma no-vol=334 cd-vols= no-issue= article-no= start-page=199155 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202309 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploration of the yadokari/yadonushi nature of YkV3 and RnMBV3 in the original host and a model filamentous fungus en-subtitle= kn-subtitle= en-abstract= kn-abstract=The yadokari/yadonushi nature is a recently discovered virus lifestyle; “yadokari” refers to the ability of capsidless positive-sense (+) RNA viruses (yadokariviruses) to utilize the capsids of phylogenetically distant double-stranded RNA (dsRNA) viruses possibly as the replication site, while “yadonushi” refers to the ability of dsRNA viruses to provide capsids to yadokariviruses. This virus?virus interaction, however, has been only studied with limited pathosystems. Here, we established a new study model with a capsidless (+)RNA yadokarivirus YkV3 (family Yadokariviridae) and its capsid donor RnMBV3 (family Megabirnaviridae) in the original host fungus Rosellinia necatrix and a model filamentous fungal host Cryphonectria parasitica. YkV3 has a simple genome structure with one open reading frame of 4305 nucleotides encoding a single polyprotein with an RNA-dependent RNA polymerase and a 2A-like self-cleavage peptide domain. Reverse genetics of YkV3 in R. necatrix showed that YkV3 tolerates a nucleotide substitution in the extreme 5′-terminus. The insertion of two termination codons immediately downstream of the 2A-like cleavage site abolished YkV3 viability, suggesting the importance of the C-terminal portion of the polyprotein of unknown function. Transfection of RnMBV3 and YkV3 into an RNA silencing-deficient mutant Δdcl2 of C. parasitica showed the replication competency of both viruses. Comparison between the wild-type and Δdcl2 strains of C. parasitica in virus accumulation suggested that RnMBV3 and YkV3 are susceptible to RNA silencing in C. parasitica. Taken together, we have established a platform to further explore the yadokari/yadonushi nature using genetically manipulable host fungal and virus strains. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Virus-virus interaction kn-keyword=Virus-virus interaction en-keyword=RNA viruses kn-keyword=RNA viruses en-keyword=Capsidless kn-keyword=Capsidless en-keyword=Fungal viruses kn-keyword=Fungal viruses en-keyword=Plant pathogenic fungi kn-keyword=Plant pathogenic fungi en-keyword=Yadokarivirus kn-keyword=Yadokarivirus en-keyword=Megabirnavirus kn-keyword=Megabirnavirus en-keyword=Reverse genetics kn-keyword=Reverse genetics END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=377 end-page=385 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Disease Progression-Related Markers for Aged Non-Alcoholic Fatty Liver Disease Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Liver fibrosis is an important phenomenon in non-alcoholic fatty liver disease (NAFLD) progression. Standard markers reflecting liver fibrosis, including the FIB-4 index, increase with age. This study aimed to identify fibrosis progression-related markers that are diagnostically beneficial even in aged individuals. Serum levels of pro- and anti-inflammatory cytokines were measured by multiple enzyme-linked immunosorbent assay. Two standard NAFLD or fibrosis progression-related markers ? the FIB-4 index and APRI score ? were analyzed along with cytokine levels to define the best approach to discriminate advanced fibrosis. Ninety-eight NAFLD patients were enrolled: 59 and 39 patients with fibrosis stages 1-2 and 3-4 respectively. In addition to the FIB-4 index and APRI score, the following factors showed significant differences between stages 1-2 and stages 3-4 in a multivariate analysis: platelet counts, IP-10, and RANTES. The fibrosis stage, FIB-4, APRI, PDGF-BB, and RANTES were related to the prognosis. In aged patients, IP-10, GM-CSF, and RANTES differed between stages 1-2 and stages 3-4. FIB-4 and APRI were beneficial for their correlation with fibrosis. However, to stratify either young or elderly advanced fibrosis patients, and to identify patients likely to have a bad outcome, RANTES was the best marker. en-copyright= kn-copyright= en-aut-name=MorimotoKosaku en-aut-sei=Morimoto en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OyamaAtsushi en-aut-sei=Oyama en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=NAFLD kn-keyword=NAFLD en-keyword=NASH kn-keyword=NASH en-keyword=liver fibrosis kn-keyword=liver fibrosis en-keyword=chemokine kn-keyword=chemokine en-keyword=FIB-4 kn-keyword=FIB-4 END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=341 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biological Roles of Hepatitis B Viral X Protein in the Viral Replication and Hepatocarcinogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hepatitis B virus is a pathogenic virus that infects 300 million people worldwide and causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Hepatitis B virus encodes four proteins. Among them, the HBx protein plays a central role in the HBV pathogenesis. Because the HBx protein is considered to play a central role in the induction of viral replication and hepatocarcinogenesis, the regulation of its function could be a key factor in the development of new interventions against hepatitis B. In this review, HBx protein-related viral replication and hepatocarcinogenesis mechanisms are described, with a focus on the recently reported viral replication mechanisms related to degradation of the Smc5/6 protein complex. We also discuss our recent discovery of a compound that inhibits HBx protein-induced degradation of the Smc5/6 protein complex, and that exerts inhibitory effects on both viral replication and hepatocarcinogenesis. Finally, prospects for future research on the HBx protein are described. en-copyright= kn-copyright= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=HBx kn-keyword=HBx en-keyword=Smc5/6 kn-keyword=Smc5/6 en-keyword=DDB1 kn-keyword=DDB1 en-keyword=nitazoxianide kn-keyword=nitazoxianide en-keyword=DNA repair kn-keyword=DNA repair END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=7 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Following the online publication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in January 2020, two lipid nanoparticle-encapsulated mRNA vaccines, BNT162b2 and mRNA-1273, were rapidly developed and are now being used worldwide to prevent coronavirus disease 2019 (COVID-19). The mRNA of both vaccines encodes the full-length spike protein of SARS-CoV-2, which binds to the host cell receptor angiotensin-converting enzyme 2 and is believed to mediate virus entry into cells. After intramuscular injection of the vaccine, the spike protein is produced in the cells. Both humoral and cellular immune responses to the spike protein are elicited for protection against COVID-19. The efficacy of the two mRNA vaccines against COVID-19 with wild-type SARS-CoV-2 is more than 90% and is slightly decreased with the Delta variant, which is currently the predominant variant in many countries. In this review, the effectiveness of and immune responses to COVID-19 mRNA vaccines and their mechanisms are summarized and discussed. Potential waning immunity and an additional dose of COVID-19 mRNA vaccines are also discussed. en-copyright= kn-copyright= en-aut-name=GohdaEiichi en-aut-sei=Gohda en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=mRNA vaccine kn-keyword=mRNA vaccine en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=膵臓癌における腫瘍融解ウイルス誘導性のp53発現増強は免疫原性細胞死や抗PD-1抗体の治療効果を促進する kn-title=Oncolytic virus?mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ARAKIHiroyuki en-aut-sei=ARAKI en-aut-mei=Hiroyuki kn-aut-name=荒木宏之 kn-aut-sei=荒木 kn-aut-mei=宏之 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=4 article-no= start-page=942 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Borna Disease Virus Infection on the Transcriptome of Differentiated Neuronal Cells and Its Modulation by Antiviral Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Borna disease virus (BoDV-1) is a highly neurotropic RNA virus that causes neurobehavioral disturbances such as abnormal social activities and memory impairment. Although impairments in the neural circuits caused by BoDV-1 infection induce these disturbances, the molecular basis remains unclear. Furthermore, it is unknown whether anti-BoDV-1 treatments can attenuate BoDV-1-mediated transcriptomic changes in neuronal cells. In this study, we investigated the effects of BoDV-1 infection on neuronal differentiation and the transcriptome of differentiated neuronal cells using persistently BoDV-1-infected cells. Although BoDV-1 infection did not have a detectable effect on intracellular neuronal differentiation processes, differentiated neuronal cells exhibited transcriptomic changes in differentiation-related genes. Some of these transcriptomic changes, such as the decrease in the expression of apoptosis-related genes, were recovered by anti-BoDV-1 treatment, while alterations in the expression of other genes remained after treatment. We further demonstrated that a decrease in cell viability induced by differentiation processes in BoDV-1-infected cells can be relieved with anti-BoDV-1 treatment. This study provides fundamental information regarding transcriptomic changes after BoDV-1 infection and the treatment in neuronal cells. en-copyright= kn-copyright= en-aut-name=TengDa en-aut-sei=Teng en-aut-mei=Da kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaKeiji en-aut-sei=Ueda en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=antiviral kn-keyword=antiviral en-keyword=Borna disease virus kn-keyword=Borna disease virus en-keyword=neuronal cells kn-keyword=neuronal cells en-keyword=gene expression kn-keyword=gene expression en-keyword=differentiation kn-keyword=differentiation END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=199 end-page=201 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Urinary Retention Suggesting Aseptic Meningitis: Meningitis-Retention Syndrome Without Physical Signs of Meningeal Irritation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Meningitis-retention syndrome (MRS) is the combination of aseptic meningitis and acute urinary retention that occurs in the absence of other neurological diseases. The cause(s) of MRS remain unclear. A 57-year-old Japanese woman was referred to our hospital for the evaluation of persistent fever and headache. The fever’s cause was initially unclear, but the presence of urinary retention raised concern about possible aseptic meningitis despite no physical indications of meningeal irritation. Only typical cases of MRS have been reported thus far to our knowledge, and it is important that clinicians are aware of MRS when it presents in this atypical form. en-copyright= kn-copyright= en-aut-name=NaganoTomohiro en-aut-sei=Nagano en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosokawaShinobu en-aut-sei=Hosokawa en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyaharaHideaki en-aut-sei=Miyahara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaKotaro en-aut-sei=Yamada en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmenoTakayuki en-aut-sei=Umeno en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanoHirohisa en-aut-sei=Kano en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KayataniHiroe en-aut-sei=Kayatani en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakugawaMakoto en-aut-sei=Sakugawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakehisaYasushi en-aut-sei=Takehisa en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakenakaTadasu en-aut-sei=Takenaka en-aut-mei=Tadasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeuchiMakoto en-aut-sei=Takeuchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BesshoAkihiro en-aut-sei=Bessho en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Hematology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=9 en-affil=Department of Neurology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=10 en-affil=Department of Urology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= en-keyword=meningitis-retention syndrome kn-keyword=meningitis-retention syndrome en-keyword=aseptic meningitis kn-keyword=aseptic meningitis en-keyword=acute urinary retention kn-keyword=acute urinary retention END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=169 end-page=177 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Predictive Factors for Recovery from Alcoholic Liver Failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Alcoholic liver disease is a risk factor for non-virus-related hepatocellular carcinoma (HCC), which is increasing in prevalence. This study aimed to identify the factors for recovery from alcoholic liver failure. Sixty-two consecutive patients hospitalized for alcoholic liver failure at Okayama City Hospital were enrolled. The characteristics of patients who survived to the 1-month follow-up and whose liver function improved to Child?Pugh A at 3 months (CPA3) and 12 months (CPA12) were compared with the rest of the patients. The survivors at 1 month (50 patients) were significantly younger than the deceased patients and had better liver and renal function with higher levels of γ-glutamyl transferase (GGT). The same factors, except renal function, were correlated with achieving CPA3. High AST, ALT, and GGT levels as well as short spleen length, total abstinence, and good Child?Pugh scores at admission were identified as factors for achieving CPA12. The extent of alcohol intake before admission was not identified as a risk factor in any analysis. In conclusion, baseline liver function is crucial for survival and achieving CPA3, whereas high transaminase and γ-GTP levels, the absence of splenomegaly, and total abstinence are significant factors for achieving CPA12. en-copyright= kn-copyright= en-aut-name=InoueKanae en-aut-sei=Inoue en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaRio en-aut-sei=Fujita en-aut-mei=Rio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaharaTakatoshi en-aut-sei=Nagahara en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiShiho en-aut-sei=Murakami en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaiYuta en-aut-sei=Nagai en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriwakeRina en-aut-sei=Moriwake en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyakeNozomi en-aut-sei=Miyake en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WakutaAkiko en-aut-sei=Wakuta en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KariyamaKazuya en-aut-sei=Kariyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraMamoru en-aut-sei=Nishimura en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= en-keyword=alcoholic liver failure kn-keyword=alcoholic liver failure en-keyword=risk factors kn-keyword=risk factors en-keyword=recovery kn-keyword=recovery END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=e1011162 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capsid structure of a fungal dsRNA megabirnavirus reveals its previously unidentified surface architecture en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rosellinia necatrix megabirnavirus 1-W779 (RnMBV1) is a non-enveloped icosahedral double-stranded (ds)RNA virus that infects the ascomycete fungus Rosellinia necatrix, a causative agent that induces a lethal plant disease white root rot. Herein, we have first resolved the atomic structure of the RnMBV1 capsid at 3.2 angstrom resolution using cryo-electron microscopy (cryo-EM) single-particle analysis. Compared with other non-enveloped icosahedral dsRNA viruses, the RnMBV1 capsid protein structure exhibits an extra-long C-terminal arm and a surface protrusion domain. In addition, the previously unrecognized crown proteins are identified in a symmetry-expanded cryo-EM model and are present over the 3-fold axes. These exclusive structural features of the RnMBV1 capsid could have been acquired for playing essential roles in transmission and/or particle assembly of the megabirnaviruses. Our findings, therefore, will reinforce the understanding of how the structural and molecular machineries of the megabirnaviruses influence the virulence of the disease-related ascomycete fungus. Author summaryA fungal plant soil-borne pathogen, Rosellinia necatrix, which can cause devastating disease white root rot in many highly valued fruit trees, is difficult to be controlled with conventional approaches such as fungicide applications. Rosellinia necatrix megabirnavirus 1-W779 (RnMBV1) is a dsRNA virus isolated from the R. necatrix field strain, W779, and this virus can be a viro-control candidate to confer hypovirulence in its host R. necatrix. To make use of RnMBV1 in the white root rot disease control, more molecular and structural investigations will offer us more insights. Here, we have performed cryo-electron microscopy (cryo-EM) single-particle analysis, to obtain the first atomic models of RnMBV1 particles. Based on the atomic structures, we found unique both surface and interior features. In addition, we found a previously unidentified protein on the viral surface. These aforementioned structural features might play important roles in the viral life cycles, and will enable us to apply this fungal virus as a viro-control approach. en-copyright= kn-copyright= en-aut-name=WangHan en-aut-sei=Wang en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SalaipethLakha en-aut-sei=Salaipeth en-aut-mei=Lakha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoKenta en-aut-sei=Okamoto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Life Science Center of Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=1 article-no= start-page=48 end-page=51 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Respiratory syncytial virus kn-title=RSウイルス en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UdaKazuhiro en-aut-sei=Uda en-aut-mei=Kazuhiro kn-aut-name=宇田和宏 kn-aut-sei=宇田 kn-aut-mei=和宏 aut-affil-num=1 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name=塚原宏一 kn-aut-sei=塚原 kn-aut-mei=宏一 aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil=岡山大学病院 小児科 affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学学術研究院医歯薬学域 小児医科学 END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=5 article-no= start-page=4411 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives en-subtitle= kn-subtitle= en-abstract= kn-abstract=NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4’s antioxidant and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases. en-copyright= kn-copyright= en-aut-name=LiuShihui en-aut-sei=Liu en-aut-mei=Shihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=755 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metformin and Its Immune-Mediated Effects in Various Diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metformin has been a long-standing prescribed drug for treatment of type 2 diabetes (T2D) and its beneficial effects on virus infection, autoimmune diseases, aging and cancers are also recognized. Metformin modulates the differentiation and activation of various immune-mediated cells such as CD4+ and CD+8 T cells. The activation of adenosine 5 '-monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1) pathway may be involved in this process. Recent studies using Extracellular Flux Analyzer demonstrated that metformin alters the activities of glycolysis, oxidative phosphorylation (OXPHOS), lipid oxidation, and glutaminolysis, which tightly link to the modulation of cytokine production in CD4+ and CD+8 T cells in various disease states, such as virus infection, autoimmune diseases, aging and cancers. en-copyright= kn-copyright= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CD8 T cells kn-keyword=CD8 T cells en-keyword=AMPK kn-keyword=AMPK en-keyword=mTORC kn-keyword=mTORC en-keyword=OXPHOS kn-keyword=OXPHOS en-keyword=autoimmune disease kn-keyword=autoimmune disease en-keyword=aging kn-keyword=aging en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=1285 end-page=1300 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pancreatic ductal adenocarcinoma (PDAC) is often refractory to treatment with gemcitabine (GEM) and immune checkpoint inhibitors including anti-programmed cell death ligand 1 (PD-L1) antibody. However, the precise relationship between GEM-resistant PDAC and development of an immunosuppressive tumor microenvironment (TME) remains unclear. In this study, we investigated the immunosuppressive TME in parental and GEM-resistant PDAC tumors and assessed the therapeutic potential of combination therapy with the telomerase-specific replication-competent oncolytic adenovirus OBP-702, which induces tumor suppressor p53 protein and PD-L1 blockade against GEM-resistant PDAC tumors. Mouse PDAC cells (PAN02) and human PDAC cells (MIA PaCa-2, BxPC-3) were used to establish GEM-resistant PDAC lines. PD-L1 expression and the immunosuppressive TME were analyzed using parental and GEM-resistant PDAC cells. A cytokine array was used to investigate the underlying mechanism of immunosuppressive TME induction by GEM-resistant PAN02 cells. The GEM-resistant PAN02 tumor model was used to evaluate the antitumor effect of combination therapy with OBP-702 and PD-L1 blockade. GEM-resistant PDAC cells exhibited higher PD-L1 expression and produced higher granulocyte-macrophage colony-stimulating factor (GM-CSF) levels compared with parental cells, inducing an immunosuppressive TME and the accumulation of myeloid-derived suppressor cells (MDSCs). OBP-702 significantly inhibited GEM-resistant PAN02 tumor growth by suppressing GM-CSF-mediated MDSC accumulation. Moreover, combination treatment with OBP-702 significantly enhanced the antitumor efficacy of PD-L1 blockade against GEM-resistant PAN02 tumors. The present results suggest that combination therapy involving OBP-702 and PD-L1 blockade is a promising antitumor strategy for treating GEM-resistant PDAC with GM-CSF-induced immunosuppressive TME formation. en-copyright= kn-copyright= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FushimiTakuro en-aut-sei=Fushimi en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Oncolys BioPharma Inc. kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Pancreatic cancer kn-keyword=Pancreatic cancer en-keyword=Chemoresistance kn-keyword=Chemoresistance en-keyword=MDSC kn-keyword=MDSC en-keyword=GM-CSF kn-keyword=GM-CSF en-keyword=Oncolytic virus kn-keyword=Oncolytic virus END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=503 end-page=510 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Viral Sequences Are Repurposed for Controlling Antiviral Responses as Non-Retroviral Endogenous Viral Elements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Eukaryotic genomes contain numerous copies of endogenous viral elements (EVEs), most of which are considered endogenous retrovirus (ERV) sequences. Over the past decade, non-retroviral endogenous viral elements (nrEVEs) derived from ancient RNA viruses have been discovered. Several functions have been proposed for these elements, including antiviral defense. This review summarizes the current understanding of nrEVEs derived from RNA viruses, particularly endogenous bornavirus-like elements (EBLs) and endogenous filovirus-like elements (EFLs). EBLs are one of the most extensively studied nrEVEs. The EBL derived from bornavirus nucleoprotein (EBLN) is thought to function as a non-coding RNA or protein that regulates host gene expression or inhibits virus propagation. Ebolavirus and marburgvirus, which are filoviruses, induce severe hemorrhagic fever in humans and nonhuman primates. Although the ecology of filoviruses remains unclear, bats are believed to be potential reservoirs. Based on the knowledge from EBLs, it is postulated that EFLs in the bat genome help to maintain the balance between filovirus infection and the bat’s defense system, which may partially explain why bats act as potential reservoirs. Further research into the functions of nrEVEs could reveal novel antiviral systems and inspire novel antiviral approaches. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=EVE kn-keyword=EVE en-keyword=nrEVE kn-keyword=nrEVE en-keyword=bornavirus kn-keyword=bornavirus en-keyword=filovirus kn-keyword=filovirus en-keyword=antiviral kn-keyword=antiviral END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=489 end-page=502 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Current Insights into Mesenchymal Signatures in Glioblastoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults. Despite decades of research, the prognosis for GBM patients is still disappointing. One major reason for the intense therapeutic resistance of GBM is inter- and intra-tumor heterogeneity. GBM-intrinsic transcriptional profiling has suggested the presence of at least three subtypes of GBM: the proneural, classic, and mesenchymal subtypes. The mesenchymal subtype is the most aggressive, and patients with the mesenchymal subtype of primary and recurrent tumors tend to have a worse prognosis compared with patients with the other subtypes. Furthermore, GBM can shift from other subtypes to the mesenchymal subtype over the course of disease progression or recurrence. This phenotypic transition is driven by diverse tumor-intrinsic molecular mechanisms or microenvironmental factors. Thus, better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new therapeutic strategies. In this review, we provide a comprehensive overview of the current understanding of the elements involved in the mesenchymal transition of GBM and discuss future perspectives. en-copyright= kn-copyright= en-aut-name=MatsumotoYuji en-aut-sei=Matsumoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchikawaTomotsugu en-aut-sei=Ichikawa en-aut-mei=Tomotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Hamamatsu University Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=glioma kn-keyword=glioma en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=mesenchymal subtype kn-keyword=mesenchymal subtype en-keyword=mesenchymal transition kn-keyword=mesenchymal transition en-keyword=heterogeneity kn-keyword=heterogeneity END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue= article-no= start-page=3 end-page=13 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors, including anti-programmed cell death 1 (PD-1) antibody, provide improved clinical outcome in certain cancers. However, pancreatic ductal adeno-carcinoma (PDAC) is refractory to PD-1 blockade therapy due to poor immune response. Oncolytic virotherapy is a novel approach for inducing immunogenic cell death (ICD). We demonstrated the therapeutic potential of p53-expressing telo-merase-specific oncolytic adenovirus OBP-702 to induce ICD and anti-tumor immune responses in human PDAC cells with different p53 status (Capan-2, PK-59, PK-45H, Capan-1, MIA PaCa-2, BxPC-3) and murine PDAC cells (PAN02). OBP-702 significantly enhanced ICD with secretion of extracel-lular adenosine triphosphate and high-mobility group box pro-tein B1 by inducing p53-mediated apoptosis and autophagy. OBP-702 significantly promoted the tumor infiltration of CD8+ T cells and the anti-tumor efficacy of PD-1 blockade in a subcutaneous PAN02 syngeneic tumor model. Our results suggest that oncolytic adenovirus-mediated p53 overexpres-sion augments ICD and the efficacy of PD-1 blockade therapy against cold PDAC tumors. Further in vivo experiments would be warranted to evaluate the survival benefit of tumor-bearing mice in combination therapy with OBP-702 and PD-1 blockade. en-copyright= kn-copyright= en-aut-name=ArakiHiroyuki en-aut-sei=Araki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three-Layered Complex Interactions among Capsidless (+)ssRNA Yadokariviruses, dsRNA Viruses, and a Fungus en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family Yadokariviridae) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, Rosellinia necatrix. YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi. However, it remains obscure whether such viruses generally show the YkV1-like lifestyle. Here, we identified partner viruses for three distinct yadokariviruses, YkV3, YkV4a, and YkV4b, isolated from R. necatrix that were coinfected with multiple dsRNA viruses phylogenetically distantly related to YnV1. We first established transformants of R. necatrix carrying single yadokarivirus cDNAs and fused them with infectants by single partner candidate dsRNA viruses. Consequently, YkV3 and YkV4s replicated only in the presence of RnMBV3 (family Megabirnaviridae) and RnMTV1 (proposed family "Megatotiviridae"), respectively. The partners were mutually interchangeable between the two YkV4 strains and three RnMTV1 strains but not between other combinations involving YkV1 or YkV3. In contrast to YkV1 enhancing YnV1 accumulation, YkV4s reduced RnMTV1 accumulation to different degrees according to strains. Interestingly, YkV4 rescued the host R. necatrix from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3) or host fungus. Overall, we revealed that while yadokariviruses generally require partner dsRNA viruses for replication, each yadokarivirus partners with a different dsRNA virus species in the three diverse families and shows a distinct symbiotic relation in a fungus. IMPORTANCE A capsidless (+)ssRNA virus YkV1 (family Yadokariviridae) highjacks the capsid of an unrelated dsRNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, while YkV1 trans-enhances YnV1 replication. Herein, we identified the dsRNA virus partners of three yadokariviruses (YkV3, YkV4a, and YkV4b) with genome organization different from YkV1 as being different from YnV1 at the suborder level. Their partners were mutually interchangeable between the two YkV4 strains and three strains of the partner virus RnMTV1 (proposed family "Megatotiviridae") but not between other combinations involving YkV1 or YkV3. Unlike YkV1, YkV4s reduced RnMTV1 accumulation and rescued the host fungus from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3, family Megabirnaviridae) or host fungus. These revealed that while each yadokarivirus has a species-specific partnership with a dsRNA virus, yadokariviruses collectively partner extremely diverse dsRNA viruses and show three-layered complex mutualistic/antagonistic interactions in a fungus. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Lopez-HerreraCarlos Jose en-aut-sei=Lopez-Herrera en-aut-mei=Carlos Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Instituto de Agricultura Sostenible C.S.I.C., Alameda del Obispo kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=virus-virus interaction kn-keyword=virus-virus interaction en-keyword=RNA viruses kn-keyword=RNA viruses en-keyword=capsidless kn-keyword=capsidless en-keyword=virus macroevolution kn-keyword=virus macroevolution en-keyword=fungal viruses kn-keyword=fungal viruses en-keyword=plant-pathogenic fungi kn-keyword=plant-pathogenic fungi en-keyword=mutualism and parasitism kn-keyword=mutualism and parasitism en-keyword=multilayered interaction kn-keyword=multilayered interaction END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=8 article-no= start-page=104723 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune response to SARS-CoV-2 in severe disease and long COVID-19 en-subtitle= kn-subtitle= en-abstract= kn-abstract=COVID-19 is mild to moderate in otherwise healthy individuals but may nonetheless cause life-threatening disease and/or a wide range of persistent symptoms. The general determinant of disease severity is age mainly because the immune response declines in aging patients. Here, we developed a mathematical model of the immune response to SARS-CoV-2 and revealed that typical age-related risk factors such as only a several 10% decrease in innate immune cell activity and inhibition of type-I interferon signaling by autoantibodies drastil ally increased the viral load. It was reported that the numbers of certain dendritic cell subsets remained less than half those in healthy donors even seven months after infection. Hence, the inflammatory response was ongoing. Our model predicted the persistent DC reduction and showed that certain patients with severe and even mild symptoms could not effectively eliminate the virus and could potentially develop long COVID. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=11 article-no= start-page=11047 end-page=11070 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Global stability of an age-structured infection model in vivo with two compartments and two routes en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, for an infection age model with two routes, virus-to-cell and cell-to-cell, and with two compartments, we show that the basic reproduction ratio R-0 gives the threshold of the stability. If R-0 > 1, the interior equilibrium is unique and globally stable, and if R-0 <= 1, the disease free equilibrium is globally stable. Some stability results are obtained in previous research, but, for example, a complete proof of the global stability of the disease equilibrium was not shown. We give the proof for all the cases, and show that we can use a type reproduction number for this model. en-copyright= kn-copyright= en-aut-name=KajiwaraTsuyoshi en-aut-sei=Kajiwara en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiToru en-aut-sei=Sasaki en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniYoji en-aut-sei=Otani en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=School of Engineering, Okayama University kn-affil= en-keyword=global stability kn-keyword=global stability en-keyword=two routes of infection kn-keyword=two routes of infection en-keyword=two compartments kn-keyword=two compartments en-keyword=type reproduction number kn-keyword=type reproduction number en-keyword=lyapunov functional kn-keyword=lyapunov functional END start-ver=1.4 cd-journal=joma no-vol=319 cd-vols= no-issue= article-no= start-page=198881 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phylogenic analysis of new viral cluster of large phages with unusual DNA genomes containing uracil in place of thymine in gene-sharing network, using phages S6 and PBS1 and relevant uncultured phages derived from sewage metagenomics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bacteriophages (phages) are the most diverse and abundant life-form on Earth. Jumbophages are phages with double-stranded DNA genomes longer than 200 kbp. Among these, some jumbophages with uracil in place of thymine as a nucleic acid base, which we have tentatively termed "dU jumbophages" in this study, have been reported. Because the dU jumbophages are considered to be a living fossil from the RNA world, the evolutionary traits of dU jumbophages are of interest. In this study, we examined the phylogeny of dU jumbophages. First, tBLASTx analysis of newly sequenced dU jumbophages such as Bacillus phage PBS1 and previously isolated Staphylococcus phage S6 showed similarity to the other dU jumbophages. Second, we detected the two partial genome sequences of uncultured phages possibly relevant to dU jumbophages, scaffold_002 and scaffold_007, from wastewater metagenomics. Third, according to the gene-sharing network analysis, the dU jumbophages, including phages PBS1 and S6, and uncultured phage scaffold_002 formed a cluster, which suggested a new viral subfamily/family. Finally, analyses of the phylogenetic relationship with other phages showed that the dU jumbophage cluster, which had two clades of phages infecting Gram-negative and Gram-positive bacteria, diverged from the single ancestral phage. These findings together with previous reports may imply that dU jumbophages evolved from the same origin before divergence of Gram-negative and Gram-positive bacteria. en-copyright= kn-copyright= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoShin-ichiro en-aut-sei=Kato en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekiMao en-aut-sei=Kaneki en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Institute of Molecular Genetics, Kochi University kn-affil= affil-num=5 en-affil=Department of Microbiology, Kitasato University School of Medicine kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= en-keyword=Environmental virus kn-keyword=Environmental virus en-keyword=Jumbophage kn-keyword=Jumbophage en-keyword=Metagenomics kn-keyword=Metagenomics en-keyword=Evolution kn-keyword=Evolution en-keyword=Uncultured phage kn-keyword=Uncultured phage END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=1722 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles en-subtitle= kn-subtitle= en-abstract= kn-abstract=A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis showed that the virus has a two open reading frame (ORF) genome of 9.6 kbp with the RNA-directed RNA polymerase domain encoded by ORF2. The N-terminal sequencing and peptide mass fingerprinting showed an N-terminally processed or degraded product (150 kDa) of the 5'-proximal ORF1-encoded protein (1462 amino acids) to make up the CcFGV1 spherical particles of similar to 40 nm in diameter. Interestingly, a portion of CcFGV1 dsRNA co-fractionated with a host protein of 70 kDa. The purified CcFGV1 particles were used to transfect protoplasts of JS13VF as well as the standard strain of an experimental model filamentous fungal host Cryphonectria parasitica. CcFGV1 was confirmed to be associated with asymptomatic infection of both fungi. RNA silencing was shown to target the virus in C. parasitica, resulting in reduced CcFGV1 accumulation by comparing the CcFGV1 content between RNA silencing-competent and -deficient strains. These results indicate the transfectability of spherical particles of a fusagravirus associated with asymptomatic infection. en-copyright= kn-copyright= en-aut-name=DasSubha en-aut-sei=Das en-aut-mei=Subha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Cryphonectria carpinicola kn-keyword=Cryphonectria carpinicola en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=fusagravirus kn-keyword=fusagravirus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=spherical virion kn-keyword=spherical virion en-keyword=transfection kn-keyword=transfection END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=1517 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correlation between national surveillance and search engine query data on respiratory syncytial virus infections in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The respiratory syncytial virus (RSV) disease burden is significant, especially in infants and children with an underlying disease. Prophylaxis with palivizumab is recommended for these high-risk groups. Early recognition of a RSV epidemic is important for timely administration of palivizumab. We herein aimed to assess the correlation between national surveillance and Google Trends data pertaining to RSV infections in Japan. Methods The present, retrospective survey was performed between January 1, 2018 and November 14, 2021 and evaluated the correlation between national surveillance data and Google Trends data. Joinpoint regression was used to identify the points at which changes in trends occurred. Results A strong correlation was observed every study year (2018 [r = 0.87, p < 0.01], 2019 [r = 0.83, p < 0.01], 2020 [r = 0.83, p < 0.01], and 2021 [r = 0.96, p < 0.01]). The change-points in the Google Trends data indicating the start of the RSV epidemic were observed earlier than by sentinel surveillance in 2018 and 2021 and simultaneously with sentinel surveillance in 2019. No epidemic surge was observed in either the Google Trends or the surveillance data from 2020. Conclusions Our data suggested that Google Trends has the potential to enable the early identification of RSV epidemics. In countries without a national surveillance system, Google Trends may serve as an alternative early warning system. en-copyright= kn-copyright= en-aut-name=UdaKazuhiro en-aut-sei=Uda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pediatrics Acute Diseases, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=RSV kn-keyword=RSV en-keyword=Surveillance kn-keyword=Surveillance en-keyword=Google Trends kn-keyword=Google Trends en-keyword=Epidemiology kn-keyword=Epidemiology END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=7 article-no= start-page=1348 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220720 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effectiveness of Pre-Operative Screening Tests in Determining Viral Infections in Patients Undergoing Oral and Maxillofacial Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=We analyzed the rate of patients with hepatitis B virus (HBV), hepatitis C virus (HCV), or human immunodeficiency virus (HIV) infection diagnosed by pre-operative screening and estimated its cost. We retrospectively analyzed patients who underwent elective surgery at our maxillofacial surgery department between April 2014 and March 2022. We compared the number of patients with each infection identified by pre-operative screening and a pre-operative questionnaire. We also compared the prevalence of infections with varying age, sex, and oral diseases, and calculated the cost of screening per positive result. The prevalence of HBV, HCV, and HIV was 0.39% (62/15,842), 0.76% (153/15,839), and 0.07% (10/12,745), respectively. The self-reported rates were as follows: HBV, 63.4% (26/41); HCV, 50.4% (62/123); HIV, 87.5% (7/8). Differences in sex were statistically significant for all infectious diseases; age significantly affected HBV and HCV rates. There was no association between the odds ratio of oral disease and viral infections. The cost per positive result was $1873.8, $905.8, and $11,895.3 for HBV, HCV, and HIV, respectively. Although self-assessment using questionnaires is partially effective, it has inadequate screening accuracy. Formulating an auxiliary diagnosis of infectious diseases with oral diseases was challenging. The cost determined was useful for hepatitis, but not HIV. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SukegawaYuka en-aut-sei=Sukegawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaKazuaki en-aut-sei=Hasegawa en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraTomoya en-aut-sei=Nakamura en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimuraAi en-aut-sei=Fujimura en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujisawaAyaka en-aut-sei=Fujisawa en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MukainakaYumika en-aut-sei=Mukainaka en-aut-mei=Yumika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FurukiYoshihiko en-aut-sei=Furuki en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil= Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil= Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil= Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= en-keyword=hepatitis B kn-keyword=hepatitis B en-keyword=hepatitis C kn-keyword=hepatitis C en-keyword=human immunodeficiency virus kn-keyword=human immunodeficiency virus en-keyword=pre-operative examination kn-keyword=pre-operative examination END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=913619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=phytopathogenic fungi kn-keyword=phytopathogenic fungi en-keyword=mycovirome kn-keyword=mycovirome en-keyword=next-generation sequencing kn-keyword=next-generation sequencing en-keyword=Diplodia seriata kn-keyword=Diplodia seriata en-keyword=Botryosphaeriaceae kn-keyword=Botryosphaeriaceae en-keyword=ssRNA virus kn-keyword=ssRNA virus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=virus kn-keyword=virus en-keyword=virus interaction kn-keyword=virus interaction END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=247 end-page=253 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of Immunity against Measles, Mumps, Rubella, and Varicella Zoster in Adult Recipients of Allogeneic Hematopoietic Stem Cell Transplantation: A Single-Center Experience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vaccine-preventable disease (VPD) infections are more severe in immunocompromised hosts. Vaccination against measles, mumps, rubella, and varicella zoster (VZV) (MMRV) is therefore recommended for hematopoietic stem cell transplantation (HCT) recipients. However, studies on adult HCT recipients with VPD infections are limited. At our institution, we have systematically conducted serological MMRV tests as a part of check-up examinations during long-term follow-up (LTFU) after HCT since 2015. This retrospective study aimed to evaluate changes in the serostatus between before and 2 years after allogeneic HCT. Among 161 patients, the pre-transplant seropositivity was 82.7% for measles, 86.8% for mumps, 84.2% for rubella, and 94.3% for VZV. Among 56 patients who underwent LTFU including serological MMRV tests at 2 years after HCT, the percentages maintaining seroprotective antibody levels for measles, mumps, rubella and VZV were 71.5% (40/56), 51.8% (29/56), 48.2% (27/56), and 60.7% (34/56), respectively. Vaccination was recommended for 22 patients, and 12 were vaccinated. Among the 12 vaccinated patients, rates of seroconversion were examined in 2-6 patients for each of the four viruses. They were 100% (3/3) for measles, 33.3% (1/3) for mumps, 50% (3/6) for rubella, and 0% (0/2) for VZV. Further studies are warranted to clarify the effect of vaccination in adult HCT recipients. en-copyright= kn-copyright= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamoiChihiro en-aut-sei=Kamoi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=vaccine-preventable disease kn-keyword=vaccine-preventable disease en-keyword=vaccination kn-keyword=vaccination en-keyword=allogeneic hematopoietic stem cell transplantation kn-keyword=allogeneic hematopoietic stem cell transplantation en-keyword=adult kn-keyword=adult END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=抗HMGB1モノクローナル抗体はA型インフルエンザウイルスに感染したヒト肺血管内皮細胞の透過性亢進及びサイトカイン産生を抑制した kn-title=Anti-high mobility group box 1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NanbaTakahiro en-aut-sei=Nanba en-aut-mei=Takahiro kn-aut-name=難波貴弘 kn-aut-sei=難波 kn-aut-mei=貴弘 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=8 article-no= start-page=4714 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Misconceptions and Rumors about Ebola Virus Disease in Sub-Saharan Africa: A Systematic Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=We sought to summarize knowledge, misconceptions, beliefs, and practices about Ebola that might impede the control of Ebola outbreaks in Africa. We searched Medline, EMBASE, CINAHL, and Google Scholar (through May 2019) for publications reporting on knowledge, attitudes, and practices (KAP) related to Ebola in Africa. In total, 14 of 433 articles were included. Knowledge was evaluated in all 14 articles, and they all highlighted that there are misconceptions and risk behaviors during an Ebola outbreak. Some communities believed that Ebola spreads through the air, mosquito bites, malice from foreign doctors, witchcraft, and houseflies. Because patients believe that Ebola was caused by witchcraft, they sought help from traditional healers. Some people believed that Ebola could be prevented by bathing with salt or hot water. Burial practices where people touch Ebola-infected corpses were common, especially among Muslims. Discriminatory attitudes towards Ebola survivors or their families were also prevalent. Some Ebola survivors were not accepted back in their communities; the possibility of being ostracized from their neighborhoods was high and Ebola survivors had to lead a difficult social life. Most communities affected by Ebola need more comprehensive knowledge on Ebola. Efforts are needed to address misconceptions and risk behaviors surrounding Ebola for future outbreak preparedness in Africa. en-copyright= kn-copyright= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NtontoloNgangu Patrick en-aut-sei=Ntontolo en-aut-mei=Ngangu Patrick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NgatuNlandu Roger en-aut-sei=Ngatu en-aut-mei=Nlandu Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KhatiwadaJanuka en-aut-sei=Khatiwada en-aut-mei=Januka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaKoji en-aut-sei=Wada en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkedaShunya en-aut-sei=Ikeda en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Family Medicine and Primary Health, Protestant University of Congo kn-affil= affil-num=3 en-affil=Department of Public Health, Kagawa University Faculty of Medicine kn-affil= affil-num=4 en-affil=Social Work Institute kn-affil= affil-num=5 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=6 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=9 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ebola kn-keyword=Ebola en-keyword=knowledge kn-keyword=knowledge en-keyword=attitudes kn-keyword=attitudes en-keyword=practices kn-keyword=practices en-keyword=beliefs kn-keyword=beliefs en-keyword=misperceptions kn-keyword=misperceptions en-keyword=rumors kn-keyword=rumors en-keyword=sub-Saharan Africa kn-keyword=sub-Saharan Africa END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue= article-no= start-page=57 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202246 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implications of immune cells in oncolytic herpes simplex virotherapy for glioma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact?, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy. en-copyright= kn-copyright= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YooJi Young en-aut-sei=Yoo en-aut-mei=Ji Young kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuToshihiko en-aut-sei=Shimizu en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaurBalveen en-aut-sei=Kaur en-aut-mei=Balveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Matsuyama Shimin Hospital kn-affil= affil-num=4 en-affil=Department of Neurosurgery, Hamamatsu University School of Medicine kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston kn-affil= en-keyword=Oncolytic virus kn-keyword=Oncolytic virus en-keyword=Immune cells kn-keyword=Immune cells en-keyword=Glioma kn-keyword=Glioma END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=2 article-no= start-page=203 end-page=215 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overexpression of Adenovirus E1A Reverses Transforming Growth Factor-β-induced Epithelial-mesenchymal Transition in Human Esophageal Cancer Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The epithelial-mesenchymal transition (EMT), a normal biological process by which epithelial cells acquire a mesenchymal phenotype, is associated with migration, metastasis, and chemoresistance in cancer cells, and with poor prognosis in patients with esophageal cancer. However, therapeutic strategies to inhibit EMT in tumor environments remain elusive. Here, we show the therapeutic potential of telomerase-specific replication- competent oncolytic adenovirus OBP-301 in human esophageal cancer TE4 and TE6 cells with an EMT phenotype. Transforming growth factor-β (TGF-β) administration induced the EMT phenotype with spindleshaped morphology, upregulation of mesenchymal markers and EMT transcription factors, migration, and chemoresistance in TE4 and TE6 cells. OBP-301 significantly inhibited the EMT phenotype via E1 accumulation. EMT cancer cells were susceptible to OBP-301 via massive autophagy induction. OBP-301 suppressed tumor growth and lymph node metastasis of TE4 cells co-inoculated with TGF-β-secreting fibroblasts. Our results suggest that OBP-301 inhibits the TGF-β-induced EMT phenotype in human esophageal cancer cells. OBP-301-mediated E1A overexpression is a promising antitumor strategy to inhibit EMT-mediated esophageal cancer progression. en-copyright= kn-copyright= en-aut-name=MasudaTomoya en-aut-sei=Masuda en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoYuuri en-aut-sei=Hashimoto en-aut-mei=Yuuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IedaTakeshi en-aut-sei=Ieda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Oncolys BioPharma Inc. kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=EMT kn-keyword=EMT en-keyword=TGF-β kn-keyword=TGF-β en-keyword=oncolytic adenovirus kn-keyword=oncolytic adenovirus en-keyword=E1A kn-keyword=E1A END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=7 article-no= start-page=e28872 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Silica-associated systemic lupus erythematosus with lupus nephritis and lupus pneumonitis A case report and a systematic review of the literature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Several epidemiological studies have shown that silica exposure triggers the onset of systemic lupus erythematosus (SLE); however, the clinical characteristics of silica-associated SLE have not been well studied. Patient concerns A 67-year-old man with silicosis visited a primary hospital because of a fever and cough. His respiratory condition worsened, regardless of antibiotic medication, and he was referred to our hospital. Diagnosis The patient showed leukopenia, lymphopenia, serum creatinine elevation with proteinuria and hematuria, decreased serum C3 level, and was positive for anti-double stranded DNA antibody, anti-nuclear antibody, and direct Coombs test. He was diagnosed with SLE. Renal biopsy was performed, and the patient was diagnosed with lupus nephritis (class IV-G(A/C) + V defined by the International Society of Nephrology/Renal Pathology Society classification). Computed tomography revealed acute interstitial pneumonitis, bronchoalveolar lavage fluid showed elevation of the lymphocyte fraction, and he was diagnosed with lupus pneumonitis. Interventions Prednisolone (50 mg/day) with intravenous cyclophosphamide (500 mg/body) were initiated. Outcomes The patient showed a favorable response to these therapies. He was discharged from our hospital and received outpatient care with prednisolone slowly tapered off. He had cytomegalovirus and herpes zoster virus infections during treatment, which healed with antiviral therapy. Review: We searched for the literature on sSLE, and selected 11 case reports and 2 population-based studies. The prevalence of SLE manifestations in sSLE patients were comparative to that of general SLE, particularly that of elderly-onset SLE. Our renal biopsy report and previous reports indicate that lupus nephritis of sSLE patients show as various histological patterns as those of general SLE patients. Among the twenty sSLE patients reported in the case articles, three patients developed lupus pneumonitis and two of them died of it. Moreover, two patients died of bacterial pneumonia, one developed aspergillus abscesses, one got pulmonary tuberculosis, and one developed lung cancer. Conclusion Close attention is needed, particularly for respiratory system events and infectious diseases, when treating patients with silica-associated SLE using immunosuppressive therapies. en-copyright= kn-copyright= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuchimotoYasuko en-aut-sei=Fuchimoto en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MifuneTomoyo en-aut-sei=Mifune en-aut-mei=Tomoyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KinomuraMasaru en-aut-sei=Kinomura en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoYosuke en-aut-sei=Miyamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaSae en-aut-sei=Wada en-aut-mei=Sae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KoyanagiTaisaku en-aut-sei=Koyanagi en-aut-mei=Taisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SugiyamaHitoshi en-aut-sei=Sugiyama en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KishimotoTakumi en-aut-sei=Kishimoto en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=15 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lupus nephritis kn-keyword=lupus nephritis en-keyword=lupus pneumonitis kn-keyword=lupus pneumonitis en-keyword=silicosis kn-keyword=silicosis en-keyword=SLE kn-keyword=SLE END start-ver=1.4 cd-journal=joma no-vol=307 cd-vols= no-issue=2 article-no= start-page=198606 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe en-subtitle= kn-subtitle= en-abstract= kn-abstract=Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5′-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CornejoCarolina en-aut-sei=Cornejo en-aut-mei=Carolina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RiglingDaniel en-aut-sei=Rigling en-aut-mei=Daniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions kn-affil= affil-num=6 en-affil=Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Splipalmivirus kn-keyword=Splipalmivirus en-keyword=Capsidless kn-keyword=Capsidless en-keyword=RNA virus kn-keyword=RNA virus en-keyword=Cryphonectria naterciae kn-keyword=Cryphonectria naterciae en-keyword=Narnavirus kn-keyword=Narnavirus en-keyword=Fungal virus kn-keyword=Fungal virus en-keyword=Mycovirus kn-keyword=Mycovirus END start-ver=1.4 cd-journal=joma no-vol=167 cd-vols= no-issue=4 article-no= start-page=1201 end-page=1204 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202234 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A novel deltapartitivirus from red clover en-subtitle= kn-subtitle= en-abstract= kn-abstract=The family Partitiviridae has five genera, among which is the genus Deltapartitivirus. We report here the complete genome sequence of a deltapartitivirus from red clover, termed “red clover cryptic virus 3” (RCCV3). RCCV3 has a bisegmented double-stranded (ds) RNA genome. dsRNA1 and dsRNA2 are 1580 and 1589 nucleotides (nt) in length and are predicted to encode an RNA-directed RNA polymerase (RdRP) and a capsid protein (CP), respectively. The RCCV3 RdRP shares the highest sequence identity with the RdRP of a previously reported deltapartitivirus, Medicago sativa deltapartitivirus 1 (MsDPV1) (76.5%), while the RCCV3 CP shows 50% sequence identity to the CP of MsDPV1. RdRP- and CP-based phylogenetic trees place RCCV3 into a clade of deltapartitiviruses. The sequence and phylogenetic analyses clearly indicate that RCCV3 represents a new species in the genus Deltapartitivirus. RCCV3 was detectable in all three tested cultivars of red clover. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue= article-no= start-page=15 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Big data in the sex chromosomes of Silene plants and a fungus acting as a plant sex chromosome kn-title=Silene 属植物が保持する性染色体ビッグデータと性操作する菌 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Silene latifolia (Caryophyllaceae) is a dioecious plant that has long been used for study on sex chromosomes in plants. The advantage but also disadvantage of S. latifolia as a model system is the size of the Y chromosome that contains an extremely large male-specific region (approx. > 500 Mb). This feature implies that the evolutionary history of sex chromo-somes remains in the S. latifolia Y chromosome, while the size makes analyses esoteric. Another advantage is that plants in the genus Silene show variation in reproductive systems; most are gynodioecy (females and hermaphrodites), which is thought of as an evolutionary status before establishment of dioecy (males and females), with a few hermaphrodites and dioecy, suggesting that the genus Silene may represent an epitome of the sex chromosome evolution. Microbotryum is a biotrophic fungi, whose infection causes masculinization of the female flower, as if the fungus acts as the Y chromo-some. Though the underlying molecular mechanisms remain unknown, recent high-throughput sequence technologies provide many candidate genes for sex determination in plants and sex conversion by the fungus. In this article, I review and introduce studies of the Y chromosome in S. latifolia plant, the evolution of sex chromosomes in the genus Silene, the masculinization of female flowers caused by a fungus infection, and a virus vector that can be used for genetic analysis of the key genes involved in these processes. en-copyright= kn-copyright= en-aut-name=FujitaNaoko en-aut-sei=Fujita en-aut-mei=Naoko kn-aut-name=藤田尚子 kn-aut-sei=藤田 kn-aut-mei=尚子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Course of Applied Plant Science, The Faculty of Agriculture, Okayama University kn-affil=岡山大学農学部 応用植物科学コース en-keyword=Silene latifolia kn-keyword=Silene latifolia en-keyword=Microbotryum lychnidis-dioicae kn-keyword=Microbotryum lychnidis-dioicae en-keyword=anther smut kn-keyword=anther smut en-keyword=sex chromosome kn-keyword=sex chromosome en-keyword=plant-microbe interaction kn-keyword=plant-microbe interaction END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=160 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nectin-2 Acts as a Viral Entry Mediated Molecule That Binds to Human Herpesvirus 6B Glycoprotein B en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host's organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujikuraDaisuke en-aut-sei=Fujikura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NambaHikaru en-aut-sei=Namba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Kitasato University kn-affil= affil-num=3 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=HHV-6B kn-keyword=HHV-6B en-keyword=nectin-2 kn-keyword=nectin-2 en-keyword=CD112 kn-keyword=CD112 en-keyword=CD134 kn-keyword=CD134 en-keyword=virus entry kn-keyword=virus entry en-keyword=glycoprotein B kn-keyword=glycoprotein B END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=26 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=HIV infection diagnosed from delayed wound healing after tonsillectomy : A case report kn-title=口蓋扁桃摘出術後の創傷治癒遅延を契機に判明した HIV 感染症の1例 en-subtitle= kn-subtitle= en-abstract=HIV (human immunodeficiency virus) lowers the immune capacity of the host and causes AIDS (acquired immunodeficiency syndrome) when it progresses. HIV infection is known to have a variety of symptoms, and it is often diagnosed based on the occurrence of various otorhinolaryngological conditions. We experienced a case in which an HIV infection was diagnosed based on delayed wound healing after tonsillectomy. The early initiation of treatment for HIV infection is known to be effective for controlling progression, so it is important to detect HIV infection as early as possible. Preoperative HIV screening tests may lead to the early detection of HIV, and such tests are also important to prevent delayed wound healing. In Japan, it remains a problem that preoperative HIV screening is sometimes not allowed under by the Japanese National health insurance system. kn-abstract=HIV(human immunodeficiency virus)は感染すると宿主の免疫能を低下させ、進行すると AIDS(acquired immunodeficiency syndrome)を引き起こす。HIV 感染症は多彩な症状を呈することが知られており、創傷治癒遅延もその一つである。今回われわれは口蓋扁桃摘出術後の創傷治癒遅延から HIV 感染症と判明した症例を経験した。HIV 感染症は早期の治療開始が予後改善のために推奨されており、早期発見が重要である。手術前 HIV スクリーニング検査は創傷治癒遅延を防ぐ意味でも重要と考えられるが、現行の保険制度上は認められない場合があり、保険適用範囲の拡大が望まれる。 en-copyright= kn-copyright= en-aut-name=KariyaAkifumi en-aut-sei=Kariya en-aut-mei=Akifumi kn-aut-name=假谷彰文 kn-aut-sei=假谷 kn-aut-mei=彰文 aut-affil-num=1 ORCID= en-aut-name=IshiharaHisashi en-aut-sei=Ishihara en-aut-mei=Hisashi kn-aut-name=石原久司 kn-aut-sei=石原 kn-aut-mei=久司 aut-affil-num=2 ORCID= en-aut-name=AkisadaNaoki en-aut-sei=Akisada en-aut-mei=Naoki kn-aut-name=秋定直樹 kn-aut-sei=秋定 kn-aut-mei=直樹 aut-affil-num=3 ORCID= en-aut-name=FujisawaIku en-aut-sei=Fujisawa en-aut-mei=Iku kn-aut-name=藤澤郁 kn-aut-sei=藤澤 kn-aut-mei=郁 aut-affil-num=4 ORCID= en-aut-name=FujiSayaka en-aut-sei=Fuji en-aut-mei=Sayaka kn-aut-name=藤さやか kn-aut-sei=藤 kn-aut-mei=さやか aut-affil-num=5 ORCID= en-aut-name=AkagiSeiko en-aut-sei=Akagi en-aut-mei=Seiko kn-aut-name=赤木成子 kn-aut-sei=赤木 kn-aut-mei=成子 aut-affil-num=6 ORCID= en-aut-name=TakeuchiAyako en-aut-sei=Takeuchi en-aut-mei=Ayako kn-aut-name=竹内彩子 kn-aut-sei=竹内 kn-aut-mei=彩子 aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=2 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=3 en-affil=Department of Head and Neck Surgery, Shikoku Cancer Center kn-affil=国立病院機構四国がんセンター頭頸科 affil-num=4 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学 affil-num=5 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=6 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=7 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 en-keyword=HIV(human immunodeficiency virus) kn-keyword=HIV(human immunodeficiency virus) en-keyword=創傷治癒遅延 kn-keyword=創傷治癒遅延 en-keyword=口蓋扁桃摘出術 kn-keyword=口蓋扁桃摘出術 en-keyword=手術合併症 kn-keyword=手術合併症 en-keyword=性感染症 kn-keyword=性感染症 END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=2 article-no= start-page=105 end-page=127 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plant viruses and viroids in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=An increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified?viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japan’s plant virus/viroid studies have contributed to advance virus/viroid taxonomy. en-copyright= kn-copyright= en-aut-name=FujiShin-ichi en-aut-sei=Fuji en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MochizukiTomofumi en-aut-sei=Mochizuki en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkudaMitsuru en-aut-sei=Okuda en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsudaShinya en-aut-sei=Tsuda en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KagiwadaSatoshi en-aut-sei=Kagiwada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekineKen-Taro en-aut-sei=Sekine en-aut-mei=Ken-Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgakiMasashi en-aut-sei=Ugaki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NatsuakiKeiko T. en-aut-sei=Natsuaki en-aut-mei=Keiko T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IsogaiMasamichi en-aut-sei=Isogai en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaokaTetsuo en-aut-sei=Maoka en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshitaMinoru en-aut-sei=Takeshita en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshikawaNobuyuki en-aut-sei=Yoshikawa en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiseKazuyuki en-aut-sei=Mise en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamajiYasuyuki en-aut-sei=Yamaji en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IwanamiToru en-aut-sei=Iwanami en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KobayashiKappei en-aut-sei=Kobayashi en-aut-mei=Kappei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HatayaTatsuji en-aut-sei=Hataya en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=SanoTeruo en-aut-sei=Sano en-aut-mei=Teruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Faculty of Bioresource Sciences, Akita Prefectural University kn-affil= affil-num=2 en-affil=Graduate School of Life and Environmental Sciences, Osaka Prefecture University kn-affil= affil-num=3 en-affil=Office of the President, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry kn-affil= affil-num=5 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University kn-affil= affil-num=6 en-affil=Faculty of Agriculture, University of the Ryukyus kn-affil= affil-num=7 en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Tokyo University of Agriculture kn-affil= affil-num=9 en-affil=Faculty of Agriculture, Iwate University kn-affil= affil-num=10 en-affil=Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=11 en-affil=Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazak kn-affil= affil-num=12 en-affil=Agri-Innovation Center, Iwate University kn-affil= affil-num=13 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=14 en-affil=3 Department of Research Promotion, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=15 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=16 en-affil=Division of Core Technology for Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=17 en-affil=Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=18 en-affil=Faculty of Agriculture, Tokyo University of Agriculture kn-affil= affil-num=19 en-affil=Department of Biological Resource Science, Faculty of Agriculture, Saga University kn-affil= affil-num=20 en-affil=Faculty of Agriculture, Ehime University kn-affil= affil-num=21 en-affil=Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=22 en-affil=Hirosaki University kn-affil= affil-num=23 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=23 article-no= start-page=12659 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multifaceted Analysis of IL-23A-and/or EBI3-Including Cytokines Produced by Psoriatic Keratinocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Interleukin (IL) 23 (p19/p40) plays a critical role in the pathogenesis of psoriasis and is upregulated in psoriasis skin lesions. In clinical practice, anti-IL-23Ap19 antibodies are highly effective against psoriasis. IL-39 (p19/ Epstein-Barr virus-induced (EBI) 3), a newly discovered cytokine in 2015, shares the p19 subunit with IL-23. Anti-IL-23Ap19 antibodies may bind to IL-39; also, the cytokine may contribute to the pathogenesis of psoriasis. To investigate IL23Ap19- and/or EBI3-including cytokines in psoriatic keratinocytes, we analyzed IL-23Ap19 and EBI3 expressions in psoriasis skin lesions, using immunohistochemistry and normal human epidermal keratinocytes (NHEKs) stimulated with inflammatory cytokines, using quantitative real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and liquid chromatography-electrospray tandem mass spectrometry (LC-Ms/Ms). Immunohistochemical analysis showed that IL-23Ap19 and EBI3 expressions were upregulated in the psoriasis skin lesions. In vitro, these expressions were synergistically induced by the triple combination of tumor necrosis factor (TNF)-alpha, IL-17A, and interferon (IFN)-gamma, and suppressed by dexamethasone, vitamin D3, and acitretin. In ELISA and LC-Ms/Ms analyses, keratinocyte-derived IL-23Ap19 and EBI3, but not heterodimeric forms, were detected with humanized anti-IL-23Ap19 monoclonal antibodies, tildrakizumab, and anti-EBI3 antibodies, respectively. Psoriatic keratinocytes may express IL-23Ap19 and EBI3 proteins in a monomer or homopolymer, such as homodimer or homotrimer. en-copyright= kn-copyright= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TangNina en-aut-sei=Tang en-aut-mei=Nina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrakamiHitoshi en-aut-sei=Urakami en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajitaAi en-aut-sei=Kajita en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobashiMina en-aut-sei=Kobashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomuraHayato en-aut-sei=Nomura en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakuraMinori en-aut-sei=Sasakura en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugiharaSatoru en-aut-sei=Sugihara en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OuchidaMamoru en-aut-sei=Ouchida en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=12 en-affil=Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=13 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= en-keyword=psoriasis vulgaris kn-keyword=psoriasis vulgaris en-keyword=interleukin (IL) 23 kn-keyword=interleukin (IL) 23 en-keyword=IL-39 kn-keyword=IL-39 en-keyword=p19 kn-keyword=p19 en-keyword=Epstein-Barr virus-induced (EBI) 3 kn-keyword=Epstein-Barr virus-induced (EBI) 3 en-keyword=tildrakizumab kn-keyword=tildrakizumab END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=寄生虫感染あるいはウイルスワクチン投与条件下におけるLactobacillus acidophilus L-55株摂取ニワトリの腸管の状態に関する研究 kn-title=Study on the intestinal conditions of chicken orally administrated with Lactobacillus acidophilus strain L-55 under the parasite infection or virus vaccination en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=PHAM HOANG SON HUNG en-aut-sei=PHAM HOANG SON HUNG en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=17 article-no= start-page=e00467-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Proof of Concept of the Yadokari Nature: a Capsidless Replicase-Encoding but Replication-Dependent Positive-Sense Single-Stranded RNA Virus Hosted by an Unrelated Double-Stranded RNA Virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. en-copyright= kn-copyright= en-aut-name=DasSubha en-aut-sei=Das en-aut-mei=Subha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AlamMd Mahfuz en-aut-sei=Alam en-aut-mei=Md Mahfuz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=3 article-no= start-page=24 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lymphoepithelial Carcinoma in the Lateral Tongue: The Case Report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lymphoepithelial carcinoma (LEC) of the tongue is a rare subtype of squamous cell carcinoma. Histologically, it is an undifferentiated carcinoma with rich lymphocyte and plasma cell infiltration. The most common location for LEC in the head and neck is the salivary glands, and LEC of the oral cavity is extremely rare. The second case report of LEC in the lateral tongue is presented. In addition, a review of the literature was performed, and the relationship between LEC and Epstein-Barr virus infection was considered. en-copyright= kn-copyright= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MarunakaHidenori en-aut-sei=Marunaka en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TojiTomohiro en-aut-sei=Toji en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Otolaryngology Head and Neck Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Lymphoepithelial carcinoma kn-keyword=Lymphoepithelial carcinoma en-keyword=oral cavity kn-keyword=oral cavity en-keyword=lateral tongue kn-keyword=lateral tongue END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue=6 article-no= start-page=415 end-page=417 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification and characterization of host factors involved in plant RNA virus replication en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=715545 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat en-subtitle= kn-subtitle= en-abstract= kn-abstract=Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaNaoto en-aut-sei=Yoshida en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=College of Plant Health and Medicine, Qingdao Agricultural University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Betaflexiviridae kn-keyword=Betaflexiviridae en-keyword=quinvirus kn-keyword=quinvirus en-keyword=bymovirus kn-keyword=bymovirus en-keyword=yellow mosaic disease kn-keyword=yellow mosaic disease en-keyword=wheat kn-keyword=wheat en-keyword=virome kn-keyword=virome en-keyword=soil borne kn-keyword=soil borne en-keyword=variants kn-keyword=variants END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=487 end-page=493 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Knowledge, Attitude and Practice of Sudanese Health Care Providers toward Ebola Virus Outbreak en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ebola virus disease (EVD) is a highly contagious and fatal disease in humans. Healthcare providers (HCPs) are often at the frontline of epidemics and can thus be in jeopardy of contracting EVD. Sudan is at a great risk of an EVD outbreak, as it borders countries that experienced EVD outbreaks. It is therefore imperative in Sudan to assess the HCPs’ awareness and knowledge, attitude, and practice (KAP) about EVD for its control and man-agement and for preparedness. A KAP survey was conducted among 387 HCPs (physicians, nurses and labora-tory technicians) in the three main tertiary hospitals in Khartoum, Sudan. The majority of the survey respon-dents (54.5%) were females, < 30 years old (76.3%), and single (77.4%). Most (94%) had heard about EVD, 62% from classical media. Only 14% had received education or training regarding EVD. About 40% reported being adherent to universal precautions and 72% were willing to deal with EVD patients under safety precau-tions. Only 10% knew of any available standard national guidelines for EVD. Nearly half of the HCPs (47%) rated the potential risk of an EVD outbreak in Sudan as high, and 52% rated health authorities’ effort against it as weak. These findings revealed the HCPs’ insufficient knowledge of EVD and the necessary universal precau-tions. This lack of knowledge would negatively affect the HCPs’ preparedness toward any potential EVD out-break. There is a dire need to train HCPs in Sudan on the management of EVD, including preventive and con-trol measures. en-copyright= kn-copyright= en-aut-name=KunnaEzzan en-aut-sei=Kunna en-aut-mei=Ezzan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoTaro en-aut-sei=Yamamoto en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NunduSabin en-aut-sei=Nundu en-aut-mei=Sabin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkintijeCalliope en-aut-sei=Akintije en-aut-mei=Calliope kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ElkhidirIsam en-aut-sei=Elkhidir en-aut-mei=Isam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University kn-affil= affil-num=2 en-affil=Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University kn-affil= affil-num=3 en-affil=Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University kn-affil= affil-num=4 en-affil=Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University kn-affil= affil-num=5 en-affil=Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum kn-affil= en-keyword=Ebola virus kn-keyword=Ebola virus en-keyword= Sudan kn-keyword= Sudan en-keyword= healthcare provider kn-keyword= healthcare provider en-keyword=knowledge kn-keyword=knowledge en-keyword=attitude and practice kn-keyword=attitude and practice END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021829 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-high mobility group box 1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective
High mobility group box-1 (HMGB1) has been reported to be involved in influenza A virus-induced acute respiratory distress syndrome (ARDS). We studied the efficacy of an anti-HMGB1 mAb using an in vitro model of TNF-α stimulation or influenza A virus infection in human pulmonary microvascular endothelial cells (HMVECs).

Methods
Vascular permeability of HMVECs was quantified using the Boyden chamber assay under tumor necrosis factor-α (TNF-α) stimulation or influenza A virus infection in the presence of anti-HMGB1 mAb or control mAb. The intracellular localization of HMGB1 was assessed by immunostaining. Extracellular cytokine concentrations and intracellular viral mRNA expression were quantified by the enzyme-linked immunosorbent assay and quantitative reverse transcription PCR, respectively.

Results
Vascular permeability was increased by TNF-α stimulation or influenza A infection; HMVECs became elongated and the intercellular gaps were extended. Anti-HMGB1 mAb suppressed both the increase in permeability and the cell morphology changes. Translocation of HMGB1 to the cytoplasm was observed in the non-infected cells. Although anti-HMGB1 mAb did not suppress viral replication, it did suppress cytokine production in HMVECs.

Conclusion
Anti-HMGB1 mAb might be an effective therapy for severe influenza ARDS. en-copyright= kn-copyright= en-aut-name=NambaTakahiro en-aut-sei=Namba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoYukie en-aut-sei=Saito en-aut-mei=Yukie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pediatrics, Aichi Medical University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Influenza kn-keyword=Influenza en-keyword=Acute respiratory distress syndrome kn-keyword=Acute respiratory distress syndrome en-keyword=High mobility group box 1 kn-keyword=High mobility group box 1 en-keyword=Human pulmonary microvascular endothelial cell kn-keyword=Human pulmonary microvascular endothelial cell en-keyword=Cytokine kn-keyword=Cytokine en-keyword=Tumor necrosis factor-α kn-keyword=Tumor necrosis factor-α END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=8 article-no= start-page=1375 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Study on Epstein-Barr Virus-Positive Mucocutaneous Ulcer and Methotrexate-Associated Lymphoproliferative Disorders Developed in the Oral Mucosa: A Case Series of 10 Patients and Literature Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methotrexate-associated lymphoproliferative disorder (MTX-LPD) is an iatrogenic immunodeficiency-associated lymphoproliferative disorder that occurs mainly with MTX use. This disorder has been associated with Epstein-Barr virus (EBV) infection. In 2017, the WHO newly defined the disease concept of EBV-positive mucocutaneous ulcer (EBV-MCU) as a good-prognosis EBV-related disease. Here, we report 10 cases of MTX-LPD or EBV-MCU in the oral mucosa. This retrospective, observational study was conducted with MTX-LPD or EBV-MCU in the oral mucosa patients who visited us during the nine year period from 2012 to 2021. We gathered the basic information, underlying disease, histopathological evaluation, treatment and prognosis for the subjects. All were being treated with MTX for rheumatoid arthritis. EBV infection was positive in all cases by immunohistochemistry. A complete or partial response was obtained in all cases with the withdrawal of MTX. Our results suggests that the most common risk factor for developing EBV-MCU is the use of immunosuppressive drugs. The most common site of onset is the oral mucosa, which may be attributed to the mode of EBV infection and the high incidence of chronic irritation of the oral mucosa. A small number of patients had been diagnosed with MTX-LPD, but we consider that these cases were EBV-MCU based on our study. en-copyright= kn-copyright= en-aut-name=ObataKyoichi en-aut-sei=Obata en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkuiTatsuo en-aut-sei=Okui en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UmemoriKoki en-aut-sei=Umemori en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RyumonShoji en-aut-sei=Ryumon en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YaoMayumi en-aut-sei=Yao en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshiokaNorie en-aut-sei=Yoshioka en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dentistry and Dental Surgery, Tsuyama Chuo Hospital kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=methotrexate kn-keyword=methotrexate en-keyword=lymphoproliferative disorders kn-keyword=lymphoproliferative disorders en-keyword=Epstein-Barr virus kn-keyword=Epstein-Barr virus en-keyword=mucocutaneous ulcer kn-keyword=mucocutaneous ulcer en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis END start-ver=1.4 cd-journal=joma no-vol=153 cd-vols= no-issue= article-no= start-page=98 end-page=108 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: OBP-301 (Telomelysin) is an attenuated type-5 adenovirus that contains the human telomerase reverse transcriptase promoter to regulate viral replication. OBP-301 sensitises human cancer cells to ionising radiation by inhibiting DNA repair, and radiation enhances coxsackievirus and adenovirus receptor-mediated OBP-301 infection on the contrary. We assessed OBP-301 with radiotherapy in oesophageal cancer patients unfit for standard chemoradiation treatments.

Methods: A phase I dose-escalation study of OBP-301 with radiotherapy was conducted in 13 histologically confirmed oesophageal cancer patients deemed unfit to undergo surgery or chemotherapy. Study treatment consisted of OBP-301 administration by intratumoural needle injection using a flexible endoscope on days 1, 18 and 32. Radiotherapy was administered concurrently over 6 weeks, beginning on day 4, to a total of 60 Gy.

Results: Of the 13 patients, 7, 3 and 3 patients were treated with 10(10), 10(11) and 10(12) virus particles, respectively. Study group comprised 10 males and 3 females, with a median age of 82 years (range, 53-91 years). All patients developed a transient, self-limited lymphopenia. Distribution studies revealed transient virus shedding in the plasma. Eight patients had local complete response (CR); all of them exhibited no pathologically viable malignant cells in biopsy specimens, and 3 patients had a partial response. The objective response rate was 91.7%. The clinical CR rate was 83.3% in stage I and 60.0% in stage II/III. Histopathological examination revealed massive infiltration of CD8 thorn cells and increased PD-L1 expression.

Conclusion: Multiple courses of endoscopic intratumoural OBP-301 injection with radiotherapy are feasible and provide clinical benefits in patients with oesophageal cancer unfit for standard treatments. (C) 2021 Elsevier Ltd. All rights reserved. en-copyright= kn-copyright= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoujimaTakeshi en-aut-sei=Koujima en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoTakuya en-aut-sei=Kato en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Telomerase kn-keyword=Telomerase en-keyword=adenovirus kn-keyword=adenovirus en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=immunotherapy kn-keyword=immunotherapy END start-ver=1.4 cd-journal=joma no-vol=166 cd-vols= no-issue= article-no= start-page=2711 end-page=2722 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021727 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A second capsidless hadakavirus strain with 10 positive-sense single-stranded RNA genomic segments from Fusarium nygamai en-subtitle= kn-subtitle= en-abstract= kn-abstract=A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=5 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=266 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genome sequence analysis of new plum pox virus isolates from Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective To find mutations that may have recently occurred in Plum pox virus (PPV), we collected six PPV-infected plum/peach trees from the western part of Japan and one from the eastern part. After sequencing the full-length PPV genomic RNAs, we compared the amino acid sequences with representative isolates of each PPV strain. Results All new isolates were found to belong to the PPV-D strain: the six isolates collected from western Japan were identified as the West-Japan strain while the one collected from eastern Japan as the East-Japan strain. Amino acid sequence analysis of these seven isolates suggested that the 1407th and 1529th amino acid residues are characteristic of the West-Japan and the East-Japan strains, respectively. Comparing them with the corresponding amino acid residues of the 47 non-Japanese PPV-D isolates revealed that these amino acid residues are undoubtedly unique. A further examination of the relevant amino acid residues of the other 210 PPV-D isolates collected in Japan generated a new hypothesis regarding the invasion route from overseas and the subsequent diffusion route within Japan: a PPV-D strain might have invaded the western part of Japan from overseas and spread throughout Japan. en-copyright= kn-copyright= en-aut-name=MoriTomoaki en-aut-sei=Mori en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WarnerChiaki en-aut-sei=Warner en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhnoSerika en-aut-sei=Ohno en-aut-mei=Serika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriKoichi en-aut-sei=Mori en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TobimatsuTakamasa en-aut-sei=Tobimatsu en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SeraTakashi en-aut-sei=Sera en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Plum pox virus kn-keyword=Plum pox virus en-keyword=Complete genome sequence kn-keyword=Complete genome sequence en-keyword=Phylogenetic analysis kn-keyword=Phylogenetic analysis en-keyword=Sequence alignment analysis kn-keyword=Sequence alignment analysis en-keyword=Genetic variation kn-keyword=Genetic variation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a method to rapidly assess resistance/susceptibility of Micro-Tom tomatoes to Tomato yellow leaf curl virus via agroinoculation of cotyledons en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Tomato yellow leaf curl virus (TYLCV) is one of the pathogens severely damaging tomato crops. Therefore, methods to treat or prevent TYLCV infection need to be developed. For this purpose, a method to conveniently and quickly assess infection of tomatoes by TYLCV is desired. In the present study, we established a quick method to evaluate TYLCV infection using cotyledons of Micro-Tom, a miniature tomato cultivar.
Results: First, we constructed a binary plasmid harboring 1.5 copies of the TYLCV genome and transformed Agrobacterium with the plasmid. By injecting agroinoculum from the resulting transformant into the branches of Micro-Tom, we confirmed the susceptibility of Micro-Tom to TYLCV. To shorten the evaluation process of TYLCV infection further, we agroinoculated cotyledons of Micro-Tom 10 days after sowing seeds. We consistently observed typical symptoms of TYLCV infection on true leaves 10 days after agroinoculation. Molecular analysis detected TYLCV progeny DNA in all leaves demonstrating symptoms 6 days after agroinoculation. Therefore, our new protocol enabled assessment of TYLCV infection within 20 days after sowing seeds. Thus, agroinoculation of Micro-Tom cotyledons will accelerate the process of screening TYLCV-resistant Micro-Toms and enable screening of larger numbers of plants more quickly, contributing to the development of TYLCV-resistant tomatoes. en-copyright= kn-copyright= en-aut-name=MoriTomoaki en-aut-sei=Mori en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakenakaKosuke en-aut-sei=Takenaka en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DomotoFumiya en-aut-sei=Domoto en-aut-mei=Fumiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AoyamaYasuhiro en-aut-sei=Aoyama en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SeraTakashi en-aut-sei=Sera en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=4 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Agrobacterium kn-keyword=Agrobacterium en-keyword=Agroinoculation kn-keyword=Agroinoculation en-keyword=Cotyledon kn-keyword=Cotyledon en-keyword=Micro-Tom kn-keyword=Micro-Tom en-keyword=Tomato yellow leaf curl virus kn-keyword=Tomato yellow leaf curl virus END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=3 article-no= start-page=131 end-page=143 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Hepatitis C virus (HCV) : Development of anti-HCV agents and anti-HCV therapy kn-title=C型肝炎ウイルス(HCV):抗 HCV 剤の開発と抗 HCV 療法 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name=加藤宣之 kn-aut-sei=加藤 kn-aut-mei=宣之 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍ウイルス学 en-keyword=インターフェロン kn-keyword=インターフェロン en-keyword=リバビリン kn-keyword=リバビリン en-keyword=HCVレプリコンシステム kn-keyword=HCVレプリコンシステム en-keyword=抗HCVアッセイシステム kn-keyword=抗HCVアッセイシステム en-keyword= DAA kn-keyword= DAA END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=213 end-page=218 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Dual-pathology Hepatocellular Carcinoma (HCC) and Cholangiolocellular Carcinoma (CoCC) after Eradication of Hepatitis C Virus (HCV) Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 75-year-old Japanese man visited our hospital for further examination of liver tumors. He had a history of successful hepatitis C virus (HCV) eradication and therapy for hepatocellular carcinoma (HCC) at another hospital. Magnetic resonance imaging (MRI) revealed two tumors in the liver. He underwent anterior inferior (S5) and posterior inferior (S6) subsegmentectomy of the liver. Microscopic examination found that one tumor was HCC while the other was cholangiolocellular carcinoma (CoCC). We experienced a rare case of liver cancer with two synchronous pathologies, HCC and CoCC. en-copyright= kn-copyright= en-aut-name=MiyashitaManabi en-aut-sei=Miyashita en-aut-mei=Manabi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaragaiYousuke en-aut-sei=Saragai en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujimotoTsuyoshi en-aut-sei=Fujimoto en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaShouichi en-aut-sei=Tanaka en-aut-mei=Shouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AokiHideki en-aut-sei=Aoki en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoYumiko en-aut-sei=Sato en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Hepatology, National Hospital Organaization of Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Gastroenterology, National Hospital Organaization of Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterology, National Hospital Organaization of Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Gastroenterology, National Hospital Organaization of Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Surgery, National Hospital Organaization of Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Pathology, National Hospital Organaization of Iwakuni Clinical Center kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=2 article-no= start-page=100 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)?likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1. en-copyright= kn-copyright= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HillmanBradley I. en-aut-sei=Hillman en-aut-mei=Bradley I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Plant Biology and Pathology, Rutgers University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=mycovirus kn-keyword=mycovirus en-keyword=reovirus kn-keyword=reovirus en-keyword=hypovirus kn-keyword=hypovirus en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=co-infection kn-keyword=co-infection en-keyword=RNA silencing kn-keyword=RNA silencing en-keyword=RNAi suppressor kn-keyword=RNAi suppressor en-keyword=chestnut blight fungus kn-keyword=chestnut blight fungus en-keyword=Dicer kn-keyword=Dicer END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=3 article-no= start-page=1053 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epstein-Barr Virus-Positive Mucocutaneous Ulcer: A Unique and Curious Disease Entity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epstein-Barr virus (EBV)-positive mucocutaneous ulcer (EBVMCU) was first described as a lymphoproliferative disorder in 2010. EBVMCU is a unifocal mucosal or cutaneous ulcer that often occurs after local trauma in patients with immunosuppression; the patients generally have a good prognosis. It is histologically characterized by proliferating EBV-positive atypical B cells accompanied by ulcers. On the basis of conventional pathologic criteria, EBVMCU may be misdiagnosed as EBV-positive diffuse large B-cell lymphoma or other lymphomas. However, its prognosis differs from that of EBV-associated lymphomas, in that patients with EBVMCU frequently show spontaneous regression or complete remission without chemotherapy. Therefore, EBVMCU is now recognized as a low-grade malignancy or a pseudo-malignant lesion. Avoiding unnecessary chemotherapy by distinguishing EBVMCU from other EBV-associated lymphomas will reduce the burden and unnecessary harm on patients. On the basis of these facts, EBVMCU was first described as a new clinicopathological entity by the World Health Organization in 2017. In this review, we discuss the clinicopathological characteristics of previously reported EBVMCU cases, while focusing on up-to-date clinical, pathological, and genetic aspects. en-copyright= kn-copyright= en-aut-name=IkedaTomoka en-aut-sei=Ikeda en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GionYuka en-aut-sei=Gion en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=EBV-positive mucocutaneous ulcer kn-keyword=EBV-positive mucocutaneous ulcer en-keyword=clinical features kn-keyword=clinical features en-keyword=pathological features kn-keyword=pathological features en-keyword=immunosuppression kn-keyword=immunosuppression END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=1 article-no= start-page=109 end-page=113 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Optimal Timing of Antiretroviral Therapy Initiation in HIV-Infected Patients with Cryptococcal Meningitis: A Multicenter Prospective Randomized Controlled Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=The optimal timing of antiretroviral therapy (ART) initiation in human immunodeficiency virus (HIV)-infected patients with cryptococcal meningitis (HIV/CM) is controversial. We designed a clinical trial to inves-tigate the optimal timing for ART initiation in HIV/CM patients. This will be a multicenter, prospective, and randomized clinical trial. Each enrolled patient will be randomized into either the early ART arm or the deferred ART arm. We will compare the mortality and incident rates of immune reconstitution inflammatory syndrome between the two arms. We hope to elucidate the optimal timing for ART initiation in HIV/CM patients. en-copyright= kn-copyright= en-aut-name=XuXiaolei en-aut-sei=Xu en-aut-mei=Xiaolei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LuYanqiu en-aut-sei=Lu en-aut-mei=Yanqiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HarypursatVijay en-aut-sei=Harypursat en-aut-mei=Vijay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunFeng en-aut-sei=Sun en-aut-mei=Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoTing en-aut-sei=Zhao en-aut-mei=Ting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZengYanming en-aut-sei=Zeng en-aut-mei=Yanming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HeXiaoqing en-aut-sei=He en-aut-mei=Xiaoqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChenYaokai en-aut-sei=Chen en-aut-mei=Yaokai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=2 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=3 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=4 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=5 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=6 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=7 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= affil-num=8 en-affil=Division of Infectious Diseases, Chongqing Public Health Medical Center kn-affil= en-keyword=human immunodeficiency virus kn-keyword=human immunodeficiency virus en-keyword=meningitis kn-keyword=meningitis en-keyword=cryptococcal kn-keyword=cryptococcal en-keyword=antiretroviral therapy kn-keyword=antiretroviral therapy END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=10 article-no= start-page=e0241120 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local perspectives on Ebola during its tenth outbreak in DR Congo: A nationwide qualitative study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The Democratic Republic of Congo (DR Congo) struggled to end the tenth outbreak of Ebola virus disease (Ebola), which appeared in North Kivu in 2018. It was reported that rumors were hampering the response effort. We sought to identify any rumors that could have influenced outbreak containment and affected prevention in unaffected areas of DR Congo.
Methods
We conducted a qualitative study in DR Congo over a period of 2 months (from August 1 to September 30, 2019) using in-depth interviews (IDIs) and focus group discussions (FGDs). The participants were recruited from five regional blocks using purposeful sampling. Both areas currently undergoing outbreaks and presently unaffected areas were included. We collected participants’ opinions, views, and beliefs about the Ebola virus. The IDIs (n = 60) were performed with key influencers (schoolteachers, religious and political leaders/analysts, and Ebola-frontline workers), following a semi-structured interview guide. FGDs (n = 10) were conducted with community members. Interviews were recorded with a digital voice recorder and simultaneous note-taking. Participant responses were categorized in terms of their themes and subthemes.
Results
We identified 3 high-level themes and 15 subthemes (given here in parentheses): (1) inadequate knowledge of the origin or cause of Ebola (belief in a metaphysical origin, insufficient awareness of Ebola transmission via an infected corpse, interpretation of disease as God’s punishment, belief in nosocomial Ebola, poor hygiene, and bathing in the Congo River). Ebola was interpreted as (2) a plot by multinational corporations (fears of genocide, Ebola understood as a biological weapon, concerns over organ trafficking, and Ebola was taken to be the result of business actions). Finally Ebola was rumored to be subject to (3) politicization (political authorities seen as ambivalent, exclusion of some community leaders from response efforts, distrust of political authorities, and distrust in the healthcare system).
Conclusions
Due to the skepticism against Ebola countermeasures, it is critical to understand widespread beliefs about the disease to implement actions that will be effective, including integrating response with the unmet needs of the population. en-copyright= kn-copyright= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NtontoloNgangu Patrick en-aut-sei=Ntontolo en-aut-mei=Ngangu Patrick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NgatuNlandu Roger en-aut-sei=Ngatu en-aut-mei=Nlandu Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KhatiwadaJanuka en-aut-sei=Khatiwada en-aut-mei=Januka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NgombeKabamba Leon en-aut-sei=Ngombe en-aut-mei=Kabamba Leon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NumbiOscar Luboya en-aut-sei=Numbi en-aut-mei=Oscar Luboya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NzajiKabamba Michel en-aut-sei=Nzaji en-aut-mei=Kabamba Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaotelaKabinda Jeff en-aut-sei=Maotela en-aut-mei=Kabinda Jeff kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NgoyiMukonkole Jean en-aut-sei=Ngoyi en-aut-mei=Mukonkole Jean kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaKoji en-aut-sei=Wada en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IkedaShunya en-aut-sei=Ikeda en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Family Medicine and Primary health, Protestant University of Congo kn-affil= affil-num=3 en-affil=Department of Public Health, Kagawa University Faculty of Medicine kn-affil= affil-num=4 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=5 en-affil=Department of Public Health, University of Kamina kn-affil= affil-num=6 en-affil=School of Public Health, University of Lubumbashi kn-affil= affil-num=7 en-affil=School of Public Health, University of Lubumbashi kn-affil= affil-num=8 en-affil=Centre National de Transfusion Sanguine kn-affil= affil-num=9 en-affil=Research Unit, ISTM-Lubumbashi kn-affil= affil-num=10 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=11 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= affil-num=12 en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue= article-no= start-page=833 end-page=847 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Web access monitoring mechanism via Android WebView for threat analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Many Android apps employ WebView, a component that enables the display of web content in the apps without redirecting users to web browser apps. However, WebView might also be used for cyberattacks. Moreover, to the best of our knowledge, although some countermeasures based on access control have been reported for attacks exploiting WebView, no mechanism for monitoring web access via WebView has been proposed and no analysis results focusing on web access via WebView are available. In consideration of this limitation, we propose a web access monitoring mechanism for Android WebView to analyze web access via WebView and clarify attacks exploiting WebView. In this paper, we present the design and implementation of this mechanism by modifying Chromium WebView without any modifications to the Android framework or Linux kernel. The evaluation results of the performance achieved on introducing the proposed mechanism are also presented here. Moreover, the result of threat analysis of displaying a fake virus alert while browsing websites on Android is discussed to demonstrate the effectiveness of the proposed mechanism. en-copyright= kn-copyright= en-aut-name=ImamuraYuta en-aut-sei=Imamura en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OritoRintaro en-aut-sei=Orito en-aut-mei=Rintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UekawaHiroyuki en-aut-sei=Uekawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChaikaewKritsana en-aut-sei=Chaikaew en-aut-mei=Kritsana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeelaprutePattara en-aut-sei=Leelaprute en-aut-mei=Pattara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoMasaya en-aut-sei=Sato en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Engineering, Kasetsart University kn-affil= affil-num=5 en-affil=Faculty of Engineering, Kasetsart University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Android kn-keyword=Android en-keyword=WebView kn-keyword=WebView en-keyword=Web access monitoring kn-keyword=Web access monitoring en-keyword=Web security kn-keyword=Web security en-keyword=Threat analysis kn-keyword=Threat analysis en-keyword=Fake virus alert kn-keyword=Fake virus alert END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=MYCN-amplified neuroblastomaに対するMYCN抑制を介したテロメラーゼ標的腫瘍溶解ウイルス治療 kn-title=Elimination of MYCN-Amplified Neuroblastoma Cells by Telomerase-Targeted Oncolytic Virus via MYCN Suppression en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TanimotoTerutaka en-aut-sei=Tanimoto en-aut-mei=Terutaka kn-aut-name=谷本光 kn-aut-sei=谷本 kn-aut-mei=光 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=6 article-no= start-page=525 end-page=530 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Solitary Cardiac Metastasis of Hepatocellular Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cardiac metastasis originating from hepatocellular carcinoma (HCC) is a rare condition with a poor prognosis. No therapeutic standards for cardiac metastasis originating from HCC have been established. At 19 months after a curative hepatectomy, a 64-year-old Japanese hepatitis B virus-positive male patient experienced solitary cardiac metastasis originating from HCC. The cardiac tumor was discovered in the right ventricle. The patient received three courses of radiotherapy and chemotherapy and survived > 3 years after the initial diagnosis of cardiac metastasis. His case demonstrates that radiotherapy combined with chemotherapy can be an effective treatment for cardiac metastasis. en-copyright= kn-copyright= en-aut-name=AokiHideki en-aut-sei=Aoki en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UtsumiMasashi en-aut-sei=Utsumi en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraYuji en-aut-sei=Kimura en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiYosuke en-aut-sei=Takahashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagahisaSeiichi en-aut-sei=Nagahisa en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishimuraSeitaro en-aut-sei=Nishimura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UneYuta en-aut-sei=Une en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniguchiFumitaka en-aut-sei=Taniguchi en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ArataTakashi en-aut-sei=Arata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatsudaKoh en-aut-sei=Katsuda en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakayaKohji en-aut-sei=Tanakaya en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=7 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=8 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=9 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=10 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=11 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=12 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma en-keyword=cardiac metastasis kn-keyword=cardiac metastasis en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=chemotherapy kn-keyword=chemotherapy END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=6 article-no= start-page=461 end-page=466 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reality of Gastric Cancer in Young Patients: The Importance and Difficulty of the Early Diagnosis, Prevention and Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gastric cancer usually arises in middle-aged to older patients, and is rarely found in younger patients. The clin-ical characteristics, etiology, prognosis, preventive methods and treatment of gastric cancer in young patients have not been fully investigated because of its low prevalence. In this review, we discuss the current under-standing and clinical problems associated with gastric cancer in young patients. Helicobacter pylori (H. pylori), which is a major cause of gastric cancer, especially in older populations, is closely associated with gastric cancer in young patients as well as in older patients. Gastric cancer in young patients tends to be diagnosed at an advanced stage with alarm symptoms. However, young patients with advanced gastric cancer tend to have a favorable general condition and organ function, so they can tolerate intensive systematic chemotherapy. Unfortunately, the prognosis of gastric cancer in young patients with an advanced stage is not favorable. We should not take this rare disease lightly, given its poor prognosis if patients are diagnosed at an unresectable stage. The evaluation of the H. pylori infection status and performance of H. pylori eradication therapy to prevent gastric cancer in young patients as well as the development of more intensive chemotherapy regimens for unre-sectable gastric cancer in young patients are warranted. en-copyright= kn-copyright= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=young patients kn-keyword=young patients en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori END start-ver=1.4 cd-journal=joma no-vol=554 cd-vols= no-issue= article-no= start-page=55 end-page=62 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5′-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts. en-copyright= kn-copyright= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Cryphonectria nitschkei kn-keyword=Cryphonectria nitschkei en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=Cryphonectria radicalis kn-keyword=Cryphonectria radicalis en-keyword=Chrysovirus kn-keyword=Chrysovirus en-keyword=Fungal virus kn-keyword=Fungal virus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=Host range kn-keyword=Host range END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=5627 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Establishment of Neurospora crassa as a model organism for fungal virology en-subtitle= kn-subtitle= en-abstract= kn-abstract=The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions. The fungus Neurospora crassa is a model organism for the study of various biological processes, but it is not known to be infected by any viruses. Here, Honda et al. identify RNA viruses that infect N. crassa and examine viral replication and RNAi-mediated antiviral responses, thus establishing this fungus as a model for the study of host-virus interactions. en-copyright= kn-copyright= en-aut-name=HondaShinji en-aut-sei=Honda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyashitaShuhei en-aut-sei=Miyashita en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaAyumi en-aut-sei=Yokoyama en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=4 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Fungal biology kn-keyword=Fungal biology en-keyword=Virus?host interactions kn-keyword=Virus?host interactions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=腫瘍融解ウイルスはERKシグナルをターゲットにすることでヒト膵癌細胞の浸潤能を阻害する kn-title=Oncolytic Virus-Mediated Targeting of the ERK Signaling Pathway Inhibits Invasive Propensity in Human Pancreatic Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KoujimaTakeshi en-aut-sei=Koujima en-aut-mei=Takeshi kn-aut-name=國府島健 kn-aut-sei=國府島 kn-aut-mei=健 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=2 article-no= start-page=83 end-page=86 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Chylothorax in a 3-month-old boy with respiratory syncytial virus infection kn-title=Respiratory syncytial ウイルス細気管支炎に合併した乳び胸の一例 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Chylothorax is a condition in which chyle leaks into the thoracic cavity. The causes of chylothorax can be nontraumatic, traumatic or idiopathic. The most common cause of nontraumatic chylothorax is obstruction of the thoracic duct by tumor. Traumatic chylothorax is caused by disruption of the thoracic duct, most often due to cardiac surgery or a thoracic surgical procedure, although in rare cases by cough or vomiting. We report the case of a 3-month-old boy with respiratory syncytial (RS) virus infection who presented with right chylothorax. No obstructive tumor mass was identified in the thoracic duct. Clinical symptoms of Noonan syndrome and Down syndrome, which often accompany lymphatic anomaly, were not found. Therefore, we speculate that his severe cough caused a high thoracic pressure and a disruption of the thoracic duct. He was treated by thoracocentesis and MCT milk. One month later, pleural effusion disappeared and did not recur. RS virus infection might be a rare cause of chylothorax in infants. en-copyright= kn-copyright= en-aut-name=Futagawa Natsuko en-aut-sei=Futagawa en-aut-mei=Natsuko kn-aut-name=二川奈都子 kn-aut-sei=二川 kn-aut-mei=奈都子 aut-affil-num=1 ORCID= en-aut-name=Shiotani Toshio en-aut-sei=Shiotani en-aut-mei=Toshio kn-aut-name=塩谷俊雄 kn-aut-sei=塩谷 kn-aut-mei=俊雄 aut-affil-num=2 ORCID= en-aut-name=SugimineTakafumi en-aut-sei=Sugimine en-aut-mei=Takafumi kn-aut-name=杉峯貴文 kn-aut-sei=杉峯 kn-aut-mei=貴文 aut-affil-num=3 ORCID= en-aut-name=MoriwakeTadashi en-aut-sei=Moriwake en-aut-mei=Tadashi kn-aut-name=守分正 kn-aut-sei=守分 kn-aut-mei=正 aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil=岡山大学病院 小児科 affil-num=2 en-affil=Departments of Thoracic, Breast and Endocrine surgery, Okayama University Hospital kn-affil=岡山大学病院 呼吸器乳腺内分泌外科 affil-num=3 en-affil=Department of Pediatrics, National Hospital Organization Iwakuni Clinical Center kn-affil=岩国医療センター 小児科 affil-num=4 en-affil=Department of Pediatrics, National Hospital Organization Iwakuni Clinical Center kn-affil=岩国医療センター 小児科 en-keyword=RS ウイルス(respiratory syncytial virus) kn-keyword=RS ウイルス(respiratory syncytial virus) en-keyword=細気管支炎(bronchiolitis) kn-keyword=細気管支炎(bronchiolitis) en-keyword=乳び胸(chylothorax) kn-keyword=乳び胸(chylothorax) END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=2 article-no= start-page=60 end-page=67 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Hepatitis C virus (HCV):Diversity and variation of RNA genome kn-title=C型肝炎ウイルス(HCV):RNAゲノムの多様性と変異性 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name=加藤宣之 kn-aut-sei=加藤 kn-aut-mei=宣之 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍ウイルス学 en-keyword=HCV ゲノム kn-keyword=HCV ゲノム en-keyword=レプリコン複製細胞 kn-keyword=レプリコン複製細胞 en-keyword=長期継代培養 kn-keyword=長期継代培養 en-keyword=遺伝子解析 kn-keyword=遺伝子解析 en-keyword=準種 kn-keyword=準種 END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=592789 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Characterization of a Novel Polymycovirus From Penicillium janthinellum With a Focus on Its Genome-Associated PASrp en-subtitle= kn-subtitle= en-abstract= kn-abstract=The genus Polymycovirus of the family Polymycoviridae accommodates fungal RNA viruses with different genomic segment numbers (four, five, or eight). It is suggested that four members form no true capsids and one forms filamentous virus particles enclosing double-stranded RNA (dsRNA). In both cases, viral dsRNA is associated with a viral protein termed "proline-alanine-serine-rich protein" (PASrp). These forms are assumed to be the infectious entity. However, the detailed molecular characteristics of PASrps remain unclear. Here, we identified a novel five-segmented polymycovirus, Penicillium janthinellum polymycovirus 1 (PjPmV1), and characterized its purified fraction form in detail. The PjPmV1 had five dsRNA segments associated with PASrp. Density gradient ultracentrifugation of the PASrp-associated PjPmV1 dsRNA revealed its uneven structure and a broad fractionation profile distinct from that of typical encapsidated viruses. Moreover, PjPmV1-PASrp interacted in vitro with various nucleic acids in a sequence-non-specific manner. These PjPmV1 features are discussed in view of the diversification of genomic segment numbers of the genus Polymycovirus. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Penicillium janthinellum kn-keyword=Penicillium janthinellum en-keyword=capsidless kn-keyword=capsidless en-keyword=multi-segmented kn-keyword=multi-segmented en-keyword=proline-alanine-serine rich protein kn-keyword=proline-alanine-serine rich protein END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=1-3 article-no= start-page=215 end-page=223 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=200305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Orchid Fleck Virus: Brevipalpus californicus Mite Transmission, Biological Properties and Genome Structure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orchid fleck virus (OFV) causes necrotic or chlorotic ring spots and fleck symptoms in many orchid species world-wide. The virus has non-enveloped, bacilliform particles of about 40 nm × 100?150 nm and is sap-transmissible to several plant species. OFV is transmitted by the mite Brevipalpus californicus (Banks) in a persistent manner and efficiently transmitted by both adults and nymphs, but not by larvae. Viruliferous mites retain their infectivity for 3 weeks on a virus-immune host. The genome of OFV consists of two molecules of 6431 (RNA1) and 6001 nucleotides (RNA2). The RNAs have conserved and complementary terminal sequences. RNA1 contains five open reading frames (ORF), and RNA2 encodes a single ORF. Although some of the encoded proteins of OFV have sequences similar to those of proteins of plant rhabdoviruses, OFV differs from viruses in the family Rhabdoviridae in having a bipartite genome. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaTakanori en-aut-sei=Maeda en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Bioresources, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Bioresources, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Bioresources, Okayama University kn-affil= en-keyword=Brevipalpus californicus kn-keyword=Brevipalpus californicus en-keyword=mite transmission kn-keyword=mite transmission en-keyword=orchids kn-keyword=orchids en-keyword=orchid fleck virus kn-keyword=orchid fleck virus en-keyword=plant virus kn-keyword=plant virus en-keyword=rhabdovirus kn-keyword=rhabdovirus en-keyword=virus genome structure kn-keyword=virus genome structure END start-ver=1.4 cd-journal=joma no-vol=154 cd-vols= no-issue=1 article-no= start-page=37 end-page=45 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20081206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification and characterization of structural proteins of orchid fleck virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orchid fleck virus (OFV) has a bipartite negative-sense RNA genome with sequence similarities to plant rhabdoviruses. The non-enveloped bullet-shaped particles of OFV are similar to those of the internal ribonucleoprotein (RNP)-M protein structure of rhabdoviruses, but they are about half the size of typical plant rhabdoviruses. Purified preparations contained intact bullet-shaped and filamentous particles. The filamentous particles showed a tightly coiled coil structure or a coiled structure with a helical twist, which resembles the RNP complex of rhabdoviruses. OFV bullet-shaped particles were structurally stable in solutions containing 2% Triton X-100 and 0.8 M NaCl. Western blot analyses revealed that the bullet-shaped particles contained N, P and M proteins, while filamentous particles contained mainly N and P proteins. In addition, a small amount of the L protein was detected in both types of particles. Thus, the structural proteins of OFV have properties similar to those of rhabdoviruses, except that the particles are non-enveloped and are relatively resistant to detergent-treatment under high-salt conditions. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaTakanori en-aut-sei=Maeda en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Bioresources, Okayama University kn-affil= affil-num=2 en-affil=College of Bioresource Sciences, Nihon University kn-affil= affil-num=3 en-affil=Research Institute for Bioresources, Okayama University kn-affil= en-keyword=Rabies kn-keyword=Rabies en-keyword=ORF4 Protein kn-keyword=ORF4 Protein en-keyword=Sucrose Density Gradient Centrifugation kn-keyword=Sucrose Density Gradient Centrifugation en-keyword=Coil Coil Structure kn-keyword=Coil Coil Structure en-keyword=Potential Glycosylation Site kn-keyword=Potential Glycosylation Site END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=1 article-no= start-page=219 end-page=232 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pathogenetic roles of beet necrotic yellow vein virus RNA5 in the exacerbation of symptoms and yield reduction, development of scab‐like symptoms, and Rz1‐resistance breaking in sugar beet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Beet necrotic yellow vein virus (BNYVV) generally has a four‐segmented positive‐sense RNA genome (RNAs 1?4), but some European and most Asian strains have an additional segment, RNA5. This study examined the effect of RNA5 and RNA3 on different sugar beet cultivars using a Polymyxa‐mediated inoculation system under field and laboratory conditions. In field tests, the degree of sugar yield served as an index for assessing the virulence of BNYVV strains. Japanese A‐II type isolates without RNA5 caused mostly 15%?90% sugar yield reductions, depending on the susceptibility of sugar beet cultivars, whereas the isolates with RNA5 induced more than 90% yield losses in the seven susceptible cultivars, but small yield losses in one Rz1‐resistant and Rizor cultivars. However, a laboratory‐produced isolate containing RNA5 but lacking RNA3 caused higher yield losses in Rizor than in susceptible plants, and induced scab‐like symptoms on the root surface of both susceptible and resistant plants. In laboratory tests, A‐II type isolates without RNA5 had low viral RNA accumulation levels in roots of Rizor and Rz1‐resistant plants at early stages of infection, but in the presence of RNA5, viral RNA3 accumulation levels increased remarkably. This increased RNA3 accumulation was not observed in roots of the WB42 accession with the Rz2 gene. In contrast, the presence of RNA3 did not affect RNA5 accumulation levels. Collectively, this study demonstrated that RNA5 is involved in the development of scab‐like symptoms and the enhancement of RNA3 accumulation, and suggests these characteristics of RNA5 are associated with Rz1‐resistance breaking. en-copyright= kn-copyright= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchinoHirokatsu en-aut-sei=Uchino en-aut-mei=Hirokatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KusumeToshimi en-aut-sei=Kusume en-aut-mei=Toshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Iketani‐SaitoMinako en-aut-sei=Iketani‐Saito en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Center, Nippon Beet Sugar Mfg. Co., Ltd. kn-affil= affil-num=3 en-affil=Hokkaido Central Agricultural Experiment Station kn-affil= affil-num=4 en-affil=Hokkaido Central Agricultural Experiment Station kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=BNYVV kn-keyword=BNYVV en-keyword=resistance breaking kn-keyword=resistance breaking en-keyword=RNA5 kn-keyword=RNA5 en-keyword=Rz1 gene kn-keyword=Rz1 gene en-keyword=scab‐like symptom kn-keyword=scab‐like symptom en-keyword=sugar beet kn-keyword=sugar beet END start-ver=1.4 cd-journal=joma no-vol=244 cd-vols= no-issue= article-no= start-page=75 end-page=83 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent studies illustrate that fungi as virus hosts provides a unique platform for hunting viruses and exploring virus/virus and virus/host interactions. Such studies have revealed a number of as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate relationship between a (+)ssRNA virus, yado-kari virus (YkV1) and an unrelated dsRNA virus, yado-nushi virus (YnV1). YkV1 dsRNA, a replicated form of YkV1, and RNA-dependent RNA polymerase, are trans-encapsidated by the capsid protein of YnV1. While YnV1 can complete its replication cycle, YkV1 relies on YnV1 for its viability. We previously proposed a model in which YkV1 diverts YnV1 capsids as the replication sites. YkV1 is neither satellite virus nor satellite RNA, because YkV1 appears to encode functional RdRp and enhances YnV1 accumulation. This represents a unique mutualistic virus/virus interplay and similar relations in other virus/host fungus systems are detectable. We propose to establish the family Yadokariviridae that accommodates YkV1 and recently discovered viruses phylogenetically related to YkV1. This article overviews what is known and unknown about the YkV1/YnV1 interactions. Also discussed are the YnV1 Phytoreo_S7 and YkV1 2A-like domains that may have been captured via horizontal transfer during the course of evolution and are conserved across extant diverse RNA viruses. Lastly, evolutionary scenarios are envisioned for YkV1 and YnV1. en-copyright= kn-copyright= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FarukMd. Iqbal en-aut-sei=Faruk en-aut-mei=Md. Iqbal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Yado-nushi virus kn-keyword=Yado-nushi virus en-keyword=Yado-kari virus kn-keyword=Yado-kari virus en-keyword=Mutualism kn-keyword=Mutualism en-keyword=Mycovirus kn-keyword=Mycovirus en-keyword=dsRNA kn-keyword=dsRNA en-keyword=Evolution kn-keyword=Evolution END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue=1 article-no= start-page=15001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A capsidless ssRNA virus hosted by an unrelated dsRNA virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viruses typically encode the capsid that encases their genome, while satellite viruses do not encode a replicase and depend on a helper virus for their replication1. Here, we report interplay between two RNA viruses, yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1), in a phytopathogenic fungus, Rosellinia necatrix2. YkV1 has a close phylogenetic affinity to positive-sense, single-stranded (+)ssRNA viruses such as animal caliciviruses3, while YnV1 has an undivided double-stranded (ds) RNA genome with a resemblance to fungal totiviruses4. Virion transfection and infectious full-length cDNA transformation has shown that YkV1 depends on YnV1 for viability, although it probably encodes functional RNA-dependent RNA polymerase (RdRp). Immunological and molecular analyses have revealed trans-encapsidation of not only YkV1 RNA but also RdRp by the capsid protein of the other virus (YnV1), and enhancement of YnV1 accumulation by YkV1. This study demonstrates interplay in which the capsidless (+)ssRNA virus (YkV1), hijacks the capsid protein of the dsRNA virus (YnV1), and replicates as if it were a dsRNA virus. en-copyright= kn-copyright= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=NARO Institute of Fruit Tree Science kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Molecular evolution kn-keyword=Molecular evolution en-keyword=Viral genetics kn-keyword=Viral genetics END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page=14 end-page=23 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elimination of MYCN-Amplified Neuroblastoma Cells by Telomerase-Targeted Oncolytic Virus via MYCN Suppression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neuroblastoma (NB) is a primary malignant tumor of the peripheral sympathetic nervous system. High-risk NB is characterized by MYCN amplification and human telomerase reverse transcriptase (hTERT) rearrangement, contributing to hTERT activation and a poor outcome. For targeting hTERT-activated tumors, we developed two oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in which the hTERT promoter drives expression of the viral E1 gene for tumor-specific virus replication. In this study, we demonstrate the therapeutic potential of the hTERT-driven oncolytic adenoviruses OBP-301 and OBP-702 using four human MYCN-amplified NB cell lines (IMR-32, CHP-134, NB-1, LA-N-5) exhibiting high hTERT expression. OBP-301 and OBP-702 exhibited a strong antitumor effect in association with autophagy in NB cells. Virus-mediated activation of E2F1 protein suppressed MYCN expression. OBP-301 and OBP-702 significantly suppressed the growth of subcutaneous CHP-134 tumors. Thus, these hTERT-driven oncolytic adenoviruses are promising antitumor agents for eliminating MYCN-amplified NB cells via E2F1-mediated suppression of MYCN protein. en-copyright= kn-copyright= en-aut-name=TanimotoTerutaka en-aut-sei=Tanimoto en-aut-mei=Terutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IedaTakeshi en-aut-sei=Ieda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NousoHiroshi en-aut-sei=Nouso en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniMorimichi en-aut-sei=Tani en-aut-mei=Morimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OyamaTakanori en-aut-sei=Oyama en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NodaTakuo en-aut-sei=Noda en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=neuroblastoma kn-keyword=neuroblastoma en-keyword=MYCN kn-keyword=MYCN en-keyword=hTERT kn-keyword=hTERT en-keyword=adenovirus kn-keyword=adenovirus en-keyword=E2F1 kn-keyword=E2F1 END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page=262 end-page=271 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peritoneal metastasis is the most frequent form of distant metastasis and recurrence in gastric cancer, and the prognosis is extremely poor due to the resistance of systemic chemotherapy. Here, we demonstrate that intraperitoneal (i.p.) administration of a green fluorescence protein (GFP)-expressing attenuated adenovirus with oncolytic potency (OBP-401) synergistically suppressed the peritoneal metastasis of gastric cancer in combination with paclitaxel (PTX). OBP-401 synergistically suppressed the viability of human gastric cancer cells in combination with PTX. PTX enhanced the antitumor effect of OBP-401 due to enhanced viral replication in cancer cells. The combination therapy increased induction of mitotic catastrophe, resulting in accelerated autophagy and apoptosis. Peritoneally disseminated nodules were selectively visualized as GFP-positive spots by i.p. administration of OBP-401 in an orthotopic human gastric cancer peritoneal dissemination model. PTX enhanced the deep penetration of OBP-401 into the disseminated nodules. Moreover, a non-invasive in vivo imaging system demonstrated that the combination therapy of i.p. OBP-401 administration with PTX significantly inhibited growth of peritoneal metastatic tumors and the amount of malignant ascites. i.p. virotherapy with PTX may be a promising treatment strategy for the peritoneal metastasis of gastric cancer. en-copyright= kn-copyright= en-aut-name=IshikawaWataru en-aut-sei=Ishikawa en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaToshihiro en-aut-sei=Ogawa en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TabuchiMotoyasu en-aut-sei=Tabuchi en-aut-mei=Motoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=peritoneal metastasis kn-keyword=peritoneal metastasis en-keyword=adenovirus kn-keyword=adenovirus en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=intraperitoneal chemotherapy kn-keyword=intraperitoneal chemotherapy en-keyword=paclitaxel kn-keyword=paclitaxel en-keyword=oncolytic virus kn-keyword=oncolytic virus END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=14928 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dysfunction of CD8+PD-1+T cells in type 2 diabetes caused by the impairment of metabolism-immune axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The metabolic changes and dysfunction in CD8+T cells may be involved in tumor progression and susceptibility to virus infection in type 2 diabetes (T2D). In C57BL/6JJcl mice fed with high fat-high sucrose chow (HFS), multifunctionality of CD8+splenic and tumor-infiltrating lymphocytes (TILs) was impaired and associated with enhanced tumor growth, which were inhibited by metformin. In CD8+splenic T cells from the HFS mice, glycolysis/basal respiration ratio was significantly reduced and reversed by metformin. In the patients with T2D (DM), multifunctionality of circulating CD8+PD-1+T cells stimulated with PMA/ionomycin as well as with HLA-A*24:02 CMV peptide was dampened, while metformin recovered multifunctionality. Both glycolysis and basal respiration were reduced in DM, and glycolysis was increased by metformin. The disturbance of the link between metabolism and immune function in CD8+PD-1+T cells in T2D was proved by recovery of antigen-specific and non-specific cytokine production via metformin-mediated increase in glycolytic activity. en-copyright= kn-copyright= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EikawaShingo en-aut-sei=Eikawa en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HadaYoshiko en-aut-sei=Hada en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KajitaniNobuo en-aut-sei=Kajitani en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeshigawaraSanae en-aut-sei=Teshigawara en-aut-mei=Sanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToneAtsuhito en-aut-sei=Tone en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology/Oncology, Hess Cancer Institute, Icahn School of Medicine At Mount Sinai kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Diabetes Center, Okayama City Hospital kn-affil= affil-num=6 en-affil=Diabetes Center, Okayama S kn-affil=italama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Diabetes Center, Okayama Saiseikai General Hospital kn-affil= affil-num=9 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cytokines kn-keyword=Cytokines en-keyword=Diabetes kn-keyword=Diabetes en-keyword=Endocrine system and metabolic diseases kn-keyword=Endocrine system and metabolic diseases en-keyword=Immunology kn-keyword=Immunology en-keyword=Tumour immunology kn-keyword=Tumour immunology END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=3 article-no= start-page=e00450-20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hadaka Virus 1: a Capsidless Eleven-Segmented Positive-Sense Single-Stranded RNA Virus from a Phytopathogenic Fungus, Fusarium oxysporum en-subtitle= kn-subtitle= en-abstract= kn-abstract=The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms. IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum. The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShamsiWajeeha en-aut-sei=Shamsi en-aut-mei=Wajeeha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Fusarium oxysporum kn-keyword=Fusarium oxysporum en-keyword=multisegmented kn-keyword=multisegmented en-keyword=RNA virus kn-keyword=RNA virus en-keyword=capsidless kn-keyword=capsidless en-keyword=neo-virus lifestyle kn-keyword=neo-virus lifestyle END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=8 article-no= start-page=5063 end-page=5076 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurosurgery for brain metastasis from breast cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Breast cancer is the most common malignancy among women worldwide, and the main cause of death in patients with breast cancer is metastasis. Metastasis to the central nervous system occurs in 10% to 16% of patients with metastatic breast cancer, and this rate has increased because of recent advancements in systemic chemotherapy. Because of the various treatments available for brain metastasis, accurate diagnosis and evaluation for treatment are important. Magnetic resonance imaging (MRI) is one of the most reliable preoperative examinations not only for diagnosis of metastatic brain tumors but also for estimation of the molecular characteristics of the tumor based on radiographic information such as the number of lesions, solid or ring enhancement, and cyst formation. Surgical resection continues to play an important role in patients with a limited number of brain metastases and a relatively good performance status. A single brain metastasis is a good indication for surgical treatment followed by radiation therapy to obtain longer survival. Surgical removal is also considered for two or more lesions if neurological symptoms are caused by brain lesions of >3 cm with a mass effect or associated hydrocephalus. Although maximal safe resection with minimal morbidity is ideal in the surgical treatment of brain tumors, supramarginal resection can be achieved in select cases. With respect to the resection technique, en bloc resection is generally recommended to avoid leptomeningeal dissemination induced by piecemeal resection. An operating microscope, neuronavigation, and intraoperative neurophysiological monitoring are essential in modern neurosurgical procedures, including tumor resection. More recently, supporting surgical instruments have been introduced. The use of endoscopic surgery has dramatically increased, especially for intraventricular lesions and in transsphenoidal surgery. An exoscope helps neurosurgeons to comfortably operate regardless of patient positioning or anatomy. A tubular retractor can prevent damage to the surrounding brain tissue during surgery and is a useful instrument in combination with both an endoscope and exoscope. Additionally, 5-aminolevulinic acid (5-ALA) is a promising reagent for photodynamic detection of residual tumor tissue. In the near future, novel treatment options such as high-intensity focused ultrasound (HIFU), laser interstitial thermal therapy (LITT), oncolytic virus therapy, and gene therapy will be introduced. en-copyright= kn-copyright= en-aut-name=TomitaYusuke en-aut-sei=Tomita en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimazuYosuke en-aut-sei=Shimazu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Metastatic brain tumor kn-keyword=Metastatic brain tumor en-keyword=breast cancer kn-keyword=breast cancer en-keyword=neurosurgical technique kn-keyword=neurosurgical technique END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=3 article-no= start-page=117 end-page=122 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oral administration of the probiotic bacterium Lactobacillus acidophilus strain L-55 modulates the immunological parameters of the laying hen inoculated with a Newcastle disease virus-based live attenuated vaccine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Probiotic supplements containing living bacteria have attracted interest as a potential source of health benefits for humans and livestock. The aim of this study was to determine whether administration of Lactobacillus acidophilus strain L-55 (LaL-55) enhances the immune response among chicks exposed to a Newcastle disease virus (NDV)-based live attenuated vaccine. Oral administration of LaL-55 augmented the elevation in the total numbers of leukocytes and lymphocytes following inoculation with the NDV-based live attenuated vaccine. Monocyte counts increased after LaL-55 administration independent of inoculation with the NDV vaccine. Among chicks that were administered LaL-55, there was a dose-dependent increase in the NK cell activity measured by a 51Cr release assay at 2 weeks after the secondary NDV vaccine inoculation. Two weeks after the secondary inoculation with the NDV vaccine, interferon (IFN)-γ-mRNA expression was significantly elevated in mononuclear splenocytes from chicks that were administered LaL-55. Meanwhile, LaL-55 administration did not change the mRNA levels of IFN-α, IFN-β, and interleukin-1β. These results may suggest that coadministration of LaL-55 with an NDV vaccine augments the immune response against the virus. Therefore, LaL-55 may help protect against viral diseases in poultry. en-copyright= kn-copyright= en-aut-name=HoDung Thi en-aut-sei=Ho en-aut-mei=Dung Thi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HatabuToshimitsu en-aut-sei=Hatabu en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunadaYosuke en-aut-sei=Sunada en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoYasuhiro en-aut-sei=Kondo en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Research & Development, Ohayo Dairy Products Co., Ltd. kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Lactobacillus acidophilus L-55 kn-keyword=Lactobacillus acidophilus L-55 en-keyword=chicken kn-keyword=chicken en-keyword=Newcastle disease vaccine kn-keyword=Newcastle disease vaccine en-keyword=immunomodulatory kn-keyword=immunomodulatory END start-ver=1.4 cd-journal=joma no-vol=2021 cd-vols= no-issue= article-no= start-page=280 end-page=288 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytopathic effects and local immune responses in repeated neoadjuvant HSV-tk + ganciclovir gene therapy for prostate cancer en-subtitle= kn-subtitle= en-abstract=Cytopathic effects and local immune response were analyzed histologically in prostatic carcinoma (PCa) with in situ herpes simplex virus-thymidine kinase (HSV-tk)/ganciclovir (GCV) gene therapy (GT... kn-abstract=ObjectiveCytopathic effects and local immune response were analyzed histologically in prostatic carcinoma (PCa) with in situ herpes simplex virus-thymidine kinase (HSV-tk)/ganciclovir (GCV) gene therapy (GT). MethodsFour high-risk PCa patients who received HSV-tk/GCV GT were investigated. After two cycles of intraprostatic injection of HSV-tk and administration of GCV, radical prostatectomy was performed. Formalin-fixed, paraffin-embedded sections were evaluated using immunohistochemistry. PCa with hormone therapy (HT, n?=?3) or without neoadjuvant therapy (NT, n?=?4) that were equivalent in terms of risk were also examined as reference. Immunoreactively-positive cells were counted in at least three areas in cancer tissue. Labeling indices (LI) were calculated as percentage values. ResultsssDNA LI in GT increased, indicating apoptosis, as well as tumor-infiltrating lymphocytes and CD68-positive macrophages, compared with their biopsies. GT cases showed significantly higher numbers of ssDNA LI, CD4/CD8-positive T cells and CD68-positive macrophages including M1/M2 macrophages than HT or NT cases. However, there was no significant difference in CD20-positive B cells among the types of case. There were strong correlations between CD8+ T cells and CD68+ macrophages (ρ?=?0.656, p? 70 years, and RAVs were significantly associated with non-SVR (p<0.01 for all). Propensity score-matching results among the patients without RAVs regarding sex, age, and fibrosis revealed that mixed HCV infection determined by HCV NS5B genotyping showed significantly lower SVR rates than 1B-mono infection (p=0.02). Female sex and RAVs were significant factors associated with treatment failure of this combination therapy for patients with HCV serogroup 1 infection. Mixed HCV infection other than 1B-mono infection would be useful for predicting treatment failure. en-copyright= kn-copyright= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriChizuru en-aut-sei=Mori en-aut-mei=Chizuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaguchiKoichi en-aut-sei=Takaguchi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiokaShin-ichi en-aut-sei=Fujioka en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobashiHaruhiko en-aut-sei=Kobashi en-aut-mei=Haruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorimotoYoichi en-aut-sei=Morimoto en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KariyamaKazuya en-aut-sei=Kariyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakaguchiKosaku en-aut-sei=Sakaguchi en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HashimotoNoriaki en-aut-sei=Hashimoto en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriyaAkio en-aut-sei=Moriya en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaguchiMitsuhiko en-aut-sei=Kawaguchi en-aut-mei=Mitsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiyatakeHirokazu en-aut-sei=Miyatake en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HagiharaHiroaki en-aut-sei=Hagihara en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KubotaJunichi en-aut-sei=Kubota en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TakayamaHiroki en-aut-sei=Takayama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Okayama Red Cross Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Liver Disease Center, Okayama City Hospital kn-affil= affil-num=9 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=10 en-affil=Department of Internal Medicine, Mihara Red Cross Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Mitoyo General Hospital kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Kawaguchi Medical Clinic kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Hiroshima City Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Sumitomo Besshi Hospital kn-affil= affil-num=15 en-affil=Department of Internal Medicine, Tajiri Hospital kn-affil= affil-num=16 en-affil=Department of Gastroenterology, Tsuyama Central Hospital kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Health Service Center, Okayama University kn-affil= affil-num=21 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=mixed genotype kn-keyword=mixed genotype en-keyword=daclatasvir kn-keyword=daclatasvir en-keyword=asunaprevir kn-keyword=asunaprevir en-keyword=HCV kn-keyword=HCV en-keyword= serogrouping 1 infection kn-keyword= serogrouping 1 infection END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=4 article-no= start-page=351 end-page=357 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epidemiology of Pediatric Acute Encephalitis/Encephalopathy in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract= We studied the etiology of pediatric acute encephalitis/encephalopathy (pAEE) using epidemiological data obtained from a nationwide survey in Japan. Two-step questionnaires were sent to the pediatric departments of hospitals throughout the country in 2007, querying the number of the cases during 2005-2006 as the first step, and asking for the details of clinical information as the second step. In all, 636 children with pAEE (age ? 15 years) were enrolled. For the known etiology of pAEE (63.5% of the total cases), 26 microbes and 2 clinical entities were listed, but the etiology of 36.5% remained unknown. Influenza virus (26.7%), exanthem subitum (12.3%), and rotavirus (4.1%) were the most common, and the incidence of pAEE peaked at the age of 1 year. This trend was common among all etiologies. Among the neurological symptoms observed at the onset of pAEE, seizures were observed more often in patients aged ? 3 years, although abnormal speech and behavior were also common in older children. Undesirable outcomes (death and neurological sequelae) occurred at high rates in patients with any known etiology other than mycoplasma. In conclusion, these findings provide comprehensive insight into pAEE in Japan. en-copyright= kn-copyright= en-aut-name=GotoShinichiro en-aut-sei=Goto en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NosakaNobuyuki en-aut-sei=Nosaka en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaTomoaki en-aut-sei=Wada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiYosuke en-aut-sei=Fujii en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Yashiro Masato en-aut-sei=Yashiro en-aut-mei= Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WashioYosuke en-aut-sei=Washio en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Human Ecology, Okayama University Graduate School of Environmental and Life Science kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=childhood kn-keyword=childhood en-keyword=encephalitis kn-keyword=encephalitis en-keyword=encephalopathy kn-keyword=encephalopathy en-keyword=etiology kn-keyword=etiology en-keyword= Japan kn-keyword= Japan en-keyword=pAEE kn-keyword=pAEE END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=3 article-no= start-page=283 end-page=287 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201806 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A New Hepatitis Virus Test with Microliter-scale Fingertip Blood Collection in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigated whether a small amount of blood collected by fingertip blood sampling would be adequate in a mass examination for hepatitis virus infection in Japan. A cross-sectional survey was conducted at health fairs in Kasaoka City and Shodoshima Island, where participants took the hepatitis screening test. A total of 114 consecutive individuals who took the hepatitis screening test were enrolled. Twenty microliters of plasma was successfully obtained from all participants. Among the participants, two had positive results for HBs antigen and two were positive for anti-HCV; all four were > 60 years old and rarely visited the hospital. Thirty-three and 38 patients chronically infected with HBV and HCV, respectively, were examined for confirmatory assays at participating hospitals. All subjects with undetectable serum levels of HBs antigen and anti-HCV had undetectable levels of both markers in fingertip blood, and the levels in serum and fingertip blood were significantly correlated (p<0.01). The lower detection limit of HBs antigen was defined as 0.005 IU/ml, and the cut-off value of anti-HCV was 1.0 by using 10-μl fingertip blood samples. The fingertip blood sampling described herein may be adequate in mass examinations for hepatitis virus testing in Japan. en-copyright= kn-copyright= en-aut-name=NambaShihoko en-aut-sei=Namba en-aut-mei=Shihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaguchiKoichi en-aut-sei=Takaguchi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimomuraYasuyuki en-aut-sei=Shimomura en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology,Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology,Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology,Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology,Okayama University Hospital kn-affil= en-keyword=fingertip kn-keyword=fingertip en-keyword=hepatitis test kn-keyword=hepatitis test en-keyword=HBV kn-keyword=HBV en-keyword=HCV kn-keyword=HCV en-keyword=Japan kn-keyword=Japan END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=インフルエンザウイルスA感染による肺炎および脳炎マウスにおける、局所性および全身性の免疫応答の検討 kn-title=Local and Systemic Immune Responses to Influenza A Virus Infection in Pneumonia and Encephalitis Mouse Models en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NagaokaYoshiharu en-aut-sei=Nagaoka en-aut-mei=Yoshiharu kn-aut-name=長岡義晴 kn-aut-sei=長岡 kn-aut-mei=義晴 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue= article-no= start-page=11 end-page=17 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Virus-induced gene silencing in Prunus fruit tree species with the Apple latent spherical virus vector kn-title=リンゴ小球形潜在ウイルスベクターを用いたサクラ属果樹のウイルス 誘導性ジーンサイレンシングに 関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Virus-induced gene silencing (VIGS) has been used as a rapid and effective tool for functional analysis of genes in various plants, including woody fruit tree species. In this study, we attempted to develop a VIGS-based gene evaluation system for seven Prunus species, including apricot (P. armeniaca L.), sweet cherry (P. avium L.), almond [P. dulcis (Mill.) D. A. Webb.], peach (P. persica Batsch), Japanese apricot (P. mume Siebold & Zucc.), Japanese plum (P. salicina Lindl.), and European plum (P. domestica L.), with the Apple latent spherical virus (ALSV) vectors. ALSV vectors carrying part of the apricot PHYTOENE DESATURASE (PDS) gene sequence were amplified in Nicotiana benthamiana, and inoculated into the cotyledons of Prunus seedlings by particle bombardment. Typical PDS-silenced phenotypes, characterized by uniform discoloration of the upper leaves, were observed in sweet cherry and some cultivars of apricot and almond several weeks after inoculation. In contrast, attempted ALSV infections of Japanese apricot, Japanese plum, European plum, and the other cultivars of apricot and almond were unsuccessful. Furthermore, although the infection rate of ALSV in peach was high, severe viral infection symptoms were observed in the infected leaves. These results collectively suggested that the efficiency of ALSV infection and VIGS could vary depending on species and/or cultivar in Prunus. The possible use of the ALSV-mediated VIGS system for functional analysis of genes in Prunus is discussed. en-copyright= kn-copyright= en-aut-name=KawaiTakashi en-aut-sei=Kawai en-aut-mei=Takashi kn-aut-name=河井崇 kn-aut-sei=河井 kn-aut-mei=崇 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=gene evaluation system kn-keyword=gene evaluation system en-keyword=post-transcriptional gene silencing kn-keyword=post-transcriptional gene silencing en-keyword=virus vector kn-keyword=virus vector END start-ver=1.4 cd-journal=joma no-vol=1707 cd-vols= no-issue= article-no= start-page=050013 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=2016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm en-subtitle= kn-subtitle= en-abstract= kn-abstract= Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction. en-copyright= kn-copyright= en-aut-name=PutriArrival Rince en-aut-sei=Putri en-aut-mei=Arrival Rince kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NovaTertia Delia en-aut-sei=Nova en-aut-mei=Tertia Delia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMasaji en-aut-sei=Watanabe en-aut-mei=Masaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Andalas University kn-affil= affil-num=3 en-affil=Graduate School Environmental and Life Science, Okayama University kn-affil= en-keyword=bird flu kn-keyword=bird flu en-keyword=spatial effect kn-keyword=spatial effect en-keyword=traveling wave solutions kn-keyword=traveling wave solutions en-keyword=singular perturbation kn-keyword=singular perturbation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=12 article-no= start-page=371 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum). en-subtitle= kn-subtitle= en-abstract= kn-abstract= Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name "Bat mastadenovirus H". Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KajiharaMasahiro en-aut-sei=Kajihara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaoNaganori en-aut-sei=Nao en-aut-mei=Naganori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigenoAsako en-aut-sei=Shigeno en-aut-mei=Asako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujikuraDaisuke en-aut-sei=Fujikura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Hang’ombeBernard M. en-aut-sei=Hang’ombe en-aut-mei=Bernard M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MweeneAaron S. en-aut-sei=Mweene en-aut-mei=Aaron S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MutemwaAlisheke en-aut-sei=Mutemwa en-aut-mei=Alisheke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SquarreDavid en-aut-sei=Squarre en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HigashiHideaki en-aut-sei=Higashi en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SawaHirofumi en-aut-sei=Sawa en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakadaAyato en-aut-sei=Takada en-aut-mei=Ayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=3 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=4 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=5 en-affil=Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia kn-affil= affil-num=7 en-affil=Department of Disease Control, School of Veterinary Medicine, University of Zambia kn-affil= affil-num=8 en-affil= Provincial Veterinary Office, Department of Veterinary Services, Ministry of Fisheries and Livestock kn-affil= affil-num=9 en-affil=Department of National Parks and Wildlife, Ministry of Tourism and Arts kn-affil= affil-num=10 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=12 en-affil= Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=13 en-affil=Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University kn-affil= en-keyword=Eidolon helvum kn-keyword=Eidolon helvum en-keyword=Zambia kn-keyword=Zambia en-keyword=adenovirus kn-keyword=adenovirus en-keyword=bat kn-keyword=bat END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170929 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ミャンマーの乳癌症例ではヒト乳癌ウイルス(HMTV)の陽性率は低い kn-title=Low prevalence of human mammary tumor virus (HMTV) in breast cancer patients from Myanmar en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Thar Htet San en-aut-sei=Thar Htet San en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=5 article-no= start-page=433 end-page=436 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic Factors of Low-responsiveness to Hepatitis B Virus Vaccine Confirms the Importance of Human Leukocyte Antigen Class II Types in a Japanese Young Adult Population en-subtitle= kn-subtitle= en-abstract= kn-abstract= We investigated the genetic mechanisms underlying the association between human leukocyte antigen (HLA) types and the immune response to hepatitis B virus (HBV) vaccination in 84 healthy Japanese adults, and found that the HLA-DRB1*04 and HLA-DQB1*03 frequencies were higher in the low responders (<10 mIU/ml; n=9, 10.7%) compared to the responders (?10 mIU/ml, n=75, 89.3%). The combination of DRB1*04 and DQB1*03 was associated with a low response to vaccination. The DRB1*04 and DQB1*03 haplotypes’ frequencies were significantly higher in the low responders compared to responders. Novel candidate HLA types may be important in Japanese individuals. en-copyright= kn-copyright= en-aut-name=YukimasaNobuyasu en-aut-sei=Yukimasa en-aut-mei=Nobuyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KohamaShota en-aut-sei=Kohama en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OboshiWataru en-aut-sei=Oboshi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoShoichi en-aut-sei=Sato en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraTakehiro en-aut-sei=Nakamura en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=3 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=4 en-affil=Clinical Laboratory, Chiba Emergency Medical Center kn-affil= affil-num=5 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= en-keyword=HBV vaccine kn-keyword=HBV vaccine en-keyword=antibody response kn-keyword=antibody response en-keyword=low-responder kn-keyword=low-responder en-keyword=HLA class II kn-keyword=HLA class II en-keyword=Japanese kn-keyword=Japanese END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=7 article-no= start-page=1422 end-page=1431 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of hepatitis C virus production reporter-assay systems using two different hepatoma cell lines en-subtitle= kn-subtitle= en-abstract= kn-abstract= A hepatitis C virus (HCV) infection system was developed previously using the HCV JFH-1 strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust production system for HCV. In patients with chronic hepatitis C, the virological effects of pegylated interferon and ribavirin therapy differ depending on the HCV strain and the genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell line, in which the JFH-1 life cycle is reproduced at a level almost equal to that in HuH-7-derived RSc cells. To monitor the HCV life cycle more easily, we here developed JFH-1 reporter-assay systems using both HuH-7- and Li23-derived cell lines. To identify any genetic mutations by long-term cell culture, HCV RNAs in HuH-7 cells were amplified 130 days after infection and subjected to sequence analysis to find adaptive mutation(s) for robust virus replication. We identified two mutations, H2505Q and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA replication. However, we found that H2505Q but not V2995L enhanced HCV RNA replication of strain O (genotype 1b). We also selected highly permissive D7 cells by serial subcloning of Li23 cells. The expression levels of claudin-1 and Niemann-Pick C1-like 1 in D7 cells are higher than those in parental Li23 cells. In this study, we developed HCV JFH-1 reporter-assay systems using two distinct hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different effects on strains O and JFH-1 HCV RNA replication. en-copyright= kn-copyright= en-aut-name=TakedaMidori en-aut-sei=Takeda en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AriumiYasuo en-aut-sei=Ariumi en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaTakaji en-aut-sei=Wakita en-aut-mei=Takaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Virology II, National Institute of Infectious Disease kn-affil= affil-num=5 en-affil=Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=167 cd-vols= no-issue=1 article-no= start-page=74 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of host genes showing differential expression profiles with cell-based long-term replication of hepatitis C virus RNA en-subtitle= kn-subtitle= en-abstract= kn-abstract= Persistent hepatitis C virus (HCV) infection frequently causes hepatocellular carcinoma. However, the mechanisms of HCV-associated hepatocarcinogenesis and disease progression are unclear. Although the human hepatoma cell line, HuH-7, has been widely used as the only cell culture system for robust HCV replication, we recently developed new human hepatoma Li23 cell line-derived OL, OL8, OL11, and OL14 cells, in which genome-length HCV RNA (O strain of genotype 1b) efficiently replicates. OL, OL8, OL11, and OL14 cells were cultured for more than 2 years. We prepared cured cells from OL8 and OL11 cells by interferon-γ treatment. The cured cells were also cultured for more than 2 years. cDNA microarray and RT-PCR analyses were performed using total RNAs prepared from these cells. We first selected several hundred highly or moderately expressed probes, the expression levels of which were upregulated or downregulated at ratios of more than 2 or less than 0.5 in each set of compared cells (e.g., parent OL8 cells versus OL8 cells cultured for 2 years). From among these probes, we next selected those whose expression levels commonly changed during a 2-year culture of genome-length HCV RNA-replicating cells, but which did not change during a 2-year culture period in cured cells. We further examined the expression levels of the selected candidate genes by RT-PCR analysis using additional specimens from the cells cultured for 3.5 years. Reproducibility of the RT-PCR analysis using specimens from recultured cells was also confirmed. Finally, we identified 5 upregulated genes and 4 downregulated genes, the expression levels of which were irreversibly altered during 3.5-year replication of HCV RNA. These genes may play roles in the optimization of the environment in HCV RNA replication, or may play key roles in the progression of HCV-associated hepatic diseases. en-copyright= kn-copyright= en-aut-name=SejimaHiroe en-aut-sei=Sejima en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriKyoko en-aut-sei=Mori en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AriumiYasuo en-aut-sei=Ariumi en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=HCV kn-keyword=HCV en-keyword=HCV RNA replication system kn-keyword=HCV RNA replication system en-keyword=Li23 cells kn-keyword=Li23 cells en-keyword=Long-term RNA replication kn-keyword=Long-term RNA replication en-keyword=Upregulated host genes kn-keyword=Upregulated host genes en-keyword=Downregulated host genes kn-keyword=Downregulated host genes END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=EBV陽性びまん性大細胞型B細胞リンパ腫におけるBACH2の高率な発現低下 kn-title=Frequent downregulation of BACH2 expression in Epstein?Barr virus-positive diffuse large B-cell lymphoma en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NojimaMai en-aut-sei=Nojima en-aut-mei=Mai kn-aut-name=能島舞 kn-aut-sei=能島 kn-aut-mei=舞 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=7 article-no= start-page=371 end-page=376 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy and Safety of Salmeterol/fluticasone Combination Therapy in Infants and Preschool Children with Asthma Insufficiently Controlled by Inhaled Corticosteroids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Clinical evidences of inhaled salmeterol/fluticasone propionate combination (SFC) therapy are insufficient in early childhood asthma.
Objectives: To examine the effects of SFC50, a combination product of salmeterol xinafoate (50 μg/day) and fluticasone propionate (100 μg/day), in infants and preschool children with asthma.
Methods: The study was conducted at 31 sites in Japan. 35 patients (6 months to 5 years old) with asthma insufficiently controlled by inhaled corticosteroids (100 μg/day) were initiated to treat with SFC50 twice a day for 12 weeks with pressurized metered dose inhalers. The efficacy of SFC50 was assessed using nighttime sleep disorder score as the primary endpoint and the other efficacy measurements. The safety measurement included the incidences of adverse event (AE).
Results: Mean patient age was 3.1 years, and 94.2% had mild-to-moderate persistent asthma (atopic type: 65.7%). Nighttime sleep disorder scores, assessed by a nighttime sleep diary, significantly decreased after treatment with SFC50 throughout the study period (p<0.01). SFC50 also significantly improved other efficacy outcomes including asthma symptom score, frequency of short-acting beta-agonist treatment, frequency of unscheduled visits to clinic, frequency of exacerbation due to virus infection, asthma control score and patient QOL score (p<0.01). AEs of cold, upper respiratory inflammation and asthmatic attack occurred in each of the 3 patients (8.6%); however, these were not regarded as treatment-related AEs.
Conclusions: SFC50 improved nighttime sleep disorder score and other efficacy outcome measures with no safety concerns. The results suggest that SFC50 treatment is useful to control the mild-to-moderate asthma in infant and preschool-aged children. en-copyright= kn-copyright= en-aut-name=YoshiharaS. en-aut-sei=Yoshihara en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaH. en-aut-sei=Fukuda en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamuraM. en-aut-sei=Tamura en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArisakaO. en-aut-sei=Arisaka en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaM. en-aut-sei=Ikeda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukudaN. en-aut-sei=Fukuda en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujiT. en-aut-sei=Tsuji en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaS. en-aut-sei=Hasegawa en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KannoN. en-aut-sei=Kanno en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TeraokaM. en-aut-sei=Teraoka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WakiguchiH. en-aut-sei=Wakiguchi en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AokiY. en-aut-sei=Aoki en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TeradaA. en-aut-sei=Terada en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaM. en-aut-sei=Hasegawa en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MankiA. en-aut-sei=Manki en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IgarashiH. en-aut-sei=Igarashi en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Pediatrics, Dokkyo Medical University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Dokkyo Medical University kn-affil= affil-num=3 en-affil=Department of Pediatrics, Dokkyo Medical University kn-affil= affil-num=4 en-affil=Department of Pediatrics, Dokkyo Medical University kn-affil= affil-num=5 en-affil=Department of Pediatric Acute Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Grimm Pediatrics and Allergy Clinic kn-affil= affil-num=7 en-affil=Department of Pediatrics, JA Hiroshima General Hospital kn-affil= affil-num=8 en-affil=Department of Pediatrics, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Nishikata Hospital kn-affil= affil-num=10 en-affil=Department of Pediatrics, Kurashiki Municipal Hospital kn-affil= affil-num=11 en-affil=Department of Pediatrics, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Pediatrics, Nagato General Hospital kn-affil= affil-num=13 en-affil=Terada Kid’s Allergy & Asthma Clinic kn-affil= affil-num=14 en-affil=Department of Pediatrics, Yamaguchi Grand Medical Center kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama City Hospital kn-affil= affil-num=16 en-affil=Department of Pediatrics, Nogi Hospital kn-affil= en-keyword=salmeterol/fluticasone combination kn-keyword=salmeterol/fluticasone combination en-keyword=asthma kn-keyword=asthma en-keyword=infant kn-keyword=infant en-keyword=preschool children kn-keyword=preschool children en-keyword=nighttime sleep disorder score kn-keyword=nighttime sleep disorder score en-keyword=long-acting beta-agonist kn-keyword=long-acting beta-agonist en-keyword= inhaled corticosteroid kn-keyword= inhaled corticosteroid END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=3 article-no= start-page=171 end-page=174 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20161201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2015 Incentive Award of the Okayama Medical Association in Cardiovascular and Pulmonary Research (2015 Sunada Prize) kn-title=平成27年度岡山医学会賞 胸部・循環研究奨励賞(砂田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NosakaNobuyuki en-aut-sei=Nosaka en-aut-mei=Nobuyuki kn-aut-name=野坂宜之 kn-aut-sei=野坂 kn-aut-mei=宜之 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=2 article-no= start-page=99 end-page=102 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2015 Incentive Award of the Okayama Medical Association in Cancer Research (2015 Hayashibara Prize and Yamada Prize) kn-title=平成27年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name=團迫浩方 kn-aut-sei=團迫 kn-aut-mei=浩方 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍ウイルス学 END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=2 article-no= start-page=91 end-page=94 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2015 Incentive Award of the Okayama Medical Association in General Medical Science (2015 Yuuki Prize) kn-title=平成27年度岡山医学会賞 総合研究奨励賞(結城賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KajitaAi en-aut-sei=Kajita en-aut-mei=Ai kn-aut-name=梶田藍 kn-aut-sei=梶田 kn-aut-mei=藍 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Hospital kn-affil=岡山大学病院 皮膚科 END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue= article-no= start-page=28 end-page=32 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Comparison of promoters for transient gene expression in avian cells kn-title=鳥類細胞における一過性遺伝子発現のためのプロモーターの比較 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Genome editing technology by the CRISPR/Cas9, which was developed in 2012, is applicable in a variety of species. In birds, because the techniques of gene transfer and gene disruption has not been established, CRISPR/Cas9 method using adeno-associated virus (AAV) vector is the ideal combination as genome editing in vivo. However, in the use of AAV vectors, there is a problem to be solved that there is a limit on the size of the gene can be introduced. Therefore, it is important to minimize as much as possible the size of the gene. One strategy is to change the Cas9 gene into smaller ones, the other one is to minimize the promoter sequence. In this study, for the purpose of minimization of the promoter sequence to be introduced, the activities of the promoters to be general-purpose in mammals were verified in avian cells. CMV, CAG, and miCMV promoter shorten the CMV are all had sufficient activity in avian cells. en-copyright= kn-copyright= en-aut-name=KudoToshiyuki en-aut-sei=Kudo en-aut-mei=Toshiyuki kn-aut-name=工藤季之 kn-aut-sei=工藤 kn-aut-mei=季之 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=就実大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Rab13はC型肝炎ウイルス感染の侵入過程に関与する kn-title=Rab13 Is Involved in the Entry Step of Hepatitis C Virus Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TakedaMidori en-aut-sei=Takeda en-aut-mei=Midori kn-aut-name=武田緑 kn-aut-sei=武田 kn-aut-mei=緑 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=長期にわたるC型肝炎ウイルスのRNA複製によるCPB2遺伝子の発現抑制機構の解析 kn-title=Molecular Mechanism Underlying the Suppression of CPB2 Expression Caused by Persistent Hepatitis C Virus RNA Replication en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SejimaHiroe en-aut-sei=Sejima en-aut-mei=Hiroe kn-aut-name=瀬島寛恵 kn-aut-sei=瀬島 kn-aut-mei=寛恵 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=抗High mobility group box-1モノクローナル抗体はインフルエンザAウイルス(H1N1)肺炎に対し治療効果を有する kn-title=Anti-high mobility group box-1 monoclonal antibody treatment provides protection against influenza A virus (H1N1)-induced pneumonia in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NosakaNobuyuki en-aut-sei=Nosaka en-aut-mei=Nobuyuki kn-aut-name=野坂宜之 kn-aut-sei=野坂 kn-aut-mei=宜之 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=2 article-no= start-page=111 end-page=118 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rab13 Is Involved in the Entry Step of Hepatitis C Virus Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=Membrane transport probably participates in the lifecycle of hepatitis C virus (HCV). Rab proteins are essential host factors for HCV RNA replication, but these proteins’ roles in other steps of the HCV lifecycle are not clear. The tight junction (TJ) plays a key role in HCV infection. Rab13 regulates the endocytic recycling of the TJ-associated proteins. Here we investigated whether Rab13 is involved in the HCV entry step. We used HuH-7-derived RSc cells and Li23-derived D7 cells. To evaluate the effect of Rab13 in HCV infection, we transfected the cells with siRNA targeting Rab13 before HCV infection. The down-regulation of Rab13 inhibited HCV infection. The D7 cells had showed a greater inhibitory effect against HCV infection compared to that in the RSc cells by Rab13 knockdown. Next, to evaluate the effect of Rab13 after infection, we inoculated the cells with HCV before transfection of the siRNA. The down-regulation of Rab13 did not show any effects after HCV infection. We further examined whether Rab13 would influence HCV RNA replication by using HCV replicon-harboring cells. The results revealed that Rab13 did not affect the step of HCV RNA replication. These results suggest that Rab13 plays an important role in the step of HCV entry. en-copyright= kn-copyright= en-aut-name=TakedaMidori en-aut-sei=Takeda en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakitaTakaji en-aut-sei=Wakita en-aut-mei=Takaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Virology II, National Institute of Infectious Diseases affil-num=6 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=hepatitis C virus kn-keyword=hepatitis C virus en-keyword=Rab13 kn-keyword=Rab13 en-keyword=occludin kn-keyword=occludin en-keyword=claudin 1 kn-keyword=claudin 1 END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=2 article-no= start-page=75 end-page=88 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Mechanism Underlying the Suppression of CPB2 Expression Caused by Persistent Hepatitis C Virus RNA Replication en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mechanisms of hepatitis C virus (HCV)-associated hepatocarcinogenesis and disease progression are unclear. We previously observed that the expression level of carboxypeptidase B2 (CPB2) gene was remarkably suppressed by persistent HCV RNA replication in human hepatoma cell line Li23-derived cells. The results of the present study demonstrated that the CPB2 expression in patients with chronic hepatitis C was inversely correlated with several risk factors of hepatic fibrosis or steatosis, although ectopic CPB2 expression did not suppress the expression of fibrogenic or lipogenic genes. The suppressed CPB2 expression was restored by treatment with 5-azacytidine. To clarify the mechanism underlying this phenomenon, we analyzed the CPB2 promoter, and the results revealed that (1) hepatocyte nuclear factor 1 (HNF1), especially HNF1α, was essential for the CPB2 promoter, and (2) CPB2 promoter was not methylated by persistent HCV RNA replication. The expression levels of HNF1α and HNF1β were also not changed by persistent HCV RNA replication. These results suggest the existence of 5-azacytidine-inducible or -reducible unknown factor(s) that can control the CPB2 expression. To evaluate this idea we performed a microarray analysis, and several gene candidates corresponding to the suggested factor(s) were identified. en-copyright= kn-copyright= en-aut-name=SejimaHiroe en-aut-sei=Sejima en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HondaMasao en-aut-sei=Honda en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanekoShuichi en-aut-sei=Kaneko en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Gastroenterology, Kanazawa University Graduate School of Medicine affil-num=5 en-affil= kn-affil=Department of Gastroenterology, Kanazawa University Graduate School of Medicine affil-num=6 en-affil= kn-affil=Department of Persistent and Oncogenic Viruses, Kagoshima University Graduate School of Medical and Dental Sciences affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=persistent hepatitis C virus replication kn-keyword=persistent hepatitis C virus replication en-keyword=carboxypeptidase B2 kn-keyword=carboxypeptidase B2 en-keyword=suppression mechanism of CPB2 expression kn-keyword=suppression mechanism of CPB2 expression en-keyword=DNA methylation kn-keyword=DNA methylation en-keyword=hepatocyte nuclear factor 1 kn-keyword=hepatocyte nuclear factor 1 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20151231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=初感染及び再感染の流行性耳下腺炎患児における血清特異抗体応答とウイルス遺伝子型 kn-title=Virus genotypes and responses of serum-specific antibodies in children with primary mumps and mumps reinfection en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SakataRika en-aut-sei=Sakata en-aut-mei=Rika kn-aut-name=坂田理香 kn-aut-sei=坂田 kn-aut-mei=理香 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=1 article-no= start-page=1 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Entecavir Reduces Hepatocarcinogenesis in Chronic Hepatitis B Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chronic hepatitis B (CHB) leads to cirrhosis and hepatocellular carcinoma (HCC). With a cohort of 1,206 CHB patients who visited Okayama University Hospital and related hospitals in 2011 and 2012, we compared the incidence rates of HCC among the patients grouped by age, hepatitis B virus (HBV) DNA, hepatitis B e antigen (HBeAg), and treatment. HCCs were observed in 115 patients with the median observation period of 1,687 days. Among the HCC patients aged ≥ 35 years, HBV DNA ≥ 4 log copies/mL and positive HBeAg at diagnosis (n=184), the HCC incidence rate was 8.4% at 5 years in the entecavir (ETV)-treated patients, 21.8% in the lamivudine (LVD)-treated patients, and 26.4% among the patients not treated with drugs. The cumulative HCC incidence was significantly reduced in the ETV-treated patients compared to those treated with LVD or not treated (p=0.013). Among the patients aged ≥ 35 years with HBV DNA ≥ 4 log copies/mL and negative HBeAg (n=237), the cumulative HCC incidence was 14.6% in 5 years in ETV group and 13.9% among those not treated with a drug (p>0.05). Only small numbers of HCCs occurred in other patients. In CHB patients aged≥35 years with HBV DNA ≥4 log copies/mL and positive HBeAg, ETV treatment is recommended for the suppression of HCC development. en-copyright= kn-copyright= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimotoYuki en-aut-sei=Morimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiokaShin-ichi en-aut-sei=Fujioka en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToshimoriJunichi en-aut-sei=Toshimori en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KobashiHaruhiko en-aut-sei=Kobashi en-aut-mei=Haruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KariyamaKazuya en-aut-sei=Kariyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimotoYoichi en-aut-sei=Morimoto en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakayamaHiroki en-aut-sei=Takayama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SenoTomonori en-aut-sei=Seno en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakaguchiKoichi en-aut-sei=Takaguchi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MoriyaAkio en-aut-sei=Moriya en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MiyatakeHirokazu en-aut-sei=Miyatake en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OkamotoRyoichi en-aut-sei=Okamoto en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YabushitaKazuhisa en-aut-sei=Yabushita en-aut-mei=Kazuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Internal Medicine, Okayama Saiseikai General hospital affil-num=6 en-affil= kn-affil=Department of Gastroenterology, Okayama Red Cross Hospital affil-num=7 en-affil= kn-affil=Department of Gastroenterology, Okayama Red Cross Hospital affil-num=8 en-affil= kn-affil=Department of Liver Disease Center, Okayama City Hospital affil-num=9 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital affil-num=10 en-affil= kn-affil=Department of Gastroenterology, Tsuyama Central Hospital affil-num=11 en-affil= kn-affil=Department of Hepatology, Kagawa Prefectural Central Hospital affil-num=12 en-affil= kn-affil=Department of Hepatology, Kagawa Prefectural Central Hospital affil-num=13 en-affil= kn-affil=Department of Medicine, Mitoyo Central Hospital affil-num=14 en-affil= kn-affil=Department of Internal Medicine, Hiroshima City Hospital affil-num=15 en-affil= kn-affil=Department of Internal Medicine, Hiroshima City Hospital affil-num=16 en-affil= kn-affil=Department of Internal Medicine, Fukuyama City Hospital affil-num=17 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=18 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=entecavir kn-keyword=entecavir en-keyword=hepatitis B virus kn-keyword=hepatitis B virus en-keyword=lamivudine kn-keyword=lamivudine en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=3 article-no= start-page=e91156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic Characterization of Hepatitis C Virus in Long-Term RNA Replication Using Li23 Cell Culture Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background    The most distinguishing genetic feature of hepatitis C virus (HCV) is its remarkable diversity and variation. To understand this feature, we previously performed genetic analysis of HCV in the long-term culture of human hepatoma HuH-7-derived HCV RNA-replicating cell lines. On the other hand, we newly established HCV RNA-replicating cell lines using human hepatoma Li23 cells, which were distinct from HuH-7 cells.   Methodology/Principal Findings    Li23-derived HCV RNA-replicating cells were cultured for 4 years. We performed genetic analysis of HCVs recovered from these cells at 0, 2, and 4 years in culture. Most analysis was performed in two separate parts: one part covered from the 5′-terminus to NS2, which is mostly nonessential for RNA replication, and the other part covered from NS3 to NS5B, which is essential for RNA replication. Genetic mutations in both regions accumulated in a time-dependent manner, and the mutation rates in the 5′-terminus-NS2 and NS3-NS5B regions were 4.0?9.0×10?3 and 2.7?4.0×10?3 base substitutions/site/year, respectively. These results suggest that the variation in the NS3-NS5B regions is affected by the pressure of RNA replication. Several in-frame deletions (3?105 nucleotides) were detected in the structural regions of HCV RNAs obtained from 2-year or 4-year cultured cells. Phylogenetic tree analyses clearly showed that the genetic diversity of HCV was expanded in a time-dependent manner. The GC content of HCV RNA was significantly increased in a time-dependent manner, as previously observed in HuH-7-derived cell systems. This phenomenon was partially due to the alterations in codon usages for codon optimization in human cells. Furthermore, we demonstrated that these long-term cultured cells were useful as a source for the selection of HCV clones showing resistance to anti-HCV agents.   Conclusions/Significance    Long-term cultured HCV RNA-replicating cells are useful for the analysis of evolutionary dynamics and variations of HCV and for drug-resistance analysis. en-copyright= kn-copyright= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SejimaHiroe en-aut-sei=Sejima en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriKyoko en-aut-sei=Mori en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=e72519 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Preclinical Antimalarial Drugs Potently Inhibit Hepatitis C Virus Genotype 1b RNA Replication en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND: Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. Although new triple therapy (pegylated-interferon, ribavirin, and telaprevir/boceprevir) has recently been started and is expected to achieve a sustained virologic response of more than 70% in HCV genotype 1 patients, there are several problems to be resolved, including skin rash/ageusia and advanced anemia. Thus a new type of anti-HCV drug is still needed.   METHODOLOGY/PRINCIPAL FINDINGS:     Recently developed HCV drug assay systems using HCV-RNA-replicating cells (e.g., HuH-7-derived OR6 and Li23-derived ORL8) were used to evaluate the anti-HCV activity of drug candidates. During the course of the evaluation of anti-HCV candidates, we unexpectedly found that two preclinical antimalarial drugs (N-89 and its derivative N-251) showed potent anti-HCV activities at tens of nanomolar concentrations irrespective of the cell lines and HCV strains of genotype 1b. We confirmed that replication of authentic HCV-RNA was inhibited by these drugs. Interestingly, however, this anti-HCV activity did not work for JFH-1 strain of genotype 2a. We demonstrated that HCV-RNA-replicating cells were cured by treatment with only N-89. A comparative time course assay using N-89 and interferon-α demonstrated that N-89-treated ORL8 cells had more rapid anti-HCV kinetics than did interferon-α-treated cells. This anti-HCV activity was largely canceled by vitamin E. In combination with interferon-α and/or ribavirin, N-89 or N-251 exhibited a synergistic inhibitory effect.    CONCLUSIONS/SIGNIFICANCE:    We found that the preclinical antimalarial drugs N-89 and N-251 exhibited very fast and potent anti-HCV activities using cell-based HCV-RNA-replication assay systems. N-89 and N-251 may be useful as a new type of anti-HCV reagents when used singly or in combination with interferon and/or ribavirin. en-copyright= kn-copyright= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaMidori en-aut-sei=Takeda en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKyoko en-aut-sei=Mori en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakitaTakaji en-aut-sei=Wakita en-aut-mei=Takaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoAkira en-aut-sei=Sato en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatayaYusuke en-aut-sei=Wataya en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Virology II, National Institute of Infectious Disease affil-num=6 en-affil= kn-affil=Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University affil-num=7 en-affil= kn-affil=Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University affil-num=8 en-affil= kn-affil=Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University affil-num=9 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anticancer virus solution provides an alternative to surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name=藤原俊義 kn-aut-sei=藤原 kn-aut-mei=俊義 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=無限の遅れを持つウイルス免疫モデル(単一株モデルおよび複数株モデル) のリアプノフ汎関数 kn-title=Lyapunov Functionals for Virus-Immune Models with Infinite Delay ? One-strain and Multistrain Models en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OtaniYoji en-aut-sei=Otani en-aut-mei=Yoji kn-aut-name=應谷洋二 kn-aut-sei=應谷 kn-aut-mei=洋二 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=3 article-no= start-page=209 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20151201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A primary diffuse large B-cell lymphoma of the liver treated with R-CHOP regimen kn-title=Rituximab併用CHOP療法が奏効した肝原発びまん性大細胞型B細胞リンパ腫の1例 en-subtitle= kn-subtitle= en-abstract= kn-abstract= A 78-year-old Japanese man was referred to our hospital after experiencing black feces. No abnormal finding was detected in the endoscopic examination of his stomach and large intestines. Computed tomography (CT) of the abdomen revealed a tumor lesion in the right lobe of the liver. A needle biopsy of the tumor under ultrasound guidance was performed. A pathological examination of the biopsy specimen showed a diffuse proliferation of lymphoma cells, which was compatible with diffuse large B-cell lymphoma (DLBCL). F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)-CT demonstrated increased FDG uptake only in the liver tumor. We made the diagnosis of primary DLBCL of the liver. After six cycles of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP), the patient achieved complete remission and has maintained remission for 2 years since the diagnosis. The R-CHOP regimen might be effective therapy for primary DLBCL of the liver. en-copyright= kn-copyright= en-aut-name=OkadaHiroshi en-aut-sei=Okada en-aut-mei=Hiroshi kn-aut-name=岡田博 kn-aut-sei=岡田 kn-aut-mei=博 aut-affil-num=1 ORCID= en-aut-name=FujiiSoichiro en-aut-sei=Fujii en-aut-mei=Soichiro kn-aut-name=藤井総一郎 kn-aut-sei=藤井 kn-aut-mei=総一郎 aut-affil-num=2 ORCID= en-aut-name=WatanabeKentaro en-aut-sei=Watanabe en-aut-mei=Kentaro kn-aut-name=渡邉謙太郎 kn-aut-sei=渡邉 kn-aut-mei=謙太郎 aut-affil-num=3 ORCID= en-aut-name=ShigematuTerunobu en-aut-sei=Shigematu en-aut-mei=Terunobu kn-aut-name=重松照伸 kn-aut-sei=重松 kn-aut-mei=照伸 aut-affil-num=4 ORCID= en-aut-name=MiyashitaKatsuhiro en-aut-sei=Miyashita en-aut-mei=Katsuhiro kn-aut-name=宮下雄博 kn-aut-sei=宮下 kn-aut-mei=雄博 aut-affil-num=5 ORCID= en-aut-name=OkazakiMorihiro en-aut-sei=Okazaki en-aut-mei=Morihiro kn-aut-name=岡崎守宏 kn-aut-sei=岡崎 kn-aut-mei=守宏 aut-affil-num=6 ORCID= en-aut-name=KobashiHaruhiko en-aut-sei=Kobashi en-aut-mei=Haruhiko kn-aut-name=小橋春彦 kn-aut-sei=小橋 kn-aut-mei=春彦 aut-affil-num=7 ORCID= en-aut-name=YokoyamaMotohiro en-aut-sei=Yokoyama en-aut-mei=Motohiro kn-aut-name=横山元浩 kn-aut-sei=横山 kn-aut-mei=元浩 aut-affil-num=8 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name=吉野正 kn-aut-sei=吉野 kn-aut-mei=正 aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=岡山赤十字病院 affil-num=2 en-affil= kn-affil=岡山赤十字病院 affil-num=3 en-affil= kn-affil=岡山赤十字病院 affil-num=4 en-affil= kn-affil=岡山赤十字病院 affil-num=5 en-affil= kn-affil=岡山赤十字病院 affil-num=6 en-affil= kn-affil=岡山赤十字病院 affil-num=7 en-affil= kn-affil=岡山赤十字病院 affil-num=8 en-affil= kn-affil=岡山赤十字病院 affil-num=9 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 en-keyword=びまん性大細胞型B細胞リンパ腫(diffuse large B-cell lymphoma) kn-keyword=びまん性大細胞型B細胞リンパ腫(diffuse large B-cell lymphoma) en-keyword=肝臓(liver) kn-keyword=肝臓(liver) en-keyword=R-CHOP療法(R-CHOP regimen) kn-keyword=R-CHOP療法(R-CHOP regimen) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=2015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly en-subtitle= kn-subtitle= en-abstract= kn-abstract=During viral replication, the innate immune response is induced through the recognition of viral replication intermediates by host factor(s). One of these host factors, cyclic GMP-AMP synthetase (cGAS), was recently reported to be involved in the recognition of viral DNA derived from DNA viruses. However, it is uncertain whether cGAS is involved in the recognition of hepatitis B virus (HBV), which is a hepatotropic DNA virus. In the present study, we demonstrated that HBV genome-derived dsDNA induced the innate immune response through cGAS and its adaptor protein, STING, in human hepatoma Li23 cells expressing high levels of cGAS. In addition, we demonstrated that HBV infection induced ISG56 through the cGAS-STING signaling pathway. This signaling pathway also showed an antiviral response towards HBV through the suppression of viral assembly. From these results, we conclude that the cGAS-STING signaling pathway is required for not only the innate immune response against HBV but also the suppression of HBV assembly. The cGAS-STING signaling pathway may thus be a novel target for anti-HBV strategies. en-copyright= kn-copyright= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkumuraNobuaki en-aut-sei=Okumura en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiyamaMasaya en-aut-sei=Sugiyama en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MizokamiMasashi en-aut-sei=Mizokami en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine affil-num=6 en-affil= kn-affil=Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry affil-num=8 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences en-keyword=Antiviral response kn-keyword=Antiviral response en-keyword=hepatitis B virus kn-keyword=hepatitis B virus en-keyword=innate immune response kn-keyword=innate immune response en-keyword=cGAS-STING signaling pathway kn-keyword=cGAS-STING signaling pathway en-keyword=viral assembly kn-keyword=viral assembly END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=genotype2型C型慢性肝炎に対するペグインターフェロンとリバビリン併用療法の治療期間延長の有効性 kn-title=Effectiveness of Extending Treatment Duration in Therapy with Pegylated Interferon and Ribavirin for Genotype 2 Hepatitis C Virus Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NanbaShintarou en-aut-sei=Nanba en-aut-mei=Shintarou kn-aut-name=難波真太郎 kn-aut-sei=難波 kn-aut-mei=真太郎 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=4 article-no= start-page=237 end-page=244 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of Extending Treatment Duration in Therapy with Pegylated Interferon and Ribavirin for Genotype 2 Hepatitis C Virus Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=The effectiveness of extending treatment duration as response guided therapy was previously reported for chronic hepatitis C (CHC) genotype 1, but is still controversial for genotype 2. The present study is a retrospective cohort study to investigate the effectiveness of extending treatment duration in therapy with pegylated interferon and ribavirin for patients with CHC genotype 2 by focusing on the timing at which patients obtained undetectable HCV RNA. A total of 306 patients who obtained undetectable HCV RNA by week 24 of treatment and completed 24 weeks of treatment were enrolled. Rapid virological response (RVR) to standard therapy was achieved by 122 patients (51オ), and 89オ of them obtained sustained virological response (SVR), while 69オ of non-RVR patients achieved SVR. Non-RVR patients with undetectable HCV RNA at week 8, and insufficient adherence<80オ pegylated interferon and ribavirin during the first 24 weeks, significantly improved their SVR rate by extended therapy. Among patients receiving extended therapy, drug adherences did not differ between SVR and non-SVR patients, indicating that extending treatment duration might compensate for insufficient antiviral effects due to insufficient drug adherences. This finding might be useful in creating a guideline for extending treatment duration for patients with CHC genotype 2. en-copyright= kn-copyright= en-aut-name=NanbaShintarou en-aut-sei=Nanba en-aut-mei=Shintarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiokaShin-ichi en-aut-sei=Fujioka en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArakiYasuyuki en-aut-sei=Araki en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaguchiKouichi en-aut-sei=Takaguchi en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoNoriaki en-aut-sei=Hashimoto en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SekiHiroyuki en-aut-sei=Seki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University affil-num=2 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University affil-num=3 en-affil= kn-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital affil-num=4 en-affil= kn-affil=Department of Internal Medicine, Hiroshima City Hospital affil-num=5 en-affil= kn-affil=Department of Internal Medicine, Kagawa Prefectural Central Hospital affil-num=6 en-affil= kn-affil=Department of Internal Medicine, Mihara Red Cross Hospital affil-num=7 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University affil-num=8 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University affil-num=9 en-affil= kn-affil=Health Service Center, Okayama University affil-num=10 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University en-keyword=hepatitis C virus kn-keyword=hepatitis C virus en-keyword=interferon kn-keyword=interferon en-keyword=genotype 2 kn-keyword=genotype 2 en-keyword=response-guided therapy kn-keyword=response-guided therapy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=S100P,SV40混合抗体を用いた同時染色による尿中BK virus感染デコイ細胞の由来解析 kn-title=Simultaneous immunostaining with anti-S100P and anti-SV40 antibodies revealed the origin of BK virus-infected decoy cells in voided urine samples en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AriyasuSanae en-aut-sei=Ariyasu en-aut-mei=Sanae kn-aut-name=有安早苗 kn-aut-sei=有安 kn-aut-mei=早苗 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=1b遺伝子型C型肝炎ウイルスのRNA複製を強く阻害する新規抗マラリア薬候補 kn-title=New Preclinical Antimalarial Drugs Potently Inhibit Hepatitis C Virus Genotype 1b RNA Replication en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UedaYuki en-aut-sei=Ueda en-aut-mei=Yuki kn-aut-name=上田優輝 kn-aut-sei=上田 kn-aut-mei=優輝 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=EBウイルス関連の種痘様水疱症と蚊刺過敏症の予後と予後因子の検討 kn-title=Survival Rates and Prognostic Factors of Epstein-Barr Virus-Associated Hydroa Vacciniforme and Hypersensitivity to Mosquito Bites en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MiyakeTomoko en-aut-sei=Miyake en-aut-mei=Tomoko kn-aut-name=三宅智子 kn-aut-sei=三宅 kn-aut-mei=智子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=C型慢性肝炎患者における肝細胞癌発症の遺伝的因子の検討:ケースコントロール研究 kn-title=Genetic risk of hepatocellular carcinoma in patients with hepatitis C virus: A case control study en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TomodaTakeshi en-aut-sei=Tomoda en-aut-mei=Takeshi kn-aut-name=友田健 kn-aut-sei=友田 kn-aut-mei=健 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=2 article-no= start-page=71 end-page=78 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Annexin A1 Negatively Regulates Viral RNA Replication of Hepatitis C Virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Persistent infection with hepatitis C virus (HCV) often causes chronic hepatitis, and then shows a high rate of progression to liver cirrhosis and hepatocellular carcinoma. To clarify the mechanism of the persistent HCV infection is considered to be important for the discovery of new target(s) for the development of anti-HCV strategies. In the present study, we found that the expression level of annexin A1 (ANXA1) in human hepatoma cell line Li23-derived D7 cells was remarkably lower than that in parental Li23 cells, whereas the susceptibility of D7 cells to HCV infection was much higher than that of Li23 cells. Therefore, we hypothesized that ANXA1 negatively regulates persistent HCV infection through the inhibition of viral RNA replication. The results revealed that HCV production was significantly inhibited without a concomitant reduction in the amount of lipid droplets in the D7 cells stably expressing exogenous ANXA1. Further, we demonstrated that ANXA1 negatively regulated the step of viral RNA replication rather than that of viral entry in human hepatocytes. These results suggest that ANXA1 would be a novel target for the development of anti-HCV strategies. en-copyright= kn-copyright= en-aut-name=HiramotoHiroki en-aut-sei=Hiramoto en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakedaMidori en-aut-sei=Takeda en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatohShinya en-aut-sei=Satoh en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakitaTakaji en-aut-sei=Wakita en-aut-mei=Takaji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Virology II, National Institute of Infectious Disease affil-num=6 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=HCV kn-keyword=HCV en-keyword=annexin A1 kn-keyword=annexin A1 en-keyword=Li23 cell line kn-keyword=Li23 cell line en-keyword=Li23-derived D7 cells kn-keyword=Li23-derived D7 cells en-keyword=HCV-JFH-1 kn-keyword=HCV-JFH-1 END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=11 article-no= start-page=1172 end-page=1182 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Laparoscopic findings of reddish markings predict hepatocellular carcinoma in patients with hepatitis B virus-related liver disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=For patients with chronic hepatitis due to hepatitis B virus (HBV), factors predicting hepatocellular carcinoma (HCC) other than high levels of HBV-DNA and alanine aminotransferase (ALT) are needed to prevent HCC development, as many patients with chronic HBV infection fulfill these conditions. The purpose of this study was to clarify factors predictive of HCC development for those patients. The study was a systematic cohort analysis of 303 consecutive patients with hepatitis B e-antigen, receiving laparoscopic examination for assessment of liver disease. Laparoscopic, histological, and clinical characteristics were investigated as related to HCC development. HCC occurred in 27 patients during a mean follow-up of 8.0 +/- A 5.0 years, at the age of 37-72 years. Significant associations with HCC development were shown for liver cirrhosis, histological activity grade, reddish markings, and older age. Multivariate analysis revealed that HCC development was strongly associated with older age and male gender (P = 0.002 and P = 0.043, respectively). HCC occurred more frequently in patients of age a parts per thousand yen30 years even with early stage than in patients of age < 30 years (P = 0.031). Severe reddish markings, a laparoscopic finding of widespread parenchymal destruction, were highly associated with HCC development in patients of age a parts per thousand yen30 years at diagnosis (odds ratio = 1.67, P = 0.034), while histological activity grade and ALT level were not (P = 0.075 and P = 0.69, respectively). HCC development is associated with older age, male gender, and liver cirrhosis. Reddish markings, rather than histological activity or ALT level, can be useful to predict HCC for HBV patients of age a parts per thousand yen30 years. en-copyright= kn-copyright= en-aut-name=ShojiBon en-aut-sei=Shoji en-aut-mei=Bon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiokaShin-ichi en-aut-sei=Fujioka en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobashiHaruhiko en-aut-sei=Kobashi en-aut-mei=Haruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyakeYasuhiro en-aut-sei=Miyake en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=3 en-affil= kn-affil=Okayama Saiseikai Gen Hosp, Dept Internal Med affil-num=4 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=5 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=6 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=7 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=8 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=9 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=10 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=11 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci en-keyword=Hepatitis B virus kn-keyword=Hepatitis B virus en-keyword=Hepatocellular carcinoma kn-keyword=Hepatocellular carcinoma en-keyword=Laparoscopy kn-keyword=Laparoscopy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=腹腔鏡所見「赤色紋理」はB型肝炎ウイルス関連肝疾患患者で肝細胞癌を予測する kn-title=Laparoscopic findings of reddish markings predict hepatocellular carcinoma in patients with hepatitis B virus-related liver disease en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ShojiBon en-aut-sei=Shoji en-aut-mei=Bon kn-aut-name=庄司凡 kn-aut-sei=庄司 kn-aut-mei=凡 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=HCV特異的免疫応答が生体肝移植後の早期経過において肝炎の活動性とドナーのIL28B遺伝子多型に関連している kn-title=Hepatitis C Virus-specific T-cell Response Correlates with Hepatitis Activity and Donor IL28B Genotype Early after Liver Transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TsuzakiRyuichiro en-aut-sei=Tsuzaki en-aut-mei=Ryuichiro kn-aut-name=津崎龍一郎 kn-aut-sei=津崎 kn-aut-mei=龍一郎 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biological Ablation of Sentinel Lymph Node Metastasis in Submucosally Invaded Early Gastrointestinal Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Currently, early gastrointestinal cancers are treated endoscopically, as long as there are no lymph node metastases. However, once a gastrointestinal cancer invades the submucosal layer, the lymph node metastatic rate rises to higher than 10%. Therefore, surgery is still the gold standard to remove regional lymph nodes containing possible metastases. Here, to avoid prophylactic surgery, we propose a less-invasive biological ablation of lymph node metastasis in submucosally invaded gastrointestinal cancer patients. We have established an orthotopic early rectal cancer xenograft model with spontaneous lymph node metastasis by implantation of green fluorescent protein (GFP)-labeled human colon cancer cells into the submucosal layer of the murine rectum. A solution containing telomerase-specific oncolytic adenovirus was injected into the peritumoral submucosal space, followed by excision of the primary rectal tumors mimicking the endoscopic submucosal dissection (ESD) technique. Seven days after treatment, GFP signals had completely disappeared indicating that sentinel lymph node metastasis was selectively eradicated. Moreover, biologically treated mice were confirmed to be relapse-free even 4 weeks after treatment. These results indicate that virus-mediated biological ablation selectively targets lymph node metastasis and provides a potential alternative to surgery for submucosal invasive gastrointestinal cancer patients. en-copyright= kn-copyright= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HashimotoYuuri en-aut-sei=Hashimoto en-aut-mei=Yuuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagasakaTakeshi en-aut-sei=Nagasaka en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Robert M Hoffman en-aut-sei=Robert M Hoffman en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Oncolys BioPharma, Inc. affil-num=11 en-affil= kn-affil=Department of Surgery, University of California affil-num=12 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=endoscopic treatment kn-keyword=endoscopic treatment en-keyword=adenovirus kn-keyword=adenovirus en-keyword=colorectal cancer kn-keyword=colorectal cancer en-keyword=lymphatic metastasis kn-keyword=lymphatic metastasis END start-ver=1.4 cd-journal=joma no-vol=171 cd-vols= no-issue=3 article-no= start-page=492 end-page=498 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cathelicidin antimicrobial peptide LL-37 augments interferon-beta expression and antiviral activity induced by double-stranded RNA in keratinocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Cathelicidin antimicrobial peptide LL-37 has the capacity to kill a wide range of microbes and to modify host immunity. Recently, our group observed that the activation of keratinocytes by LL-37 and DNA greatly increases interferon (IFN)-beta through Toll-like receptor (TLR) 9. However, the effect of LL-37 on the induction of IFN-beta through TLR3, a sensor of double-stranded (ds) RNA, in keratinocytes is not well known. Objectives To investigate whether LL-37 could affect TLR3 signalling and antiviral activity in normal human epidermal keratinocytes (NHEKs). Methods We investigated the production of IFN-beta in NHEKs stimulated with a TLR3 ligand, poly (I:C), in the presence of LL-37. To examine the effect of LL-37 and poly (I:C) on antiviral activity, a virus plaque assay using herpes simplex (HS) virus type-1 was carried out. The uptake of poly (I:C) conjugated with fluorescein isothiocyanate (FITC) into the keratinocytes was observed in the presence of LL-37. Immunostaining for TLR3 and LL-37 was performed using skin samples from HS. Results LL-37 and poly (I:C) synergistically induced the expression of IFN-beta in NHEKs. Furthermore, co-stimulation with LL-37 and poly (I:C) significantly decreased the viral plaque numbers compared with poly (I:C) or LL-37 alone. LL-37 enhanced the uptake of FITC-conjugated poly (I:C) into cells. Immunohistochemical analysis demonstrated that the expression of TLR3 and LL-37 is up-regulated in HS lesions. Conclusions Our findings suggest that LL-37 augments the antiviral activity induced by dsRNA in keratinocytes, which may contribute to the innate immune response to cutaneous viral infections such as HS. en-copyright= kn-copyright= en-aut-name=TakiguchiT en-aut-sei=Takiguchi en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorizaneS en-aut-sei=Morizane en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoT en-aut-sei=Yamamoto en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajitaA en-aut-sei=Kajita en-aut-mei=A kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaK en-aut-sei=Ikeda en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwatsukiK en-aut-sei=Iwatsuki en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Dept Dermatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Dept Dermatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=3 en-affil= kn-affil=Kawasaki Med Univ, Dept Dermatol affil-num=4 en-affil= kn-affil=Okayama Univ, Dept Dermatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=5 en-affil= kn-affil=Okayama Univ, Dept Dermatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=6 en-affil= kn-affil=Okayama Univ, Dept Dermatol, Grad Sch Med Dent & Pharmaceut Sci END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=3 article-no= start-page=405 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The impact of patatin-like phospholipase domain-containing protein 3 polymorphism on hepatocellular carcinoma prognosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The single nucleotide polymorphism (SNP) rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is associated with hepatic fat accumulation and disease progression in patients with non-alcoholic fatty liver disease and alcoholic liver disease (ALD). This study was conducted to determine whether PNPLA3 rs738409 SNPs affect development and prognosis of hepatocellular carcinoma (HCC) in patients with various liver diseases. We enrolled 638 consecutive Japanese patients newly diagnosed with HCC between 2001 and 2010: 72 patients with hepatitis B virus (HBV), 462 with hepatitis C virus (HCV), and 104 with non-B non-C (NBNC). NBNC patients exhibited large tumors of advanced TNM stages at HCC diagnosis, and had significantly poorer prognosis than HBV or HCV patients (P < 0.001 and < 0.001, respectively; log-rank test). The G/G genotype of PNPLA3 rs738409 SNP had significantly higher distribution in NBNC patients (P < 0.001) and was significantly associated with higher body mass index (BMI) and an increased aspartate aminotransferase to platelet ratio index. No significant differences were observed in survival with differences in PNPLA3 SNP genotypes among the patients, although ALD patients with the G/G genotype of PNPLA3 SNP and low BMI had significantly poorer survival than those with high BMI (P = 0.028). The G/G genotype of PNPLA3 rs738409 SNP was more frequently distributed, and associated with BMI and fibrosis among NBNC-HCC patients but not among HBV or HCV patients. These genotypes might affect HCC prognosis in ALD patients, but not in HBV, HCV, or NAFLD patients. en-copyright= kn-copyright= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritouYuki en-aut-sei=Moritou en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagiharaHiroaki en-aut-sei=Hagihara en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuwakiKenji en-aut-sei=Kuwaki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyakeYasuhiro en-aut-sei=Miyake en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhnishiHideki en-aut-sei=Ohnishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraShinichiro en-aut-sei=Nakamura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=11 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=12 en-affil= kn-affil=Okayama Univ, Hlth & Environm Ctr affil-num=13 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol affil-num=14 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Gastroenterol & Hepatol en-keyword=Hepatocellular carcinoma kn-keyword=Hepatocellular carcinoma en-keyword=PNPLA3 SNP kn-keyword=PNPLA3 SNP en-keyword=Survival kn-keyword=Survival END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fluorescence virus-guided capturing system of human colorectal circulating tumour cells for non-invasive companion diagnostics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Molecular-based companion diagnostic tests are being used with increasing frequency to predict their clinical response to various drugs, particularly for molecularly targeted drugs. However, invasive procedures are typically required to obtain tissues for this analysis. Circulating tumour cells (CTCs) are novel biomarkers that can be used for the prediction of disease progression and are also important surrogate sources of cancer cells. Because current CTC detection strategies mainly depend on epithelial cell-surface markers, the presence of heterogeneous populations of CTCs with epithelial and/or mesenchymal characteristics may pose obstacles to the detection of CTCs. Methods We developed a new approach to capture live CTCs among millions of peripheral blood leukocytes using a green fluorescent protein (GFP)-expressing attenuated adenovirus, in which the telomerase promoter regulates viral replication (OBP-401, TelomeScan). Results Our biological capturing system can image epithelial and mesenchymal tumour cells with telomerase activities as GFP-positive cells. After sorting, direct sequencing or mutation-specific PCR can precisely detect different mutations in KRAS, BRAF and KIT genes in epithelial, mesenchymal or epithelial?mesenchymal transition-induced CTCs, and in clinical blood samples from patients with colorectal cancer. Conclusions This fluorescence virus-guided viable CTC capturing method provides a non-invasive alternative to tissue biopsy or surgical resection of primary tumours for companion diagnostics. en-copyright= kn-copyright= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoYuuri en-aut-sei=Hashimoto en-aut-mei=Yuuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagasakaTakeshi en-aut-sei=Nagasaka en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoelAjay en-aut-sei=Goel en-aut-mei=Ajay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Oncolys BioPharma, Inc. affil-num=10 en-affil= kn-affil=Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center affil-num=11 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=12 en-affil= kn-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=2 article-no= start-page=544 end-page=548 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Necessity for Reassessment of Patients with Serogroup 2 Hepatitis C Virus (HCV) and Undetectable Serum HCV RNA en-subtitle= kn-subtitle= en-abstract= kn-abstract=We encountered a patient positive for anti-hepatitis C virus (HCV) whose serum HCV RNA was undetectable with the Roche AmpliPrep/Cobas TaqMan HCV assay (CAP/CTM) version 1 but showed a high viral load with the Abbott RealTime HCV assay (ART). Discrepancies in the detectability of serum HCV RNA were investigated among 891 consecutive patients who were positive for anti-HCV. Specific nucleotide variations causing the undetectability of HCV RNA were determined and confirmed by synthesizing RNA coding those variations. Serum samples with the discrepancies were also reassessed by CAP/CTM version 2. Among the 891 anti-HCV-positive patients, 4 patients had serum HCV RNA levels that were undetectable by CAP/CTM version 1 despite having levels of > 5 log IU/ml that were detected by ART. All four patients had HCV genotype 2a and high titers of anti-HCV. Sequencing of the HCV 5' noncoding regions revealed 2 common variations, A at nucleotide (nt) 145 and T at nt 151. Synthesized RNAs of the HCV 5' noncoding region with standard (NCR145G151C) and variant nucleotides at nt 145 and nt 151 were quantified with CAP/CTM. RNAs of NCR145G151C and NCR145G151T were quantifiable with CAP/CTM version 1, while those of NCR145A151T and NCR145A151C went undetected. The substitution from G to A at nt 145 specifically conferred this undetectability, while this undetectability was reverted in synthesized HCV RNA with correction of this variation. Reassessment of these samples by CAP/CTM version 2 resulted in similar levels of HCV RNA being detected by ART. We conclude that HCV patients with undetectable HCV RNA by CAP/CTM version 1 should be reassessed for viral quantification. en-copyright= kn-copyright= en-aut-name=MoritouYuki en-aut-sei=Moritou en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekiHiroyuki en-aut-sei=Seki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NanbaShintaro en-aut-sei=Nanba en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=3 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=4 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=5 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci affil-num=6 en-affil= kn-affil=Okayama Univ, Hlth Serv Ctr affil-num=7 en-affil= kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ペチュニアにおける花器官形成および老化関連遺伝子のVirus-Induced Gene Silencing法を用いた機能解析 kn-title=Functional characterization of flower morphogenesis- and senescence-related genes using virus-induced gene silencing technique in Petunia hybrida en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Siti Hajar Noor Binti Shaarani en-aut-sei=Siti Hajar Noor Binti Shaarani en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END