start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=15 article-no= start-page=2557 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Concept of “Platinum Sensitivity” in Endometrial Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=The concept of “platinum sensitivity” has long guided prognostic assessment and treatment selection in recurrent ovarian cancer. However, the emergence of targeted agents, such as bevacizumab and poly (ADP-ribose) polymerase inhibitors, has complicated its clinical utility. In contrast, emerging evidence suggests that platinum sensitivity may also be applicable to recurrent endometrial cancer. As in ovarian cancer, a prolonged platinum-free interval (PFI) in recurrent endometrial cancer is associated with an improved efficacy of subsequent platinum-based chemotherapy. The PFI is linearly correlated with the response rate to platinum re-administration, progression-free survival, and overall survival. Patients are typically classified as having platinum-resistant or platinum-sensitive disease based on a PFI cutoff of 6 or 12 months. However, unlike in ovarian cancer—where the duration of response to second-line platinum-based chemotherapy rarely exceeds the prior PFI (~3%)—approximately 30% of patients with recurrent endometrial cancer exhibit a sustained response to platinum rechallenge that extends beyond their preceding PFI. Despite the incorporation of immune checkpoint inhibitors into the treatment landscape of endometrial cancer, the role of platinum sensitivity in clinical decision-making—particularly regarding treatment sequencing and drug selection—remains a critical and unresolved issue. Further research is warranted to elucidate the mechanisms underlying platinum resistance and to guide optimal therapeutic strategies. en-copyright= kn-copyright= en-aut-name=NagaoShoji en-aut-sei=Nagao en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujikawaAtsushi en-aut-sei=Fujikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImataniRyoko en-aut-sei=Imatani en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniYoshinori en-aut-sei=Tani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaHirofumi en-aut-sei=Matsuoka en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IdaNaoyuki en-aut-sei=Ida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaragaJunko en-aut-sei=Haraga en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OgawaChikako en-aut-sei=Ogawa en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=endometrial cancer kn-keyword=endometrial cancer en-keyword=platinum sensitivity kn-keyword=platinum sensitivity en-keyword=platinum free interval kn-keyword=platinum free interval END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=2 article-no= start-page=151495 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs. en-copyright= kn-copyright= en-aut-name=TamuraShiori en-aut-sei=Tamura en-aut-mei=Shiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PasangClarissa Ellice Talitha en-aut-sei=Pasang en-aut-mei=Clarissa Ellice Talitha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaMinami en-aut-sei=Tsuda en-aut-mei=Minami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaShilan en-aut-sei=Ma en-aut-mei=Shilan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShindoHiromasa en-aut-sei=Shindo en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhkuboTomoki en-aut-sei=Ohkubo en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiyamaYoichi en-aut-sei=Fujiyama en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaiMiho en-aut-sei=Tamai en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TagawaYoh-ichi en-aut-sei=Tagawa en-aut-mei=Yoh-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation kn-affil= affil-num=8 en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation kn-affil= affil-num=9 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=10 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= en-keyword=Intestine chip kn-keyword=Intestine chip en-keyword=Inflammatory bowel disease kn-keyword=Inflammatory bowel disease en-keyword=Co-culture kn-keyword=Co-culture en-keyword=Tri-culture kn-keyword=Tri-culture en-keyword=Fluidic device kn-keyword=Fluidic device en-keyword=Disease model kn-keyword=Disease model en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Inflammation kn-keyword=Inflammation END start-ver=1.4 cd-journal=joma no-vol=638 cd-vols= no-issue=8049 article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsuya en-aut-sei=Nishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenagaKeizo en-aut-sei=Takenaga en-aut-mei=Keizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiSho en-aut-sei=Aki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiShinichiro en-aut-sei=Suzuki en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoshimaHideki en-aut-sei=Makinoshima en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraYuki en-aut-sei=Nakamura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TatsumiYasutoshi en-aut-sei=Tatsumi en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuenagaYusuke en-aut-sei=Suenaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=IkedaJun-ichiro en-aut-sei=Ikeda en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=OsawaTsuyoshi en-aut-sei=Osawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center kn-affil= affil-num=15 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=16 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute kn-affil= affil-num=19 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=20 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=21 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=22 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=23 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=24 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=25 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=26 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=28 en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University kn-affil= affil-num=29 en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=31 en-affil=Division of Cellular Signalling, National Cancer Center Research Institute kn-affil= affil-num=32 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=33 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=34 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=35 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=27502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression ≥ 50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p = 0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy. en-copyright= kn-copyright= en-aut-name=MoriTakeru en-aut-sei=Mori en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaMio en-aut-sei=Kitagawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaTomokazu en-aut-sei=Hasegawa en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SomeyaMasanori en-aut-sei=Someya en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuchiyaTakaaki en-aut-sei=Tsuchiya en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GochoToshio en-aut-sei=Gocho en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DateMirei en-aut-sei=Date en-aut-mei=Mirei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriiMariko en-aut-sei=Morii en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=3 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=5 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=6 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=7 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Autoantibodies kn-keyword=Autoantibodies en-keyword=PACIFIC regimen kn-keyword=PACIFIC regimen en-keyword=ICIs kn-keyword=ICIs en-keyword=Immune monitoring kn-keyword=Immune monitoring END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=6 article-no= start-page=e00110-25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)−1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection. en-copyright= kn-copyright= en-aut-name=TakiiTakemasa en-aut-sei=Takii en-aut-mei=Takemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaHiroyuki en-aut-sei=Yamada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotozonoChihiro en-aut-sei=Motozono en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamasakiSho en-aut-sei=Yamasaki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TorrellesJordi B. en-aut-sei=Torrelles en-aut-mei=Jordi B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TurnerJoanne en-aut-sei=Turner en-aut-mei=Joanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimishimaAoi en-aut-sei=Kimishima en-aut-mei=Aoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsamiYukihiro en-aut-sei=Asami en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OharaNaoya en-aut-sei=Ohara en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HidaShigeaki en-aut-sei=Hida en-aut-mei=Shigeaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OnozakiKikuo en-aut-sei=Onozaki en-aut-mei=Kikuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association kn-affil= affil-num=2 en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association kn-affil= affil-num=3 en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka kn-affil= affil-num=4 en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka kn-affil= affil-num=5 en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I•CARE) kn-affil= affil-num=6 en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I•CARE) kn-affil= affil-num=7 en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=8 en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=9 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= affil-num=11 en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= affil-num=12 en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= en-keyword=Mycobacterium tuberculosis kn-keyword=Mycobacterium tuberculosis en-keyword=pyroptosis kn-keyword=pyroptosis en-keyword=caspase kn-keyword=caspase en-keyword=RNA-Seq kn-keyword=RNA-Seq en-keyword=cytokine kn-keyword=cytokine en-keyword=fibroblasts kn-keyword=fibroblasts END start-ver=1.4 cd-journal=joma no-vol=779 cd-vols= no-issue= article-no= start-page=152453 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=1,2-naphthoquinone enhances IFN-γ-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-γ-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-γ production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-γ-induced activation of dendritic cells and promotes the activation of CD8 T cells. en-copyright= kn-copyright= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazatoKanon en-aut-sei=Miyazato en-aut-mei=Kanon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobataKai en-aut-sei=Kobata en-aut-mei=Kai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=1,2-Napthoquinone kn-keyword=1,2-Napthoquinone en-keyword=Dendritic cell kn-keyword=Dendritic cell en-keyword=IFN-γ kn-keyword=IFN-γ en-keyword=MHC-I kn-keyword=MHC-I en-keyword=CD8 T cell kn-keyword=CD8 T cell END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=3 article-no= start-page=99 end-page=117 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP en-subtitle= kn-subtitle= en-abstract= kn-abstract=Golli–myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli–myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli–myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli–myelin basic protein knockout through the generation of conditional knockout mice (Golli–myelin basic proteinsfl/fl; E3CreN), in which Golli–myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli–myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli–myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli–myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli–myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli–myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system. en-copyright= kn-copyright= en-aut-name=MiyazakiHaruko en-aut-sei=Miyazaki en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiokaSaki en-aut-sei=Nishioka en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaTomoyuki en-aut-sei=Yamanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeManabu en-aut-sei=Abe en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ImamuraYukio en-aut-sei=Imamura en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyasakaTomohiro en-aut-sei=Miyasaka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KakudaNobuto en-aut-sei=Kakuda en-aut-mei=Nobuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShimogoriTomomi en-aut-sei=Shimogori en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamakawaKazuhiro en-aut-sei=Yamakawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IkawaMasahito en-aut-sei=Ikawa en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NukinaNobuyuki en-aut-sei=Nukina en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=3 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= affil-num=4 en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University kn-affil= affil-num=5 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= affil-num=6 en-affil=Faculty of Life and Medical Sciences, Doshisha University kn-affil= affil-num=7 en-affil=Faculty of Life and Medical Sciences, Doshisha University kn-affil= affil-num=8 en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science kn-affil= affil-num=10 en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science kn-affil= affil-num=11 en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=12 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= en-keyword=Golli-MBP kn-keyword=Golli-MBP en-keyword=Cerebellar granule neuron kn-keyword=Cerebellar granule neuron en-keyword=CRISPR/Cas9 kn-keyword=CRISPR/Cas9 en-keyword=Conditional knockout kn-keyword=Conditional knockout END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs. en-copyright= kn-copyright= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuemoriKanto en-aut-sei=Suemori en-aut-mei=Kanto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaNaohiro en-aut-sei=Okada en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InoueHiroaki en-aut-sei=Inoue en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HashimotoNaoyuki en-aut-sei=Hashimoto en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Neutron Therapy Research Center, Okayama University Hospital kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=199 cd-vols= no-issue= article-no= start-page=108027 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan–Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy—61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group—42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group—37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era. en-copyright= kn-copyright= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiHaruyasu en-aut-sei=Murakami en-aut-mei=Haruyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaHideyuki en-aut-sei=Harada en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SobueTomotaka en-aut-sei=Sobue en-aut-mei=Tomotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTomohiro en-aut-sei=Kato en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AtagiShinji en-aut-sei=Atagi en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokitoTakaaki en-aut-sei=Tokito en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OizumiSatoshi en-aut-sei=Oizumi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SeikeMasahiro en-aut-sei=Seike en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MioTadashi en-aut-sei=Mio en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SoneTakashi en-aut-sei=Sone en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwaoChikako en-aut-sei=Iwao en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IwaneTakeshi en-aut-sei=Iwane en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KotoRyo en-aut-sei=Koto en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsuboiMasahiro en-aut-sei=Tsuboi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center kn-affil= affil-num=3 en-affil=Division of Radiation Therapy, Shizuoka Cancer Center kn-affil= affil-num=4 en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center kn-affil= affil-num=7 en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center kn-affil= affil-num=10 en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, Kanazawa University Hospital kn-affil= affil-num=14 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=15 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=16 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=17 en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East kn-affil= en-keyword=Non-small cell lung cancer kn-keyword=Non-small cell lung cancer en-keyword=Surgery kn-keyword=Surgery en-keyword=Adjuvant therapy kn-keyword=Adjuvant therapy en-keyword=Neoadjuvant therapy kn-keyword=Neoadjuvant therapy en-keyword=Chemoradiotherapy kn-keyword=Chemoradiotherapy en-keyword=Observational study kn-keyword=Observational study en-keyword=Retrospective study kn-keyword=Retrospective study END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(−) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(−) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DürrwaldRalf en-aut-sei=Dürrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-AstúaJuliana en-aut-sei=Freitas-Astúa en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesMárcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=Márcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=ØklandArnfinn Lodden en-aut-sei=Økland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNoël en-aut-sei=Tordo en-aut-mei=Noël kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Nacional de Tecnología Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnología Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Pará kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=27163 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade ≥ 3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade ≥ 3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of ≥ 2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23–4.54, p = 0.01) and a low neutrophil/eosinophil ratio (NER) of ≤ 40.0 (OR: 2.78, 95% CI 1.39–5.53, p = 0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade ≥ 3 TRAEs and help determine individualized treatment strategies in patients with mRCC. en-copyright= kn-copyright= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanagisawaTakafumi en-aut-sei=Yanagisawa en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriKeiichiro en-aut-sei=Mori en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuokayaWataru en-aut-sei=Fukuokaya en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KomuraKazumasa en-aut-sei=Komura en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujinoTakuya en-aut-sei=Tsujino en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaenosonoRyoichi en-aut-sei=Maenosono en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaKiyoshi en-aut-sei=Takahara en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NukayaTakuhisa en-aut-sei=Nukaya en-aut-mei=Takuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InokiLan en-aut-sei=Inoki en-aut-mei=Lan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ToyodaShingo en-aut-sei=Toyoda en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HashimotoTakeshi en-aut-sei=Hashimoto en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HirasawaYosuke en-aut-sei=Hirasawa en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TsuboiKazuma en-aut-sei=Tsuboi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KuroseKyohei en-aut-sei=Kurose en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KimuraTakahiro en-aut-sei=Kimura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=AzumaHaruhito en-aut-sei=Azuma en-aut-mei=Haruhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ShirokiRyoichi en-aut-sei=Shiroki en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=FujitaKazutoshi en-aut-sei=Fujita en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=OhnoYoshio en-aut-sei=Ohno en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=4 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=5 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=6 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=7 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=8 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=9 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=10 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=11 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=13 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=14 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=24 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=25 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=26 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=27 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=28 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=29 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=30 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=31 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=32 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=33 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Renal cell carcinoma kn-keyword=Renal cell carcinoma en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor en-keyword=ICI kn-keyword=ICI en-keyword=Eosinophil kn-keyword=Eosinophil en-keyword=Immune-related adverse event kn-keyword=Immune-related adverse event en-keyword=Treatment-related adverse event kn-keyword=Treatment-related adverse event END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=13 article-no= start-page=e172988 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LAG3 regulates antibody responses in a murine model of kidney transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3–/– recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3–/– recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3–/– recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3–/– recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment. en-copyright= kn-copyright= en-aut-name=NicosiaMichael en-aut-sei=Nicosia en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FanRan en-aut-sei=Fan en-aut-mei=Ran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LeeJuyeun en-aut-sei=Lee en-aut-mei=Juyeun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AllGabriella en-aut-sei=All en-aut-mei=Gabriella kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GorbachevaVictoria en-aut-sei=Gorbacheva en-aut-mei=Victoria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ValenzuelaJosé I. en-aut-sei=Valenzuela en-aut-mei=José I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoYosuke en-aut-sei=Yamamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BeaversAshley en-aut-sei=Beavers en-aut-mei=Ashley kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DvorinaNina en-aut-sei=Dvorina en-aut-mei=Nina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BaldwinWilliam M. en-aut-sei=Baldwin en-aut-mei=William M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ChuluyanEduardo en-aut-sei=Chuluyan en-aut-mei=Eduardo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=GaudetteBrian T. en-aut-sei=Gaudette en-aut-mei=Brian T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FairchildRobert L. en-aut-sei=Fairchild en-aut-mei=Robert L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MinBooki en-aut-sei=Min en-aut-mei=Booki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ValujskikhAnna en-aut-sei=Valujskikh en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=2 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=3 en-affil=Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=4 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=5 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=6 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=7 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=8 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=9 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=10 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=11 en-affil=Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=14 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=15 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=16 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=107 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of concomitant medications on the oncologic efficacy of systemic therapy in patients with advanced or metastatic urothelial carcinoma: a systematic review and meta-analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Immune checkpoint inhibitors (ICI) and chemotherapy, including antibody-drug conjugates, are widely used for the treatment of patients with advanced unresectable or metastatic urothelial carcinoma (UC). The majority of elderly patients receive concomitant medications to address various comorbidities. We aimed to evaluate the impact of concomitant medications on oncological outcomes in patients with advanced unresectable or metastatic UC treated with systemic therapy.
Material & methods: In August 2024, three datasets were queried for studies evaluating concomitant medications in patients with advanced unresectable or metastatic UC. The review protocol was registered in PROSPERO (CRD42024547335). The primary outcome was overall survival (OS). A fixed- or random-effects model was used for meta-analysis depending on the heterogeneity.
Results: We identified 16 eligible studies (3 prospective and 13 retrospective) comprising 4,816 patients. Most reported concomitant medications included proton pump inhibitors (PPIs), antibiotics, steroids, and opioids. The use of concomitant PPIs, antibiotics, steroids or opioids during ICI therapy was associated with worsened OS (PPIs: HR: 1.43, 95% CI: 1.31–1.57, p < 0.001; antibiotics: HR: 1.2, 95% CI: 1.04–1.38, p = 0.01; steroids: HR: 1.45, 95% CI: 1.25–1.67, p < 0.001; and opioids: HR: 1.74, 95% CI: 1.46–2.07, p < 0.001). Concomitant use of antibiotics during chemotherapy did not impact OS (HR: 1.01, 95% CI: 0.67–1.51).
Conclusions: When treating advanced unresectable or metastatic UC with ICI therapy, we need to pay attention to concomitant medications, such as PPIs and antibiotics to avoid reducing the efficacy of ICI therapy. The mechanism of action of these drugs on ICI efficacy requires further examination. en-copyright= kn-copyright= en-aut-name=TsuboiIchiro en-aut-sei=Tsuboi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PariziMehdi Kardoust en-aut-sei=Parizi en-aut-mei=Mehdi Kardoust kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiszczykMarcin en-aut-sei=Miszczyk en-aut-mei=Marcin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FazekasTamás en-aut-sei=Fazekas en-aut-mei=Tamás kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SchulzRobert J en-aut-sei=Schulz en-aut-mei=Robert J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LaukhtinaEkaterina en-aut-sei=Laukhtina en-aut-mei=Ekaterina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RajwaPawel en-aut-sei=Rajwa en-aut-mei=Pawel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ObernederKatharina en-aut-sei=Oberneder en-aut-mei=Katharina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ChlostaPiotr en-aut-sei=Chlosta en-aut-mei=Piotr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KarakiewiczPierre I. en-aut-sei=Karakiewicz en-aut-mei=Pierre I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=3 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=4 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=5 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=6 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=7 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=8 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=13 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=14 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=15 en-affil=Department of Urology, Medical College, Jagiellonian University kn-affil= affil-num=16 en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre kn-affil= affil-num=17 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=Concomitant medications kn-keyword=Concomitant medications en-keyword=Proton pump inhibitors kn-keyword=Proton pump inhibitors en-keyword=Antibiotics kn-keyword=Antibiotics en-keyword=steroids kn-keyword=steroids en-keyword=Opioids kn-keyword=Opioids en-keyword=Histamine type-2 receptor antagonists kn-keyword=Histamine type-2 receptor antagonists en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors en-keyword=Urothelial carcinoma kn-keyword=Urothelial carcinoma END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=2401783 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene. en-copyright= kn-copyright= en-aut-name=NicolussiPaola en-aut-sei=Nicolussi en-aut-mei=Paola kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PiloGiovannantonio en-aut-sei=Pilo en-aut-mei=Giovannantonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CanceddaMaria Giovanna en-aut-sei=Cancedda en-aut-mei=Maria Giovanna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PengGuotao en-aut-sei=Peng en-aut-mei=Guotao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChauNgoc Do Quyen en-aut-sei=Chau en-aut-mei=Ngoc Do Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=De la CadenaAlejandro en-aut-sei=De la Cadena en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=VannaRenzo en-aut-sei=Vanna en-aut-mei=Renzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SamadYarjan Abdul en-aut-sei=Samad en-aut-mei=Yarjan Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AhmedTanweer en-aut-sei=Ahmed en-aut-mei=Tanweer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MarcellinoJeremia en-aut-sei=Marcellino en-aut-mei=Jeremia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TeddeGiuseppe en-aut-sei=Tedde en-aut-mei=Giuseppe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GiroLinda en-aut-sei=Giro en-aut-mei=Linda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YlmazerAcelya en-aut-sei=Ylmazer en-aut-mei=Acelya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=LoiFederica en-aut-sei=Loi en-aut-mei=Federica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=CartaGavina en-aut-sei=Carta en-aut-mei=Gavina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SecchiLoredana en-aut-sei=Secchi en-aut-mei=Loredana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Dei GiudiciSilvia en-aut-sei=Dei Giudici en-aut-mei=Silvia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MacciocuSimona en-aut-sei=Macciocu en-aut-mei=Simona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=PolliDario en-aut-sei=Polli en-aut-mei=Dario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=LigiosCiriaco en-aut-sei=Ligios en-aut-mei=Ciriaco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=CerulloGiulio en-aut-sei=Cerullo en-aut-mei=Giulio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FerrariAndrea en-aut-sei=Ferrari en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=FadeelBengt en-aut-sei=Fadeel en-aut-mei=Bengt kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FranzoniGiulia en-aut-sei=Franzoni en-aut-mei=Giulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=DeloguLucia Gemma en-aut-sei=Delogu en-aut-mei=Lucia Gemma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=2 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=3 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=4 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=5 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=6 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=7 en-affil=Istituto di Fotonica e Nanotecnologie – CNR kn-affil= affil-num=8 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=9 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=10 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=11 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=12 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= affil-num=13 en-affil=Department of Biomedical Engineering, Ankara University kn-affil= affil-num=14 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=15 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=16 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=17 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=18 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=19 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=20 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=22 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=23 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=24 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=25 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=26 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=27 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= en-keyword=2D materials kn-keyword=2D materials en-keyword=biocompatibility kn-keyword=biocompatibility en-keyword=immune system kn-keyword=immune system en-keyword=porcine model kn-keyword=porcine model en-keyword=toxicity kn-keyword=toxicity END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=12 article-no= start-page=4932 end-page=4951 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack. en-copyright= kn-copyright= en-aut-name=GotoYukihisa en-aut-sei=Goto en-aut-mei=Yukihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KadotaYasuhiro en-aut-sei=Kadota en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MbengueMalick en-aut-sei=Mbengue en-aut-mei=Malick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LewisJennifer D en-aut-sei=Lewis en-aut-mei=Jennifer D kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MakiNoriko en-aut-sei=Maki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NgouBruno Pok Man en-aut-sei=Ngou en-aut-mei=Bruno Pok Man kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SklenarJan en-aut-sei=Sklenar en-aut-mei=Jan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DerbyshirePaul en-aut-sei=Derbyshire en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShibataArisa en-aut-sei=Shibata en-aut-mei=Arisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchihashiYasunori en-aut-sei=Ichihashi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GuttmanDavid S en-aut-sei=Guttman en-aut-mei=David S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SuzukiTakamasa en-aut-sei=Suzuki en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MenkeFrank L H en-aut-sei=Menke en-aut-mei=Frank L H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=RobatzekSilke en-aut-sei=Robatzek en-aut-mei=Silke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DesveauxDarrell en-aut-sei=Desveaux en-aut-mei=Darrell kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ZipfelCyril en-aut-sei=Zipfel en-aut-mei=Cyril kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=2 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=3 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=4 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=7 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=8 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=9 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=10 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=11 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=12 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=13 en-affil=Plant Proteomics Research Unit, RIKEN CSRS kn-affil= affil-num=14 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=15 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=16 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=17 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=18 en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich kn-affil= affil-num=19 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=177 cd-vols= no-issue=4 article-no= start-page=e70396 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22– and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable. en-copyright= kn-copyright= en-aut-name=AkterRojina en-aut-sei=Akter en-aut-mei=Rojina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueYasuhiro en-aut-sei=Inoue en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasumotoSaori en-aut-sei=Masumoto en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MimataYoshiharu en-aut-sei=Mimata en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil= kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=calcium signaling kn-keyword=calcium signaling en-keyword=CNGC kn-keyword=CNGC en-keyword=stomata kn-keyword=stomata END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=733 end-page=747 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants. en-copyright= kn-copyright= en-aut-name=LiangDi en-aut-sei=Liang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangDongyong en-aut-sei=Yang en-aut-mei=Dongyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiTai en-aut-sei=Li en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuZhe en-aut-sei=Zhu en-aut-mei=Zhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanBingxiao en-aut-sei=Yan en-aut-mei=Bingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HeYang en-aut-sei=He en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiXiaoyuan en-aut-sei=Li en-aut-mei=Xiaoyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhaiKeran en-aut-sei=Zhai en-aut-mei=Keran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiuJiyun en-aut-sei=Liu en-aut-mei=Jiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DengYiwen en-aut-sei=Deng en-aut-mei=Yiwen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WuXu Na en-aut-sei=Wu en-aut-mei=Xu Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LiuJunzhong en-aut-sei=Liu en-aut-mei=Junzhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HeZuhua en-aut-sei=He en-aut-mei=Zuhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=4 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=5 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=School of Life Science and Technology, ShanghaiTech University kn-affil= affil-num=8 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=13 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=14 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= en-keyword=Prenylated Rab acceptor kn-keyword=Prenylated Rab acceptor en-keyword=PigmR kn-keyword=PigmR en-keyword=Trafficking vesicles kn-keyword=Trafficking vesicles en-keyword=OsRab5a kn-keyword=OsRab5a en-keyword=Blast resistance kn-keyword=Blast resistance END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=CTLA-4阻害の抗腫瘍効果はTreg細胞のCTLA-4非依存性免疫抑制機構の活性化によって減弱する kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WATANABETomofumi en-aut-sei=WATANABE en-aut-mei=Tomofumi kn-aut-name=渡部智文 kn-aut-sei=渡部 kn-aut-mei=智文 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=樹状細胞の成熟は、腫瘍由来エクソソームを介してp53搭載腫瘍融解アデノウイルスによって誘導され、全身の抗腫瘍免疫を誘導する kn-title=Dendritic cell maturation is induced by p53‑armed oncolytic adenovirus via tumor‑derived exosomes enhancing systemic antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OTANITomoko en-aut-sei=OTANI en-aut-mei=Tomoko kn-aut-name=大谷朋子 kn-aut-sei=大谷 kn-aut-mei=朋子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=腫瘍融解アデノウイルスによる腹腔内マクロファージの機能的再構築により、胃癌腹膜播種に対する抗腫瘍免疫が回復する kn-title=Functional remodeling of intraperitoneal macrophages by oncolytic adenovirus restores anti-tumor immunity for peritoneal metastasis of gastric cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TABUCHIMotoyasu en-aut-sei=TABUCHI en-aut-mei=Motoyasu kn-aut-name=田渕幹康 kn-aut-sei=田渕 kn-aut-mei=幹康 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=167 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Promising Effectiveness of Combined Chemotherapy and Immunotherapy in Patients with Advanced Non-small Cell Lung Cancer: A Real-World Prospective Observational Study (CS-Lung-003) en-subtitle= kn-subtitle= en-abstract= kn-abstract=This prospective observational study investigated the clinical status of patients with advanced non-small cell lung cancer (NSCLC) treated with cytotoxic chemotherapy+an immune checkpoint inhibitor (chemo + IO) as first-line treatment in a real-world setting. The cases of 98 patients treated with chemo + IO were prospectively collected and analyzed for effectiveness and safety. The response rate to chemo + IO was 46.9%, and the disease control rate was 76.5%. The median progression-free survival and overall survival (OS) in the total population were 5.2 and 22.3 months, respectively. The patients positive for PD-L1 (≥ 1%) showed significantly longer OS than the negative group (<1%) (median 26.7 vs. 18.7 months, p=0.04). Pre-existing interstitial lung disease (ILD) was associated with shorter OS than the absence of ILD (median 9.0 vs. 22.6 months, p<0.01). Immunerelated adverse events (irAEs) were observed in 28 patients (28.6%). The most frequent irAE was ILD (n=11); Grade 1 (n=1 patient), G2 (n=5), G3 (n=4), and only a single patient with a G5 irAE. In this CS-Lung-003 study, first-line chemo + IO in a real-world setting showed good effectiveness, comparable to that observed in international clinical trials. In real-world practice, chemo + IO is a promising and steadfast strategy. en-copyright= kn-copyright= en-aut-name=KanajiNobuhiro en-aut-sei=Kanaji en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsubataYukari en-aut-sei=Tsubata en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaoMika en-aut-sei=Nakao en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkunoTakae en-aut-sei=Okuno en-aut-mei=Takae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakataKenji en-aut-sei=Takata en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KodaniMasahiro en-aut-sei=Kodani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiMasahiro en-aut-sei=Yamasaki en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujitakaKazunori en-aut-sei=Fujitaka en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KubotaTetsuya en-aut-sei=Kubota en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeNaoki en-aut-sei=Watanabe en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=CS-Lung-003 Investigator en-aut-sei=CS-Lung-003 Investigator en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University kn-affil= affil-num=9 en-affil=Department of Respiratory Disease, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital kn-affil= affil-num=10 en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine and Allergology, Kochi University kn-affil= affil-num=12 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=14 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil= kn-affil= en-keyword=non-small cell lung cancer kn-keyword=non-small cell lung cancer en-keyword=real-world kn-keyword=real-world en-keyword=first-line kn-keyword=first-line en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=combined immunotherapy kn-keyword=combined immunotherapy END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=157 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=10 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= en-keyword=advanced glycation end product kn-keyword=advanced glycation end product en-keyword=aging kn-keyword=aging en-keyword=cartilage kn-keyword=cartilage en-keyword=collagen kn-keyword=collagen en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=147 end-page=155 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunometabolic Regulation of Innate Immunity in Systemic Lupus Erythematosus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pathogens or their components can induce long-lasting changes in the behavior of innate immune cells, a process analogous to “training” for future threats or environmental adaptation. However, such training can sometimes have unintended consequences, such as the development of autoimmunity. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease characterized by the production of autoantibodies and progressive organ damage. Innate immunity plays a central role in its pathogenesis, contributing through impaired clearance of apoptotic cells, excessive type I interferon production, and dysregulated formation of neutrophil extracellular traps. Recent studies have revealed that metabolites and nucleic acids derived from mitochondria, a crucial energy production site, directly regulate type I interferon and anti-inflammatory cytokine production. These insights have fueled interest in targeting metabolic pathways as a novel therapeutic approach for SLE, offering promise for improving long-term patient outcomes. en-copyright= kn-copyright= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=systemic lupus erythematosus kn-keyword=systemic lupus erythematosus en-keyword=interferon kn-keyword=interferon en-keyword=tricarboxylic acid cycle kn-keyword=tricarboxylic acid cycle en-keyword=innate immune memory kn-keyword=innate immune memory en-keyword=trained immunity kn-keyword=trained immunity END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Xenopus laevis as an infection model for human pathogenic bacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria. en-copyright= kn-copyright= en-aut-name=KuriuAyano en-aut-sei=Kuriu en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaKohsuke en-aut-sei=Tsuchiya en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University kn-affil= affil-num=4 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=animal infection model kn-keyword=animal infection model en-keyword=Staphylococcus aureus kn-keyword=Staphylococcus aureus en-keyword=Listeria monocytogenes kn-keyword=Listeria monocytogenes en-keyword=Pseudomonas aeruginosa kn-keyword=Pseudomonas aeruginosa en-keyword=antibiotics efficacy kn-keyword=antibiotics efficacy en-keyword=virulence genes kn-keyword=virulence genes en-keyword=hemolysin kn-keyword=hemolysin END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=192 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC. en-copyright= kn-copyright= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaYusuke en-aut-sei=Hamada en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangYuze en-aut-sei=Wang en-aut-mei=Yuze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TianMiao en-aut-sei=Tian en-aut-mei=Miao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Colorectal cancer kn-keyword=Colorectal cancer en-keyword=Microsatellite stable kn-keyword=Microsatellite stable en-keyword=Hypoxia-inducible factor kn-keyword=Hypoxia-inducible factor en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10462 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250326 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion. en-copyright= kn-copyright= en-aut-name=ZhengYilin en-aut-sei=Zheng en-aut-mei=Yilin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WengYao en-aut-sei=Weng en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SitosariHeriati en-aut-sei=Sitosari en-aut-mei=Heriati kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HeYuhan en-aut-sei=He en-aut-mei=Yuhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhangXiu en-aut-sei=Zhang en-aut-mei=Xiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiotsuNoriko en-aut-sei=Shiotsu en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkegameMika en-aut-sei=Ikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=7 en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Gingipain kn-keyword=Gingipain en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Alternative splicing kn-keyword=Alternative splicing en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Immune evasion kn-keyword=Immune evasion END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=1537615 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors. en-copyright= kn-copyright= en-aut-name=MatsumotoKazuya en-aut-sei=Matsumoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=PARylation kn-keyword=PARylation en-keyword=cancer kn-keyword=cancer en-keyword=post-transcriptional regulation kn-keyword=post-transcriptional regulation en-keyword=ubiquitylation kn-keyword=ubiquitylation en-keyword=immune system kn-keyword=immune system END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=e70053 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of blood carboxyhemoglobin levels with mortality and neurological outcomes in out-of-hospital cardiac arrest en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Carbon monoxide (CO), produced endogenously by heme oxygenase-1, plays a crucial role in the immune system by mitigating cellular damage under stress. However, the significance of carboxyhemoglobin (COHb) levels after out-of-hospital cardiac arrest (OHCA) is not well understood. This study aimed to explore the association between COHb levels at hospital arrival and within the first 24 h post-arrival with 30-day mortality and neurological outcomes in patients who experienced OHCA.
Methods: This single-center, retrospective study analyzed data from adult patients who experienced OHCA seen at Okayama University Hospital from 2019 to 2023. The patients were assigned to one of two study groups based on COHb levels (0.0% or >= 0.1%) upon hospital arrival. The primary outcome was 30-day mortality.
Results: Among the 560 eligible patients who experienced OHCA, 284 (50.7%) were in the COHb 0.0% group and 276 (49.3%) were in the COHb >= 0.1% group. The 30-day mortality was significantly higher in the COHb 0.0% group compared to the COHb >= 0.1% group (264 [92.9%] vs. 233 [84.4%]). Multivariable logistic regression showed that the COHb 0.0% group was associated with 30-day mortality (adjusted ORs: 2.24, 95% CIs: 1.10-4.56). Non-survivors at 30 days who were admitted to the intensive care unit had lower COHb levels at hospital arrival (0.0% vs. 0.2%) and lower mean COHb levels during the first 24 h post-arrival (0.7% vs. 0.9%) compared to survivors.
Conclusions: COHb levels of 0.0% were linked to worse outcomes in patients experiencing OHCA, warranting further research on the prognostic implications of COHb in this context. en-copyright= kn-copyright= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraokaTomohiro en-aut-sei=Hiraoka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiYuya en-aut-sei=Murakami en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=brain injury kn-keyword=brain injury en-keyword=carbon monoxide kn-keyword=carbon monoxide en-keyword=carboxyhemoglobin kn-keyword=carboxyhemoglobin en-keyword=cardiac arrest kn-keyword=cardiac arrest en-keyword=resuscitation kn-keyword=resuscitation END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=1082 end-page=1096 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti–PD-1 mAb or anti–CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti–PD-1 and anti–CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti–CTLA4 and anti–PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti–CTLA4 and anti–PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti–PD-1 mAb. B-cell–activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non–small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti–PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases. en-copyright= kn-copyright= en-aut-name=NinomiyaToshifumi en-aut-sei=Ninomiya en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KemmotsuNaoya en-aut-sei=Kemmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OkamotoIsamu en-aut-sei=Okamoto en-aut-mei=Isamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=17 en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=3 article-no= start-page=102660 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intention and potential determinants of COVID-19 vaccination among healthcare workers at a single university hospital in Japan, 2024–2025 pre-season en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Financial accessibility has emerged as a significant barrier to vaccine uptake following the cessation of universal public funding for coronavirus disease 2019 (COVID-19) vaccination programs. This investigation assessed the intention and determinant factors of COVID-19 vaccination among healthcare workers in Japan in the 2024–2025 pre-season.
Methods: A retrospective survey was conducted utilizing data collected from hospital staff at Okayama University Hospital, Japan, to inform the COVID-19 vaccination strategy in October 2024. The analysis evaluated demographic characteristics, vaccine intention, perceived barriers to vaccination, and maximum acceptable out-of-pocket expenditure.
Results: The study population of 3417 respondents comprised 843 medical doctors (24.7 %), 1131 nurses (33.1 %), 320 other medical staff (9.4 %), 286 dental doctors (8.4 %), and 627 administrative officers (18.3 %). At full cost, 2109 (61.7 %) indicated no intention to receive vaccination, while only 4.4 % expressed willingness to be vaccinated and 33.9 % remained undecided. With total self-payment, the vaccination acceptance rates were the highest and lowest among medical doctors (11.4 %) and nurses (1.0 %), respectively. Cost (38.1 %), followed by safety issues (29.5 %) and concerns regarding efficacy or medical necessity (20.3 %), emerged as the primary barrier. The projected vaccination intention increased to 43.9 % and 54.9 % at reduced self-pay costs of 3000 JPY and 5000 JPY, respectively.
Conclusions: Addressing financial constraints through policy interventions could be effective strategies in increasing overall vaccination coverage among healthcare workers. In addition, providing tailored education on vaccine safety, efficacy, and necessity may further facilitate increased vaccine uptake within this critical population. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaYasushi en-aut-sei=Fujita en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KiguchiTakashi en-aut-sei=Kiguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ManabeYohei en-aut-sei=Manabe en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Infection Prevention and Control, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Infection Prevention and Control, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Infection Prevention and Control, Okayama University Hospital kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=Immunization kn-keyword=Immunization en-keyword=Reimbursement kn-keyword=Reimbursement en-keyword=Healthcare workers kn-keyword=Healthcare workers en-keyword=Financial support kn-keyword=Financial support END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=51 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photoinitiators are used in the manufacture of many daily products, and may produce harmful effects due to their cytotoxicity. They have also been detected in human serum. Here, we investigated the histamine-producing effects in HMC-1 cells and the inflammatory cytokine release effects in RAW264 cells for four photoinitiators: 1-hydroxycyclohexyl phenyl ketone; 2-isopropylthioxanthone; methyl 2-benzoylbenzoate; and 2-methyl-4´-(methylthio)-2-morpholinopropiophenone. All four promoted histamine production in HMC-1 cells; however, they did not significantly affect the release of inflammatory cytokines in RAW264 cells. These findings suggest that these four photoinitiators induce inflammatory cytokine-independent histamine production, potentially contributing to histamine-mediated chronic inflammation in vitro. en-copyright= kn-copyright= en-aut-name=MiuraTaro en-aut-sei=Miura en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawasakiYoichi en-aut-sei=Kawasaki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Laboratory of Clinical Pharmacology and Therapeutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=photoinitiator kn-keyword=photoinitiator en-keyword=ink kn-keyword=ink en-keyword=injection kn-keyword=injection en-keyword=histamine kn-keyword=histamine en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=1 end-page=7 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endothelial Cell Polarity in Health and Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes. en-copyright= kn-copyright= en-aut-name=ThihaMoe en-aut-sei=Thiha en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood vessel kn-keyword=blood vessel en-keyword=endothelial cell kn-keyword=endothelial cell en-keyword=cell polarity kn-keyword=cell polarity en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=35 article-no= start-page=e2320189121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell–specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets. en-copyright= kn-copyright= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataKazuma en-aut-sei=Iwata en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaekiYuka en-aut-sei=Saeki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WatanabeHiroko en-aut-sei=Watanabe en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HondaHiroaki en-aut-sei=Honda en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=8 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=11 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=14 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=20 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa kn-affil= affil-num=21 en-affil=Department of Pathology, Tokyo Women's Medical University kn-affil= affil-num=22 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=23 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=24 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=25 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=somatic mutation kn-keyword=somatic mutation en-keyword=T cell kn-keyword=T cell en-keyword=tumor-infiltrating lymphocytes kn-keyword=tumor-infiltrating lymphocytes END start-ver=1.4 cd-journal=joma no-vol=145 cd-vols= no-issue=1 article-no= start-page=7 end-page=14 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Precision Medicine for Patients with Renal Cell Carcinoma Based on Drug-metabolizing Enzyme Expression Levels kn-title=薬物代謝酵素の発現情報を活用した腎がん治療の個別適正化 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs. However, there is no consensus on which TKI+ICI therapy is best or how to select the appropriate therapy for individual patients with RCC. The kidney expresses various metabolic enzymes, including CYP and uridine diphosphate glucose (UDP)-glucuronosyltransferase (UGT). Although information on CYP and UGT expression in the kidney is limited compared to our understanding of liver expression, the main CYP and UGT subtypes expressed at high levels in the kidney are estimated to be CYP2B6, CYP3A5, CYP4A11, CYP4F2, UGT1A6, UGT1A9, and UGT2B7. In RCC, the expression profiles and levels of these enzymes are somewhat altered compared with normal kidney. The main known subtypes of CYP and UGT in RCC are CYP1B1, CYP3A5, CYP4A11, UGT1A6, UGT1A9, UGT1A10, and UGT2B7. High CYP expression has been reported in several cancers, possibly conferring resistance to anti-cancer drugs including TKIs, due to extensive drug metabolism. Additionally, CYP and UGT expression levels may possibly affect cancer prognosis by metabolizing endogenous substrates, regardless of their role in anti-cancer drug metabolism. In this review, I discuss CYP and UGT expression level profiles in RCC based on previously published papers, including ours, and examine possible relationships between these enzyme expression profiles and treatment outcomes for patients with RCC. en-copyright= kn-copyright= en-aut-name=MatsumotoJun en-aut-sei=Matsumoto en-aut-mei=Jun kn-aut-name=松本准 kn-aut-sei=松本 kn-aut-mei=准 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域(薬学系)疾患薬理制御科学分野 en-keyword=renal cell carcinoma (RCC) kn-keyword=renal cell carcinoma (RCC) en-keyword=kidney kn-keyword=kidney en-keyword=CYP kn-keyword=CYP en-keyword=uridine diphosphate glucose (UDP)-glucuronosyltransferase kn-keyword=uridine diphosphate glucose (UDP)-glucuronosyltransferase en-keyword=metabolism kn-keyword=metabolism END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2577 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma S100A8/A9 level predicts response to immune checkpoint inhibitors in patients with advanced non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Blood-based predictive markers for the efficacy of immune checkpoint inhibitors (ICIs) have not yet been established. We investigated the association of the plasma level of S100A8/A9 with the efficacy of immunotherapy. We evaluated patients with unresectable stage III/IV or recurrent non-small cell lung cancer (NSCLC) who were treated with ICIs at Okayama University Hospital. The pre-treatment plasma levels of S100A8/A9 were analyzed. Eighty-one eligible patients were included (median age, 69 years). Sixty-two patients were men, 54 had adenocarcinoma, 74 had performance status (PS) 0–1, and 47 received ICIs as first-line treatment. The median time to treatment failure (TTF) for ICIs was 5.7 months, and the median overall survival (OS) was 19.6 months. The TTF and OS were worse in patients with high plasma S100A8/A9 levels (≥ 2.475 µg/mL) (median TTF: 4.3 vs. 8.5 months, p = 0.009; median OS: 15.4 vs. 38.0 months, p = 0.001). Multivariate analysis revealed that PS ≥ 2, liver metastasis, and high plasma S100A8/A9 levels were significantly associated with short TTF and OS. In conclusion, plasma S100A8/A9 level may have a limited effect on ICI therapy for NSCLC. en-copyright= kn-copyright= en-aut-name=KuribayashiTadahiro en-aut-sei=Kuribayashi en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RaiKammei en-aut-sei=Rai en-aut-mei=Kammei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=S100A8/A9 kn-keyword=S100A8/A9 en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Gut-Kidney Axis in Chronic Kidney Diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways. Insights into these mechanisms highlight the impact of gut-derived metabolites, bacterial translocation, and immune response changes on kidney health, suggesting new potential approaches for CKD treatment. Clinical applications, such as dietary interventions, prebiotics, probiotics and fecal microbiota transplantation, are promising in adjusting the gut microbiota to alleviate CKD symptoms and slow disease progression. Current research highlights the clinical relevance of the gut-kidney axis, but further study is essential to clarify these mechanisms' diagnostic biomarkers and optimize therapeutic interventions. This review emphasizes the importance of an integrated approach to CKD management, focusing on the gut microbiota as a therapeutic target to limit kidney injury. en-copyright= kn-copyright= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaNaruhiko en-aut-sei=Uchida en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiSoichiro en-aut-sei=Haraguchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=gut-kidney axis kn-keyword=gut-kidney axis en-keyword=chronic kidney disease kn-keyword=chronic kidney disease en-keyword=uremic toxin kn-keyword=uremic toxin en-keyword=dysbiosis kn-keyword=dysbiosis en-keyword=gut microbiota kn-keyword=gut microbiota END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1439705 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HOMA-beta independently predicts survival in patients with advanced cancer on treatment with immune checkpoint inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Although immune checkpoint inhibitors (ICIs) are effective cancer drugs, ICI-induced diabetes is a rare but a life-threatening adverse event for patients. The deleterious action of ICI on pancreatic beta-cell function is a concern. However, the influence of ICI on insulin synthesis and secretion in patients with cancer without diabetes remains unknown.
Methods: This study included 87 patients diagnosed with advanced cancer. Glucose metabolism markers (HbA1c, HOMA-IR) and indicators of insulin secretory capacity (HOMA-beta, C-peptide) were prospectively evaluated in patients with ICI-treated cancers to determine their association with cancer prognosis.
Results: Patients with overall survival (OS) >= 7 months had substantially higher HOMA-beta levels at baseline (p=0.008) and 1 month after ICI administration (p=0.006) compared to those with OS <7 months. The median OS was significantly longer in patients with HOMA-beta >= 64.24 (13 months, 95%CI: 5.849-20.151, 37 events) than in those with HOMA-beta < 64.24 (5 months, 95%CI: 3.280-6.720, 50 events) (p=0.013). Further, the median progression-free survival (PFS) was significantly longer in patients with HOMA-beta >= 66.43 (4 months, 95%CI: 3.073-4.927, 33 events) than in those with HOMA-beta < 66.43 (2 months, 95%CI: 1.410-2.590, 54 events) (p=0.025). Additionally, multivariable logistic regression analysis revealed that a HOMA-beta value >= 64.24 independently predicted longer OS in ICI-treated patients.
Conclusions: Pre-ICI HOMA-beta level is linked to longer OS in ICI-treated patients. This connection is significant and shows that insulin secretory capacity may predict ICI efficacy. en-copyright= kn-copyright= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NodaYohei en-aut-sei=Noda en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KagawaSyunsuke en-aut-sei=Kagawa en-aut-mei=Syunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Fukuyama City Hospital kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Tsuyama Chuo Hospital kn-affil= affil-num=5 en-affil=Department of Urology, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anti-PD1 immune checkpoint inhibitors kn-keyword=anti-PD1 immune checkpoint inhibitors en-keyword= insulin secretory capacity kn-keyword= insulin secretory capacity en-keyword= cancer prognosis kn-keyword= cancer prognosis en-keyword= insulin secretion kn-keyword= insulin secretion en-keyword= glucose metabolism markers kn-keyword= glucose metabolism markers END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=24 article-no= start-page=2045 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=iPSC-Derived Biological Pacemaker-From Bench to Bedside en-subtitle= kn-subtitle= en-abstract= kn-abstract=Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias. en-copyright= kn-copyright= en-aut-name=VoQuan Duy en-aut-sei=Vo en-aut-mei=Quan Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=sinoatrial node kn-keyword=sinoatrial node en-keyword=HCN channels kn-keyword=HCN channels en-keyword=induced pluripotent stem cell kn-keyword=induced pluripotent stem cell END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue=1 article-no= start-page=e16291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions. en-copyright= kn-copyright= en-aut-name=WangKuanyu en-aut-sei=Wang en-aut-mei=Kuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitohYoshihiro en-aut-sei=Mitoh en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HorieKengo en-aut-sei=Horie en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=Ccn3 kn-keyword=Ccn3 en-keyword=Type III taste cell kn-keyword=Type III taste cell END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=2 article-no= start-page=102554 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Human Papillomavirus vaccination awareness and uptake among healthcare students in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The vaccination rate for HPV (Human Papillomavirus) has remained significantly low in Japan because of the administrative suspension of active recommendation. This study investigates the awareness and uptake of the HPV vaccine among healthcare students in Japan following the reinstatement of active recommendation for young women in April 2022.
Methods: A web-based survey was administered to 2567 healthcare students from Okayama and Shujitsu Universities in Japan in July 2023. The survey assessed participants' backgrounds, immunization status, awareness of vaccine recommendations, and knowledge of cervical cancer across various demographics, including sex, academic year, and department (Medicine, Health Science, Pharmaceutical, and Dentistry).
Results: The response rate was 36.3 % (933 students; 181 male, 739 female, and 13 unspecified gender). The overall immunization rate among female students was 55.6 %, with higher rates observed in medical (73.8 %) and dental (63.0 %) students. Awareness of the government's change in vaccine recommendation was notably high among female and senior male students. Over half of the female students (54.7 %) reported receiving vaccinations based on their parents' advice. Among those unvaccinated but interested in future immunization, concerns about adverse reactions (47.4 %) and challenges in scheduling vaccinations (29.1 %) were predominant.
Conclusion: Healthcare students exhibited a higher HPV vaccination rate than the general population. Ongoing education to improve vaccine literacy is crucial for augmenting HPV vaccination rates in Japan. en-copyright= kn-copyright= en-aut-name=ShimbeMadoka en-aut-sei=Shimbe en-aut-mei=Madoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaYoichi en-aut-sei=Yamada en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=4 en-affil=School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cervical cancer kn-keyword=Cervical cancer en-keyword=Human Papillomavirus kn-keyword=Human Papillomavirus en-keyword=Immunization kn-keyword=Immunization en-keyword=Vaccine literacy kn-keyword=Vaccine literacy END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=28 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local Control of Conjunctival Malignant Melanoma by Proton Beam Therapy in a Patient With No Metastasis in Six Years From in Situ to Nodular Lesions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Conjunctival malignant melanoma is extremely rare, with no standard of care established at moment. Here we report a 65-year-old woman, as a hepatitis B virus (HBV) carrier, who presented concurrently a liver mass and lower bulbar conjunctival pigmented lesions in the right eye. Needle liver biopsy and excisional conjunctival biopsy showed hepatocellular carcinoma and conjunctival malignant melanoma in situ, respectively. The priority was given to segmental liver resection for hepatocellular carcinoma after transcatheter arterial chemoembolization. In 1 year, she underwent second and third resection of bulbar conjunctival pigmented lesions, and the pathological examinations constantly showed melanoma in situ. In the course, she showed gradual widening of pigmented lesions to upper bulbar conjunctiva and lower palpebral conjunctiva and lower eyelid. About 2.5 years from the initial visit, the lower eyelid lesion was resected for a genomic DNA-based test of BRAF mutations which turned out to be absent, and then, she began to have intravenous anti-programmed cell death-1 (PD-1), nivolumab every 3 or 4 weeks. She developed iritis in the right eye with conjunctival melanoma as an immune-related adverse event, 3 months after the beginning of nivolumab, and so she used daily topical 0.1% betamethasone eye drops to control the intraocular inflammation. She showed no metastasis in 6 years of follow-up, but later in the course, 5 years from the initial visit, she developed abruptly a non-pigmented nodular lesion on the temporal side of the bulbar conjunctiva along the corneal limbus, accompanied by two pigmented nodular lesions in the upper and lower eyelids in a few months. She thus, underwent proton beam therapy toward the conjunctival melanoma and achieved the successful local control. Proton beam therapy is a treatment option in place of orbital exenteration, and multidisciplinary team collaboration is desirable to achieve better cosmetic and functional outcomes in conjunctival malignant melanoma. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgataTakeshi en-aut-sei=Ogata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakiTakahiro en-aut-sei=Waki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ocular surface kn-keyword=Ocular surface en-keyword=Conjunctiva kn-keyword=Conjunctiva en-keyword=Malignant melanoma kn-keyword=Malignant melanoma en-keyword=Proton beam therapy kn-keyword=Proton beam therapy en-keyword=Nivolumab kn-keyword=Nivolumab en-keyword=PD-1 inhibitor kn-keyword=PD-1 inhibitor en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=23 article-no= start-page=4089 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Frequency and Significance of Body Weight Loss During Immunochemotherapy in Patients with Advanced Non-Small Cell Lung Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Limited data are available on the frequency and significance of body weight loss during cancer therapy. This study investigated the frequency of patients who experienced body weight loss during immune checkpoint inhibitor (ICI) plus chemotherapy for advanced non-small cell lung cancer (NSCLC) and the impact of weight loss on treatment outcomes. Methods: Using the clinical data of 370 patients with NSCLC who received a combination of ICI and chemotherapy at 13 institutions, this study investigated the frequency of body weight loss > 5% during treatment and determined the impact of body weight loss on patient outcomes. Results: Of the 370 included patients, 141 (38.1%) lost more than 5% of their body weight during ICI plus chemotherapy (WL group). The 2-month landmark analysis showed that patients who experienced body weight loss of >5% during treatment had worse overall survival (OS) and progression-free survival (PFS) than those who did not (OS 14.0 and 31.1 months in the WL non-WL groups, respectively, p < 0.001; PFS 6.8 and 10.9 months in the WL non-WL groups, respectively, p = 0.002). Furthermore, a negative impact of body weight loss on survival was observed even in those who had obesity (body mass index [BMI] >= 25.0) at the start of therapy (OS 12.8 and 25.4 months in the WL non-WL groups, respectively, p < 0.001; PFS 5.7 and 10.7 months in the WL non-WL groups, respectively, p = 0.038). Conclusions: In conclusion, weight loss of >5% during ICI plus chemotherapy negatively influenced patient outcomes. Further and broader studies should investigate the role of nutritional status, specifically weight change and nutritional support, in responsiveness to ICI plus chemotherapy. en-copyright= kn-copyright= en-aut-name=TaokaMasataka en-aut-sei=Taoka en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueKoji en-aut-sei=Inoue en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraTomoki en-aut-sei=Tamura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoAkiko en-aut-sei=Sato en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanoHirohisa en-aut-sei=Kano en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraKayo en-aut-sei=Nakamura en-aut-mei=Kayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaiHaruyuki en-aut-sei=Kawai en-aut-mei=Haruyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OchiNobuaki en-aut-sei=Ochi en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchikawaHirohisa en-aut-sei=Ichikawa en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AndoChihiro en-aut-sei=Ando en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzeIsao en-aut-sei=Oze en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Ehime Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Internal Medicine, National Hospital Organization Okayama Medical Center kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Japanese Red Cross Himeji Hospital kn-affil= affil-num=10 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=11 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=12 en-affil=Department of General Internal Medicine 4 , Kawasaki Medical School kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital kn-affil= affil-num=15 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=16 en-affil=Division of Cancer Information and Control, Aichi Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=non-small cell lung cancer kn-keyword=non-small cell lung cancer en-keyword=body weight loss kn-keyword=body weight loss en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors en-keyword=chemotherapy kn-keyword=chemotherapy END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=2 article-no= start-page=292 end-page=305 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The role of C1orf50 in breast cancer progression and prognosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although the prognosis of breast cancer has significantly improved compared to other types of cancer, there are still some patients who expire due to recurrence or metastasis. Therefore, it is necessary to develop a method to identify patients with poor prognosis at the early stages of cancer. In the process of discovering new prognostic markers from genes of unknown function, we found that the expression of C1orf50 determines the prognosis of breast cancer patients, especially for those with Luminal A breast cancer. This study aims to elucidate the molecular role of C1orf50 in breast cancer progression. Bioinformatic analyses of the breast cancer dataset of TCGA, and in vitro analyses, reveal the molecular pathways influenced by C1orf50 expression. C1orf50 knockdown suppressed the cell cycle of breast cancer cells and weakened their ability to maintain the undifferentiated state and self-renewal capacity. Interestingly, upregulation of C1orf50 increased sensitivity to CDK4/6 inhibition. In addition, C1orf50 was found to be more abundant in breast cancer cells than in normal breast epithelium, suggesting C1orf50’s involvement in breast cancer pathogenesis. Furthermore, the mRNA expression level of C1orf50 was positively correlated with the expression of PD-L1 and its related factors. These results suggest that C1orf50 promotes breast cancer progression through cell cycle upregulation, maintenance of cancer stemness, and immune evasion mechanisms. Our study uncovers the biological functions of C1orf50 in Luminal breast cancer progression, a finding not previously reported in any type of cancer. en-copyright= kn-copyright= en-aut-name=OtaniYusuke en-aut-sei=Otani en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaAtsushi en-aut-sei=Tanaka en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaekawaMasaki en-aut-sei=Maekawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PeñaTirso en-aut-sei=Peña en-aut-mei=Tirso kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RogachevskayaAnna en-aut-sei=Rogachevskaya en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndoTeruhiko en-aut-sei=Ando en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=RoehrlMichael H. en-aut-sei=Roehrl en-aut-mei=Michael H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=2 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=3 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=4 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=5 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Surgery, Kawasaki Medical School General Medical Center kn-affil= affil-num=13 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School kn-affil= affil-num=14 en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=C1orf50 kn-keyword=C1orf50 en-keyword=Luminal A breast cancer kn-keyword=Luminal A breast cancer en-keyword=Cell cycle kn-keyword=Cell cycle en-keyword=Immune evasion kn-keyword=Immune evasion en-keyword=YAP/TAZ kn-keyword=YAP/TAZ END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=22 article-no= start-page=7382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microdetection of Nucleocapsid Proteins via Terahertz Chemical Microscope Using Aptamers en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several methods have been employed, including the detection of viral ribonucleic acid (RNA), nucleocapsid (N) proteins, spike proteins, and antibodies. RNA detection, primarily through polymerase chain reaction tests, targets the viral genetic material, whereas antigen tests detect N and spike proteins to identify active infections. In addition, antibody tests are performed to measure the immune response, indicating previous exposure or vaccination. Here, we used the developed terahertz chemical microscope (TCM) to detect different concentrations of N protein in solution by immobilizing aptamers on a semiconductor substrate (sensing plate) and demonstrated that the terahertz amplitude varies as the concentration of N proteins increases, exhibiting a highly linear relationship with a coefficient of determination (R2 = 0.9881), indicating that a quantitative measurement of N proteins is achieved. By optimizing the reaction conditions, we confirmed that the amplitude of the terahertz wave was independent of the solution volume. Consequently, trace amounts (0.5 μL) of the N protein were successfully detected, and the detection process only took 10 min. Therefore, this study is expected to develop a rapid and sensitive method for the detection and observation of the SARS-CoV-2 virus at a microdetection level. It is anticipated that this research will significantly contribute to reducing the spread of novel infectious diseases in the future. en-copyright= kn-copyright= en-aut-name=DingXue en-aut-sei=Ding en-aut-mei=Xue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiMana en-aut-sei=Murakami en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Hospital kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=terahertz chemical microscope kn-keyword=terahertz chemical microscope en-keyword=aptamers kn-keyword=aptamers en-keyword=N protein kn-keyword=N protein en-keyword=microdetection kn-keyword=microdetection END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=免疫不全/調節異常に起因する古典的ホジキンリンパ腫における9p24.1のコピー数解析 kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OHSAWAKumiko en-aut-sei=OHSAWA en-aut-mei=Kumiko kn-aut-name=大澤久美子 kn-aut-sei=大澤 kn-aut-mei=久美子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil=岡山大学大学院保健学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=非小細胞肺癌における腫瘍免疫状態の指標としての好中球リンパ球比の有用性 kn-title=Utility of neutrophil-to-lymphocyte ratio as an indicator of tumor immune status in non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IWATAKazuma en-aut-sei=IWATA en-aut-mei=Kazuma kn-aut-name=岩田一馬 kn-aut-sei=岩田 kn-aut-mei=一馬 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=癌関連線維芽細胞を標的とした光免疫療法は腫瘍免疫の再構築に寄与する kn-title=Fibroblast activation protein-targeted near-infrared photoimmunotherapy depletes immunosuppressive cancer-associated fibroblasts and remodels local tumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AKAIMasaaki en-aut-sei=AKAI en-aut-mei=Masaaki kn-aut-name=赤井正明 kn-aut-sei=赤井 kn-aut-mei=正明 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=p53搭載テロメラーゼ特異的腫瘍溶解アデノウイルスによる膵臓癌における長期抗腫瘍免疫の活性化 kn-title=Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HASHIMOTOMasashi en-aut-sei=HASHIMOTO en-aut-mei=Masashi kn-aut-name=橋本将志 kn-aut-sei=橋本 kn-aut-mei=将志 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=1 article-no= start-page=198 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical practice pattern of Pneumocystis pneumonia prophylaxis in systemic lupus erythematosus: a cross-sectional study from lupus registry of nationwide institutions (LUNA) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Pneumocystis jirovecii pneumonia (PCP) is an opportunistic infection in patients undergoing immunosuppressive therapy, such as glucocorticoid (GC) medication, for systemic autoimmune diseases like systemic lupus erythematosus (SLE). Despite the confirmed effectiveness of PCP prophylaxis, its clinical administration, especially in conjunction with GC dosage, remains unclear. We aimed to describe the clinical practice of PCP prophylaxis in association with SLE in Japan, evaluate the relationship between GC dosage and PCP prophylaxis, and explore the practice patterns associated with PCP prophylaxis.
Methods This cross-sectional study used data from the Lupus Registry of Nationwide Institutions in Japan from 2016 to 2021 and included patients diagnosed with SLE. Using descriptive statistics, multivariate analysis, and decision tree analysis, we examined the prevalence of PCP prophylaxis and its association with the GC dosage.
Results Out of 1,460 patients, 21% underwent PCP prophylaxis. The frequency of prophylaxis decreased with a decrease in GC dosage. After adjusting for confounders, logistic regression revealed the odds ratio of PCP prophylaxis increased with higher prednisolone (PSL) doses: 3.7 for 5 <= PSL < 7.5 mg, 5.2 for 7.5 <= PSL < 10 mg, 9.0 for 10 <= PSL < 20 mg, and 43.1 for PSL >= 20 mg, using PSL < 5 mg as the reference. Decision tree analysis indicated that a PSL dosage of < 11 mg/day and immunosuppressant use were key determinants of PCP prophylaxis.
Conclusion This study provides valuable insights into PCP prophylaxis practices in patients with SLE in Japan, underscoring the importance of GC dosage and concomitant immunosuppressant use. en-copyright= kn-copyright= en-aut-name=OnishiTakahisa en-aut-sei=Onishi en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KajiyamaHiroshi en-aut-sei=Kajiyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseKunihiro en-aut-sei=Ichinose en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoShuzo en-aut-sei=Sato en-aut-mei=Shuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraMichio en-aut-sei=Fujiwara en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KidaTakashi en-aut-sei=Kida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuoYusuke en-aut-sei=Matsuo en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishimuraKeisuke en-aut-sei=Nishimura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamaneTakashi en-aut-sei=Yamane en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Rheumatology, Kakogawa Central City Hospital kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=7 en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center kn-affil= affil-num=8 en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=9 en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=10 en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine kn-affil= affil-num=11 en-affil=Department of Rheumatology, Yokohama Rosai Hospital kn-affil= affil-num=12 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=13 en-affil=Infammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=14 en-affil=Department of Rheumatology, Tokyo Kyosai Hospital kn-affil= affil-num=15 en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Rheumatology, Kakogawa Central City Hospital kn-affil= en-keyword=Systemic lupus erythematosus kn-keyword=Systemic lupus erythematosus en-keyword=Pneumocystis jirovecii pneumonia kn-keyword=Pneumocystis jirovecii pneumonia en-keyword=Glucocorticoid kn-keyword=Glucocorticoid en-keyword=Immunosuppressant kn-keyword=Immunosuppressant en-keyword=Practice pattern kn-keyword=Practice pattern END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=1 article-no= start-page=195 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between discontinuity of care and patient trust in the usual rheumatologist among patients with systemic lupus erythematosus: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Patient trust plays a central role in the patient-physician relationship. This study aimed to determine whether the number of outpatient visits with a covering rheumatologist is associated with patient trust in their usual rheumatologist.
Methods Japanese adults with systemic lupus erythematosus (SLE) who met the 1997 revised classification criteria of the American College of Rheumatology and had outpatient visits with a covering rheumatologist in the past year were included.
We used the 11-item Japanese version of the modified Trust in Physician Scale (range 0–100) to assess patient trust. A general linear model with cluster-robust variance estimation was used to evaluate the association between the number of outpatient visits with covering rheumatologists and the patient’s trust in their usual rheumatologist.
Results Of the 515 enrolled participants, 421 patients with SLE were included in our analyses. Patients were divided into groups according to the number of outpatient visits with a covering rheumatologist in the past year as follows: no visits (59.9%; reference group), one to three visits (24.2%; low-frequency group), and four or more visits (15.9%; high-frequency group). The median Trust in Physician Scale score was 81.8 (interquartile range: 72.7–93.2). Both the low-frequency group (mean difference: -3.03; 95% confidence interval [CI] -5.93 to -0.80) and high-frequency group (mean difference: -4.17; 95% CI -7.77 to -0.58) exhibited lower trust in their usual rheumatologist.
Conclusion This study revealed that the number of outpatient visits with a covering rheumatologist was associated with lower trust in a patient’s usual rheumatologist. en-copyright= kn-copyright= en-aut-name=KatayamaYu en-aut-sei=Katayama en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShidaharaKenta en-aut-sei=Shidahara en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NawachiShoichi en-aut-sei=Nawachi en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuyamaEri en-aut-sei=Katsuyama en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Takano-NarazakiMariko en-aut-sei=Takano-Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OguroNao en-aut-sei=Oguro en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshikawaYuichi en-aut-sei=Ishikawa en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakuraiNatsuki en-aut-sei=Sakurai en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HidekawaChiharu en-aut-sei=Hidekawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IchikawaTakanori en-aut-sei=Ichikawa en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KishidaDai en-aut-sei=Kishida en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ThomDavid H. en-aut-sei=Thom en-aut-mei=David H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KuritaNoriaki en-aut-sei=Kurita en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=11 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=12 en-affil=The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health kn-affil= affil-num=13 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Centre for Rheumatic Disease, Yokohama City University Medical Centre kn-affil= affil-num=17 en-affil=Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University kn-affil= affil-num=18 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=19 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=20 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Medicine, Stanford University School of Medicine kn-affil= affil-num=23 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= en-keyword=Systemic lupus erythematosus kn-keyword=Systemic lupus erythematosus en-keyword=Patient-physician relationship kn-keyword=Patient-physician relationship en-keyword=Outpatient visits kn-keyword=Outpatient visits en-keyword=Patient trust kn-keyword=Patient trust en-keyword=Discontinuity of care kn-keyword=Discontinuity of care END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dendritic cell maturation is induced by p53-armed oncolytic adenovirus via tumor-derived exosomes enhancing systemic antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) are crucial in cancer immunity, because they activate cytotoxic T cells by presenting tumor antigens. Recently, oncolytic virus therapy has been recognized as a systemic immune stimulator. We previously developed a telomerase-specific oncolytic adenovirus (OBP-301) and a p53-armed OBP-301 (OBP-702), demonstrating that these viruses strongly activate systemic antitumor immunity. However, their effects on DCs remained unclear. In the present study, the aim was to elucidate the mechanisms of DC activation by OBP-702, focusing particularly on tumor-derived exosomes. Exosomes (Exo53, Exo301, or Exo702) were isolated from conditioned media of human or murine pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and PAN02) after treatment with Ad-p53, OBP-301, or OBP-702. Exo702 derived from Panc-1 and MiaPaCa-2 cells significantly upregulated CD86, CD80, CD83 (markers of DC maturation), and IFN-γ in DCs in vitro. Similarly, Exo702 derived from PAN02 cells upregulated CD86 and IFN-γ in bone marrow-derived DCs in a bilateral PAN02 subcutaneous tumor model. This DC maturation was inhibited by GW4869, an inhibitor of exosome release, and anti-CD63, an antibody targeting the exosome marker. Intratumoral injection of OBP-702 into PAN02 subcutaneous tumors significantly increased the presence of mature DCs and CD8-positive T cells in draining lymph nodes, leading to long-lasting antitumor effects through the durable activation of systemic antitumor immunity. In conclusion, tumor-derived exosomes play a significant role in DC maturation following OBP-702 treatment and are critical for the systemic activation of antitumor immunity, leading to the abscopal effect. en-copyright= kn-copyright= en-aut-name=OhtaniTomoko en-aut-sei=Ohtani en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonKento en-aut-sei=Kumon en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiChiaki en-aut-sei=Yagi en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoRyoma en-aut-sei=Sugimoto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Oncolytic adenovirus kn-keyword=Oncolytic adenovirus en-keyword=p53 kn-keyword=p53 en-keyword=Dendritic cells kn-keyword=Dendritic cells en-keyword=Anti-tumor immunity kn-keyword=Anti-tumor immunity en-keyword=Exosome kn-keyword=Exosome END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=19 article-no= start-page=2655 end-page=2660 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Prompt Diagnosis and Treatment of a Case of Nuclear Protein of the Testis Carcinoma Characterized by a Bronchial Lesion and High Serum Alpha-fetoprotein Level Following Genomic Testing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nuclear protein of the testis carcinoma (NUTC) is a rare and aggressive malignancy. We herein report a case of NUTC in the lung characterized by a bronchial lesion and elevated alpha-fetoprotein levels. A 35-year-old Japanese man presented to our institution with suspected advanced lung cancer based on a histological examination. Subsequently, next-generation sequencing (NGS) yielded a positive BRD4-NUTM1 fusion. In addition, positive NUT immunostaining of the lung biopsy specimen confirmed NUTC in the lungs. Systemic chemotherapy and radiotherapy showed a temporary response, with decreased serum alpha-fetoprotein levels. We highlight this case of a prompt diagnosis by NGS of NUTC in a young individual with a rapidly progressing tumor. en-copyright= kn-copyright= en-aut-name=MatsuuraHiroaki en-aut-sei=Matsuura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RaiKammei en-aut-sei=Rai en-aut-mei=Kammei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Fukuyama City Hospital kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=NUT carcinoma kn-keyword=NUT carcinoma en-keyword=BRD4-NUTM1 kn-keyword=BRD4-NUTM1 en-keyword=lung cancer kn-keyword=lung cancer en-keyword=alpha-fetoprotein (AFP) kn-keyword=alpha-fetoprotein (AFP) en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=4 article-no= start-page=557 end-page=564 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Significance of Prior Ramucirumab Use on the Effectiveness of Nivolumab as the Third-Line Regimen in Gastric Cancer: A Multicenter Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Objective Because vascular endothelial growth factor inhibition has been suggested to improve immune cell function in the cancer microenvironment, we examined whether using ramucirumab (RAM) before nivolumab usage is more effective in advanced gastric cancer.
Methods This was a multicenter retrospective observational study. We analyzed patients who received nivolumab monotherapy as the third-line regimen for unresectable advanced or recurrent gastric cancer between October 2017 and December 2022. They were divided into the RAM (RAM-treated) group and the non-RAM (non-treated) group according to the RAM usage in the second-line regimen. The primary outcome was to compare the overall survival after nivolumab administration in the third-line regimen between the RAM and non-RAM groups.
Results Fifty-two patients were included in the present study: 42 patients in the RAM group and ten patients in the non-RAM group. The median overall survival was significantly longer in the RAM group than in the non-RAM group (8.5 months vs 6.9 months, p < 0.05). In the RAM group, patients without peritoneal metastasis had significantly better median overall survival than those with peritoneal metastasis (23.8 months vs 7.7 months, p = 0.0033). Multivariate Cox-proportional hazards analyses showed that the presence of peritoneal metastasis (hazard ratio, 2.4; 95% confidence interval 1.0-5.7) alone was significantly associated with overall survival in the RAM group.
Conclusions The use of RAM prior to nivolumab monotherapy may contribute to prolonged survival in patients with gastric cancer, especially those without peritoneal metastasis. en-copyright= kn-copyright= en-aut-name=ObayashiYuka en-aut-sei=Obayashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeMakoto en-aut-sei=Abe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyaharaKoji en-aut-sei=Miyahara en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaMasahiro en-aut-sei=Nakagawa en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaMichihiro en-aut-sei=Ishida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChodaYasuhiro en-aut-sei=Choda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=407 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The First Report of Bickerstaff Brainstem Encephalitis Induced by Atezolizumab for Metastatic Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, but they have been known to cause immune-related adverse events (irAEs) by promoting T-cell activation. Neurological irAEs are rare (1%) but have a high fatality rate (11.5%). Here we report the first case of Bickerstaff brainstem encephalitis (BBE) induced by an ICI. A woman in her 60s with metastatic breast cancer was treated with atezolizumab plus nab-paclitaxel once intravenously. Eighteen days later, she lost consciousness with ophthalmoplegia and was diagnosed with a neurological irAE. She recovered consciousness immediately with the administration of intravenous immunoglobulin (IVIG) but suffered severe permanent peripheral neuropathy. Although it is just one case, this experience shows that BBE occurring as a neurological irAE of ICI cancer treatment may be associated with more severe outcomes than conventional BBE in metastatic cancer. Creating a system for multidisciplinary treatment is essential for ICI therapy. en-copyright= kn-copyright= en-aut-name=ShimoyamaKyoko en-aut-sei=Shimoyama en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaAtsushi en-aut-sei=Nakajima en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MinariYoshimitsu en-aut-sei=Minari en-aut-mei=Yoshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Breast Surgery, Takatsuki General Hospital kn-affil= affil-num=2 en-affil=Department of Rehabilitation, Aijinkai Rehabilitation Hospital kn-affil= affil-num=3 en-affil=Department of Breast Surgery, Takatsuki General Hospital kn-affil= en-keyword=Bickerstaff brainstem encephalitis kn-keyword=Bickerstaff brainstem encephalitis en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=atezolizumab kn-keyword=atezolizumab en-keyword=neurological immune-related adverse event kn-keyword=neurological immune-related adverse event en-keyword=breast cancer kn-keyword=breast cancer END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=363 end-page=370 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Small-for-Gestational-Age Status and the Risk of Kawasaki Disease: A Nationwide Birth Cohort in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Kawasaki disease (KD) is a pediatric disease of unknown etiology that commonly affects infants in East Asia. Infants born small for gestational age (SGA) have weaker immune systems and are more susceptible to infection. Using data from a nationwide Japanese birth cohort study conducted in 2010 (n=34,579), we investigated whether SGA increases the risk of KD. SGA was defined as birth weight below the 10th percentile for gestational age. The outcome was hospitalization for KD between 6 and 30 months of age. The association between SGA and hospitalization for KD, adjusted for child and maternal factors, was examined using logistic regression. Of the 231 children hospitalized for KD, 9.5% were SGA. Further statistical analysis showed that SGA did not increase the odds ratio (OR) of hospitalization for KD (adjusted OR 1.12, 95% confidence interval 0.71-1.75). This result was not changed with stratification by early daycare attendance and preterm status. Reasons for the lack of association may include the multifactorial pathogenesis of KD; in addition, the types of infections to which SGA infants are predisposed may differ from those triggering KD. Overall, our large nationwide study found no association between SGA and KD. en-copyright= kn-copyright= en-aut-name=TakanagaSatoe en-aut-sei=Takanaga en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Kawasaki disease (KD) kn-keyword=Kawasaki disease (KD) en-keyword=small for gestational age (SGA) kn-keyword=small for gestational age (SGA) en-keyword=cohort kn-keyword=cohort en-keyword=epidemiology kn-keyword=epidemiology END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=4 article-no= start-page=294 end-page=301 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of lymphadenectomy during primary surgery for kidney cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose of review
Lymph node dissection (LND) during radical nephrectomy (RN) for renal cell carcinoma (RCC) is not considered as a standard. The emergence of robot-assisted surgery and effective immune checkpoint inhibitors (ICI) in recent years may change this and lymph node (LN) staging has become easier and has a clinical impact. In this review, we aimed to reconsider the role of LND today.

Recent findings
Although the extent of LND has still not been well established, removal of more LN seems to provide better oncologic outcomes for a select group of patients with high-risk factors such as clinical T3-4. Adjuvant therapy using pembrolizumab has been shown to improve disease free survival if complete resection of metastatic lesions as well as the primary site is obtained in combination. Robot assisted RN for localized RCC has been widespread and the studies regarding LND for RCC has been recently appeared.

Summary
The staging and surgical benefits and its extent of LND during RN for RCC remains unclear, but it is becoming increasingly important. Technologies that allow an easier LND and adjuvant ICI that improve survival in LN-positive patients are engaging the role of LND, a procedure that was needed, but almost never done, is now indicated sometimes. Now, the goal is to identify the clinical and molecular imaging tools that can help identify with sufficient accuracy who needs a LND and which LNs to remove in a targeted personalized approach. en-copyright= kn-copyright= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanagisawaTakafumi en-aut-sei=Yanagisawa en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KarakiewiczPierre I. en-aut-sei=Karakiewicz en-aut-mei=Pierre I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=4 en-affil=Cancer Prognostic and Health Outcomes Unit, Division of Urology, University of Montreal Health Center kn-affil= affil-num=5 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=lymph node dissection kn-keyword=lymph node dissection en-keyword=lymph node metastasis kn-keyword=lymph node metastasis en-keyword=lymphadenectomy kn-keyword=lymphadenectomy en-keyword=lymphadenopathy kn-keyword=lymphadenopathy en-keyword=Renal cell carcinoma kn-keyword=Renal cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=11 article-no= start-page=1769 end-page=1786 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nutrient Requirements Shape the Preferential Habitat of Allorhizobium vitis VAR03-1, a Commensal Bacterium, in the Rhizosphere of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant–microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BaoJiyuan en-aut-sei=Bao en-aut-mei=Jiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Commensal bacteria kn-keyword=Commensal bacteria en-keyword=Nutrient requirements kn-keyword=Nutrient requirements en-keyword=Organic acids kn-keyword=Organic acids en-keyword=Plant-microbe interactions kn-keyword=Plant-microbe interactions en-keyword=Rhizosphere kn-keyword=Rhizosphere en-keyword=Sugars kn-keyword=Sugars END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=1099 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histological differences related to autophagy in the minor salivary gland between primary and secondary types of Sjögren's syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some forms of Sjögren’s syndrome (SS) follow a clinical course accompanied by systemic symptoms caused by lymphocyte infiltration and proliferation in the liver, kidneys, and other organs. To better understand the clinical outcomes of SS, here we used minor salivary gland tissues from patients and examine their molecular, biological, and pathological characteristics. A retrospective study was performed, combining clinical data and formalin-fixed paraffin-embedded (FFPE) samples from female patients over 60 years of age who underwent biopsies at Okayama University Hospital. We employed direct digital RNA counting with nCounter® and multiplex immunofluorescence analysis with a PhenoCycler™ on the labial gland biopsies. We compared FFPE samples from SS patients who presented with other connective tissue diseases (secondary SS) with those from stable SS patients with symptoms restricted to the exocrine glands (primary SS). Secondary SS tissues showed enhanced epithelial damage and lymphocytic infiltration accompanied by elevated expression of autophagy marker genes in the immune cells of the labial glands. The close intercellular distance between helper T cells and B cells positive for autophagy-associated molecules suggests accelerated autophagy in these lymphocytes and potential B cell activation by helper T cells. These findings indicate that examination of FFPE samples from labial gland biopsies can be an effective tool for evaluating molecular histological differences between secondary and primary SS through multiplexed analysis of gene expression and tissue imaging. en-copyright= kn-copyright= en-aut-name=Ono-MinagiHitomi en-aut-sei=Ono-Minagi en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NohnoTsutomu en-aut-sei=Nohno en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyawakiKohta en-aut-sei=Miyawaki en-aut-mei=Kohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakaiTakayoshi en-aut-sei=Sakai en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cytology and Histology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cytology and Histology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Precision Medicine, Kyushu University School of Medicine kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry kn-affil= affil-num=13 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Autoimmune disease kn-keyword=Autoimmune disease en-keyword=Xerostomia kn-keyword=Xerostomia en-keyword=Multiplex immunostaining kn-keyword=Multiplex immunostaining en-keyword=Spatial analysis kn-keyword=Spatial analysis en-keyword=Autophagy kn-keyword=Autophagy END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=69 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A case of immune checkpoint inhibitor-associated colitis treated with infliximab kn-title=インフリキシマブが著効した免疫関連有害事象大腸炎の1例 en-subtitle= kn-subtitle= en-abstract= kn-abstract= A 52-year-old Japanese man diagnosed with non-small cell lung cancer initiated chemotherapy with tremelimumab, durvalumab, nanoparticle albumin-bound paclitaxel, and carboplatin. On the fourth day of the first treatment course, he developed a fever, followed by watery diarrhea exceeding 10 episodes per day and bloody stools the next day. Immunotherapy-related adverse event colitis was diagnosed through CT scans and colonoscopy examinations. Despite the ineffectiveness of systemic steroid administration, prompt alleviation of symptoms was achieved through the administration of infliximab. In our case, the patient developed Grade 3 diarrhea, prompting the initiation of intravenous prednisolone at 80mg/day in accordance with guidelines. However, symptom improvement was not attained. In situations where symptoms persist beyond three days despite systemic steroid administration, the consideration of adjunctive infliximab use at a dosage of 5mg/kg becomes necessary. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name=岩室雅也 kn-aut-sei=岩室 kn-aut-mei=雅也 aut-affil-num=1 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name=平岡佐規子 kn-aut-sei=平岡 kn-aut-mei=佐規子 aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name=大塚基之 kn-aut-sei=大塚 kn-aut-mei=基之 aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil=岡山大学病院 消化器内科 affil-num=2 en-affil=Inflammatory Bowel Disease Center, Okayama University Hospital kn-affil=岡山大学病院 炎症性腸疾患センター affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 消化器・肝臓内科学 en-keyword=インフリキシマブ(infliximab) kn-keyword=インフリキシマブ(infliximab) en-keyword=免疫関連有害事象(immune-related adverse events) kn-keyword=免疫関連有害事象(immune-related adverse events) en-keyword=大腸炎(colitis) kn-keyword=大腸炎(colitis) END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1329162 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency.
Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed.
Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= en-keyword=post-acute sequelae of SARS-CoV-2 infection kn-keyword=post-acute sequelae of SARS-CoV-2 infection en-keyword=PASC kn-keyword=PASC en-keyword=long Covid kn-keyword=long Covid en-keyword=persistent viruses kn-keyword=persistent viruses en-keyword=vaccine kn-keyword=vaccine en-keyword=antiviral drug kn-keyword=antiviral drug en-keyword=mathematical model kn-keyword=mathematical model en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=10 article-no= start-page=3231 end-page=3247 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8(+) T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44(+) effector memory T cells and CD69(+) early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers. en-copyright= kn-copyright= en-aut-name=FujimotoTakuya en-aut-sei=Fujimoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsushitaHirokazu en-aut-sei=Matsushita en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KenmotsuNaoya en-aut-sei=Kenmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoNatsuko en-aut-sei=Kondo en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakataTakushi en-aut-sei=Takata en-aut-mei=Takushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamatsuMizuki en-aut-sei=Kitamatsu en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShirakawaMakoto en-aut-sei=Shirakawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiMinoru en-aut-sei=Suzuki en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=9 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=10 en-affil=Faculty of Science and Engineering, Kindai University kn-affil= affil-num=11 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= en-keyword=abscopal effect kn-keyword=abscopal effect en-keyword=advanced melanoma kn-keyword=advanced melanoma en-keyword=boron neutron capture therapy kn-keyword=boron neutron capture therapy en-keyword=boron-neutron immunotherapy kn-keyword=boron-neutron immunotherapy en-keyword=immune combination therapy kn-keyword=immune combination therapy END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=21 article-no= start-page=126156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic.
Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.
Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI −0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI −0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI −0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.
Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyako en-aut-sei=Sasaki en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Antibody kn-keyword=Antibody en-keyword=Mixed-effects model kn-keyword=Mixed-effects model en-keyword=Omicron kn-keyword=Omicron END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=10 article-no= start-page=1594 end-page=1601 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Re-administration of platinum-based chemotherapy for recurrent endometrial cancer: an ancillary analysis of the SGSG-012/GOTIC-004/Intergroup study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background We previously demonstrated the applicability of the concept of “platinum sensitivity” in recurrent endometrial cancer. Although immune checkpoint inhibitors have been widely incorporated into endometrial cancer treatment, the debate continues regarding treatment options in patients with recurrent endometrial cancer who have previously received platinum-based chemotherapy. In this study, we assessed the duration of response to secondary platinum-based treatment using pooled data from the SGSG-012/GOTIC-004/Intergroup study.
Methods Among the 279 participants in the SGSG-012/GOTIC-004/Intergroup study wherein platinum-based chemotherapy was re-administered for managing recurrent endometrial cancer between January 2005 and December 2009, 130 (47%) responded to chemotherapy. We compared the relationship between platinum-free interval and duration of secondary platinum-based treatment using pooled data.
Results In 40 patients (31%), the duration of response to secondary platinum-based treatment exceeded the platinum-free interval. The duration of response to secondary platinum-based treatment exceeded 12 months in 51 patients (39%) [platinum-free interval: < 12 months, 14/48 (29%); 12–23 months, 18/43 (42%); 24–35 months, 8/19 (42%); ≥ 36 months, 11/20 (55%)]. In particular, in eight patients (6%), the duration of response to secondary platinum-based treatment exceeded 36 months [platinum-free interval: < 12 months, 3/48 (6%); 12–23 months, 0/19 (0%); 24–35 months, 2/19 (11%); ≥ 36 months, 3/20 (15%)].
Conclusions Re-administration of platinum-based chemotherapy for recurrent endometrial cancer may result in a long-term response exceeding the platinum-free interval in some patients. Even in the current situation, where immune checkpoint inhibitors have been introduced, re-administration of platinum-based chemotherapy is worth considering. en-copyright= kn-copyright= en-aut-name=NagaoShoji en-aut-sei=Nagao en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishioShin en-aut-sei=Nishio en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeharaKazuhiro en-aut-sei=Takehara en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoShinya en-aut-sei=Sato en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatohToyomi en-aut-sei=Satoh en-aut-mei=Toyomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimadaMuneaki en-aut-sei=Shimada en-aut-mei=Muneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanabeHiroshi en-aut-sei=Tanabe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakanoMasashi en-aut-sei=Takano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HorieKouji en-aut-sei=Horie en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeiYuji en-aut-sei=Takei en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ImaiYuichi en-aut-sei=Imai en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HibinoYumi en-aut-sei=Hibino en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakekumaMunetaka en-aut-sei=Takekuma en-aut-mei=Munetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraKazuto en-aut-sei=Nakamura en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakanoHirokuni en-aut-sei=Takano en-aut-mei=Hirokuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujiwaraKeiichi en-aut-sei=Fujiwara en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Kurume University School of Medicine kn-affil= affil-num=3 en-affil=Department of Gynecologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Tottori University kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba kn-affil= affil-num=6 en-affil=Department of Gynecology, Tohoku University Hospital kn-affil= affil-num=7 en-affil=Department of Medical Oncology, Hyogo Cancer Center kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Jikei University School of Medicine kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, National Defense Medical College kn-affil= affil-num=10 en-affil=Department of Gynecologic Oncology, Saitama Cancer Center kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Jichi Medical University kn-affil= affil-num=12 en-affil=Department of Obstetrics and Gynecology, Yokohama City University Hospital kn-affil= affil-num=13 en-affil=Department of Gynecologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=14 en-affil=Department of Gynecologic Oncology, Saitama Medical University International Medical Center kn-affil= affil-num=15 en-affil=Department of Gynecology, Shizuoka Cancer Center kn-affil= affil-num=16 en-affil=Department of Gynecology, Gunma Prefectural Cancer Center kn-affil= affil-num=17 en-affil=Department of Obstetrics and Gynecology, Jikei University School of Medicine kn-affil= affil-num=18 en-affil=Department of Gynecologic Oncology, Saitama Medical University International Medical Center kn-affil= affil-num=19 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Recurrent endometrial cancer kn-keyword=Recurrent endometrial cancer en-keyword=Re-administration of platinum-based chemotherapy kn-keyword=Re-administration of platinum-based chemotherapy en-keyword=Platinum-free interval kn-keyword=Platinum-free interval en-keyword=Secondary platinum response kn-keyword=Secondary platinum response END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=8 article-no= start-page=1108 end-page=1112 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240619 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The treatment effect of endovascular therapy for chronic limb‐threatening ischemia with systemic sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic sclerosis (SSc) is a collagen disease with immune abnormalities, vasculopathy, and fibrosis. Ca blockers and prostaglandins are used to treat peripheral circulatory disturbances. Chronic limb-threatening ischemia (CLTI) is a disease characterized by extremity ulcers, necrosis, and pain due to limb ischemia. Since only a few patients present with coexistence of CLTI and SSc, the treatment outcomes of revascularization in these cases are unknown. In this study, we evaluated the clinical characteristics and treatment outcomes of seven patients with CLTI and SSc, and 35 patients with uncomplicated CLTI who were hospitalized from 2012 to 2022. A higher proportion of patients with uncomplicated CLTI had diabetes and male. There were no significant differences in the age at which ischemic ulceration occurred, other comorbidities, or in treatments, including antimicrobial agents, revascularization and amputation, improvement of pain, and the survival time from ulcer onset between the two subgroups. EVT or amputation was performed in six or two of the seven patients with CLTI and SSc, respectively. Among those who underwent EVT, 33% (2/6) achieved epithelialization and 67% (4/6) experienced pain relief. These results suggest that the revascularization in cases with CLTI and SSc should consider factors such as infection and general condition, since revascularization improve the pain of these patients. en-copyright= kn-copyright= en-aut-name=MatsudaYoshihiro en-aut-sei=Matsuda en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakeTomoko en-aut-sei=Miyake en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomuraHayato en-aut-sei=Nomura en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiYoji en-aut-sei=Hirai en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawakamiYoshio en-aut-sei=Kawakami en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakodaNaoya en-aut-sei=Sakoda en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=chronic limb-threatening ischemia (CLTI) kn-keyword=chronic limb-threatening ischemia (CLTI) en-keyword=endovascular therapy (EVT) kn-keyword=endovascular therapy (EVT) en-keyword=revascularization kn-keyword=revascularization en-keyword=systemic sclerosis (SSc) kn-keyword=systemic sclerosis (SSc) END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4610 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function en-subtitle= kn-subtitle= en-abstract= kn-abstract=NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication. en-copyright= kn-copyright= en-aut-name=LiYuying en-aut-sei=Li en-aut-mei=Yuying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangQiong en-aut-sei=Wang en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiaHuimin en-aut-sei=Jia en-aut-mei=Huimin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KosamiKen-Ichi en-aut-sei=Kosami en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UebaTakahiro en-aut-sei=Ueba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujimotoAtsumi en-aut-sei=Tsujimoto en-aut-mei=Atsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamanakaMiki en-aut-sei=Yamanaka en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabumotoYasuyuki en-aut-sei=Yabumoto en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MikiDaisuke en-aut-sei=Miki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SasakiEriko en-aut-sei=Sasaki en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FukaoYoichiro en-aut-sei=Fukao en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraMasayuki en-aut-sei=Fujiwara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Kaneko-KawanoTakako en-aut-sei=Kaneko-Kawano en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KojimaChojiro en-aut-sei=Kojima en-aut-mei=Chojiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WingRod A. en-aut-sei=Wing en-aut-mei=Rod A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SebastianAlfino en-aut-sei=Sebastian en-aut-mei=Alfino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishimuraHideki en-aut-sei=Nishimura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NiuQingfeng en-aut-sei=Niu en-aut-mei=Qingfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuMotoki en-aut-sei=Shimizu en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YoshidaKentaro en-aut-sei=Yoshida en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TerauchiRyohei en-aut-sei=Terauchi en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ShimamotoKo en-aut-sei=Shimamoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences kn-affil= affil-num=2 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=College of Agronomy, Jiangxi Agricultural University kn-affil= affil-num=4 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=7 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=8 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=9 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Faculty of Science, Kyushu University kn-affil= affil-num=12 en-affil=Department of Bioinformatics, Ritsumeikan University kn-affil= affil-num=13 en-affil=YANMAR HOLDINGS Co., Ltd. kn-affil= affil-num=14 en-affil=College of Pharmaceutical Sciences, Ritsumeikan University kn-affil= affil-num=15 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=16 en-affil=Graduate School of Engineering Science, Yokohama National University kn-affil= affil-num=17 en-affil=Arizona Genomics Institute, School of Plant Sciences, University of Arizona kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=20 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=21 en-affil=Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology kn-affil= affil-num=22 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=23 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=24 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=25 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=26 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=259 end-page=270 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol–disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patients’ sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol–disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol–disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol–disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol–disulfide homeostasis in multiple sclerosis patients. en-copyright= kn-copyright= en-aut-name=VuralGonul en-aut-sei=Vural en-aut-mei=Gonul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DemirEsra en-aut-sei=Demir en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GumusyaylaSadiye en-aut-sei=Gumusyayla en-aut-mei=Sadiye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ErenFunda en-aut-sei=Eren en-aut-mei=Funda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarakliSerdar en-aut-sei=Barakli en-aut-mei=Serdar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NeseliogluSalim en-aut-sei=Neselioglu en-aut-mei=Salim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ErelOzcan en-aut-sei=Erel en-aut-mei=Ozcan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=2 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=3 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=4 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=7 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= en-keyword=multiple sclerosis kn-keyword=multiple sclerosis en-keyword=dysfunctional HDL kn-keyword=dysfunctional HDL en-keyword=thiol–disulfide homeostasis kn-keyword=thiol–disulfide homeostasis en-keyword=cognitive decline kn-keyword=cognitive decline END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=227 end-page=235 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Lipopolysaccharide on the Duration of Zolpidem-Induced Loss of Righting Reflex in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zolpidem, a non-benzodiazepine hypnotic, is primarily used to treat insomnia. In a previous study, pior treatment with non-benzodiazepine receptor agonists was associated with inflammation. The present study aimed to clarify the association between the effects of zolpidem and inflammation in mice treated with lipopolysaccharide (LPS), a known model of inflammation. We assessed the zolpidem-induced loss of righting reflex (LORR) duration 24 h after LPS treatment in mice. Additionally, the expressions of γ-aminobutyric acid (GABA)A receptor subunit and K+-Cl− cotransporter isoform 2 (KCC2) mRNA in the hippocampus and frontal cortex were examined in LPS-treated mice. Pretreatment with LPS was associated with significantly prolonged duration of zolpidem-induced LORR compared to control mice. This effect was significantly attenuated by administering bicuculline, a GABAA receptor antagonist, or flumazenil, a benzodiazepine receptor antagonist, in LPS-treated mice. Compared to controls, LPS-treated mice showed no significant change in the expression of GABAA receptor subunits in the hippocampus or frontal cortex. Bumetanide, an Na+-K+-2Cl− cotransporter isoform 1 blocker, attenuated the extended duration of zolpidem-induced LORR observed in LPS-treated mice. LPS significantly decreased Kcc2 mRNA expression in the hippocampus and the frontal cortex. These findings suggest that inflammation increases zolpidem-induced LORR, possibly through a reduction in KCC2 expression. en-copyright= kn-copyright= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=zolpidem kn-keyword=zolpidem en-keyword=GABAA receptor kn-keyword=GABAA receptor en-keyword=K+-Cl− cotransporters kn-keyword=K+-Cl− cotransporters END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=1811 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Nutritional Status on Neutrophil-to-Lymphocyte Ratio as a Predictor of Efficacy and Adverse Events of Immune Check-Point Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The neutrophil -to-lymphocyte ratio (NLR) is useful for predicting the effectiveness of treatment with immune checkpoint inhibitors (ICIs) and immune-related adverse events (irAEs). Because a growing body of evidence has recently shown that the number of lymphocytes that comprise NLR fluctuates according to nutritional status, this study examined whether the usefulness of NLR varies in ICI treatment due to changes in nutritional status. A retrospective analysis was performed on 1234 patients who received ICI treatment for malignant tumors at our hospital. Progression-free survival (PFS) was significantly prolonged in patients with NLR < 4. Multivariate analysis revealed that the factors associated with the occurrence of irAE were NLR < 4 and the use of ipilimumab. However, when limited to cases with serum albumin levels <3.8 g/dL, lymphocyte counts significantly decreased, and the associations between NLR and PFS and between NLR and irAE occurrence disappeared. In contrast, when limited to the cases with serum albumin levels ≥3.8 g/dL, the associations remained, with significantly prolonged PFS and significantly increased irAE occurrence at NLR < 4. NLR may be a good predictive tool for PFS and irAE occurrence during ICI treatment when a good nutritional status is maintained. en-copyright= kn-copyright= en-aut-name=SueMasahiko en-aut-sei=Sue en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=immune-related adverse events kn-keyword=immune-related adverse events en-keyword=serum albumin kn-keyword=serum albumin en-keyword=real-world practice kn-keyword=real-world practice END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=10 article-no= start-page=807 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa en-subtitle= kn-subtitle= en-abstract= kn-abstract=The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism. en-copyright= kn-copyright= en-aut-name=MuXindi en-aut-sei=Mu en-aut-mei=Xindi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenHa Thi Thu en-aut-sei=Nguyen en-aut-mei=Ha Thi Thu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoKun en-aut-sei=Zhao en-aut-mei=Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KomoriTaishi en-aut-sei=Komori en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= kn-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cell differentiation kn-keyword=cell differentiation en-keyword=epithelia kn-keyword=epithelia en-keyword=growth factor(s) kn-keyword=growth factor(s) en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=extracellular matrix (ECM) kn-keyword=extracellular matrix (ECM) en-keyword=mucocutaneous disorders kn-keyword=mucocutaneous disorders END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=e174618 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro -tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph -circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC. en-copyright= kn-copyright= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShanQuisheng en-aut-sei=Shan en-aut-mei=Quisheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MizukawaNobuyoshi en-aut-sei=Mizukawa en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Universit kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=9 article-no= start-page=1261 end-page=1267 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Severe Cytokine Release Syndrome and Immune Effector Cell-associated Neurotoxicity Syndrome in a Man Receiving Immune Checkpoint Inhibitors for Lung Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 55-year-old man with stage IV lung adenocarcinoma was treated with cisplatin, pemetrexed, nivolumab, and ipilimumab. Approximately 100 days after treatment initiation, he became disoriented and presented to the emergency department with a high fever. Blood tests revealed liver and kidney dysfunctions. Subsequently, the patient developed generalized convulsions that required intensive care. He was clinically diagnosed with cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Organ damage was gradually controlled with immunosuppressive drugs, including steroids, and the patient was discharged. Successful treatment is rare in patients with CRS, including ICANS, during immune checkpoint inhibitor treatment for solid tumors. en-copyright= kn-copyright= en-aut-name=TanakaTakaaki en-aut-sei=Tanaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaokaMasataka en-aut-sei=Taoka en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=nivolumab kn-keyword=nivolumab en-keyword=ipilimumab kn-keyword=ipilimumab en-keyword=cytokine release syndrome kn-keyword=cytokine release syndrome en-keyword=immune effector cell-associated neurotoxicity syndrome kn-keyword=immune effector cell-associated neurotoxicity syndrome END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=2 article-no= start-page=323 end-page=331 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Selective activator protein (AP)-1 inhibitors are potentially promising therapeutic agents for atopic dermatitis (AD) because AP-1 is an important regulator of skin inflammation. However, few studies have investigated the effect of topical application of AP-1 inhibitors in treating inflammatory skin disorders.
Methods: Immunohistochemistry was conducted to detect phosphorylated AP-1/c-Jun expression of skin lesions in AD patients. In the in vivo study, 1 % T-5224 ointment was topically applied for 8 days to the ears of 2,4 dinitrofluorobenzene challenged AD-like dermatitis model mice. Baricitinib, a conventional therapeutic agent Janus kinase (JAK) inhibitor, was also topically applied. In the in vitro study, human epidermal keratinocytes were treated with T-5224 and stimulated with AD-related cytokines.
Results: AP-1/c-Jun was phosphorylated at skin lesions in AD patients. In vivo, topical T-5224 application inhibited ear swelling (P < 0.001), restored filaggrin (Flg) expression (P < 0.01), and generally suppressed immune-related pathways. T-5224 significantly suppressed Il17a and l17f expression, whereas baricitinib did not.Baricitinib suppressed Il4, Il19, Il33 and Ifnb expression, whereas T-5224 did not. Il1a, Il1b, Il23a, Ifna, S100a8, and S100a9 expression was cooperatively downregulated following the combined use of T5224 and baricitinib. In vitro, T-5224 restored the expression of FLG and loricrin (LOR) (P < 0.05) and suppressed IL33 expression (P < 0.05) without affecting cell viability and cytotoxicity.
Conclusions: Topical T-5224 ameliorates clinical manifestations of AD-like dermatitis in mice. The effect of this inhibitor is amplified via combined use with JAK inhibitors. en-copyright= kn-copyright= en-aut-name=SasakuraMinori en-aut-sei=Sasakura en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UrakamiHitoshi en-aut-sei=Urakami en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaKenta en-aut-sei=Ikeda en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasuiKen-Ichi en-aut-sei=Hasui en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaYoshihiro en-aut-sei=Matsuda en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SunagawaKo en-aut-sei=Sunagawa en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=AP-1 inhibitor kn-keyword=AP-1 inhibitor en-keyword=Atopic dermatitis kn-keyword=Atopic dermatitis en-keyword=Baricitinib kn-keyword=Baricitinib en-keyword=T-5224 kn-keyword=T-5224 en-keyword=Topical application kn-keyword=Topical application END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=16 article-no= start-page=2220 end-page=2232 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Drug-induced mucosal alterations observed during esophagogastroduodenoscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several features of drug-induced mucosal alterations have been observed in the upper gastrointestinal tract, i.e., the esophagus, stomach, and duodenum. These include pill-induced esophagitis, desquamative esophagitis, worsening of gastroesophageal reflux, chemotherapy-induced esophagitis, proton pump inhibitor-induced gastric mucosal changes, medication-induced gastric erosions and ulcers, pseudomelanosis of the stomach, olmesartan-related gastric mucosal inflammation, lanthanum deposition in the stomach, zinc acetate hydrate tablet-induced gastric ulcer, immune-related adverse event gastritis, olmesartan-asso-ciated sprue-like enteropathy, pseudomelanosis of the duodenum, and lanthanum deposition in the duodenum. For endoscopists, acquiring accurate knowledge regarding these diverse drug-induced mucosal alterations is crucial not only for the correct diagnosis of these lesions but also for differential diag-nosis of other conditions. This minireview aims to provide essential information on drug-induced mucosal alterations observed on esophagogastroduodenoscopy, along with representative endoscopic images. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Diagnosis kn-keyword=Diagnosis en-keyword=Esophagogastroduodenoscopy kn-keyword=Esophagogastroduodenoscopy en-keyword=Non-neoplastic lesions kn-keyword=Non-neoplastic lesions en-keyword=Esophageal lesions kn-keyword=Esophageal lesions en-keyword=Gastric lesions kn-keyword=Gastric lesions en-keyword=Duodenal lesions kn-keyword=Duodenal lesions END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=1 article-no= start-page=128 end-page=134 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240415 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spontaneous regression of multiple solitary plasmacytoma harboring Epstein–Barr virus: a case report and literature review en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a rare case of spontaneous regression (SR) in an elderly untreated patient with multiple solitary plasmacytoma (MSP). Diagnosis of MSP was confirmed through surgical resection of the left nasal cavity mass and subsequent biopsy of the right humerus. The patient was considered ineligible for chemotherapy due to poor performance status. At 3-month post-diagnosis, the patient’s condition worsened with deteriorating bone lesions and emergence of a new serum monoclonal protein. However, these clinical findings completely disappeared at 6 months, and positron emission tomography–computed tomography at 1 year confirmed complete metabolic remission. Notably, peripheral blood lymphocyte counts were inversely correlated with tumor progression and remission. Pathological re-evaluation of the initial biopsy specimens revealed programmed cell death protein 1 (PD-1) expression in tumor-infiltrating CD8+ T cells. In addition, tumor cells were infected with Epstein–Barr virus (EBV) but were negative for programmed cell death ligand 1 (PD-L1) expression, which is the most potent immune escape mechanism in tumor cells. While the mechanism underlying SR remains unclear, our findings suggest that host immune response as well as EBV infection may contribute to SR. Further studies are needed to elucidate the clinicopathologic mechanisms of tumor regression in plasma cell neoplasms. en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NodaMinori en-aut-sei=Noda en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsekiAkiko en-aut-sei=Iseki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoYumi en-aut-sei=Sato en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Otorhinolaryngology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= en-keyword=Plasmacytoma kn-keyword=Plasmacytoma en-keyword=Epstein–Barr virus kn-keyword=Epstein–Barr virus en-keyword=Spontaneous regression kn-keyword=Spontaneous regression END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=4 article-no= start-page=431 end-page=447 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3—namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. en-copyright= kn-copyright= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AudebertLéna en-aut-sei=Audebert en-aut-mei=Léna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshizawaChikako en-aut-sei=Yoshizawa en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University kn-affil= affil-num=14 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=REIC/Dkk-3 kn-keyword=REIC/Dkk-3 en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Immune checkpoint kn-keyword=Immune checkpoint en-keyword=Cancer therapy kn-keyword=Cancer therapy END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=11 article-no= start-page=3787 end-page=3802 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PD-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=The programmed cell death 1 protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis plays a crucial role in tumor immunosuppression, while the cancer-associated fibroblasts (CAFs) have various tumor-promoting functions. To determine the advantage of immunotherapy, the relationship between the cancer cells and the CAFs was evaluated in terms of the PD-1/PD-L1 axis. Overall, 140 cases of esophageal cancer underwent an immunohistochemical analysis of the PD-L1 expression and its association with the expression of the α smooth muscle actin, fibroblast activation protein, CD8, and forkhead box P3 (FoxP3) positive cells. The relationship between the cancer cells and the CAFs was evaluated in vitro, and the effect of the anti-PD-L1 antibody was evaluated using a syngeneic mouse model. A survival analysis showed that the PD-L1+ CAF group had worse survival than the PD-L1- group. In vitro and in vivo, direct interaction between the cancer cells and the CAFs showed a mutually upregulated PD-L1 expression. In vivo, the anti-PD-L1 antibody increased the number of dead CAFs and cancer cells, resulting in increased CD8+ T cells and decreased FoxP3+ regulatory T cells. We demonstrated that the PD-L1-expressing CAFs lead to poor outcomes in patients with esophageal cancer. The cancer cells and the CAFs mutually enhanced the PD-L1 expression and induced tumor immunosuppression. Therefore, the PD-L1-expressing CAFs may be good targets for cancer therapy, inhibiting tumor progression and improving host tumor immunity. en-copyright= kn-copyright= en-aut-name=KawasakiKento en-aut-sei=Kawasaki en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoTakuya en-aut-sei=Kato en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaYasushige en-aut-sei=Takeda en-aut-mei=Yasushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoHijiri en-aut-sei=Matsumoto en-aut-mei=Hijiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishimuraSeitaro en-aut-sei=Nishimura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KunitomoTomoyoshi en-aut-sei=Kunitomo en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkaiMasaaki en-aut-sei=Akai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KobayashiTeruki en-aut-sei=Kobayashi en-aut-mei=Teruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NishiwakiNoriyuki en-aut-sei=Nishiwaki en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MaedaNaoaki en-aut-sei=Maeda en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Esophageal cancer kn-keyword=Esophageal cancer en-keyword=Cancer-associated fibroblasts kn-keyword=Cancer-associated fibroblasts en-keyword=Programmed cell death 1 kn-keyword=Programmed cell death 1 en-keyword=Program cell death ligand 1 kn-keyword=Program cell death ligand 1 en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=1 article-no= start-page=4 end-page=6 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2022 Incentive Award of the Okayama Medical Association in General Medical Science (2022 Yuuki Prize) kn-title=令和4年度岡山医学会賞 総合研究奨励賞(結城賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MeguriYusuke en-aut-sei=Meguri en-aut-mei=Yusuke kn-aut-name=廻勇輔 kn-aut-sei=廻 kn-aut-mei=勇輔 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respitatory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学 END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=185 end-page=191 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduced Immunogenicity of COVID-19 Vaccine in Obese Patients with Type 2 Diabetes: A Cross-Sectional Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The global pandemic of coronavirus infection 2019 (COVID-19) was an unprecedented public health emergency. Several clinical studies reported that heart disease, lung disease, diabetes, hypertension, dyslipidemia, and obesity are critical risk factors for increased severity of and hospitalization for COVID-19. This is largely because patients with these underlying medical conditions can show poor immune responses to the COVID-19 vaccinations. Diabetes is one of the underlying conditions most highly associated with COVID-19 susceptibility and is considered a predictor of poor prognosis of COVID-19. We therefore investigated factors that influence the anti-SARS-CoV-2 spike IgG antibody titer after three doses of vaccination in patients with type 2 diabetes. We found that obesity was associated with low anti-SARS-CoV-2 spike IgG antibody titers following three-dose vaccination in type 2 diabetics. Obese patients with type 2 diabetes may have attenuated vaccine efficacy and require additional vaccination; continuous infection control should be considered in such patients. en-copyright= kn-copyright= en-aut-name=TakahashiHiroko en-aut-sei=Takahashi en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=obesity kn-keyword=obesity en-keyword=type 2 diabetes kn-keyword=type 2 diabetes en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=vaccination kn-keyword=vaccination END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=151 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=p53-Armed Oncolytic Virotherapy Improves Radiosensitivity in Soft-Tissue Sarcoma by Suppressing BCL-xL Expression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors’ growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors. en-copyright= kn-copyright= en-aut-name=KomatsubaraTadashi en-aut-sei=Komatsubara en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmoriToshinori en-aut-sei=Omori en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiuKazuhisa en-aut-sei=Sugiu en-aut-mei=Kazuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochizukiYusuke en-aut-sei=Mochizuki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DemiyaKoji en-aut-sei=Demiya en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=soft-tissue sarcoma kn-keyword=soft-tissue sarcoma en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=oncolytic adenovirus kn-keyword=oncolytic adenovirus en-keyword=p53 kn-keyword=p53 en-keyword=BCL-xL kn-keyword=BCL-xL END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=1298 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240327 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation en-subtitle= kn-subtitle= en-abstract= kn-abstract=A subset of patients with rheumatoid arthritis receiving methotrexate develop immune deficiencies and dysregulation-associated lymphoproliferative disorders. Patients with these disorders often exhibit spontaneous regression after MTX withdrawal; however, chemotherapeutic intervention is frequently required in patients with classic Hodgkin lymphoma arising in immune deficiency/dysregulation. In this study, we examined PD-L1 expression levels and 9p24.1 copy number alterations in 27 patients with classic Hodgkin lymphoma arising from immune deficiency/dysregulation. All patients demonstrated PD-L1 protein expression and harbored 9p24.1 copy number alterations on the tumor cells. When comparing clinicopathological data and associations with 9p24.1 copy number features, the copy gain group showed a significantly higher incidence of extranodal lesions and clinical stages than the amplification group. Notably, all cases in the amplification group had latency type II, while 6/8 (75%) in the copy gain group had latency type II, and 2/8 (25%) had latency type I. Thus, a subset of the copy-gain group demonstrated more extensive extranodal lesions and higher clinical stages. This finding speculates the presence of a genetically distinct subgroup within the group of patients who develop immune deficiencies and dysregulation-associated lymphoproliferative disorders, which may explain certain characteristic features. en-copyright= kn-copyright= en-aut-name=OhsawaKumiko en-aut-sei=Ohsawa en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GionYuka en-aut-sei=Gion en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SawadaKeisuke en-aut-sei=Sawada en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigashiMorihiro en-aut-sei=Higashi en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokuhiraMichihide en-aut-sei=Tokuhira en-aut-mei=Michihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaruJun-Ichi en-aut-sei=Tamaru en-aut-mei=Jun-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=7 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=8 en-affil=Department of Hematology, Japan Community Health Care Organization Saitama Medical Center kn-affil= affil-num=9 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=10 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=classic Hodgkin lymphoma kn-keyword=classic Hodgkin lymphoma en-keyword=methotrexate kn-keyword=methotrexate en-keyword=immunodeficiency kn-keyword=immunodeficiency en-keyword=programmed cell death-ligand 1 kn-keyword=programmed cell death-ligand 1 en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=123 end-page=134 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sigle Agent of Posttransplant Cyclophosphamide Without Calcineurin Inhibitor Controls Severity of Experimental Chronic GVHD en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chronic graft-versus-host disease (GVHD) is a major cause of late death and morbidity following allogeneic hematopoietic cell transplantation (HCT), but its pathogenesis remains unclear. Recently, haplo-identical HCT with post-transplant cyclophosphamide (Haplo-HCT with PTCY) was found to achieve a low incidence rate of acute GVHD and chronic GVHD. However, while the pathogenesis of acute GVHD following Haplo-HCT with PTCY has been well investigated, that of chronic GVHD remains to be elucidated, especially in HLA-matched HCT with PTCY. Based on its safety profile, PTCY is currently applied for the human leucocyte antigen (HLA)-matched HCT setting. Here, we investigated the mechanisms of chronic GVHD following HLA-matched HCT with PTCY using a well-defined mouse chronic GVHD model. PTCY attenuated clinical and pathological chronic GVHD by suppressing effector T-cells and preserving regulatory T-cells compared with a control group. Additionally, we demonstrated that cyclosporine A (CsA) did not show any additional positive effects on attenuation of GVHD in PTCY-treated recipients. These results suggest that monotherapy with PTCY without CsA could be a promising strategy for the prevention of chronic GVHD following HLA-matched HCT. en-copyright= kn-copyright= en-aut-name=SaekiKyosuke en-aut-sei=Saeki en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SeikeKeisuke en-aut-sei=Seike en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuroiTaiga en-aut-sei=Kuroi en-aut-mei=Taiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=GVHD kn-keyword=GVHD en-keyword=posttransplant cyclophosphamide kn-keyword=posttransplant cyclophosphamide en-keyword=hematopoietic cell transplantation kn-keyword=hematopoietic cell transplantation en-keyword=HLA-identical kn-keyword=HLA-identical END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=95 end-page=106 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Roles of Neuropeptide Y in Respiratory Disease Pathogenesis via the Airway Immune Response en-subtitle= kn-subtitle= en-abstract= kn-abstract=The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases. en-copyright= kn-copyright= en-aut-name=ItanoJunko en-aut-sei=Itano en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=neuropeptide y kn-keyword=neuropeptide y en-keyword=Y1 receptor kn-keyword=Y1 receptor en-keyword=airway immune response kn-keyword=airway immune response en-keyword=bronchial epithelial cells kn-keyword=bronchial epithelial cells en-keyword=respiratory disease kn-keyword=respiratory disease END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=11 article-no= start-page=1009 end-page=1018 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Advances in treatment of alveolar soft part sarcoma: an updated review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Alveolar soft part sarcoma is a rare neoplasm of uncertain histogenesis that belongs to a newly defined category of ultra-rare sarcomas. The neoplasm is characterized by a specific chromosomal translocation, der (17) t(X; 17)(p11.2;q25), that results in ASPSCR1–TFE3 gene fusion. The natural history of alveolar soft part sarcoma describes indolent behaviour with slow progression in deep soft tissues of the extremities, trunk and head/neck in adolescents and young adults. A high rate of detection of distant metastasis at presentation has been reported, and the most common metastatic sites in decreasing order of frequency are the lung, bone and brain. Complete surgical resection remains the standard treatment strategy, whereas radiotherapy is indicated for patients with inadequate surgical margins or unresectable tumours. Although alveolar soft part sarcoma is refractory to conventional doxorubicin-based chemotherapy, monotherapy or combination therapy using tyrosine kinase inhibitors and immune checkpoint inhibitors have provided antitumor activity and emerged as new treatment strategies. This article provides an overview of the current understanding of this ultra-rare sarcoma and recent advancements in treatments according to the clinical stage of alveolar soft part sarcoma. en-copyright= kn-copyright= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTomoki en-aut-sei=Nakamura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaKazuhiro en-aut-sei=Tanaka en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Mie University kn-affil= affil-num=7 en-affil=Department of Advanced Medical Sciences, Oita University kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=alveolar soft part sarcoma kn-keyword=alveolar soft part sarcoma en-keyword=surgery kn-keyword=surgery en-keyword=chemotherapy kn-keyword=chemotherapy en-keyword=targeted therapy kn-keyword=targeted therapy en-keyword=immunotherapy kn-keyword=immunotherapy END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=4564 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Longitudinal antibody dynamics after COVID-19 vaccine boosters based on prior infection status and booster doses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Global concern over COVID-19 vaccine distribution disparities highlights the need for strategic booster shots. We explored longitudinal antibody responses post-booster during the Omicron wave in a Japanese cohort, emphasizing prior infection and booster doses. This prospective cohort study included 1763 participants aged 18 years and older with at least three vaccine doses (7376 datapoints). Antibody levels were measured every 2 months. We modeled temporal declines in antibody levels after COVID-19 vaccine boosters according to prior infection status and booster doses using a Bayesian linear mixed-effects interval-censored model, considering age, sex, underlying conditions, and lifestyle. Prior infection enhanced post-booster immunity (posterior median 0.346, 95% credible interval [CrI] 0.335-0.355), maintaining antibody levels (posterior median 0.021; 95% CrI 0.019-0.023) over 1 year, in contrast to uninfected individuals whose levels had waned by 8 months post-vaccination. Each additional booster was correlated with higher baseline antibody levels and slower declines, comparing after the third dose. Female sex, older age, immunosuppressive status, and smoking history were associated with lower baseline post-vaccination antibodies, but not associated with decline rates except for older age in the main model. Prior infection status and tailored, efficient, personalized booster strategies are crucial, considering sex, age, health conditions, and lifestyle. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyako en-aut-sei=Sasaki en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=2 article-no= start-page=89 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical characteristics of patients treated with immune checkpoint inhibitors in EGFR-mutant non-small cell lung cancer: CS-Lung-003 prospective observational registry study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Immune checkpoint inhibitors (ICIs) are ineffective against epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to investigate the clinical characteristics of patients who were treated or not treated with ICIs, and of those who benefit from immunotherapy in EGFR-mutant NSCLC.
Methods We analyzed patients with unresectable stage III/IV or recurrent NSCLC harboring EGFR mutations using a prospective umbrella-type lung cancer registry (CS-Lung-003).
Results A total of 303 patients who met the eligibility criteria were analyzed. The median age was 69 years; 116 patients were male, 289 had adenocarcinoma, 273 had major mutations, and 67 were treated with ICIs. The duration of EGFR-TKI treatment was longer in the Non-ICI group than in the ICI group (17.1 vs. 12.7 months, p < 0.001). Patients who received ICIs for more than 6 months were categorized into the durable clinical benefit (DCB) group (24 patients), and those who received ICIs for less than 6 months into the Non-DCB group (43 patients). The overall survival in the DCB group exhibited longer than the Non-DCB group (69.3 vs. 47.1 months), and an equivalent compared to that in the Non-ICI group (69.3 vs. 68.9 months). Multivariate analysis for time to next treatment (TTNT) of ICIs showed that a poor PS was associated with a shorter TTNT [hazard ratio (HR) 3.309; p < 0.001]. Patients who were treated with ICIs and chemotherapy combination were associated with a longer TTNT (HR 0.389; p = 0.003). In addition, minor EGFR mutation was associated with a long TTNT (HR 0.450; p = 0.046).
Conclusion ICIs were administered to only 22% of patients with EGFR-mutated lung cancer, and they had shorter TTNT of EGFR-TKI compared to other patients. ICI treatment should be avoided in EGFR mutated lung cancer with poor PS but can be considered for lung cancer with EGFR minor mutations. Pathological biomarker to predict long-term responders to ICI are needed.
en-copyright= kn-copyright= en-aut-name=KuribayashiTadahiro en-aut-sei=Kuribayashi en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsubataYukari en-aut-sei=Tsubata en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaNobuhisa en-aut-sei=Ishikawa en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KodaniMasahiro en-aut-sei=Kodani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanajiNobuhiro en-aut-sei=Kanaji en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiMasahiro en-aut-sei=Yamasaki en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujitakaKazunori en-aut-sei=Fujitaka en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakigawaNagio en-aut-sei=Takigawa en-aut-mei=Nagio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KubotaTetsuya en-aut-sei=Kubota en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiwaraKeiichi en-aut-sei=Fujiwara en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HaritaShingo en-aut-sei=Harita en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TakataIchiro en-aut-sei=Takata en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TakadaKenji en-aut-sei=Takada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Hiroshima Prefectural Hospital kn-affil= affil-num=7 en-affil=Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University kn-affil= affil-num=8 en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology, and Respiratory Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital kn-affil= affil-num=10 en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=12 en-affil=Department of Internal Medicine 4, Kawasaki Medical School kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Okayama Rosai Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine and Allergology, Kochi University Hospital kn-affil= affil-num=15 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=16 en-affil=Department of Respiratory Medicine, NHO Okayama Medical Center kn-affil= affil-num=17 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=18 en-affil=Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=19 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=EGFR kn-keyword=EGFR en-keyword=EGFR-TKI kn-keyword=EGFR-TKI en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors en-keyword=Performance status kn-keyword=Performance status END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=2 article-no= start-page=113797 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem-like progenitor and terminally differentiated TFH-like CD4+ T cell exhaustion in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells. en-copyright= kn-copyright= en-aut-name=ZhouWenhao en-aut-sei=Zhou en-aut-mei=Wenhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Chiba Cancer Center, Research Institute, Division of Cell Therapy kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Immunology, Nagoya University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=follicular helper T cell kn-keyword=follicular helper T cell en-keyword=cytotoxic CD4+ T cell kn-keyword=cytotoxic CD4+ T cell en-keyword=CXCL13 kn-keyword=CXCL13 en-keyword=T cell exhaustion kn-keyword=T cell exhaustion en-keyword=stem-like progenitor exhaustion kn-keyword=stem-like progenitor exhaustion en-keyword=terminally differentiated exhaustion kn-keyword=terminally differentiated exhaustion en-keyword=PD-1 kn-keyword=PD-1 en-keyword=LAG-3 kn-keyword=LAG-3 en-keyword=TCF1 kn-keyword=TCF1 END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=1 end-page=8 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Macrophages in Liver Fibrosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Liver fibrosis, which ultimately leads to liver cirrhosis and hepatocellular carcinoma, is a major health burden worldwide. The progression of liver fibrosis is the result of the wound-healing response of liver to repeated injury. Hepatic macrophages are cells with high heterogeneity and plasticity and include tissue-resident macrophages termed Kupffer cells, and recruited macrophages derived from circulating monocytes, spleen and peritoneal cavity. Studies have shown that hepatic macrophages play roles in the initiation and progression of liver fibrosis by releasing inflammatory cytokines/chemokines and pro-fibrogenic factors. Furthermore, the development of liver fibrosis has been shown to be reversible. Hepatic macrophages have been shown to alternately regulate both the regression and turnover of liver fibrosis by changing their phenotypes during the dynamic progression of liver fibrosis. In this review, we summarize the role of hepatic macrophages in the progression and regression of liver fibrosis. en-copyright= kn-copyright= en-aut-name=SunCuiming en-aut-sei=Sun en-aut-mei=Cuiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=ERK-MAPK kn-keyword=ERK-MAPK en-keyword=SPRED2 kn-keyword=SPRED2 en-keyword=fibrosis kn-keyword=fibrosis en-keyword=macrophages kn-keyword=macrophages END start-ver=1.4 cd-journal=joma no-vol=130 cd-vols= no-issue=7 article-no= start-page=1187 end-page=1195 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pancreatic cancer is an aggressive, immunologically “cold” tumor. Oncolytic virotherapy is a promising treatment to overcome this problem. We developed a telomerase-specific oncolytic adenovirus armed with p53 gene (OBP-702).
Methods: We investigated the efficacy of OBP-702 for pancreatic cancer, focusing on its long-term effects via long-lived memory CD8 + T cells including tissue-resident memory T cells (TRMs) and effector memory T cells (TEMs) differentiated from effector memory precursor cells (TEMps).
Results: First, in vitro, OBP-702 significantly induced adenosine triphosphate (ATP), which is important for memory T cell establishment. Next, in vivo, OBP-702 local treatment to murine pancreatic PAN02 tumors increased TEMps via ATP induction from tumors and IL-15Rα induction from macrophages, leading to TRM and TEM induction. Activation of these memory T cells by OBP-702 was also maintained in combination with gemcitabine+nab-paclitaxel (GN) in a PAN02 bilateral tumor model, and GN + OBP-702 showed significant anti-tumor effects and increased TRMs in OBP-702-uninjected tumors. Finally, in a neoadjuvant model, in which PAN02 cells were re-inoculated after resection of treated-PAN02 tumors, GN + OBP-702 provided long-term anti-tumor effects even after tumor resection.
Conclusion: OBP-702 can be a long-term immunostimulant with sustained anti-tumor effects on immunologically cold pancreatic cancer. en-copyright= kn-copyright= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadowakiDaisuke en-aut-sei=Kadowaki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYusuke en-aut-sei=Yoshida en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoMasaki en-aut-sei=Sakamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamadaYuki en-aut-sei=Hamada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoRyoma en-aut-sei=Sugimoto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YagiChiaki en-aut-sei=Yagi en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhtaniTomoko en-aut-sei=Ohtani en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KumonKento en-aut-sei=Kumon en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of Notch1 protein expression in methotrexate-associated lymphoproliferative disorders en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methotrexate (MTX)-associated lymphoproliferative disorder (MTX-LPD) is a lymphoproliferative disorder in patients treated with MTX. The mechanism of pathogenesis is still elusive, but it is thought to be a complex interplay of factors, such as underlying autoimmune disease activity, MTX use, Epstein-Barr virus infection, and aging. The NOTCH genes encode receptors for a signaling pathway that regulates various fundamental cellular processes, such as proliferation and differentiation during embryonic development. Mutations of NOTCH1 have been reported in B-cell tumors, including chronic lymphocytic leukemia/ lymphoma, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). Recently, it has also been reported that NOTCH1 mutations are found in post-transplant lymphoproliferative disorders, and in CD20-positive cells in angioimmunoblastic T-cell lymphoma, which might be associated with lymphomagenesis in immunodeficiency. In this study, to investigate the association of NOTCH1 in the pathogenesis of MTX-LPD, we evaluated protein expression of Notch1 in nuclei immunohistochemically in MTX-LPD cases [histologically DLBCL-type (n = 24) and classical Hodgkin lymphoma (CHL)-type (n = 24)] and de novo lymphoma cases [DLBCL (n = 19) and CHL (n = 15)]. The results showed that among MTX-LPD cases, the expression of Notch1 protein was significantly higher in the DLBCL type than in the CHL type (P < 0.001). In addition, among DLBCL morphology cases, expression of Notch1 tended to be higher in MTX-LPD than in the de novo group; however this difference was not significant (P = 0.0605). The results showed that NOTCH1 may be involved in the proliferation and tumorigenesis of B cells under the use of MTX. Further research, including genetic studies, is necessary. en-copyright= kn-copyright= en-aut-name=OkataniTakeshi en-aut-sei=Okatani en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EgusaYuria en-aut-sei=Egusa en-aut-mei=Yuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaSayako en-aut-sei=Yoshida en-aut-mei=Sayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=methotrexate-associated lymphoproliferative disorders kn-keyword=methotrexate-associated lymphoproliferative disorders en-keyword=other iatrogenic immunodeficiency-associated lymphoproliferative disorders kn-keyword=other iatrogenic immunodeficiency-associated lymphoproliferative disorders en-keyword=lymphoproliferative disorders arising in immune deficiency/dysregulation kn-keyword=lymphoproliferative disorders arising in immune deficiency/dysregulation en-keyword=NOTCH1 kn-keyword=NOTCH1 END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=1 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rhizoviticin is an alphaproteobacterial tailocin that mediates biocontrol of grapevine crown gall disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control. en-copyright= kn-copyright= en-aut-name=IshiiTomoya en-aut-sei=Ishii en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuchidaNatsuki en-aut-sei=Tsuchida en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKirara en-aut-sei=Saito en-aut-mei=Kirara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BaoJiyuan en-aut-sei=Bao en-aut-mei=Jiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoMayuko en-aut-sei=Sato en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyookaKiminori en-aut-sei=Toyooka en-aut-mei=Kiminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshihamaNobuaki en-aut-sei=Ishihama en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HayashiTetsuya en-aut-sei=Hayashi en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KawaguchiAkira en-aut-sei=Kawaguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Genomics and Evolutionary Biology, National Institute of Genetics kn-affil= affil-num=8 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=9 en-affil=Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=10 en-affil=Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=11 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=17 en-affil=Western Region Agricultural Research Center (WARC), National Agricultural and Food Research Organization (NARO) kn-affil= affil-num=18 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=tailocin kn-keyword=tailocin en-keyword=phage tail-like bacteriocin kn-keyword=phage tail-like bacteriocin en-keyword=Allorhizobium vitris kn-keyword=Allorhizobium vitris en-keyword=Alphaproteobacteria kn-keyword=Alphaproteobacteria en-keyword=biocontrol kn-keyword=biocontrol en-keyword=crown gall disease kn-keyword=crown gall disease en-keyword=interbacterial antagonism kn-keyword=interbacterial antagonism en-keyword=grapevine kn-keyword=grapevine END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=118 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen in Transplantation: Potential Applications and Therapeutic Implications en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation. en-copyright= kn-copyright= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisamuraMasaki en-aut-sei=Hisamura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=hydrogen kn-keyword=hydrogen en-keyword=organ transplantation kn-keyword=organ transplantation en-keyword=ischemia reperfusion kn-keyword=ischemia reperfusion END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=3 article-no= start-page=236 end-page=241 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relevance of complement immunity with brain fog in patients with long COVID en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction
This study aimed to elucidate the prevalence and clinical characteristics of patients with long COVID (coronavirus disease 2019), especially focusing on 50% hemolytic complement activity (CH50).

Methods
This retrospective observational study focused on patients who visited Okayama University Hospital (Japan) for the treatment of long COVID between February 2021 and March 2023. CH50 levels were measured using liposome immunometric assay (Autokit CH50 Assay, FUJIFILM Wako Pure Chemical Corporation, Japan); high CH50 was defined as ≥59 U/mL. Univariate analyses assessed differences in the clinical background, long COVID symptoms, inflammatory markers, and clinical scores of patients with normal and high CH50. Logistic regression model investigated the association between high CH50 levels and these factors.

Results
Of 659 patients who visited our hospital, 478 patients were included. Of these, 284 (59.4%) patients had high CH50 levels. Poor concentration was significantly more frequent in the high CH50 group (7.2% vs. 13.7%), whereas no differences were observed in other subjective symptoms (fatigue, headache, insomnia, dyspnea, tiredness, and brain fog). Multivariate analysis was performed on factors that could be associated with poor concentration, suggesting a significant relationship to high CH50 levels (adjusted odds ratio [aOR], 2.70; 95% confidence interval [CI], 1.33–5.49). Also, high CH50 was significantly associated with brain fog (aOR, 1.66; 95% CI, 1.04–2.66).

Conclusions
High CH50 levels were frequently reported in individuals with long COVID, indicating a relationship with brain fog. Future in-depth research should examine the pathological role and causal link between complement immunity and the development of long COVID. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukawaMasanori en-aut-sei=Furukawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Complement immunity kn-keyword=Complement immunity en-keyword=Complement system kn-keyword=Complement system en-keyword=Coronavirus disease 2019 kn-keyword=Coronavirus disease 2019 en-keyword=Inflammation kn-keyword=Inflammation END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=10 article-no= start-page=100573 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs).
Methods: We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II–expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo.
Results: We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti–programmed cell death protein 1 monoclonal antibody.
Conclusions: Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuDaiki en-aut-sei=Shimizu en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaYuki en-aut-sei=Katsuya en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomiYukio en-aut-sei=Hosomi en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataTakekazu en-aut-sei=Iwata en-aut-mei=Takekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OheYuichiro en-aut-sei=Ohe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Department of Experimental Therapeutics, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=9 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Thymic epithelial tumor kn-keyword=Thymic epithelial tumor en-keyword=Cancer immunotherapy kn-keyword=Cancer immunotherapy en-keyword=CD80/CD86 kn-keyword=CD80/CD86 en-keyword=MHC kn-keyword=MHC en-keyword=Memory precursor effector T cell kn-keyword=Memory precursor effector T cell END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=1706 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies. en-copyright= kn-copyright= en-aut-name=KatohHirokazu en-aut-sei=Katoh en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=HERVs kn-keyword=HERVs en-keyword=LINEs kn-keyword=LINEs en-keyword=cancer kn-keyword=cancer en-keyword=innate immunity kn-keyword=innate immunity en-keyword=promoter kn-keyword=promoter en-keyword=enhancer kn-keyword=enhancer en-keyword=interferon signaling kn-keyword=interferon signaling END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=24 article-no= start-page=5873 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Diagnosis and Treatment Approach for Oligo-Recurrent and Oligo-Progressive Renal Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=One-third of renal cell carcinomas (RCCs) without metastases develop metastatic disease after extirpative surgery for the primary tumors. The majority of metastatic RCC cases, along with treated primary lesions, involve limited lesions termed “oligo-recurrent” disease. The role of metastasis-directed therapy (MDT), including stereotactic body radiation therapy (SBRT) and metastasectomy, in the treatment of oligo-recurrent RCC has evolved. Although the surgical resection of all lesions alone can have a curative intent, SBRT is a valuable treatment option, especially for patients concurrently receiving systemic therapy. Contemporary immune checkpoint inhibitor (ICI) combination therapies remain central to the management of metastatic RCC. However, one objective of MDT is to delay the initiation of systemic therapies, thereby sparing patients from potentially unnecessary burdens. Undertaking MDT for cases showing progression under systemic therapies, known as “oligo-progression”, can be complex in considering the treatment approach. Its efficacy may be diminished compared to patients with stable disease. SBRT combined with ICI can be a promising treatment for these cases because radiation therapy has been shown to affect the tumor microenvironment and areas beyond the irradiated sites. This may enhance the efficacy of ICIs, although their efficacy has only been demonstrated in clinical trials. en-copyright= kn-copyright= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NiibeYuzuru en-aut-sei=Niibe en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Public Health, School of Medicine, Kurume University kn-affil= en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma en-keyword=oligo-metastasis kn-keyword=oligo-metastasis en-keyword=oligo-recurrence kn-keyword=oligo-recurrence en-keyword=oligo-progression kn-keyword=oligo-progression en-keyword=metastasectomy kn-keyword=metastasectomy en-keyword=stereotactic body radiation therapy kn-keyword=stereotactic body radiation therapy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=6 article-no= start-page=567 end-page=575 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Review of a Series of Surveys on Adverse Reactions to the COVID-19 mRNA-1273 Vaccine at Okayama University en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper presents the results of a series of surveys conducted from July 2021 to March 2023 to investigate the post-vaccination adverse reactions to the mRNA-1273 (Moderna) vaccine among faculty, staff, and students at Okayama University. These studies complement the official surveys conducted by the Ministry of Health, Labour and Welfare (MHLW) and provide a more representative picture of adverse reactions in the general population including large numbers of healthy young people. Pain, swelling, redness at the injection site, fever, headache, and malaise were the main adverse reactions reported. The proportion of adverse reactions was generally higher after the second vaccination and decreased with each additional vaccination. No statistically significant differences in the adverse reactions were found for males and females and those with/without a history of allergy, but a lower proportion of fever was observed in older participants and those with underlying medical conditions. We also evaluated the association between adverse reactions and antibody titers after the third vaccination and found no significant differences in antibody levels one month after vaccination. This series of studies highlights the importance of conducting surveys in diverse populations to provide a more representative picture of post-vaccination adverse reactions during a pandemic. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyajiChikara en-aut-sei=Miyaji en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Okayama University Health Service Center kn-affil= affil-num=3 en-affil=Okayama University Health Service Center kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=coronavirus disease 2019 kn-keyword=coronavirus disease 2019 en-keyword=adverse reactions kn-keyword=adverse reactions en-keyword=mRNA vaccine kn-keyword=mRNA vaccine en-keyword=antibody titers kn-keyword=antibody titers en-keyword=young adults kn-keyword=young adults END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=204 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Geriatric nutritional risk index as a prognostic marker of first-line immune checkpoint inhibitor combination therapy in patients with renal cell carcinoma: a retrospective multi-center study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This study aimed to investigate the effectiveness of the Geriatric Nutritional Risk Index (GNRI) in predicting the efficacy of first-line immune checkpoint inhibitor (ICI) combination therapy for metastatic or unresectable renal cell carcinoma (RCC) and associated patient prognosis.
Methods A retrospective study was conducted using data from 19 institutions. The GNRI was calculated using body mass index and serum albumin level, and patients were classified into two groups using the GNRI values, with 98 set as the cutoff point.
Results In all, 119 patients with clear cell RCC who received first-line drug therapy with ICIs were analyzed. Patients with GNRI >= 98 had significantly better overall survival (OS) (p = 0.008) and cancer-specific survival (CSS) (p = 0.001) rates than those with GNRI < 98; however, progression-free survival (PFS) did not differ significantly. Inverse probability of treatment weighting analysis showed that low GNRI scores were significantly associated with poor OS (p = 0.004) and CSS (p = 0.015). Multivariate analysis showed that the Karnofsky performance status (KPS) score was a better predictor of prognosis (OS; HR 5.17, p < 0.001, CSS; HR 4.82, p = 0.003) than GNRI (OS; HR 0.36, p = 0.066, CSS; HR 0.35, p = 0.072). In a subgroup analysis of patients with a good KPS and GNRI >= 98 vs < 98, the 2-year OS rates were 91.4% vs 66.9% (p = 0.068), 2-year CSS rates were 91.4% vs 70.1% (p = 0.073), and PFS rates were 39.7% vs 21.4 (p = 0.27), respectively.
Conclusion The prognostic efficiency of GNRI was inferior to that of the KPS score at the initiation of the first-line ICI combination therapy for clear cell RCC. en-copyright= kn-copyright= en-aut-name=WatariShogo en-aut-sei=Watari en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiraishiHiromasa en-aut-sei=Shiraishi en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokunagaMoto en-aut-sei=Tokunaga en-aut-mei=Moto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubotaRisa en-aut-sei=Kubota en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KusumiNorihiro en-aut-sei=Kusumi en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchikawaTakaharu en-aut-sei=Ichikawa en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsushimaTomoyasu en-aut-sei=Tsushima en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=7 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=8 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Geriatric Nutritional Risk Index kn-keyword=Geriatric Nutritional Risk Index en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor en-keyword=Renal cell carcinoma kn-keyword=Renal cell carcinoma en-keyword=Prognosis kn-keyword=Prognosis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=PD-1阻害は、Egfr変異陽性肺癌においてAd-SGE-REICにより誘導されるCD8+T細胞依存性抗腫瘍免疫を増強する kn-title=PD-1 blockade augments CD8+ T cell dependent antitumor immunity triggered by Ad-SGE-REIC in Egfr-mutant lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NAKASUKATakamasa en-aut-sei=NAKASUKA en-aut-mei=Takamasa kn-aut-name=中須賀崇匡 kn-aut-sei=中須賀 kn-aut-mei=崇匡 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=291 cd-vols= no-issue=6 article-no= start-page=1119 end-page=1130 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes en-subtitle= kn-subtitle= en-abstract= kn-abstract=During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors – such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 – triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes. en-copyright= kn-copyright= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AriumiYasuo en-aut-sei=Ariumi en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoNobuyuki en-aut-sei=Kato en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University kn-affil= affil-num=3 en-affil=Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=double-stranded RNA kn-keyword=double-stranded RNA en-keyword=hepatitis C virus kn-keyword=hepatitis C virus en-keyword=innate immunity kn-keyword=innate immunity en-keyword=RIG-I-like receptor kn-keyword=RIG-I-like receptor en-keyword=RNA virus kn-keyword=RNA virus END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1239598 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=“Input/output cytokines” in epidermal keratinocytes and the involvement in inflammatory skin diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Considering the role of epidermal keratinocytes, they occupy more than 90% of the epidermis, form a physical barrier, and also function as innate immune barrier. For example, epidermal keratinocytes are capable of recognizing various cytokines and pathogen-associated molecular pattern, and producing a wide variety of inflammatory cytokines, chemokines, and antimicrobial peptides. Previous basic studies have shown that the immune response of epidermal keratinocytes has a significant impact on inflammatory skin diseases. The purpose of this review is to provide foundation of knowledge on the cytokines which are recognized or produced by epidermal keratinocytes. Since a number of biologics for skin diseases have appeared, it is necessary to fully understand the relationship between epidermal keratinocytes and the cytokines. In this review, the cytokines recognized by epidermal keratinocytes are specifically introduced as "input cytokines", and the produced cytokines as "output cytokines". Furthermore, we also refer to the existence of biologics against those input and output cytokines, and the target skin diseases. These use results demonstrate how important targeted cytokines are in real skin diseases, and enhance our understanding of the cytokines. en-copyright= kn-copyright= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiTomoyuki en-aut-sei=Mukai en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunagawaKo en-aut-sei=Sunagawa en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawakamiYoshio en-aut-sei=Kawakami en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OuchidaMamoru en-aut-sei=Ouchida en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology and Molecular Genetics, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epidermal keratinocytes kn-keyword=epidermal keratinocytes en-keyword=input cytokines kn-keyword=input cytokines en-keyword=output cytokines kn-keyword=output cytokines en-keyword=biologics kn-keyword=biologics en-keyword=inflammatory skin diseases kn-keyword=inflammatory skin diseases END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=19 article-no= start-page=3038 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Semaphorin 3A in Kidney Development and Diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases. en-copyright= kn-copyright= en-aut-name=SangYizhen en-aut-sei=Sang en-aut-mei=Yizhen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=semaphorin 3A kn-keyword=semaphorin 3A en-keyword=neuropilin-1 kn-keyword=neuropilin-1 en-keyword=podocyte kn-keyword=podocyte en-keyword=diabetic nephropathy kn-keyword=diabetic nephropathy en-keyword=acute kidney injury kn-keyword=acute kidney injury en-keyword=chronic kidney injury kn-keyword=chronic kidney injury en-keyword=lupus nephritis kn-keyword=lupus nephritis en-keyword=fibrosis kn-keyword=fibrosis en-keyword=apoptosis kn-keyword=apoptosis en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=e000772 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of one-point glucocorticoid-free status with chronic damage and disease duration in systemic lupus erythematosus: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective It is still unclear how glucocorticoids (GCs) affect the long-term clinical course of patients with SLE. The objective of this study is to explore the factors associated with GC-free treatment status.
Methods Using data from the lupus registry of nationwide institutions, GC dose at registration was compared between short, middle and long disease durations of <5, 5–20 and ≥20 years, respectively. After excluding patients who never used GC, we evaluated the relationship between GC-free status and chronic damage using Systemic Lupus International Collaborating Clinics Damage Index.
Results GC doses at enrolment of the 1019 patients were as follows: GC-free in 101 (10%); 0 Conclusion Even in the patients with long disease duration, one-point GC-free treatment status might be related to no chronic damage accrual. en-copyright= kn-copyright= en-aut-name=SadaKen-ei en-aut-sei=Sada en-aut-mei=Ken-ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatayamaYu en-aut-sei=Katayama en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatsuyamaEri en-aut-sei=Katsuyama en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Takano-NarazakiMariko en-aut-sei=Takano-Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KajiyamaHiroshi en-aut-sei=Kajiyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchinoseKunihiro en-aut-sei=Ichinose en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SatoShuzo en-aut-sei=Sato en-aut-mei=Shuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FujiwaraMichio en-aut-sei=Fujiwara en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=13 en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center kn-affil= affil-num=14 en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=15 en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=16 en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine kn-affil= affil-num=17 en-affil=Department of Rheumatology, Yokohama Rosai Hospital kn-affil= affil-num=18 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= en-keyword=systemic lupus erythematosus kn-keyword=systemic lupus erythematosus en-keyword=glucocorticoids kn-keyword=glucocorticoids en-keyword=outcome assessment kn-keyword=outcome assessment en-keyword=health care kn-keyword=health care en-keyword=epidemiology kn-keyword=epidemiology END start-ver=1.4 cd-journal=joma no-vol=192 cd-vols= no-issue= article-no= start-page=273 end-page=284 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The function of the plant cell wall in plant–microbe interactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The plant cell wall is an interface of plant–microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant–microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall—physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources—in the context of plant–microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers. en-copyright= kn-copyright= en-aut-name=IshidaKonan en-aut-sei=Ishida en-aut-mei=Konan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biochemistry, University of Cambridge kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Plant cell wall kn-keyword=Plant cell wall en-keyword=Plant–microbe interaction kn-keyword=Plant–microbe interaction en-keyword=Cell wall integrity kn-keyword=Cell wall integrity en-keyword=Receptor-like kinase kn-keyword=Receptor-like kinase en-keyword=Plant immunity kn-keyword=Plant immunity END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=7 article-no= start-page=739 end-page=753 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mixed Response to Cancer Immunotherapy is Driven by Intratumor Heterogeneity and Differential Interlesion Immune Infiltration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
Significance: Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome. en-copyright= kn-copyright= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaxNicolas en-aut-sei=Sax en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OharaYuuki en-aut-sei=Ohara en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuwataTakeshi en-aut-sei=Kuwata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YukamiHiroki en-aut-sei=Yukami en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawazoeAkihito en-aut-sei=Kawazoe en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShitaraKohei en-aut-sei=Shitara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MoritaAyako en-aut-sei=Morita en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=EnokidaTomohiro en-aut-sei=Enokida en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TaharaMakoto en-aut-sei=Tahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HasegawaYoshinori en-aut-sei=Hasegawa en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Pathology, National Cancer Center Hospital East kn-affil= affil-num=12 en-affil=Department of Genetic Medicineand Services, National Cancer Center Hospital East kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=18 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=19 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=20 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=21 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=22 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=23 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=24 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=26 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=27 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=28 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=29 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=30 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=31 en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center kn-affil= affil-num=32 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=395 end-page=405 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of Tumor Necrosis Factor-Alpha with Psychopathology in Patients with Schizophrenia en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the relationship between serum tumor necrosis factor-alpha (TNF-α) levels and psychopathological symptoms, clinical and socio-demographic characteristics and antipsychotic therapy in individuals with schizophrenia. TNF-α levels were measured in 90 patients with schizophrenia and 90 healthy controls matched by age, gender, smoking status, and body mass index. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of psychopathology in patients. No significant differences in TNF-α levels were detected between the patients and controls (p=0.736). TNF-α levels were not correlated with total, positive, negative, general, or composite PANSS scores (all p>0.05). A significant negative correlation was observed between TNF-α levels and the PANSS cognitive factor (ρ=−0.222, p=0.035). A hierarchical regression analysis identified the cognitive factor as a significant predictor of the TNF-α level (beta=−0.258, t=−2.257, p=0.027). There were no significant differences in TNF-α levels among patients treated with different types of antipsychotics (p=0.596). TNF-α levels correlated positively with the age of onset (ρ=0.233, p=0.027) and negatively with illness duration (ρ=−0.247, p=0.019) and antipsychotic treatment duration (ρ=−0.256, p=0.015). These results indicate that TNF-α may be involved in cognitive impairment in schizophrenia, and would be a potential clinical-state marker in schizophrenia. en-copyright= kn-copyright= en-aut-name=PavlovicMarko en-aut-sei=Pavlovic en-aut-mei=Marko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BabicDragan en-aut-sei=Babic en-aut-mei=Dragan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RastovicPejana en-aut-sei=Rastovic en-aut-mei=Pejana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArapovicJurica en-aut-sei=Arapovic en-aut-mei=Jurica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MartinacMarko en-aut-sei=Martinac en-aut-mei=Marko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JakovacSanja en-aut-sei=Jakovac en-aut-mei=Sanja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BarbaricRomana en-aut-sei=Barbaric en-aut-mei=Romana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= affil-num=2 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= affil-num=3 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= affil-num=4 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= affil-num=5 en-affil=Health Care Center Mostar, University of Mostar kn-affil= affil-num=6 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= affil-num=7 en-affil=University Hospital Center Mostar, University of Mostar kn-affil= en-keyword=tumor necrosis factor-alpha kn-keyword=tumor necrosis factor-alpha en-keyword=schizophrenia kn-keyword=schizophrenia en-keyword=psychopathology kn-keyword=psychopathology en-keyword=immune system kn-keyword=immune system END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=347 end-page=357 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Feasibility of Flow Cytometry Analysis of Gastrointestinal Tract-Residing Lymphocytes in Hematopoietic Stem Cell Transplant Recipients en-subtitle= kn-subtitle= en-abstract= kn-abstract=The feasibility of lymphocyte isolation and flow cytometry using a single endoscopic biopsy specimen from the gastrointestinal tract of patients who have undergone hematopoietic stem cell transplantation has not been investigated. We acquired 51 endoscopic biopsy specimens from the gastrointestinal tract of 35 patients. We divided the flow cytometry samples into two groups: group A, successful lymphocyte isolation (n=24), and group B, incomplete isolation (n=27). We compared the backgrounds of the samples between the groups to reveal crucial elements in the successful isolation of lymphocytes residing in the gastrointestinal tract. Comparison between the groups revealed lymphocyte isolation success rates differed between biopsy sites. Isolation was most successful in samples from the duodenum (8/9, 88.9%), followed by the ileum (4/8, 50.0%), large intestine (4/11, 36.4%), and stomach (8/23, 34.8%). Tacrolimus was used more frequently in group B (92.6%) than in group A (62.5%) (p=0.015). Logistic regression analysis revealed that isolation from the duodenum or ileum was a significant factor for successful isolation, while tacrolimus use was not statistically significant. In conclusion, the duodenum and ileum are more suitable sites than the stomach and colorectum for acquiring samples for flow cytometry. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirabataAraki en-aut-sei=Hirabata en-aut-mei=Araki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=flow cytometry kn-keyword=flow cytometry en-keyword=stem cell transplantation kn-keyword=stem cell transplantation en-keyword=transplantation-associated microangiopathy kn-keyword=transplantation-associated microangiopathy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=341 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biological Roles of Hepatitis B Viral X Protein in the Viral Replication and Hepatocarcinogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hepatitis B virus is a pathogenic virus that infects 300 million people worldwide and causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Hepatitis B virus encodes four proteins. Among them, the HBx protein plays a central role in the HBV pathogenesis. Because the HBx protein is considered to play a central role in the induction of viral replication and hepatocarcinogenesis, the regulation of its function could be a key factor in the development of new interventions against hepatitis B. In this review, HBx protein-related viral replication and hepatocarcinogenesis mechanisms are described, with a focus on the recently reported viral replication mechanisms related to degradation of the Smc5/6 protein complex. We also discuss our recent discovery of a compound that inhibits HBx protein-induced degradation of the Smc5/6 protein complex, and that exerts inhibitory effects on both viral replication and hepatocarcinogenesis. Finally, prospects for future research on the HBx protein are described. en-copyright= kn-copyright= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=HBx kn-keyword=HBx en-keyword=Smc5/6 kn-keyword=Smc5/6 en-keyword=DDB1 kn-keyword=DDB1 en-keyword=nitazoxianide kn-keyword=nitazoxianide en-keyword=DNA repair kn-keyword=DNA repair END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=7 article-no= start-page=895 end-page=908 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Expression of MHC Class I Overcomes Cancer Immunotherapy Resistance Due to IFNγ Signaling Pathway Defects en-subtitle= kn-subtitle= en-abstract= kn-abstract=IFNγ signaling pathway defects are well-known mechanisms of resistance to immune checkpoint inhibitors. However, conflicting data have been reported, and the detailed mechanisms remain unclear. In this study, we have demonstrated that resistance to immune checkpoint inhibitors owing to IFNγ signaling pathway defects may be primarily caused by reduced MHC-I expression rather than by the loss of inhibitory effects on cellular proliferation or decreased chemokine production. In particular, we found that chemokines that recruit effector T cells were mainly produced by immune cells rather than cancer cells in the tumor microenvironment of a mouse model, with defects in IFNγ signaling pathways. Furthermore, we found a response to immune checkpoint inhibitors in a patient with JAK-negative head and neck squamous cell carcinoma whose HLA-I expression level was maintained. In addition, CRISPR screening to identify molecules associated with elevated MHC-I expression independent of IFNγ signaling pathways demonstrated that guanine nucleotide-binding protein subunit gamma 4 (GNG4) maintained MHC-I expression via the NF-κB signaling pathway. Our results indicate that patients with IFNγ signaling pathway defects are not always resistant to immune checkpoint inhibitors and highlight the importance of MHC-I expression among the pathways and the possibility of NF-κB–targeted therapies to overcome such resistance. en-copyright= kn-copyright= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=114 cd-vols= no-issue=10 article-no= start-page=3848 end-page=3856 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combination therapy with hydrogen peroxide and irradiation promotes an abscopal effect in mouse models en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hydrogen peroxide (H2O2) induces oxidative stress and cytotoxicity, and can be used for treating cancers in combination with radiotherapy. A product comprising H2O2 and sodium hyaluronate has been developed as a radiosensitizer. However, the effects of H2O2 on antitumor immunity remain unclear. To investigate the effects of H2O2, especially the abscopal effect when combined with radiotherapy (RT), we implanted murine tumor cells simultaneously in two locations in mouse models: the hind limb and back. H2O2 mixed with sodium hyaluronate was injected intratumorally, followed by irradiation only at the hind limb lesion. No treatment was administered to the back lesion. The H2O2/RT combination significantly reduced tumor growth at the noninjected/nonirradiated site in the back lesion, whereas H2O2 or RT individually did not reduce tumor growth. Flow cytometric analyses of the tumor-draining lymph nodes in the injected/irradiated areas showed that the number of dendritic cells increased significantly with maturation in the H2O2/RT combination group. In addition, analyses of tumor-infiltrating lymphocytes showed that the number of CD8+ (cluster of differentiation 8) T cells and the frequency of IFN-γ+ (interferon gamma) CD8+ T cells were higher in the noninjected/nonirradiated tumors in the H2O2/RT group compared to those in the other groups. PD-1 (programmed death receptor 1) blockade further increased the antitumor effect against noninjected/nonirradiated tumors in the H2O2/RT group. Intratumoral injection of H2O2 combined with RT therefore induces an abscopal effect by activating antitumor immunity, which can be further enhanced by PD-1 blockade. These findings promote the development of H2O2/RT therapy combined with cancer immunotherapies, even for advanced cancers. en-copyright= kn-copyright= en-aut-name=KemmotsuNaoya en-aut-sei=Kemmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuLi en-aut-sei=Zhu en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FangYue en-aut-sei=Fang en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=abscopal effect kn-keyword=abscopal effect en-keyword=dendritic cell kn-keyword=dendritic cell en-keyword=hydrogen peroxide kn-keyword=hydrogen peroxide en-keyword=radiosensitizer kn-keyword=radiosensitizer en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=tumor-draining lymph node kn-keyword=tumor-draining lymph node END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=5 article-no= start-page=e39466 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Collagenous Colitis in a Patient With Gastric Cancer Who Underwent Chemotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Herein, we present a case of collagenous colitis in a patient who underwent chemotherapy for gastric cancer, comprising five cycles of S-1 plus oxaliplatin and trastuzumab, followed by five cycles of paclitaxel and ramucirumab and seven cycles of nivolumab. The subsequent initiation of trastuzumab deruxtecan chemotherapy led to the development of grade 3 diarrhea after the second cycle of treatment. Collagenous colitis was diagnosed via colonoscopy and biopsy. The patient's diarrhea improved following the cessation of lansoprazole. This case highlights the importance of considering collagenous colitis as a differential diagnosis, in addition to chemotherapy-induced colitis and immune-related adverse event (irAE) colitis, in patients with similar clinical presentations. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InooShoko en-aut-sei=Inoo en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=chemotherapy-induced diarrhea kn-keyword=chemotherapy-induced diarrhea en-keyword=immune-related adverse event colitis kn-keyword=immune-related adverse event colitis en-keyword=colonoscopy kn-keyword=colonoscopy en-keyword=collagenous colitis kn-keyword=collagenous colitis END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=7 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Following the online publication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in January 2020, two lipid nanoparticle-encapsulated mRNA vaccines, BNT162b2 and mRNA-1273, were rapidly developed and are now being used worldwide to prevent coronavirus disease 2019 (COVID-19). The mRNA of both vaccines encodes the full-length spike protein of SARS-CoV-2, which binds to the host cell receptor angiotensin-converting enzyme 2 and is believed to mediate virus entry into cells. After intramuscular injection of the vaccine, the spike protein is produced in the cells. Both humoral and cellular immune responses to the spike protein are elicited for protection against COVID-19. The efficacy of the two mRNA vaccines against COVID-19 with wild-type SARS-CoV-2 is more than 90% and is slightly decreased with the Delta variant, which is currently the predominant variant in many countries. In this review, the effectiveness of and immune responses to COVID-19 mRNA vaccines and their mechanisms are summarized and discussed. Potential waning immunity and an additional dose of COVID-19 mRNA vaccines are also discussed. en-copyright= kn-copyright= en-aut-name=GohdaEiichi en-aut-sei=Gohda en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=mRNA vaccine kn-keyword=mRNA vaccine en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol=299 cd-vols= no-issue=4 article-no= start-page=104587 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation. en-copyright= kn-copyright= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiHiroka en-aut-sei=Onishi en-aut-mei=Hiroka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkadaYuki en-aut-sei=Ikada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasakiKento en-aut-sei=Masaki en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=乳がんコホートより免疫関連遺伝子シグネチャーの化学療法の効果と予後予測能の検討 kn-title=Predictive value of immune genomic signatures from breast cancer cohorts containing data for both response to neoadjuvant chemotherapy and prognosis after surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ZHUYIDAN en-aut-sei=ZHU en-aut-mei=YIDAN kn-aut-name=朱一丹 kn-aut-sei=朱 kn-aut-mei=一丹 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=加齢性難聴マウスの蝸牛における炎症・免疫関連遺伝子の発現解析 kn-title=Upregulation of a nuclear factor-kappa B-interacting immune gene network in mice cochleae with age-related hearing loss en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=URAGUCHIKensuke en-aut-sei=URAGUCHI en-aut-mei=Kensuke kn-aut-name=浦口健介 kn-aut-sei=浦口 kn-aut-mei=健介 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=同種造血幹細胞移植後の低用量IL−2療法が制御性T細胞およびエフェクターT細胞に与える効果はホストの免疫状態に依存する kn-title=Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MEGURIYusuke en-aut-sei=MEGURI en-aut-mei=Yusuke kn-aut-name=廽勇輔 kn-aut-sei=廽 kn-aut-mei=勇輔 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=9 article-no= start-page=1319 end-page=1322 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fulminant Myocarditis for Non-small-cell Carcinoma of the Lung with Nivolumab and Ipilimumab Plus Chemotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 59-year-old man with a high level of antinuclear antibody received nivolumab and ipilimumab plus che-motherapy for lung cancer. Two weeks after the second course, he was admitted with a fever and severe fa-tigue. Laboratory studies showed elevated markers of myocardial damage, and a myocardial biopsy showed inflammatory cell infiltration, damaged myocardial fibers. Myocarditis was diagnosed as an immune-related adverse event (irAE), and high-dose corticosteroids were initiated. However, his cardiac function rapidly worsened, and he died on the fifth day after admission. There is no established treatment strategy for fulmi-nant myocarditis as an irAE, and the further exploration of viable treatment strategies is required. en-copyright= kn-copyright= en-aut-name=NishimuraTomoka en-aut-sei=Nishimura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuribayashiTadahiro en-aut-sei=Kuribayashi en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=myocarditis kn-keyword=myocarditis en-keyword=nivolumab plus ipilimumab kn-keyword=nivolumab plus ipilimumab en-keyword=irAE kn-keyword=irAE en-keyword=case report kn-keyword=case report END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=e162180 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hematopoietic stem cell-derived Tregs are essential for maintaining favorable B cell lymphopoiesis following posttransplant cyclophosphamide en-subtitle= kn-subtitle= en-abstract= kn-abstract=Posttransplant cyclophosphamide (PTCy) is associated with a low incidence of chronic graft -versus-host disease (cGVHD) following hematopoietic stem cell (HSC) transplantation. Previous studies have shown the important roles of B cell immunity in cGVHD development. Here, we investigated the long-term reconstitution of B lymphopoiesis after PTCy using murine models. We first demonstrated that the immune homeostatic abnormality leading to cGVHD is characterized by an initial increase in effector T cells in the bone marrow and subsequent B and Treg cytopenia. PTCy, but not cyclosporine A or rapamycin, inhibits the initial alloreactive T cell response, which restores intra-bone marrow B lymphogenesis with a concomitant vigorous increase in Tregs. This leads to profound changes in posttransplant B cell homeostasis, including decreased B cell activating factors, increased transitional and regulatory B cells, and decreased germinal center B cells. To identify the cells responsible for PTCy-induced B cell tolerance, we selectively depleted Treg populations that were graft or HSC derived using DEREG mice. Deletion of either Treg population without PTCy resulted in critical B cytopenia. PTCy rescued B lymphopoiesis from graft-derived Treg deletion. In contrast, the negative effect of HSC-derived Treg deletion could not be overcome by PTCy, indicating that HSC-derived Tregs are essential for maintaining favorable B lymphopoiesis following PTCy. These findings define the mechanisms by which PTCy restores homeostasis of the B cell lineage and reestablishes immune tolerance. en-copyright= kn-copyright= en-aut-name=SumiiYuichi en-aut-sei=Sumii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkegawaShuntaro en-aut-sei=Ikegawa en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumiTakuya en-aut-sei=Fukumi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwamotoMiki en-aut-sei=Iwamoto en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiuraHiroyuki en-aut-sei=Sugiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SandoYasuhisa en-aut-sei=Sando en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MeguriYusuke en-aut-sei=Meguri en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsushitaTakashi en-aut-sei=Matsushita en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanimineNaoki en-aut-sei=Tanimine en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KimuraMaiko en-aut-sei=Kimura en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Dermatology, Faculty of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University kn-affil= affil-num=12 en-affil=Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=13 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=4 article-no= start-page=488 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230419 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent Advances in Apical Periodontitis Treatment: A Narrative Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches. en-copyright= kn-copyright= en-aut-name=AriasZulema en-aut-sei=Arias en-aut-mei=Zulema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NizamiMohammed Zahedul Islam en-aut-sei=Nizami en-aut-mei=Mohammed Zahedul Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenXiaoting en-aut-sei=Chen en-aut-mei=Xiaoting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChaiXinyi en-aut-sei=Chai en-aut-mei=Xinyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=XuBin en-aut-sei=Xu en-aut-mei=Bin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuangCanyan en-aut-sei=Kuang en-aut-mei=Canyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=apical periodontitis kn-keyword=apical periodontitis en-keyword=contemporary approaches kn-keyword=contemporary approaches en-keyword=nonsurgical endodontic treatment kn-keyword=nonsurgical endodontic treatment en-keyword=immune inflammatory disease kn-keyword=immune inflammatory disease en-keyword=alternative treatments kn-keyword=alternative treatments END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=2 article-no= start-page=86 end-page=91 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Clusters of coronavirus disease 2019 in medical institutions and elderly care facilities in Okayama Prefecture kn-title=岡山県内における新型コロナウイルス感染症クラスターの発生時期別特徴について en-subtitle= kn-subtitle= en-abstract= kn-abstract= Coronavirus disease 2019 has spread worldwide and has yet to be contained. The Japanese government has taken measures against the occurrence of clusters. However, there has little evaluation of the occurrence of the clusters and their changes. Therefore, we investigated the occurrence of the clusters in medical institutions and elderly care facilities in Okayama Prefecture.
 We compared the characteristics of the clusters that occurred in each of the wave between October 21, 2020, and September 30, 2021, by using the data published that interval. As a case study, we also evaluated the characteristics of positive patients at a medical institution over where a cluster occurred in case the fourth wave.
 The overall number of cluster outbreaks decreased with the spread of vaccination. In the fourth wave, there was a period in which the vaccination of staff members at medical institutions became widespread, while patients or facility users were unvaccinated, resulting in a longer convergence period and an increase in the number of positive cases among patients relative to the number of staff members.
 The impact of the spread of vaccination and the duration of immunity acquired after vaccination on the occurrence of clusters should be closely monitored in the future. en-copyright= kn-copyright= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name=門脇知花 kn-aut-sei=門脇 kn-aut-mei=知花 aut-affil-num=1 ORCID= en-aut-name=IrieSaori en-aut-sei=Irie en-aut-mei=Saori kn-aut-name=入江佐織 kn-aut-sei=入江 kn-aut-mei=佐織 aut-affil-num=2 ORCID= en-aut-name=TakahashiYukari en-aut-sei=Takahashi en-aut-mei=Yukari kn-aut-name=髙橋友香里 kn-aut-sei=髙橋 kn-aut-mei=友香里 aut-affil-num=3 ORCID= en-aut-name=YakushijiHiromasa en-aut-sei=Yakushiji en-aut-mei=Hiromasa kn-aut-name=薬師寺泰匡 kn-aut-sei=薬師寺 kn-aut-mei=泰匡 aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name=高尾総司 kn-aut-sei=高尾 kn-aut-mei=総司 aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name=賴藤貴志 kn-aut-sei=賴藤 kn-aut-mei=貴志 aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学 affil-num=2 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学 affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学 affil-num=4 en-affil=Yakushiji jikei Hospital kn-affil=薬師寺慈恵病院 affil-num=5 en-affil=Deportment of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 疫学・衛生学 affil-num=6 en-affil=Deportment of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 疫学・衛生学 en-keyword=新型コロナウイルス感染症 (coronavirus disease 2019) kn-keyword=新型コロナウイルス感染症 (coronavirus disease 2019) en-keyword=岡山県 (Okayama Prefecture) kn-keyword=岡山県 (Okayama Prefecture) en-keyword=クラスター (cluster) kn-keyword=クラスター (cluster) en-keyword=ワクチン接種 (vaccination) kn-keyword=ワクチン接種 (vaccination) en-keyword=疫学 (epidemiology) kn-keyword=疫学 (epidemiology) END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=2 article-no= start-page=73 end-page=75 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2021 Incentive Award of the Okayama Medical Association in Cancer Research (2021 Hayashibara Prize and Yamada Prize) kn-title=令和3年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name=西田充香子 kn-aut-sei=西田 kn-aut-mei=充香子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 免疫学 END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=1 article-no= start-page=37 end-page=42 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Benefit of prednisolone alone in nodal peripheral T-cell lymphoma with T follicular helper phenotype en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 71-year-old Japanese man presented with severe thrombocytopenia. A whole-body CT at presentation showed small cervical, axillary, and para-aortic lymphadenopathy, leading to suspicion of immune thrombocytopenia due to lymphoma. Biopsy was difficult to perform because of severe thrombocytopenia. Thus, he received prednisolone (PSL) therapy and his platelet count gradually recovered. Two and a half years after PSL therapy initiation, his cervical lymphadenopathy slightly progressed without other clinical symptoms. Hence, a biopsy from the left cervical lymph node was performed, and he was diagnosed with nodal peripheral T-cell lymphoma (PTCL) with T follicular helper (TFH) phenotype. Due to various complications, we continued treatment with prednisolone alone after the diagnosis of lymphoma; however, there was no further increase in lymph node enlargement and no other lymphoma-related symptoms for one and a half years after diagnosis. Although immunosuppressive therapy has been reported to produce a response in some patients with angioimmunoblastic T-cell lymphoma, our experience suggests that a similar subset may exist in patients with nodal PTCL with TFH phenotype, which has the same cellular origin. Immunosuppressive therapies may constitute an alternative treatment option even in the era of novel molecular-targeted therapies, especially for elderly patients who are ineligible for chemotherapy. en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrataTomohiro en-aut-sei=Urata en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoYumiko en-aut-sei=Sato en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaoiYusuke en-aut-sei=Naoi en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Hematology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Hematology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Medical School kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= en-keyword=nodal peripheral T-cell lymphoma with T follicular helper phenotype kn-keyword=nodal peripheral T-cell lymphoma with T follicular helper phenotype en-keyword=immune thrombocytopenia kn-keyword=immune thrombocytopenia en-keyword=prednisolone kn-keyword=prednisolone END start-ver=1.4 cd-journal=joma no-vol=178 cd-vols= no-issue= article-no= start-page=1 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PD-1 blockade augments CD8+ T cell dependent antitumor immunity triggered by Ad-SGE-REIC in Egfr-mutant lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: No immunotherapeutic protocol has yet been established in never-smoking patients with lung cancer harboring driver oncogenic mutations, such as epidermal growth factor receptor (EGFR) mutations. The immunostimulatory effect of Ad-REIC, a genetically engineered adenovirus vector expressing a tumor suppressor gene, reduced expression in immortalized cells (REIC), has been investigated in clinical trials for various solid tumors. However, the immunostimulatory effect of the Ad-REIC in EGFR-mutant lung cancer with a non-inflamed tumor microenvironment (TME) has not been explored.
Materials and methods: We used a syngeneic mouse model developed by transplanting Egfr-mutant lung cancer cells into single or double flanks of C57BL/6J mice. Ad-SGE-REIC, a 2nd-generation vector with an enhancer sequence, was injected only into the tumors from one flank, and its antitumor effects were assessed. Tumor-infiltrating cells were evaluated using immunohistochemistry or flow cytometry. The synergistic effects of Ad-SGE-REIC and PD-1 blockade were also examined.
Results: Injection of Ad-SGE-REIC into one side of the tumor induced not only a local antitumor effect but also a bystander abscopal effect in the non-injected tumor, located on the other flank. The number of PD-1+CD8+ T cells increased in both injected and non-injected tumors. PD-1 blockade augmented the local and abscopal antitumor effects of Ad-SGE-REIC by increasing the number of CD8+ T cells in the TME of Egfr-mutant tumors. Depletion of CD8+ cells reverted the antitumor effect, suggesting they contribute to antitumor immunity.
Conclusion: Ad-SGE-REIC induced systemic antitumor immunity by modifying the TME status from non-inflamed to inflamed, with infiltration of CD8+ T cells. Additionally, in Egfr-mutant lung cancer, this effect was enhanced by PD-1 blockade. These findings pave the way to establish a novel combined immunotherapy strategy with Ad-SGE-REIC and anti-PD-1 antibody for lung cancer with a non-inflamed TME. en-copyright= kn-copyright= en-aut-name=NakasukaTakamasa en-aut-sei=Nakasuka en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirabaeAtsuko en-aut-sei=Hirabae en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakadaKenji en-aut-sei=Takada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndoChihiro en-aut-sei=Ando en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WatanabeHiromi en-aut-sei=Watanabe en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=17 en-affil=Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University kn-affil= affil-num=18 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=EGFR mutation kn-keyword=EGFR mutation en-keyword=Non-small cell lung cancer kn-keyword=Non-small cell lung cancer en-keyword=Antitumor immunity kn-keyword=Antitumor immunity en-keyword=Non-inflamed tumor kn-keyword=Non-inflamed tumor en-keyword=Ad-SGE-REIC kn-keyword=Ad-SGE-REIC en-keyword=Gene therapy kn-keyword=Gene therapy en-keyword=PD-1 kn-keyword=PD-1 END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=227 end-page=232 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lenvatinib Administration for Anaplastic Thyroid Carcinoma with Brain Metastasis en-subtitle= kn-subtitle= en-abstract= kn-abstract=We describe the use of the tyrosine kinase inhibitor lenvatinib in a patient with brain tumor metastases from anaplastic thyroid carcinoma (ATC). A 52-year-old Japanese male presented with consciousness loss. Imaging revealed a thyroid tumor and multiple brain lesions. After the brain tumor’s resection, pathology results provided the diagnosis of ATC. Total thyroidectomy was performed, followed by whole-brain irradiation. Additional brain lesions later developed, and lenvatinib therapy was initiated with no remarkable complications. However, the treatment effects were limited, and the patient died 2 months after starting lenvatinib, 202 days after the initial brain surgery. Relevant literature is discussed. en-copyright= kn-copyright= en-aut-name=ObayashiAtsuto en-aut-sei=Obayashi en-aut-mei=Atsuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AokiKazuma en-aut-sei=Aoki en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaTadayoshi en-aut-sei=Wada en-aut-mei=Tadayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FuruieHiromi en-aut-sei=Furuie en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuraokaKazuya en-aut-sei=Kuraoka en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamamotoTakao en-aut-sei=Hamamoto en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TatsukawaTakaharu en-aut-sei=Tatsukawa en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Otorhinolaryngology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Otorhinolaryngology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=3 en-affil=Department of Otorhinolaryngology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Otorhinolaryngology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Diagnostic Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Otorhinolaryngology, Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=7 en-affil=Department of Otorhinolaryngology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= en-keyword=anaplastic thyroid carcinoma kn-keyword=anaplastic thyroid carcinoma en-keyword=brain metastasis kn-keyword=brain metastasis en-keyword=lenvatinib kn-keyword=lenvatinib END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Combination therapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) monoclonal antibodies (mAbs) has dramatically improved the prognosis of patients with multiple types of cancer, including renal cell carcinoma (RCC). However, more than half of RCC patients fail to respond to this therapy. Regulatory T cells (Treg cells) are a subset of highly immunosuppressive CD4(+) T cells that promote the immune escape of tumors by suppressing effector T cells in the tumor microenvironment (TME) through various mechanisms. CTLA-4 is constitutively expressed in Treg cells and is regarded as a key molecule for Treg-cell-mediated immunosuppressive functions, suppressing antigen-presenting cells by binding to CD80/CD86. Reducing Treg cells in the TME with an anti-CTLA-4 mAb with antibody-dependent cellular cytotoxicity (ADCC) activity is considered an essential mechanism to achieve tumor regression. In contrast, we demonstrated that CTLA-4 blockade without ADCC activity enhanced CD28 costimulatory signaling pathways in Treg cells and promoted Treg-cell proliferation in mouse models. CTLA-4 blockade also augmented CTLA-4-independent immunosuppressive functions, including cytokine production, leading to insufficient antitumor effects. Similar results were also observed in human peripheral blood lymphocytes and tumor-infiltrating lymphocytes from patients with RCC. Our findings highlight the importance of Treg-cell depletion to achieve tumor regression in response to CTLA-4 blockade therapies. en-copyright= kn-copyright= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=antibody-dependent cell cytotoxicity kn-keyword=antibody-dependent cell cytotoxicity en-keyword=cytotoxic T-lymphocyte-associated antigen 4 kn-keyword=cytotoxic T-lymphocyte-associated antigen 4 en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors en-keyword=regulatory T cell kn-keyword=regulatory T cell en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1120710 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=E3-ubiquitin ligases and recent progress in osteoimmunology en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies. en-copyright= kn-copyright= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RottapelRobert en-aut-sei=Rottapel en-aut-mei=Robert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Princess Margaret Cancer Center, University Health Network, University of Toronto kn-affil= en-keyword=E3-ubiquitin ligases kn-keyword=E3-ubiquitin ligases en-keyword=ubiquitylation kn-keyword=ubiquitylation en-keyword=proteasomal degradation kn-keyword=proteasomal degradation en-keyword=osteoimmunology kn-keyword=osteoimmunology en-keyword=cherubism kn-keyword=cherubism END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=90 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Autophagy as a potential mechanism underlying the biological effect of 1,25-Dihydroxyvitamin D3 on periodontitis: a narrative review en-subtitle= kn-subtitle= en-abstract= kn-abstract=The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future. en-copyright= kn-copyright= en-aut-name=ChenXiaoting en-aut-sei=Chen en-aut-mei=Xiaoting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AriasZulema en-aut-sei=Arias en-aut-mei=Zulema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vitamin D kn-keyword=Vitamin D en-keyword=Autophagy kn-keyword=Autophagy en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Epithelial barrier kn-keyword=Epithelial barrier en-keyword=Immunity kn-keyword=Immunity en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Alveolar bone loss kn-keyword=Alveolar bone loss END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Identifying biomarkers to predict immune checkpoint inhibitor (ICI) efficacy is warranted. Considering that somatic mutation-derived neoantigens induce strong immune responses, patients with a high tumour mutational burden reportedly tend to respond to ICIs. However, there are several conflicting data. Therefore, we focused on the original function of neoantigenic mutations and their impact on the tumour microenvironment (TME).

Methods
We evaluated 88 high-frequency microsatellite instability (MSI-H) colorectal cancers and analysed the function of the identified neoantigenic mutations and their influence on programmed cell death 1 (PD-1) blockade efficacy. The results were validated using The Cancer Genome Atlas (TCGA) datasets.

Results
We identified frameshift mutations in RNF43 as a common neoantigenic gene mutation in MSI-H tumours. However, loss-of-function RNF43 mutations induced noninflamed TME by activating the WNT/β-catenin signalling pathway. In addition, loss of RNF43 function induced resistance to PD-1 blockade even in neoantigen-rich tumours. TCGA dataset analyses demonstrated that passenger rather than driver gene mutations were related to the inflamed TME in diverse cancer types.

Conclusions
We propose a novel concept of “paradoxical neoantigenic mutations” that can induce noninflamed TME through their original gene functions, despite deriving neoantigens, suggesting the significance of qualities as well as quantities in neoantigenic mutations. en-copyright= kn-copyright= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgasawaraSadahisa en-aut-sei=Ogasawara en-aut-mei=Sadahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoKazuhito en-aut-sei=Sato en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaSoichiro en-aut-sei=Ishihara en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoNaoya en-aut-sei=Kato en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=4 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=7 en-affil=Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=9 en-affil=Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=105 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Initial Two Doses of COVID-19 Vaccine mRNA-1273 for an Individual Previously Vaccinated with Two Doses of an Inactivated Vaccine CoronaVac That Has Not Been Approved in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The inactivated coronavirus disease 2019 vaccine CoronaVac has not been approved in Japan. Little information is available on cases in Japan in which an approved mRNA vaccine was administered as the initial (first or second) dose after two doses of CoronaVac. Furthermore, the safety and efficacy of this combination are not established. We here evaluated the safety and efficacy in a patient who showed an antibody response to an approved vaccine, mRNA-1273, after a previous vaccination with CoronaVac. The adverse events consisted of only mild local and systemic common reactions and were transient. In addition, a strong and persistent antibody response was observed. en-copyright= kn-copyright= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Health Service Center, Okayama University kn-affil= affil-num=2 en-affil=Health Service Center, Okayama University kn-affil= en-keyword=coronavirus disease 2019 kn-keyword=coronavirus disease 2019 en-keyword=severe acute respiratory syndrome coronavirus 2 kn-keyword=severe acute respiratory syndrome coronavirus 2 en-keyword=vaccine kn-keyword=vaccine en-keyword=adverse events kn-keyword=adverse events en-keyword=antibody response kn-keyword=antibody response END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=37 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Efficacy of Inflammatory and Immune Markers for Predicting the Prognosis of Patients with Stage IV Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic therapy for stage IV breast cancer is usually an initial treatment and is based on findings regarding biomarkers (e.g., hormone receptors and human epidermal growth factor receptor-2 [HER2]). However, the response to therapy and outcomes sometime differ among patients with similar prognostic factors including grade, hormone receptor, HER2, and more. We conducted retrospective analyses to evaluate the correlations between the overall survival (OS) of 46 stage IV breast cancer patients and (i) the peripheral absolute lymphocyte count (ALC) and (ii) composite blood cell markers. The peripheral blood cell markers included the neutrophil- to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the systemic immune-inflammation index (SII), the systemic inflammation response index (SIRI), and the most recently introduced indicator, the pan-immune-inflammatory value (PIV). The SIRI and PIV showed prognostic impacts on the patients: those with a low SIRI or a low PIV showed significantly better OS than those with a high SIRI (5-year, 66.0% vs. 35.0%, p<0.05) or high PIV (5-year, 68.1% vs. 38.5%, p<0.05), respectively. This is the first report indicating the possible prognostic value of the PIV for OS in patients with stage IV breast cancer. Further studies with larger numbers of patients are necessary for further clarification. en-copyright= kn-copyright= en-aut-name=YamanouchiKosho en-aut-sei=Yamanouchi en-aut-mei=Kosho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaShigeto en-aut-sei=Maeda en-aut-mei=Shigeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Surgery, National Hospital Organization, Nagasaki Medical Center kn-affil= affil-num=2 en-affil=Department of Surgery, National Hospital Organization, Nagasaki Medical Center kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=pan-immune-inflammatory value kn-keyword=pan-immune-inflammatory value en-keyword=prognosis kn-keyword=prognosis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=110 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Extracellular Vesicles: New Classification and Tumor Immunosuppression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Simple Summary Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules and deliver them to recipient cells. Classical EVs are exosomes, microvesicles, and apoptotic bodies. This review classifies classical and additional EV types, including autophagic EVs, matrix vesicles, and stressed EVs. Of note, matrix vesicles are key components interacting with extracellular matrices (ECM) in the tumor microenvironment. We also review how EVs are involved in the communication between cancer cells and tumor-associated cells (TAC), leading to establishing immunosuppressive and chemoresistant microenvironments. These include cancer-associated fibroblasts (CAF), mesenchymal stem cells (MSC), blood endothelial cells (BEC), lymph endothelial cells (LEC), and immune cells, such as tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), dendritic cells, natural killer cells, killer T cells, and immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells (MDSC). Exosomal long noncoding RNA (lncRNA), microRNA, circular RNA, piRNA, mRNA, and proteins are crucial in communication between cancer cells and TACs for establishing cold tumors. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation. en-copyright= kn-copyright= en-aut-name=ShetaMona en-aut-sei=Sheta en-aut-mei=Mona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LuYanyin en-aut-sei=Lu en-aut-mei=Yanyin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry, Faculty of Science, Ain Shams University kn-affil= affil-num=3 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=extracellular vesicle kn-keyword=extracellular vesicle en-keyword=exosome kn-keyword=exosome en-keyword=autophagy kn-keyword=autophagy en-keyword=amphisome kn-keyword=amphisome en-keyword=matrix vesicle kn-keyword=matrix vesicle en-keyword=cellular communication kn-keyword=cellular communication en-keyword=tumor microenvironment kn-keyword=tumor microenvironment en-keyword=immunosuppression kn-keyword=immunosuppression en-keyword=immune evasion kn-keyword=immune evasion en-keyword=therapy resistance kn-keyword=therapy resistance END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=12 article-no= start-page=e32710 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple White Plaques in the Esophagus: A Possible Case of Esophageal Mucosal Alteration Associated With Immune-Related Adverse Events of Immune Checkpoint Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report two cases of multiple white plaques in the esophagus that emerged after the administration of immune checkpoint inhibitors. Both patients developed enterocolitis as immune-related adverse events associated with immune checkpoint inhibitors. Esophagogastroduodenoscopy revealed duodenal involvement and multiple white plaques in the esophagus. A biopsy of the esophagus showed predominant CD3+ lymphocyte infiltration, suggesting that esophageal mucosal alterations were associated with immune-related adverse events. In addition, histopathology showed keratinized stratified squamous epithelium in the first case while increased inflammatory cell infiltration in the intraepithelial and subepithelial layers was observed in the second case. These data suggest a different pathogenesis of the multiple esophageal white plaques between the two cases. Although further investigation is needed to elucidate the significance of these observations, recognition of the esophageal plaques may be important for prompt diagnosis of immune-related adverse events when associated with immune checkpoint inhibitors. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkadaHoroyuki en-aut-sei=Okada en-aut-mei=Horoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=nivolumab kn-keyword=nivolumab en-keyword=ipilimumab kn-keyword=ipilimumab en-keyword=immune -related adverse events kn-keyword=immune -related adverse events en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=esophagogastroduodenoscopy kn-keyword=esophagogastroduodenoscopy END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=755 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metformin and Its Immune-Mediated Effects in Various Diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metformin has been a long-standing prescribed drug for treatment of type 2 diabetes (T2D) and its beneficial effects on virus infection, autoimmune diseases, aging and cancers are also recognized. Metformin modulates the differentiation and activation of various immune-mediated cells such as CD4+ and CD+8 T cells. The activation of adenosine 5 '-monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1) pathway may be involved in this process. Recent studies using Extracellular Flux Analyzer demonstrated that metformin alters the activities of glycolysis, oxidative phosphorylation (OXPHOS), lipid oxidation, and glutaminolysis, which tightly link to the modulation of cytokine production in CD4+ and CD+8 T cells in various disease states, such as virus infection, autoimmune diseases, aging and cancers. en-copyright= kn-copyright= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CD8 T cells kn-keyword=CD8 T cells en-keyword=AMPK kn-keyword=AMPK en-keyword=mTORC kn-keyword=mTORC en-keyword=OXPHOS kn-keyword=OXPHOS en-keyword=autoimmune disease kn-keyword=autoimmune disease en-keyword=aging kn-keyword=aging en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=6 article-no= start-page=e0270569 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world data on vitamin D supplementation and its impacts in systemic lupus erythematosus: Cross-sectional analysis of a lupus registry of nationwide institutions (LUNA) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Although vitamin D concentration is reportedly associated with the pathogenesis and pathology of systemic lupus erythematosus (SLE), benefits of vitamin D supplementation in SLE patients have not been elucidated, to our knowledge. We investigated the clinical impacts of vitamin D supplementation in SLE. Methods A cross-sectional analysis was performed using data from a lupus registry of nationwide institutions. We evaluated vitamin D supplementation status associated with diseaserelated Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI) as a parameter of long-term disease activity control. Results Of the enrolled 870 patients (mean age: 45 years, mean disease duration: 153 months), 426 (49%) received vitamin D supplementation. Patients with vitamin D supplementation were younger (43.2 vs 47.5 years, P < 0.0001), received higher doses of prednisolone (7.6 vs 6.8 mg/day, P= 0.002), and showed higher estimated glomerular filtration rates (79.3 vs 75.3 mL/min/1.73m(2), P= 0.02) than those without supplementation. Disease-related SDI (0.73 +/- 1.12 vs 0.73 +/- 1.10, P = 0.75), total SDI, and SLE Disease Activity Index (SLEDAI) did not significantly differ between patients receiving and not receiving vitamin D supplementation. Even after excluding 136 patients who were highly recommended vitamin D supplementation (with age >= 75 years, history of bone fracture or avascular necrosis, denosumab use, and end-stage renal failure), disease-related SDI, total SDI, and SLEDAI did not significantly differ between the two groups. Conclusions Even with a possible Vitamin D deficiency and a high risk of bone fractures in SLE patients, only half of our cohort received its supplementation. The effect of vitamin D supplementation for disease activity control was not observed. en-copyright= kn-copyright= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaYu en-aut-sei=Katayama en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorishitaMichiko en-aut-sei=Morishita en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NarazakiMariko en-aut-sei=Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KajiyamaHiroshi en-aut-sei=Kajiyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IchinoseKunihiro en-aut-sei=Ichinose en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SatoShuzo en-aut-sei=Sato en-aut-mei=Shuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraMichio en-aut-sei=Fujiwara en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Medicine, Division of Rheumatology, Showa University School of Medicine kn-affil= affil-num=13 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=15 en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center kn-affil= affil-num=16 en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=17 en-affil=Department of Immunology and Rheumatology, Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=18 en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine kn-affil= affil-num=19 en-affil=Department of Rheumatology, Yokohama Rosai Hospital kn-affil= affil-num=20 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=24 article-no= start-page=6184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effect of Pleural Effusion on Prognosis in Patients with Non-Small Cell Lung Cancer Undergoing Immunochemotherapy: A Retrospective Observational Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Simple Summary Minimal data exists on pleural effusion (PE) for non-small cell lung cancer (NSCLC) patients undergoing combined ICI and chemotherapy. We retrospectively investigated how PE affects survival outcomes in patients with NSCLC undergoing this combined therapy. We identified 478 patients who underwent combined ICI therapy and chemotherapy; 357 patients did not have PE, and 121 patients did have PE. Patients with PE had significantly shorter progression-free survival and overall survival than those without PE. In addition, bevacizumab-containing regimens did not improve the survival outcomes for patients with PE. In conclusion, PE was associated with poor outcomes among patients with NSCLC undergoing combined ICI therapy and chemotherapy. Objectives: Combined immune checkpoint inhibitor (ICI) therapy and chemotherapy has become the standard treatment for advanced non-small-cell lung cancer (NSCLC). Pleural effusion (PE) is associated with poor outcomes among patients with NSCLC undergoing chemotherapy. However, minimal data exists on PE for patients undergoing combined ICI and chemotherapy. Therefore, we investigated how PE affects survival outcomes in patients with NSCLC undergoing this combined therapy. Methods: We identified patients with advanced NSCLC undergoing chemotherapy and ICI therapy from the Okayama Lung Cancer Study Group-Immune Chemotherapy Database (OLCSG-ICD) between December 2018 and December 2020; the OLCSG-ICD includes the clinical data of patients with advanced NSCLC from 13 institutions. Then, we analyzed the treatment outcomes based on the presence of PE. Results: We identified 478 patients who underwent combined ICI therapy and chemotherapy; 357 patients did not have PE, and 121 patients did have PE. Patients with PE had significantly shorter progression-free survival (PFS) and overall survival (OS) than those without PE (median PFS: 6.2 months versus 9.1 months; p < 0.001; median OS: 16.4 months versus 27.7 months; p < 0.001). The negative effect of PE differed based on the patient's programmed cell death-ligand 1 (PD-L1) expression status; with the effect being more evident in patients with high PD-L1 expression. In addition, PFS and OS did not differ between patients who did and did not undergo bevacizumab treatment; thus, bevacizumab-containing regimens did not improve the survival outcomes for patients with PE. Conclusion: PE is associated with poor outcomes among patients with NSCLC undergoing combined ICI therapy and chemotherapy. en-copyright= kn-copyright= en-aut-name=NishimuraTomoka en-aut-sei=Nishimura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueKoji en-aut-sei=Inoue en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraTomoki en-aut-sei=Tamura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoKen en-aut-sei=Sato en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanoHirohisa en-aut-sei=Kano en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KishinoDaizo en-aut-sei=Kishino en-aut-mei=Daizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaiHaruyuki en-aut-sei=Kawai en-aut-mei=Haruyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OchiNobuaki en-aut-sei=Ochi en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchikawaHirohisa en-aut-sei=Ichikawa en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AndoChihiro en-aut-sei=Ando en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Ehime Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=10 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=11 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=12 en-affil=Department of General Internal Medicine 4, Kawasaki Medical School kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=17 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=pleural effusion kn-keyword=pleural effusion en-keyword=non-small cell carcinoma kn-keyword=non-small cell carcinoma en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=3 article-no= start-page=1059 end-page=1073 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The secreted immune response peptide 1 functions as a phytocytokine in rice immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Small signalling peptides play important roles in various plant processes, but information regarding their involvement in plant immunity is limited. We previously identified a novel small secreted protein in rice, called immune response peptide 1 (IRP1). Here, we studied the function of IRP1 in rice immunity. Rice plants overexpressing IRP1 enhanced resistance to the virulent rice blast fungus. Application of synthetic IRP1 to rice suspension cells triggered the expression of IRP1 itself and the defence gene phenylalanine ammonia-lyase 1 (PAL1). RNA-seq results revealed that 84% of genes up-regulated by IRP1, including 13 OsWRKY transcription factors, were also induced by a microbe-associated molecular pattern (MAMP), chitin, indicating that IRP1 and chitin share a similar signalling pathway. Co-treatment with chitin and IRP1 elevated the expression level of PAL1 and OsWRKYs in an additive manner. The increased chitin concentration arrested the induction of IRP1 and PAL1 expression by IRP1, but did not affect IRP1-triggered mitogen-activated protein kinases (MAPKs) activation. Collectively, our findings indicate that IRP1 functions as a phytocytokine in rice immunity regulating MAPKs and OsWRKYs that can amplify chitin and other signalling pathways, and provide new insights into how MAMPs and phytocytokines cooperatively regulate rice immunity. en-copyright= kn-copyright= en-aut-name=WangPingyu en-aut-sei=Wang en-aut-mei=Pingyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JiaHuimin en-aut-sei=Jia en-aut-mei=Huimin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GuoTing en-aut-sei=Guo en-aut-mei=Ting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangYuanyuan en-aut-sei=Zhang en-aut-mei=Yuanyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangWanqing en-aut-sei=Wang en-aut-mei=Wanqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishimuraHideki en-aut-sei=Nishimura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiZhengguo en-aut-sei=Li en-aut-mei=Zhengguo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University kn-affil= affil-num=2 en-affil=Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University kn-affil= affil-num=8 en-affil=Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= en-keyword=Immunity kn-keyword=Immunity en-keyword=IRP1 kn-keyword=IRP1 en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity en-keyword=phytocytokine kn-keyword=phytocytokine en-keyword=Pyricularia oryzae kn-keyword=Pyricularia oryzae en-keyword=rice kn-keyword=rice END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=6 article-no= start-page=654 end-page=665 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuropeptide Y Antagonizes Development of Pulmonary Fibrosis through IL-1β Inhibition en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neuropeptide Y (NPY), a 36 amino acid residue polypeptide distributed throughout the nervous system, acts on various immune cells in many organs, including the respiratory system. However, little is known about its role in the pathogenesis of pulmonary fibrosis. This study was performed to determine the effects of NPY on pulmonary fibrosis. NPY-deficient and wild-type mice were intratracheally administered bleomycin. Inflammatory cells, cytokine concentrations, and morphological morphometry of the lungs were analyzed. Serum NPY concentrations were also measured in patients with idiopathic pulmonary fibrosis and healthy control subjects. NPY-deficient mice exhibited significantly enhanced pulmonary fibrosis and higher IL-1 beta concentrations in the lungs compared with wild-type mice. Exogenous NPY treatment suppressed the development of bleomycin-induced lung fibrosis and decreased IL-1 beta concentrations in the lungs. Moreover, IL-1 beta neutralization in NPY-deficient mice attenuated the fibrotic changes. NPY decreased IL-1 beta release, and Y1 receptor antagonists inhibited IL-1 beta release and induced epithelial-mesenchymal transition in human alveolar epithelial cells. Patients with idiopathic pulmonary fibrosis had lower NPY and greater IL-1 beta concentrations in the serums compared with healthy control subjects. NPY expression was mainly observed around bronchial epithelial cells in human idiopathic pulmonary fibrosis lungs. These data suggest that NPY plays a protective role against pulmonary fibrosis by suppressing IL-1 beta release, and manipulating the NPY-Y1 receptor axis could be a potential therapeutic strategy for delaying disease progression. en-copyright= kn-copyright= en-aut-name=ItanoJunko en-aut-sei=Itano en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SenooSatoru en-aut-sei=Senoo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GionYuka en-aut-sei=Gion en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EgusaYuria en-aut-sei=Egusa en-aut-mei=Yuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GuoLili en-aut-sei=Guo en-aut-mei=Lili kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiKota en-aut-sei=Araki en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=6 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=idiopathic pulmonary fibrosis kn-keyword=idiopathic pulmonary fibrosis en-keyword=NPY kn-keyword=NPY en-keyword=IL-1 beta; bleomycin kn-keyword=IL-1 beta; bleomycin en-keyword=bronchial epithelial cells kn-keyword=bronchial epithelial cells END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=3 article-no= start-page=240 end-page=249 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resistance to immune checkpoint inhibitors and the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) have contributed significantly to the treatment of various types of cancer, including skin cancer. However, not all patients respond; some patients do not respond at all (primary resistance), while others experience recurrence after the initial response (acquired resistance). Therefore, overcoming ICI resistance is an urgent priority. Numerous ICI resistance mechanisms have been reported. They are seemingly quite complex, varying from patient to patient. However, most involve T cell activation processes, especially in the tumor microenvironment (TME). ICIs exert their effects in the TME by reactivating suppressed T cells through inhibition of immune checkpoint molecules, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Thus, this review focuses on the resistance mechanisms based on the T cell activation process. Here, we classify the main mechanisms of ICI resistance into three categories based on: (1) antigen recognition, (2) T cell migration and infiltration, and (3) effector functions of T cells. By identifying and understanding these resistance mechanisms individually, including unknown mechanisms, we seek to contribute to the development of novel treatments to overcome ICI resistance. en-copyright= kn-copyright= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors en-keyword=tumor microenvironment kn-keyword=tumor microenvironment en-keyword=antitumor immunity kn-keyword=antitumor immunity en-keyword=primary resistance kn-keyword=primary resistance en-keyword=acquired resistance kn-keyword=acquired resistance END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=374 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Involvement in the tumor-infiltrating CD8(+) T cell expression by the initial disease of remnant gastric cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Remnant gastric cancer (RGC) has been increasing for various reasons such as a longer life span, medical progress, and others. It generally has a poor prognosis, and its mechanism of occurrence is unknown. The purpose of this study was to evaluate the clinicopathological features of and clarify the oncological features of RGC. Methods Between January 2002 and January 2017, 39 patients with RGC following distal gastrectomy underwent curative surgical resection at the Okayama University Hospital; their medical records and immunohistochemically stained extracted specimens were used for retrospective analysis. Results On univariate analysis, initial gastric disease, pathological lymph node metastasis, and pathological stage were the significant factors associated with poor overall survival (p=0.014, 0.0061, and 0.016, respectively). Multivariate analysis of these 3 factors showed that only initial gastric disease caused by malignant disease was an independent factor associated with a poor prognosis (p=0.014, hazard ratio: 4.2, 95% confidence interval: 1.3-13.0). In addition, tumor-infiltrating CD8(+) T cells expression was higher in the benign disease group than in the malignant group (p=0.046). Conclusions Initial gastrectomy caused by malignant disease was an independent poor prognostic factor of RGC, and as one of the causes, lower level of tumor-infiltrating CD8(+) T cells in RGC may involve in. en-copyright= kn-copyright= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Remnant gastric cancer kn-keyword=Remnant gastric cancer en-keyword=Prognostic factor kn-keyword=Prognostic factor en-keyword=Tumor-infiltrating lymphocytes kn-keyword=Tumor-infiltrating lymphocytes en-keyword=CD8(+) T cell kn-keyword=CD8(+) T cell en-keyword=Tumor immunity kn-keyword=Tumor immunity END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=1285 end-page=1300 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pancreatic ductal adenocarcinoma (PDAC) is often refractory to treatment with gemcitabine (GEM) and immune checkpoint inhibitors including anti-programmed cell death ligand 1 (PD-L1) antibody. However, the precise relationship between GEM-resistant PDAC and development of an immunosuppressive tumor microenvironment (TME) remains unclear. In this study, we investigated the immunosuppressive TME in parental and GEM-resistant PDAC tumors and assessed the therapeutic potential of combination therapy with the telomerase-specific replication-competent oncolytic adenovirus OBP-702, which induces tumor suppressor p53 protein and PD-L1 blockade against GEM-resistant PDAC tumors. Mouse PDAC cells (PAN02) and human PDAC cells (MIA PaCa-2, BxPC-3) were used to establish GEM-resistant PDAC lines. PD-L1 expression and the immunosuppressive TME were analyzed using parental and GEM-resistant PDAC cells. A cytokine array was used to investigate the underlying mechanism of immunosuppressive TME induction by GEM-resistant PAN02 cells. The GEM-resistant PAN02 tumor model was used to evaluate the antitumor effect of combination therapy with OBP-702 and PD-L1 blockade. GEM-resistant PDAC cells exhibited higher PD-L1 expression and produced higher granulocyte-macrophage colony-stimulating factor (GM-CSF) levels compared with parental cells, inducing an immunosuppressive TME and the accumulation of myeloid-derived suppressor cells (MDSCs). OBP-702 significantly inhibited GEM-resistant PAN02 tumor growth by suppressing GM-CSF-mediated MDSC accumulation. Moreover, combination treatment with OBP-702 significantly enhanced the antitumor efficacy of PD-L1 blockade against GEM-resistant PAN02 tumors. The present results suggest that combination therapy involving OBP-702 and PD-L1 blockade is a promising antitumor strategy for treating GEM-resistant PDAC with GM-CSF-induced immunosuppressive TME formation. en-copyright= kn-copyright= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FushimiTakuro en-aut-sei=Fushimi en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Oncolys BioPharma Inc. kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Pancreatic cancer kn-keyword=Pancreatic cancer en-keyword=Chemoresistance kn-keyword=Chemoresistance en-keyword=MDSC kn-keyword=MDSC en-keyword=GM-CSF kn-keyword=GM-CSF en-keyword=Oncolytic virus kn-keyword=Oncolytic virus END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=689 end-page=694 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Evaluation of the Efficacy of Compression Therapy Using Sleeves and Stockings to Prevent Docetaxel-induced Peripheral Neuropathy in Breast Cancer Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Taxanes are key drugs for patients with breast cancer. A major adverse effect of taxanes is peripheral neuropathy (PN). To investigate the ability of compression therapy using sleeves and stockings to prevent PN due to the taxane docetaxel, we conducted a single-center historical control trial. Patients receiving docetaxel at 75 mg/m2 every 3 weeks for 4 cycles as first-line chemotherapy for breast cancer were eligible. PN was evaluated using the common terminology criteria for adverse events version 4.0. The primary endpoint was the incidence of allgrade PN until 3 weeks after the fourth docetaxel administration. We evaluated 26 patients in the intervention group and compared their data to those collected retrospectively from 52 patients treated with docetaxel without compression. Neither the incidence of all-grade PN until 3 weeks after the fourth docetaxel administration (63.5% in the control group vs. 76.9% in the intervention group, p=0.31) nor that of PN grade ≥ 2 (13.5% vs. 15.4%, p=0.99) differed between the groups. In this study, the efficacy of compression therapy using sleeves and stockings to prevent PN induced by docetaxel was not demonstrated. Further clinical studies including medications or intervention are needed to reduce the incidence and severity of PN induced by chemotherapy. en-copyright= kn-copyright= en-aut-name=YamanouchiKosho en-aut-sei=Yamanouchi en-aut-mei=Kosho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubaSayaka en-aut-sei=Kuba en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMegumi en-aut-sei=Matsumoto en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanoHiroshi en-aut-sei=Yano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaMichi en-aut-sei=Morita en-aut-mei=Michi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakimuraChika en-aut-sei=Sakimura en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsuboRyota en-aut-sei=Otsubo en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HidakaMasaaki en-aut-sei=Hidaka en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagayasuTakeshi en-aut-sei=Nagayasu en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EguchiSusumu en-aut-sei=Eguchi en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=2 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=3 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=4 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=5 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=6 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=7 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=8 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=9 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=10 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=docetaxel kn-keyword=docetaxel en-keyword=neuropathy kn-keyword=neuropathy en-keyword=compression kn-keyword=compression END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=635 end-page=643 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MiR-338-3p Is a Biomarker in Neonatal Acute Respiratory Distress Syndrome (ARDS) and Has Roles in the Inflammatory Response of ARDS Cell Models en-subtitle= kn-subtitle= en-abstract= kn-abstract=To investigate the association between serum miR-338-3p levels and neonatal acute respiratory distress syndrome (ARDS) and its mechanism. The relative miR-338-3p expression in serum was detected by quantitative real-time RT-PCR. Interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) levels were detected by ELISAs. A receiver operating characteristic (ROC) curve analysis of serum miR-338-3p evaluated the diagnosis of miR-338-3p in neonatal ARDS. Pearson’s correlation analysis evaluated the correlation between serum miR-338-3p and neonatal ARDS clinical factors. Flow cytometry evaluated apoptosis, and a CCK-8 assay assessed cell viability. A luciferase assay evaluated the miR-338-3p/AKT3 relationship. The miR- 338-3p expression was decreased in neonatal ARDS patients and in lipopolysaccharide (LPS)-treated cells. The ROC curve showed the accuracy of miR-338-3p for evaluating neonatal ARDS patients. The correlation analysis demonstrated that miR-338-3p was related to PRISM-III, PaO2/FiO2, oxygenation index, IL-1β, IL-6, and TNF-α in neonatal ARDS patients. MiR-338-3p overexpression inhibited the secretion of inflammatory components, stifled cell apoptosis, and LPS-induced advanced cell viability. The double-luciferase reporter gene experiment confirmed that miR-338-3p negatively regulates AKT3 mRNA expression. Serum miR-338-3p levels were related to the diagnosis and severity of neonatal ARDS, which may be attributed to its regulatory effect on inflammatory response in ARDS. en-copyright= kn-copyright= en-aut-name=ZhangCuicui en-aut-sei=Zhang en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JiYanan en-aut-sei=Ji en-aut-mei=Yanan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangQin en-aut-sei=Wang en-aut-mei=Qin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RuanLianying en-aut-sei=Ruan en-aut-mei=Lianying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=2 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=3 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=4 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= en-keyword=miR-338-3p kn-keyword=miR-338-3p en-keyword=AKT3 kn-keyword=AKT3 en-keyword=neonatal ARDS kn-keyword=neonatal ARDS en-keyword=inflammation kn-keyword=inflammation en-keyword=diagnosis kn-keyword=diagnosis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=肝内胆管癌において、制御性T細胞は、抑制性免疫環境を誘導し、リンパ節転移を促進する kn-title=Regulatory T cells induce a suppressive immune milieu and promote lymph node metastasis in intrahepatic cholangiocarcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KONISHIDaisuke en-aut-sei=KONISHI en-aut-mei=Daisuke kn-aut-name=小西大輔 kn-aut-sei=小西 kn-aut-mei=大輔 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=609 end-page=615 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Idiopathic Pneumonia Syndrome Refractory to Ruxolitinib after Post-Transplant Cyclophosphamide-based Haploidentical Hematopoietic Stem Cell Transplantation: Lung Pathological Findings from an Autopsy Case en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 69-year-old Japanese man with acute leukemia received post-transplant cyclophosphamide-based haploidentical stem cell transplantation (PTCY-haplo-SCT) but was readmitted with dyspnea and ground-glass-opacities of the lungs. Bronchoscopy showed inflammatory changes with no signs of infection. He received steroids but required intubation as his condition deteriorated. In addition to antithymocyte globulin and cyclophosphamide, we administered ruxolitinib but failed to save him. Autopsy findings revealed fibrotic nonspecific interstitial pneumonia (NSIP) without evidence of organizing pneumonia or infection. Thus, we diagnosed idiopathic pneumonia syndrome (IPS). As far as our knowledge, this is the first case of IPS with NSIP histology after PTCY-haplo-SCT. en-copyright= kn-copyright= en-aut-name=MatsumotoKen en-aut-sei=Matsumoto en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujishitaKeigo en-aut-sei=Fujishita en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsudaMasayuki en-aut-sei=Matsuda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkaSatoshi en-aut-sei=Oka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaYuka en-aut-sei=Fujisawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiToshi en-aut-sei=Imai en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MachidaTakuya en-aut-sei=Machida en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=2 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=3 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=4 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=5 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=6 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=7 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= en-keyword=idiopathic pneumonia syndrome kn-keyword=idiopathic pneumonia syndrome en-keyword=ruxolitinib kn-keyword=ruxolitinib en-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation kn-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation en-keyword=nonspecific interstitial pneumonia kn-keyword=nonspecific interstitial pneumonia END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=503 end-page=510 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Viral Sequences Are Repurposed for Controlling Antiviral Responses as Non-Retroviral Endogenous Viral Elements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Eukaryotic genomes contain numerous copies of endogenous viral elements (EVEs), most of which are considered endogenous retrovirus (ERV) sequences. Over the past decade, non-retroviral endogenous viral elements (nrEVEs) derived from ancient RNA viruses have been discovered. Several functions have been proposed for these elements, including antiviral defense. This review summarizes the current understanding of nrEVEs derived from RNA viruses, particularly endogenous bornavirus-like elements (EBLs) and endogenous filovirus-like elements (EFLs). EBLs are one of the most extensively studied nrEVEs. The EBL derived from bornavirus nucleoprotein (EBLN) is thought to function as a non-coding RNA or protein that regulates host gene expression or inhibits virus propagation. Ebolavirus and marburgvirus, which are filoviruses, induce severe hemorrhagic fever in humans and nonhuman primates. Although the ecology of filoviruses remains unclear, bats are believed to be potential reservoirs. Based on the knowledge from EBLs, it is postulated that EFLs in the bat genome help to maintain the balance between filovirus infection and the bat’s defense system, which may partially explain why bats act as potential reservoirs. Further research into the functions of nrEVEs could reveal novel antiviral systems and inspire novel antiviral approaches. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=EVE kn-keyword=EVE en-keyword=nrEVE kn-keyword=nrEVE en-keyword=bornavirus kn-keyword=bornavirus en-keyword=filovirus kn-keyword=filovirus en-keyword=antiviral kn-keyword=antiviral END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=489 end-page=502 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Current Insights into Mesenchymal Signatures in Glioblastoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults. Despite decades of research, the prognosis for GBM patients is still disappointing. One major reason for the intense therapeutic resistance of GBM is inter- and intra-tumor heterogeneity. GBM-intrinsic transcriptional profiling has suggested the presence of at least three subtypes of GBM: the proneural, classic, and mesenchymal subtypes. The mesenchymal subtype is the most aggressive, and patients with the mesenchymal subtype of primary and recurrent tumors tend to have a worse prognosis compared with patients with the other subtypes. Furthermore, GBM can shift from other subtypes to the mesenchymal subtype over the course of disease progression or recurrence. This phenotypic transition is driven by diverse tumor-intrinsic molecular mechanisms or microenvironmental factors. Thus, better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new therapeutic strategies. In this review, we provide a comprehensive overview of the current understanding of the elements involved in the mesenchymal transition of GBM and discuss future perspectives. en-copyright= kn-copyright= en-aut-name=MatsumotoYuji en-aut-sei=Matsumoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchikawaTomotsugu en-aut-sei=Ichikawa en-aut-mei=Tomotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Hamamatsu University Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=glioma kn-keyword=glioma en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=mesenchymal subtype kn-keyword=mesenchymal subtype en-keyword=mesenchymal transition kn-keyword=mesenchymal transition en-keyword=heterogeneity kn-keyword=heterogeneity END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=992198 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recruitment of Irgb6 to the membrane is a direct trigger for membrane deformation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Irgb6 is a member of interferon gamma-induced immunity related GTPase (IRG), and one of twenty "effector" IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption. en-copyright= kn-copyright= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaHikaru en-aut-sei=Nagaoka en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakashimaEizo en-aut-sei=Takashima en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NittaRyo en-aut-sei=Nitta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMasahiro en-aut-sei=Yamamoto en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University kn-affil= affil-num=4 en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University kn-affil= affil-num=5 en-affil=Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=7 en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=IFN-inducible GTPase kn-keyword=IFN-inducible GTPase en-keyword=Irgb6 kn-keyword=Irgb6 en-keyword=GTPase kn-keyword=GTPase en-keyword=membrane kn-keyword=membrane en-keyword=T kn-keyword=T en-keyword=gondii kn-keyword=gondii END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=2133 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221013 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Design and Robustness Evaluation of Valley Topological Elastic Wave Propagation in a Thin Plate with Phononic Structure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Based on the concept of band topology in phonon dispersion, we designed a topological phononic crystal in a thin plate for developing an efficient elastic waveguide. Despite that various topological phononic structures have been actively proposed, a quantitative design strategy of the phononic band and its robustness assessment in an elastic regime are still missing, hampering the realization of topological acoustic devices. We adopted a snowflake-like structure for the crystal unit cell and determined the optimal structure that exhibited the topological phase transition of the planar phononic crystal by changing the unit cell structure. The bandgap width could be adjusted by varying the length of the snow-side branch, and a topological phase transition occurred in the unit cell structure with threefold rotational symmetry. Elastic waveguides based on edge modes appearing at interfaces between crystals with different band topologies were designed, and their transmission efficiencies were evaluated numerically and experimentally. The results demonstrate the robustness of the elastic wave propagation in thin plates. Moreover, we experimentally estimated the backscattering length, which measures the robustness of the topologically protected propagating states against structural inhomogeneities. The results quantitatively indicated that degradation of the immunization against the backscattering occurs predominantly at the corners in the waveguides, indicating that the edge mode observed is a relatively weak topological state. en-copyright= kn-copyright= en-aut-name=KataokaMotoki en-aut-sei=Kataoka en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MisawaMasaaki en-aut-sei=Misawa en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= en-keyword=phononic crystal kn-keyword=phononic crystal en-keyword=topological acoustic kn-keyword=topological acoustic en-keyword=elastic waveguide kn-keyword=elastic waveguide en-keyword=backscattering length kn-keyword=backscattering length en-keyword=lamb wave kn-keyword=lamb wave END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue= article-no= start-page=3 end-page=13 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors, including anti-programmed cell death 1 (PD-1) antibody, provide improved clinical outcome in certain cancers. However, pancreatic ductal adeno-carcinoma (PDAC) is refractory to PD-1 blockade therapy due to poor immune response. Oncolytic virotherapy is a novel approach for inducing immunogenic cell death (ICD). We demonstrated the therapeutic potential of p53-expressing telo-merase-specific oncolytic adenovirus OBP-702 to induce ICD and anti-tumor immune responses in human PDAC cells with different p53 status (Capan-2, PK-59, PK-45H, Capan-1, MIA PaCa-2, BxPC-3) and murine PDAC cells (PAN02). OBP-702 significantly enhanced ICD with secretion of extracel-lular adenosine triphosphate and high-mobility group box pro-tein B1 by inducing p53-mediated apoptosis and autophagy. OBP-702 significantly promoted the tumor infiltration of CD8+ T cells and the anti-tumor efficacy of PD-1 blockade in a subcutaneous PAN02 syngeneic tumor model. Our results suggest that oncolytic adenovirus-mediated p53 overexpres-sion augments ICD and the efficacy of PD-1 blockade therapy against cold PDAC tumors. Further in vivo experiments would be warranted to evaluate the survival benefit of tumor-bearing mice in combination therapy with OBP-702 and PD-1 blockade. en-copyright= kn-copyright= en-aut-name=ArakiHiroyuki en-aut-sei=Araki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=19 article-no= start-page=11035 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune State Conversion of the Mesenteric Lymph Node in a Mouse Breast Cancer Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-gamma production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-gamma expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103(+)CD11b(+) dendritic cells (DCs) into the mLN, along with increased (1 -> 3)-beta-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103(+)CD11b(+) DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development. en-copyright= kn-copyright= en-aut-name=ShigehiroTsukasa en-aut-sei=Shigehiro en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UenoMaho en-aut-sei=Ueno en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KijihiraMayumi en-aut-sei=Kijihira en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiRyotaro en-aut-sei=Takahashi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmemuraChiho en-aut-sei=Umemura en-aut-mei=Chiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurosakaChisaki en-aut-sei=Kurosaka en-aut-mei=Chisaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsayamaMegumi en-aut-sei=Asayama en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurakamiHiroshi en-aut-sei=Murakami en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MasudaJunko en-aut-sei=Masuda en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Research Institute for Biomedical Sciences, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=8 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=breast cancer cells kn-keyword=breast cancer cells en-keyword=dendritic cells kn-keyword=dendritic cells en-keyword=mesenteric lymph node kn-keyword=mesenteric lymph node en-keyword=myeloid-derived suppressor cells kn-keyword=myeloid-derived suppressor cells END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1004184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction. en-copyright= kn-copyright= en-aut-name=OgasaharaTsubasa en-aut-sei=Ogasahara en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiAkihiro en-aut-sei=Takahashi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=6 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Brachypodium distachyon kn-keyword=Brachypodium distachyon en-keyword=monocotyledonous plant kn-keyword=monocotyledonous plant en-keyword=microbe-associated molecular pattern kn-keyword=microbe-associated molecular pattern en-keyword=time-series transcriptome analysis kn-keyword=time-series transcriptome analysis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=890048 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anxiolytic-like effects of hochuekkito in lipopolysaccharide-treated mice involve interleukin-6 inhibition en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hochuekkito (HET) is a Kampo medicine used to treat postoperative and post-illness general malaise and decreased motivation. HET is known to regulate immunity and modulate inflammation. However, the precise mechanism and effects of HET on inflammation-induced central nervous system disorders remain unclear. This study aimed to assess the effect of HET on inflammation-induced anxiety-like behavior and the mechanism underlying anxiety-like behavior induced by lipopolysaccharide (LPS). Institute of Cancer Research mice were treated with LPS (300 mu g/kg, intraperitoneally), a bacterial endotoxin, to induce systemic inflammation. The mice were administered HET (1.0 g/kg, orally) once a day for 2 weeks before LPS treatment. The light-dark box test and the hole-board test were performed 24 h after the LPS injection to evaluate the effects of HET on anxiety-like behaviors. Serum samples were obtained at 2, 5, and 24 h after LPS injection, and interleukin-6 (IL-6) levels in serum were measured. Human and mouse macrophage cells (THP-1 and RAW264.7 cells, respectively) were used to investigate the effect of HET on LPS-induced IL-6 secretion. The repeated administration of HET prevented anxiety-like behavior and decreased serum IL-6 levels in LPS-treated mice. HET significantly suppressed LPS-induced IL-6 secretion in RAW264.7 and THP-1 cells. Similarly, glycyrrhizin, one of the chemical constituents of HET, suppressed LPS-induced anxiety-like behaviors. Our study revealed that HET ameliorated LPS-induced anxiety-like behavior and inhibited IL-6 release in vivo and in vitro. Therefore, we postulate that HET may be useful against inflammation-induced anxiety-like behavior. en-copyright= kn-copyright= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMizuki en-aut-sei=Nakamura en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoDaiki en-aut-sei=Matsumoto en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoshikaKota en-aut-sei=Hoshika en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiromizuShoya en-aut-sei=Shiromizu en-aut-mei=Shoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwataNaohiro en-aut-sei=Iwata en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EsumiSatoru en-aut-sei=Esumi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KajizonoMakoto en-aut-sei=Kajizono en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= en-keyword=anxiolytic kn-keyword=anxiolytic en-keyword=inflammation kn-keyword=inflammation en-keyword=immunomodulation kn-keyword=immunomodulation en-keyword=macrophages kn-keyword=macrophages en-keyword=Kampo medicine kn-keyword=Kampo medicine END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=18 article-no= start-page=10300 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-Rich Glycoprotein Suppresses the S100A8/A9-Mediated Organotropic Metastasis of Melanoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis. en-copyright= kn-copyright= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=4 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=14 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=15 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=16 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=17 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S100A8/A9 kn-keyword=S100A8/A9 en-keyword=HRG kn-keyword=HRG en-keyword=metastasis kn-keyword=metastasis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=15391 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of the cervical cancer awareness months on public interest in Japan: A Google Trends analysis, 2012-2021 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The immunization and screening rates for human papillomavirus in Japan are lower than those in other countries. We aimed to evaluate the impact of cervical cancer awareness months on public attention using Google Trends analysis. Between 2012 and 2021, we analyzed the trends in relative search volumes (RSVs) for "Shikyuu-keigan" (cervical cancer in English) in Japan, during the cervical cancer awareness month (CCAM) in January and cervical cancer prevention awareness enhancement month (CCPAEM) in November. We performed a joinpoint regression analysis to identify a statistically significant trend change point. Additionally, we compared the mean RSVs of each awareness month with the rest of the year. Significant trend change points were observed, but none were found in CCAM and CCPAEM periods. Comparison of mean RSVs among CCAM, CCPAEM, and the rest of the months did not suggest any significant increases in RSVs during these awareness periods. In conclusion, CAM and CCPAEM did not raise public interest in cervical cancer in Japan. Although the results are based on internet users, the findings might suggest a need to develop a more effective and attractive approach to achieve the 90-70-90 targets of cervical cancer prevention by 2030. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=17 article-no= start-page=10632 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunomodulatory Effects of Radon Inhalation on Lipopolysaccharide-Induced Inflammation in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Typical indications for radon therapy include autoimmune diseases such as rheumatoid arthritis (RA). We had previously reported that radon inhalation inhibits Th17 immune responses in RA mice by activating Th1 and Th2 immune responses. However, there are no reports on how radon inhalation affects the activated Th1 and Th17 immune responses, and these findings may be useful for identifying new indications for radon therapy. Therefore, in this study, we investigated the effect of radon inhalation on the lipopolysaccharide (LPS)-induced inflammatory response, focusing on the expression of related cytokines and antioxidant function. Male BALB/c mice were exposed to 2000 Bq/m(3) radon for one day. Immediately after radon inhalation, LPS was administered intraperitoneally at 1.0 mg/kg body weight for 4 h. LPS administration increased the levels of Th1- and Th17-prone cytokines, such as interleukin-2, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor, compared to no treatment control (sham). However, these effects were suppressed by radon inhalation. IL-10 levels were significantly increased by LPS administration, with or without radon inhalation, compared to sham. However, radon inhalation did not inhibit oxidative stress induced by LPS administration. These findings suggest that radon inhalation has immunomodulatory but not antioxidative functions in LPS-induced injury. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MurakamiKaito en-aut-sei=Murakami en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimotoYuki en-aut-sei=Fujimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YukimineRyohei en-aut-sei=Yukimine en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaAyumi en-aut-sei=Tanaka en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=autoimmune diseases kn-keyword=autoimmune diseases en-keyword=cytokine kn-keyword=cytokine en-keyword=antioxidant function kn-keyword=antioxidant function en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=radon inhalation kn-keyword=radon inhalation END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=8 article-no= start-page=104723 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune response to SARS-CoV-2 in severe disease and long COVID-19 en-subtitle= kn-subtitle= en-abstract= kn-abstract=COVID-19 is mild to moderate in otherwise healthy individuals but may nonetheless cause life-threatening disease and/or a wide range of persistent symptoms. The general determinant of disease severity is age mainly because the immune response declines in aging patients. Here, we developed a mathematical model of the immune response to SARS-CoV-2 and revealed that typical age-related risk factors such as only a several 10% decrease in innate immune cell activity and inhibition of type-I interferon signaling by autoantibodies drastil ally increased the viral load. It was reported that the numbers of certain dendritic cell subsets remained less than half those in healthy donors even seven months after infection. Hence, the inflammatory response was ongoing. Our model predicted the persistent DC reduction and showed that certain patients with severe and even mild symptoms could not effectively eliminate the virus and could potentially develop long COVID. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=399 end-page=408 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gene Expression Profiling between Patient Groups with High and Low Ki67 Levels after Short-term Preoperative Aromatase Inhibitor Treatment for Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=According to a recent report, a low Ki67 level after short-term preoperative hormone therapy (post-Ki67) might suggest a more favorable prognosis compared with a high post-Ki67 level in patients with hormone receptorpositive/human epidermal growth factor 2-negative (HR+/HER2−) breast cancer with high levels of Ki67. This study aimed to evaluate the pre-treatment genetic differences between these two patient groups. Forty-five luminal B-like patients were stratified into two groups, namely, a group with high (H→H) and one with low (H→L) Ki67 levels after short-term preoperative aromatase inhibitor (AI) treatment. We compared pre-treatmentgene expression profiles between the two groups. In gene level analysis, there was no significant difference between the two groups by the class comparison test. In pathway analysis, five metabolism-related gene sets were significantly upregulated in the H→L group (p≤0.05). In the search for novel targets, five genes (PARP, BRCA2, FLT4, CDK6, and PDCD1LG2) showed significantly higher expression in the H→H group (p≤0.05). Several metabolism-related pathways were associated with sensitivity to AI. In the future, it will be necessary to seek out new therapeutic strategies for the poor prognostic group with high post-Ki67. en-copyright= kn-copyright= en-aut-name=KajiwaraYukiko en-aut-sei=Kajiwara en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamotoTakayuki en-aut-sei=Iwamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhuYidan en-aut-sei=Zhu en-aut-mei=Yidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KochiMariko en-aut-sei=Kochi en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=short-term hormone therapy kn-keyword=short-term hormone therapy en-keyword=gene expression profiling kn-keyword=gene expression profiling en-keyword=Ki-67 kn-keyword=Ki-67 en-keyword=targeted therapy kn-keyword=targeted therapy END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=359 end-page=371 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Therapeutic Approaches Targeting miRNA in Systemic Lupus Erythematosus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic lupus erythematosus (SLE) is a potentially fatal systemic autoimmune disease, and its etiology involves both genetic and environmental factors such as sex hormone imbalance, genetic predisposition, epigenetic regulation, and immunological factors. Dysregulation of microRNA (miRNA) is suggested to be one of the epigenetic factors in SLE. miRNA is a 22-nucleotide single-stranded noncoding RNA that contributes to post-transcriptional modulation of gene expression. miRNA targeting therapy has been suggested to be useful for the treatment of cancers and other diseases. Gene knockout and miRNA targeting therapy have been demonstrated to improve SLE disease activity in mice. However, these approaches have not yet reached the level of clinical application. miRNA targeting therapy is limited by the fact that each miRNA has multiple targets. In addition, the expression of certain miRNAs may differ among cell tissues within a single SLE patient. This limitation can be overcome by targeted delivery and chemical modifications. In the future, further research into miRNA chemical modifications and delivery systems will help us develop novel therapeutic agents for SLE. en-copyright= kn-copyright= en-aut-name=Hiramatsu-AsanoSumie en-aut-sei=Hiramatsu-Asano en-aut-mei=Sumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=systemic lupus erythematosus kn-keyword=systemic lupus erythematosus en-keyword=miRNA kn-keyword=miRNA en-keyword=miRNA targeting therapy kn-keyword=miRNA targeting therapy END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=891925 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=CD4(+)Foxp3(+) regulatory T cells (Tregs) play a central role in the maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs promptly respond to low concentrations of IL-2 through the constitutive expression of high-affinity IL-2 receptors. It has been reported that low-dose IL-2 therapy increased circulating Tregs and improved clinical symptoms of chronic GVHD. Clinical studies of IL-2 therapy so far have mainly targeted patients in the chronic phase of transplantation when acute immune responses has subsided. However, the biological and clinical effects of exogenous IL-2 in an acute immune environment have not been well investigated. In the current study, we investigated the impact of exogenous IL-2 therapy on the post-transplant homeostasis of T cell subsets which influence the balance between GVHD and GVL in the acute phase, by setting the various immune environments early after HSCT in murine model. We initially found that 5,000 IU of IL-2 was enough to induce the active proliferation of Treg without influencing other conventional T cells (Tcons) when administered to normal mice. However, activated Tcons showed the response to the same dose of IL-2 in recipients after allogeneic HSCT. In a mild inflammatory environment within a threshold, exogenous IL-2 could effectively modulate Treg homeostasis with just limited influence to activated T cells, which resulted in an efficient GVHD suppression. In contrast, in a severely inflammatory environment, exogenous IL-2 enhanced activated T cells rather than Tregs, which resulted in the exacerbation of GVHD. Of interest, in an immune-tolerant state after transplant, exogenous IL-2 triggered effector T-cells to exert an anti-tumor effect with maintaining GVHD suppression. These data suggested that the responses of Tregs and effector T cells to exogenous IL-2 differ depending on the immune environment in the host, and the mutual balance of the response to IL-2 between T-cell subsets modulates GVHD and GVL after HSCT. Our findings may provide useful information in the optimization of IL-2 therapy, which may be personalized for each patient having different immune status. en-copyright= kn-copyright= en-aut-name=MeguriYusuke en-aut-sei=Meguri en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakeru en-aut-sei=Asano en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaTakanori en-aut-sei=Yoshioka en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwamotoMiki en-aut-sei=Iwamoto en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkegawaShuntaro en-aut-sei=Ikegawa en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugiuraHiroyuki en-aut-sei=Sugiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KishiYuriko en-aut-sei=Kishi en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SandoYasuhisa en-aut-sei=Sando en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SumiiYuichi en-aut-sei=Sumii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=regulatory T cell kn-keyword=regulatory T cell en-keyword=low-dose interleukin-2 therapy kn-keyword=low-dose interleukin-2 therapy en-keyword=graft-versus-host disease kn-keyword=graft-versus-host disease en-keyword=graft-versus-leukemia effect kn-keyword=graft-versus-leukemia effect en-keyword=transplantation tolerance kn-keyword=transplantation tolerance END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=13540 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RNA editing facilitates the enhanced production of neoantigens during the simultaneous administration of oxaliplatin and radiotherapy in colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most cases of colorectal cancers (CRCs) are microsatellite stable (MSS), which frequently demonstrate lower response rates to immune checkpoint inhibitors (ICIs). RNA editing produces neoantigens by altering amino acid sequences. In this study, RNA editing was induced artificially by chemoradiation therapy (CRT) to generate neoantigens in MSS CRCs. Altogether, 543 CRC specimens were systematically analyzed, and the expression pattern of ADAR1 was investigated. In vitro and in vivo experiments were also performed. The RNA editing enzyme ADAR1 was upregulated in microsatellite instability-high CRCs, leading to their high affinity for ICIs. Although ADAR1 expression was low in MSS CRC, CRT including oxaliplatin (OX) treatment upregulated RNA editing levels by inducing ADAR1. Immunohistochemistry analyses showed the upregulation of ADAR1 in patients with CRC treated with CAPDX (capecitabine +OX) radiation therapy relative to ADAR1 expression in patients with CRC treated only by surgery (p <0.001). Compared with other regimens, CRT with OX effectively induced RNA editing in MSS CRC cell lines (HT29 and Caco2, p <0.001) via the induction of type 1 interferon-triggered ADAR1 expression. CRT with OX promoted the RNA editing of cyclin I, a neoantigen candidate. Neoantigens can be artificially induced by RNA editing via an OX-CRT regimen. CRT can promote proteomic diversity via RNA editing. en-copyright= kn-copyright= en-aut-name=KomatsuYasuhiro en-aut-sei=Komatsu en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakedaSho en-aut-sei=Takeda en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiKazutaka en-aut-sei=Takahashi en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HataNanako en-aut-sei=Hata en-aut-mei=Nanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UmedaHibiki en-aut-sei=Umeda en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GoelAjay en-aut-sei=Goel en-aut-mei=Ajay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Biomedical Research Center kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms of resistance to immune checkpoint inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are effective for various types of cancer, and their application has led to paradigm shifts in cancer treatment. While many patients can obtain clinical benefits from ICI treatment, a large number of patients are primarily resistant to such treatment or acquire resistance after an initial response. Thus, elucidating the resistance mechanisms is warranted to improve the clinical outcomes of ICI treatment. ICIs exert their antitumor effects by activating T cells in the tumor microenvironment. There are various resistance mechanisms, such as insufficient antigen recognition by T cells, impaired T-cell migration and/or infiltration, and reduced T-cell cytotoxicity, most of which are related to the T-cell activation process. Thus, we classify them into three main mechanisms: resistance mechanisms related to antigen recognition, T-cell migration and/or infiltration, and effector functions of T cells. In this review, we summarize these mechanisms of resistance to ICIs related to the T-cell activation process and progress in the development of novel therapies that can overcome resistance. en-copyright= kn-copyright= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=exhaustion kn-keyword=exhaustion en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=resistance kn-keyword=resistance en-keyword=T cell kn-keyword=T cell END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=232 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220720 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein as a novel predictive biomarker of postoperative complications in intensive care unit patients: a prospective observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Decrease in histidine-rich glycoprotein (HRG) was reported as a cause of dysregulation of the coagulation-fibrinolysis and immune systems, leading to multi-organ failure, and it may be a biomarker for sepsis, ventilator-associated pneumonia, preeclampsia, and coronavirus disease 2019. However, the usefulness of HRG in perioperative management remains unclear. This study aimed to assess the usefulness of HRG as a biomarker for predicting postoperative complications.
Methods This was a single-center, prospective, observational study of 150 adult patients who were admitted to the intensive care unit after surgery. Postoperative complications were defined as those having a grade II or higher in the Clavien-Dindo classification, occurring within 7 days after surgery. The primary outcome was HRG levels in the patients with and without postoperative complications. The secondary outcome was the ability of HRG, white blood cell, C-reactive protein, procalcitonin, and presepsin to predict postoperative complications. Data are presented as number and median (interquartile range).
Results The incidence of postoperative complications was 40%. The HRG levels on postoperative day 1 were significantly lower in patients who developed postoperative complications (n = 60; 21.50 [18.12-25.74] mu g/mL) than in those who did not develop postoperative complications (n = 90; 25.46 [21.05-31.63] mu g/mL). The Harrell C-index scores for postoperative complications were HRG, 0.65; white blood cell, 0.50; C-reactive protein, 0.59; procalcitonin, 0.73; and presepsin, 0.73. HRG was independent predictor of postoperative complications when adjusted for age, the presence of preoperative cardiovascular comorbidities, American Society of Anesthesiologists Physical Status Classification, operative time, and the volume of intraoperative bleeding (adjusted hazard ratio = 0.94; 95% confidence interval, 0.90-0.99).
Conclusions The HRG levels on postoperative day 1 could predict postoperative complications. Hence, HRG may be a useful biomarker for predicting postoperative complications. en-copyright= kn-copyright= en-aut-name=OiwaMasahiko en-aut-sei=Oiwa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Clavien-Dindo classification kn-keyword=Clavien-Dindo classification en-keyword=Histidine-rich glycoprotein kn-keyword=Histidine-rich glycoprotein en-keyword=Intensive care unit kn-keyword=Intensive care unit en-keyword=Perioperative management kn-keyword=Perioperative management en-keyword=Postoperative complication kn-keyword=Postoperative complication en-keyword=Predictor kn-keyword=Predictor END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=864225 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nutrient Condition in the Microenvironment Determines Essential Metabolisms of CD8(+) T Cells for Enhanced IFN gamma Production by Metformin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metformin (Met), a first-line drug for type 2 diabetes, lowers blood glucose levels by suppressing gluconeogenesis in the liver, presumably through the liver kinase B1-dependent activation of AMP-activated protein kinase (AMPK) after inhibiting respiratory chain complex I. Met is also implicated as a drug to be repurposed for cancers; its mechanism is believed identical to that of gluconeogenesis inhibition. However, AMPK activation requires high Met concentrations at more than 1 mM, which are unachievable in vivo. The immune-mediated antitumor response might be the case in a low dose Met. Thus, we proposed activating or expanding tumor-infiltrating CD8(+) T cells (CD8TILs) in a mouse model by orally administering Met in free drinking water. Here we showed that Met, at around 10 mu M and a physiologically relevant concentration, enhanced production of IFN gamma,TNF alpha and expression of CD25 of CD8(+) T cells upon TCR stimulation. Under a glucose-rich condition, glycolysis was exclusively involved in enhancing IFN gamma production. Under a low-glucose condition, fatty acid oxidation or autophagy-dependent glutaminolysis, or both, was also involved. Moreover, phosphoenolpyruvate carboxykinase 1 (PCK1), converting oxaloacetate to phosphoenolpyruvate, became essential. Importantly, the enhanced IFN gamma production was blocked by a mitochondrial ROS scavenger and not by an inhibitor of AMPK. In addition, IFN gamma production by CD8TILs relied on pyruvate translocation to the mitochondria and PCK1. Our results revealed a direct effect of Met on IFN gamma production of CD8(+) T cells that was dependent on differential metabolic pathways and determined by nutrient conditions in the microenvironment. en-copyright= kn-copyright= en-aut-name=ChaoRuoyu en-aut-sei=Chao en-aut-mei=Ruoyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaNahoko en-aut-sei=Yamashita en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokumasuMiho en-aut-sei=Tokumasu en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoWeiyang en-aut-sei=Zhao en-aut-mei=Weiyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KudoIkuru en-aut-sei=Kudo en-aut-mei=Ikuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=CD8+T lymphocytes kn-keyword=CD8+T lymphocytes en-keyword=glycolysis kn-keyword=glycolysis en-keyword=FAO kn-keyword=FAO en-keyword=glutaminolysis kn-keyword=glutaminolysis en-keyword=IFNg kn-keyword=IFNg en-keyword=autophagy plus T kn-keyword=autophagy plus T en-keyword=metformin kn-keyword=metformin END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=535 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diffuse myometrium thinning and placenta accreta spectrum in a patient with systemic lupus erythematosus (SLE): a case report and review of the literature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background : Cases of uterine wall thinning and placental abnormalities complicated with systemic lupus erythematosus (SLE) during pregnancy have been reported in Asian countries for ten years. Long-term steroid use can cause muscle degeneration, but the mechanism of myometrium thinning was not known. Through the review of published articles, this report is the first review of cases to discuss the pathogenesis and clinical features of thinned myometrium and placenta accreta spectrum (PAS) in pregnant patients with SLE.
Case presentation : A twenty-nine-year-old primigravida with a history of lupus enteritis and paralytic ileus had a natural conception after less than two years of steroid treatment. An ultrasonographic study showed a thin uterine wall with a widespread thick placenta on the entire surface of the uterine cavity in the third trimester. At the 39th gestational week, she underwent a cesarean section due to the failure of the uterus to contract, even though the injection of oxytocin. There were several engorged vessels on the surface of the anterior uterine wall at the time of laparotomy. We decided to perform a hysterectomy because diffuse PAS replaced her uterus.
Conclusion : A review of reported cases and our case shows an unusual complication of SLE that might be related to the particular condition of the estrogen-mediated immune system. Clinicians should always pay attention to the possibility of uterine wall thinning as uterine atony and the structural abnormality of the placenta for SLE patients with the unscarred uterus. en-copyright= kn-copyright= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HayataKei en-aut-sei=Hayata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokohataSatomi en-aut-sei=Yokohata en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashinoChiaki en-aut-sei=Kashino en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KirinoSatoe en-aut-sei=Kirino en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaniKazumasa en-aut-sei=Tani en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Okayama University kn-affil= en-keyword=Lupus kn-keyword=Lupus en-keyword=Myometrium kn-keyword=Myometrium en-keyword=Placenta accreta spectrum kn-keyword=Placenta accreta spectrum en-keyword=Estrogen kn-keyword=Estrogen en-keyword=Uterine atony kn-keyword=Uterine atony END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=12 article-no= start-page=6847 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues en-subtitle= kn-subtitle= en-abstract= kn-abstract=Stimulator of Interferon Genes (STING) is a type of endoplasmic reticulum (ER)-membrane receptor. STING is activated by a ligand binding, which leads to an enhancement of the immune-system response. Therefore, a STING ligand can be used to regulate the immune system in therapeutic strategies. However, the natural (or native) STING ligand, cyclic-di-nucleotide (CDN), is unsuitable for pharmaceutical use because of its susceptibility to degradation by enzymes and its low cell-membrane permeability. In this study, we designed and synthesized CDN derivatives by replacing the sugar-phosphodiester moiety, which is responsible for various problems of natural CDNs, with an amine skeleton. As a result, we identified novel STING ligands that activate or inhibit STING. The cyclic ligand 7, with a cyclic amine structure containing two guanines, was found to have agonistic activity, whereas the linear ligand 12 showed antagonistic activity. In addition, these synthetic ligands were more chemically stable than the natural ligands. en-copyright= kn-copyright= en-aut-name=YanaseYuta en-aut-sei=Yanase en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiGenichiro en-aut-sei=Tsuji en-aut-mei=Genichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMiki en-aut-sei=Nakamura en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShibataNorihito en-aut-sei=Shibata en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DemizuYosuke en-aut-sei=Demizu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=National Institute of Health Sciences kn-affil= affil-num=2 en-affil=National Institute of Health Sciences kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University kn-affil= affil-num=4 en-affil=National Institute of Health Sciences kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University kn-affil= en-keyword=STING kn-keyword=STING en-keyword=cyclic dinucleotide kn-keyword=cyclic dinucleotide en-keyword=amines kn-keyword=amines en-keyword=drug design kn-keyword=drug design en-keyword=agonist kn-keyword=agonist en-keyword=antagonist kn-keyword=antagonist END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=12 article-no= start-page=7141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Kinetics of Serological Antibodies against Vibrio cholerae Following a Clinical Cholera Case: A Systematic Review and Meta-Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Approximately 2.9 million people worldwide suffer from cholera each year, many of whom are destitute. However, understanding of immunity against cholera is still limited. Several studies have reported the duration of antibodies following cholera; however, systematic reviews including a quantitative synthesis are lacking. Objective: To meta-analyze cohort studies that have evaluated vibriocidal, cholera toxin B subunit (CTB), and lipopolysaccharide (LPS) antibody levels following a clinical cholera case. Methods: Design: Systematic review and meta-analysis. We searched PubMed and Web of science for studies assessing antibodies against Vibrio cholerae in cohorts of patients with clinical cholera. Two authors independently extracted data and assessed the quality of included studies. Random effects models were used to pool antibody titers in adults and older children (aged >= 6 years). In sensitivity analysis, studies reporting data on young children (2-5 years) were included. Results: Nine studies met our inclusion criteria for systematic review and seven for meta-analysis. The pooled mean of vibriocidal antibody titers in adults and older children (aged >= 6 years) was 123 on day 2 post-symptom onset, which sharply increased on day 7 (pooled mean = 6956) and gradually waned to 2247 on day 30, 578 on day 90, and 177 on day 360. Anti-CTB IgA antibodies also peaked on day 7 (pooled mean = 49), followed by a rapid decrease on day 30 (pooled mean = 21), and further declined on day 90 (pooled mean = 10), after which it plateaued from day 180 (pooled mean = 8) to 360 (pooled mean = 6). Similarly, anti-CTB IgG antibodies peaked in early convalescence between days 7 (pooled mean = 65) and 30 (pooled mean = 69), then gradually waned on days 90 (pooled mean = 42) and 180 (pooled mean = 30) and returned to baseline on day 360 (pooled mean = 24). Anti-LPS IgA antibodies peaked on day 7 (pooled mean = 124), gradually declined on day 30 (pooled mean = 44), which persisted until day 360 (pooled mean = 10). Anti LPS IgG antibodies peaked on day 7 (pooled mean = 94). Thereafter, they decreased on day 30 (pooled mean = 85), and dropped further on days 90 (pooled mean = 51) and 180 (pooled mean = 47), and returned to baseline on day 360 (pooled mean = 32). Sensitivity analysis including data from young children (aged 2-5 years) showed very similar findings as in the primary analysis. Conclusions: This study confirms that serological antibody (vibriocidal, CTB, and LPS) titers return to baseline levels within 1 year following clinical cholera, i.e., before the protective immunity against subsequent cholera wanes. However, this decay should not be interpreted as waning immunity because immunity conferred by cholera against subsequent disease lasts 3-10 years. Our study provides evidence for surveillance strategies and future research on vaccines and also demonstrates the need for further studies to improve our understanding of immunity against cholera. en-copyright= kn-copyright= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitraDebmalya en-aut-sei=Mitra en-aut-mei=Debmalya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cholera kn-keyword=cholera en-keyword=antibodies kn-keyword=antibodies en-keyword=vibriocidal kn-keyword=vibriocidal en-keyword=cholera toxin B kn-keyword=cholera toxin B en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=immunoglobulin kn-keyword=immunoglobulin en-keyword=immunity kn-keyword=immunity en-keyword=waning kn-keyword=waning END start-ver=1.4 cd-journal=joma no-vol=1866 cd-vols= no-issue=8 article-no= start-page=130171 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan. en-copyright= kn-copyright= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Mitochondrial ROS kn-keyword=Mitochondrial ROS en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Apoptosis kn-keyword=Apoptosis en-keyword=Ageing kn-keyword=Ageing en-keyword=Nrf2 kn-keyword=Nrf2 END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=11 article-no= start-page=563 end-page=570 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022423 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A variety of ‘exhausted’ T cells in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=In T-cell biology, ‘exhaustion’ was initially described as a hyporesponsive state in CD8+ T cells during chronic infections. Recently, exhaustion has been recognized as a T-cell dysfunctional state in the tumor microenvironment (TME). The term ‘exhaustion’ is used mainly to refer to effector T cells with a reduced capacity to secrete cytokines and an increased expression of inhibitory receptors. The up-regulation of exhaustion-related inhibitory receptors, including programmed cell death protein 1 (PD-1), in such T cells has been associated with the development of tumors, prompting the development of immune checkpoint inhibitors. In addition to CD8+ T cells, CD4+ T cells, including the regulatory T (Treg) cell subset, perform a wide variety of functions within the adaptive immune system. Up-regulation of the same inhibitory receptors that are associated with CD8+ T-cell exhaustion has also been identified in CD4+ T cells in chronic infections and cancers, suggesting a similar CD4+ T-cell exhaustion phenotype. For instance, high expression of PD-1 has been observed in Treg cells in the TME, and such Treg cells can play an important role in the resistance to PD-1 blockade therapies. Furthermore, recent progress in single-cell RNA sequencing has shown that CD4+ T cells with cytotoxic activity are also vulnerable to exhaustion. In this review, we will discuss novel insights into various exhausted T-cell subsets, which could reveal novel therapeutic targets and strategies to induce a robust anti-tumor immune response. en-copyright= kn-copyright= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CD4(+) T cell kn-keyword=CD4(+) T cell en-keyword=cytotoxic CD4(+ )T cell kn-keyword=cytotoxic CD4(+ )T cell en-keyword=regulatory T cell kn-keyword=regulatory T cell en-keyword=T-cell exhaustion kn-keyword=T-cell exhaustion END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=281 end-page=290 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histone Demethylase Jmjd3 Regulates the Osteogenic Differentiation and Cytokine Expressions of Periodontal Ligament Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal ligament (PDL) cells are critical for the bone remodeling process in periapical lesions since they can differentiate into osteoblasts and secrete osteoclastogenesis-promoting cytokines. Post-translational histone modifications including alterations of the methylation status of H3K27 are involved in cell differentiation and inflammatory reaction. The histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes methylation of H3K27. We investigated whether Jmjd3 is involved in the osteogenic differentiation and secretion of PDL cells’ inflammatory factors. Jmjd3 expression in periapical lesions was examined by immunostaining. Using siRNA specific for Jmjd3 or the specific Jmjd3 inhibitor GSK-J4, we determined Jmjd3’s roles in osteogenic differentiation and cytokine production by real-time RT-PCR. The locations of Jmjd3 and NF-κB were analyzed by immunocytochemistry. Compared to healthy PDLs, the periapical lesion samples showed higher Jmjd3 expression. Treatment with GSK-J4 or Jmjd3 siRNA suppressed PDL cells’ osteogenic differentiation by suppressing the expressions of bone-related genes (Runx2, Osterix, and osteocalcin) and mineralization. Jmjd3 knockdown decreased the expressions of cytokines (TNF-α, IL-1β, and IL-6) induced by lipopolysaccharide extracted from Porphyromonas endodontalis (Pe-LPS). Pe-LPS induced the nuclear translocations of Jmjd3 and NF-κB; the latter was inhibited by GSK-J4 treatment. Jmjd3 appears to regulate PDL cells’ osteogenic differentiation and proinflammatory cytokine expressions. en-copyright= kn-copyright= en-aut-name=YuBo en-aut-sei=Yu en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangRui en-aut-sei=Wang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LuoHuikun en-aut-sei=Luo en-aut-mei=Huikun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangDi en-aut-sei=Yang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangSimo en-aut-sei=Wang en-aut-mei=Simo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YuYaqiong en-aut-sei=Yu en-aut-mei=Yaqiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=QiuLihong en-aut-sei=Qiu en-aut-mei=Lihong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=2 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=3 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=4 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=5 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=6 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=7 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= en-keyword=periapical lesions kn-keyword=periapical lesions en-keyword=histone demethylase Jmjd3 kn-keyword=histone demethylase Jmjd3 en-keyword=periodontal ligament cell kn-keyword=periodontal ligament cell en-keyword=osteogenic differentiation kn-keyword=osteogenic differentiation en-keyword=proinflammatory cytokines kn-keyword=proinflammatory cytokines END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=247 end-page=253 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of Immunity against Measles, Mumps, Rubella, and Varicella Zoster in Adult Recipients of Allogeneic Hematopoietic Stem Cell Transplantation: A Single-Center Experience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vaccine-preventable disease (VPD) infections are more severe in immunocompromised hosts. Vaccination against measles, mumps, rubella, and varicella zoster (VZV) (MMRV) is therefore recommended for hematopoietic stem cell transplantation (HCT) recipients. However, studies on adult HCT recipients with VPD infections are limited. At our institution, we have systematically conducted serological MMRV tests as a part of check-up examinations during long-term follow-up (LTFU) after HCT since 2015. This retrospective study aimed to evaluate changes in the serostatus between before and 2 years after allogeneic HCT. Among 161 patients, the pre-transplant seropositivity was 82.7% for measles, 86.8% for mumps, 84.2% for rubella, and 94.3% for VZV. Among 56 patients who underwent LTFU including serological MMRV tests at 2 years after HCT, the percentages maintaining seroprotective antibody levels for measles, mumps, rubella and VZV were 71.5% (40/56), 51.8% (29/56), 48.2% (27/56), and 60.7% (34/56), respectively. Vaccination was recommended for 22 patients, and 12 were vaccinated. Among the 12 vaccinated patients, rates of seroconversion were examined in 2-6 patients for each of the four viruses. They were 100% (3/3) for measles, 33.3% (1/3) for mumps, 50% (3/6) for rubella, and 0% (0/2) for VZV. Further studies are warranted to clarify the effect of vaccination in adult HCT recipients. en-copyright= kn-copyright= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamoiChihiro en-aut-sei=Kamoi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=vaccine-preventable disease kn-keyword=vaccine-preventable disease en-keyword=vaccination kn-keyword=vaccination en-keyword=allogeneic hematopoietic stem cell transplantation kn-keyword=allogeneic hematopoietic stem cell transplantation en-keyword=adult kn-keyword=adult END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=同種造血幹細胞移植の成人レシピエントにおける麻疹、おたふくかぜ、風疹、および水痘帯状疱疹に対する免疫反応の分析:単施設での経験 kn-title=Analysis of immunity against measles, mumps, rubella, and varicella zoster in adult recipients of allogeneic hematopoietic stem cell transplantation: A single-center experience en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name=吉田将平 kn-aut-sei=吉田 kn-aut-mei=将平 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil=岡山大学大学院社会文化科学研究科 END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=5 article-no= start-page=1000 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Maternal Gut Microbiome Decelerates Fetal Endochondral Bone Formation by Inducing Inflammatory Reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=To investigate the effect of the maternal gut microbiome on fetal endochondral bone formation, fetuses at embryonic day 18 were obtained from germ-free (GF) and specific-pathogen-free (SPF) pregnant mothers. Skeletal preparation of the fetuses' whole bodies did not show significant morphological alterations; however, micro-CT analysis of the tibiae showed a lower bone volume fraction in the SPF tibia. Primary cultured chondrocytes from fetal SPF rib cages showed a lower cell proliferation and lower accumulation of the extracellular matrix. RNA-sequencing analysis showed the induction of inflammation-associated genes such as the interleukin (IL) 17 receptor, IL 6, and immune-response genes in SPF chondrocytes. These data indicate that the maternal gut microbiome in SPF mice affects fetal embryonic endochondral ossification, possibly by changing the expression of genes related to inflammation and the immune response in fetal cartilage. The gut microbiome may modify endochondral ossification in the fetal chondrocytes passing through the placenta. en-copyright= kn-copyright= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuShanqi en-aut-sei=Fu en-aut-mei=Shanqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoSei en-aut-sei=Kondo en-aut-mei=Sei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuwaharaMiho en-aut-sei=Kuwahara en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuharaDaiki en-aut-sei=Fukuhara en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IslamMd Monirul en-aut-sei=Islam en-aut-mei=Md Monirul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IikegameMika en-aut-sei=Iikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=maternal microbiome kn-keyword=maternal microbiome en-keyword=endochondral ossification kn-keyword=endochondral ossification en-keyword=fetal chondrocytes kn-keyword=fetal chondrocytes END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=869393 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Engineering Cancer/Testis Antigens With Reversible S-Cationization to Evaluate Antigen Spreading en-subtitle= kn-subtitle= en-abstract= kn-abstract=Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus-mediated REIC/Dkk-3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy. en-copyright= kn-copyright= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuiMirei en-aut-sei=Masui en-aut-mei=Mirei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KakimiKazuhiro en-aut-sei=Kakimi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University kn-affil= affil-num=6 en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital kn-affil= affil-num=7 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=autoantibody kn-keyword=autoantibody en-keyword=biomarker kn-keyword=biomarker en-keyword=protein engineering kn-keyword=protein engineering en-keyword=cancer-immunity cycle kn-keyword=cancer-immunity cycle en-keyword=immune monitoring kn-keyword=immune monitoring en-keyword=cancer kn-keyword=cancer en-keyword=testis antigens kn-keyword=testis antigens END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=7 article-no= start-page=e140869 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202241 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tankyrase represses autoinflammation through the attenuation of TLR2 signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dysregulation of Toll-like receptor (TLR) signaling contributes to the pathogenesis of autoimmune diseases. Here, we provide genetic evidence that tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, negatively regulates TLR2 signaling. We show that mice lacking tankyrase in myeloid cells developed severe systemic inflammation with high serum inflammatory cytokine levels. We provide mechanistic evidence that tankyrase deficiency resulted in tyrosine phosphorylation and activation of TLR2 and show that phosphorylation of tyrosine 647 within the TIR domain by SRC and SYK kinases was critical for TLR2 stabilization and signaling. Last, we show that the elevated cytokine production and inflammation observed in mice lacking tankyrase in myeloid cells were dependent on the adaptor protein 3BP2, which is required for SRC and SYK activation. These data demonstrate that tankyrase provides a checkpoint on the TLR-mediated innate immune response. en-copyright= kn-copyright= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DimitriouIoannis D. en-aut-sei=Dimitriou en-aut-mei=Ioannis D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=La RoseJose en-aut-sei=La Rose en-aut-mei=Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LimMelissa en-aut-sei=Lim en-aut-mei=Melissa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CamilleriSusan en-aut-sei=Camilleri en-aut-mei=Susan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LawNapoleon en-aut-sei=Law en-aut-mei=Napoleon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdissuHibret A. en-aut-sei=Adissu en-aut-mei=Hibret A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TongJiefei en-aut-sei=Tong en-aut-mei=Jiefei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoranMichael F. en-aut-sei=Moran en-aut-mei=Michael F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ChruscinskiAndrzej en-aut-sei=Chruscinski en-aut-mei=Andrzej kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HeFang en-aut-sei=He en-aut-mei=Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SadaKen-ei en-aut-sei=Sada en-aut-mei=Ken-ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=RottapelRobert en-aut-sei=Rottapel en-aut-mei=Robert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Princess Margaret Cancer Centre, University Health Network, University of Toronto kn-affil= affil-num=3 en-affil=Princess Margaret Cancer Centre, University Health Network, University of Toronto kn-affil= affil-num=4 en-affil=Princess Margaret Cancer Centre, University Health Network, University of Toronto kn-affil= affil-num=5 en-affil=Centre for Modeling Human Disease, Toronto Centre for Phenogenomics kn-affil= affil-num=6 en-affil=Centre for Modeling Human Disease, Toronto Centre for Phenogenomics kn-affil= affil-num=7 en-affil=Labcorp Early Development Laboratories Inc. kn-affil= affil-num=8 en-affil=Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics kn-affil= affil-num=9 en-affil=Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics kn-affil= affil-num=10 en-affil=Multi-Organ Transplant Program, University Health Network kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Princess Margaret Cancer Centre, University Health Network, University of Toronto kn-affil= END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue= article-no= start-page=57 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202246 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implications of immune cells in oncolytic herpes simplex virotherapy for glioma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy. en-copyright= kn-copyright= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YooJi Young en-aut-sei=Yoo en-aut-mei=Ji Young kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuToshihiko en-aut-sei=Shimizu en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaurBalveen en-aut-sei=Kaur en-aut-mei=Balveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Matsuyama Shimin Hospital kn-affil= affil-num=4 en-affil=Department of Neurosurgery, Hamamatsu University School of Medicine kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston kn-affil= en-keyword=Oncolytic virus kn-keyword=Oncolytic virus en-keyword=Immune cells kn-keyword=Immune cells en-keyword=Glioma kn-keyword=Glioma END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue= article-no= start-page=1876 end-page=1890 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202247 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three highly conserved hydrophobic residues in the predicted α2‐helix of rice NLR protein Pit contribute to its localization and immune induction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) proteins work as crucial intracellular immune receptors. N-terminal domains of NLRs fall into two groups, coiled-coil (CC) and Toll-interleukin 1 receptor domains, which play critical roles in signal transduction and disease resistance. However, the activation mechanisms of NLRs, and how their N-termini function in immune induction, remain largely unknown. Here, we revealed that the CC domain of a rice NLR Pit contributes to self-association. The Pit CC domain possesses three conserved hydrophobic residues that are known to be involved in oligomer formation in two NLRs, barley MLA10 and Arabidopsis RPM1. Interestingly, the function of these residues in Pit differs from that in MLA10 and RPM1. Although three hydrophobic residues are important for Pit-induced disease resistance against rice blast fungus, they do not participate in self-association or binding to downstream signalling molecules. By homology modelling of Pit using the Arabidopsis ZAR1 structure, we tried to clarify the role of three conserved hydrophobic residues and found that they are located in the predicted α2-helix of the Pit CC domain and involved in the plasma membrane localization. Our findings provide novel insights for understanding the mechanisms of NLR activation as well as the relationship between subcellular localization and immune induction. en-copyright= kn-copyright= en-aut-name=WangQiong en-aut-sei=Wang en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiYuying en-aut-sei=Li en-aut-mei=Yuying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KosamiKen‐ichi en-aut-sei=Kosami en-aut-mei=Ken‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LiuChaochao en-aut-sei=Liu en-aut-mei=Chaochao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiJing en-aut-sei=Li en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhangDan en-aut-sei=Zhang en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MikiDaisuke en-aut-sei=Miki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Horticulture and Plant Protection Yangzhou University Yangzhou China kn-affil= affil-num=2 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology Chinese Academy of Sciences Shanghai China kn-affil= affil-num=3 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology Chinese Academy of Sciences Shanghai China kn-affil= affil-num=4 en-affil=School of Biotechnology Jiangsu University of Science and Technology Zhenjiang China kn-affil= affil-num=5 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology Chinese Academy of Sciences Shanghai China kn-affil= affil-num=6 en-affil=School of Horticulture and Plant Protection Yangzhou University Yangzhou China kn-affil= affil-num=7 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology Chinese Academy of Sciences Shanghai China kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=NLR protein kn-keyword=NLR protein en-keyword=plasma membrane localization kn-keyword=plasma membrane localization en-keyword=self-association kn-keyword=self-association en-keyword=effector triggered immunity kn-keyword=effector triggered immunity en-keyword=rice kn-keyword=rice END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=4 article-no= start-page=e05725 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of subgingival microbiota in monozygotic twins with different severity and progression risk of periodontitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study aims to reveal the composition of subgingival bacteria in monozygotic twins with discordant in severity and progression risk of periodontitis. Microbiome analysis indicated that most bacteria were heritable but differed in their abundance and immune response. The dysbiotic bacteria can be considered as risk markers for periodontitis progression. en-copyright= kn-copyright= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaniguchiMakoto en-aut-sei=Taniguchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsunagaKazuyuki en-aut-sei=Matsunaga en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawataYusuke en-aut-sei=Kawata en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraMari en-aut-sei=Kawamura en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkuboKeisuke en-aut-sei=Okubo en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashiroKeisuke en-aut-sei=Yamashiro en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Oral Microbiome Center, Taniguchi Dental Clinic, Takamatsu, Japan 3 Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=disease progression kn-keyword=disease progression en-keyword=dysbiosis kn-keyword=dysbiosis en-keyword=environmental factors kn-keyword=environmental factors en-keyword=microbiome kn-keyword=microbiome en-keyword=monozygotic twins kn-keyword=monozygotic twins en-keyword=periodontitis kn-keyword=periodontitis END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=2 article-no= start-page=129 end-page=135 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Combination of D-dimer and Glasgow Prognostic Score Can Be Useful in Predicting VTE in Patients with Stage IIIC and IVA Ovarian Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer patients have increased risk of venous thromboembolism (VTE) that must be assessed before treatment. This study aimed to determine effective VTE biomarkers in gynecologic cancer (GC). We investigated the correlation between D-dimer levels, Khorana risk score (KRS), Glasgow prognostic score (GPS), and VTE in 1499 GC patients (583 cervical cancer (CC), 621 endometrial cancer (EC), and 295 ovarian cancer (OC) patients) treated at our institution between January 2008 and December 2019. χ2 and Mann–Whitney U-tests were used to determine statistical significance. We used receiver operating characteristic-curve analysis to evaluate the discriminatory ability of each parameter. D-dimer levels were significantly correlated with KRS and GPS in patients with GC. VTE was diagnosed in 11 CC (1.9%), 27 EC (4.3%), and 39 OC patients (13.2%). Optimal D-dimer cut-off values for VTE were 3.1, 3.2, and 3.9 μg/ml in CC, EC and OC patients, respectively. D-dimer could significantly predict VTE in all GC patients. Furthermore, D-dimer combined with GPS was more accurate in predicting VTE than other VTE biomarkers in stage IIIC and IVA OC (AUC: 0.846; p<0.001). This study demonstrates that combined D-dimer and GPS are useful in predicting VTE in patients with OC. en-copyright= kn-copyright= en-aut-name=KuboKotaro en-aut-sei=Kubo en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoKazuhiro en-aut-sei=Okamoto en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuokaHirofumi en-aut-sei=Matsuoka en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IdaNaoyuki en-aut-sei=Ida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HarumaTomoko en-aut-sei=Haruma en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OgawaChikako en-aut-sei=Ogawa en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=D-dimer kn-keyword=D-dimer en-keyword=gynecologic cancer kn-keyword=gynecologic cancer en-keyword=venous thromboembolism kn-keyword=venous thromboembolism END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=2 article-no= start-page=87 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects. en-copyright= kn-copyright= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Health Sciences, Institute of Academic and Research, Okayama University kn-affil= affil-num=2 en-affil=Health Sciences, Institute of Academic and Research, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=2 article-no= start-page=154 end-page=159 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms of action of radon therapy on cytokine levels in normal mice and rheumatoid arthritis mouse model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The typical indication of radon therapy is rheumatoid arthritis. Although there are several reports that radon therapy has regulation effects on Th17 cells, there has been no study reporting that radon inhalation affects the immune balance among Th1, Th2, and Th17. The purpose of this study is to examine the cytokine changes after radon inhalation. BALB/c mice inhaled radon at 2,000 Bq/m3 for 2 or 4 weeks. SKG/Jcl mice inhaled radon at 2,000 Bq/m3 for 4 weeks after zymosan administration. The results showed that radon inhalation for 4 weeks activated the immune response of Th1, Th2, and Th17. Moreover, the balance among them was not lost by radon inhalation. Radon inhalation for 4 weeks decreased superoxide dismutase activity and increased catalase activity in spleen. These findings suggest that an imbalance of oxidative stress may contribute to activate the immune response. Although zymosan administration activated Th17 immune response and decreased Th1 and Th2 immune response in SKG/Jcl mice, most cytokines related to Th1, Th2, and Th17 approached the normal level by radon inhalation. These findings suggested that radon inhalation has a different action between SKG/Jcl mice and normal BABL/c mice. This may indicate that radon inhalation has an immunomodulation function. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MurakamiKaito en-aut-sei=Murakami en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YukimineRyohei en-aut-sei=Yukimine en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimotoYuki en-aut-sei=Fujimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanzakiNorie en-aut-sei=Kanzaki en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsunobuFumihiro en-aut-sei=Mitsunobu en-aut-mei=Fumihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=7 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=8 en-affil=Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=radon kn-keyword=radon en-keyword=cytokine kn-keyword=cytokine en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis en-keyword=immunomodulation function kn-keyword=immunomodulation function END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=377 end-page=392 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel Prognostic Predictor of Immune Micro-environment and Therapeutic Response in Kidney Renal Clear Cell Carcinoma based on Necroptosis-related Gene Signature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Necroptosis, a cell death of caspase-independence, plays a pivotal role in cancer biological regulation. Although necroptosis is closely associated with oncogenesis, cancer metastasis, and immunity, there remains a lack of studies determining the role of necroptosis-related genes (NRGs) in the highly immunogenic cancer type, kidney renal clear cell carcinoma (KIRC). Methods: The information of clinicopathology and transcriptome was extracted from TCGA database. Following the division into the train and test cohorts, a three-NRGs (TLR3, FASLG, ZBP1) risk model was identified in train cohort by LASSO regression. The overall survival (OS) comparison was conducted between different risk groups through Kaplan-Meier analysis, which was further validated in test cohort. The Cox proportional hazards regression model was introduced to assess its impact of clinicopathological factors and risk score on survival. ESTIMATE and CIBERSORT algorithms were introduced to evaluate immune microenvironment, while enrichment analysis was conducted to explore the biological significance. Correlation analysis was applied for the correlation assessment between checkpoint gene expression and risk score, between gene expression and therapeutic response. Gene expressions from TCGA were verified by GEO datasets and immunohistochemistry (IHC) analysis. Results: This NRGs-related signature predicted poorer OS in high-risk group, which was also verified in test cohort. Risk score could also independently predict survival outcome of KIRC. Significant changes were also found in immune microenvironment and checkpoint gene expressions between different risk groups, with immune functional enrichment in high-risk group. Interestingly, therapeutic response was correlated with the expressions of NRGs. The expressions of NRGs from TCGA were consistent with those from GEO datasets and IHC analysis. Conclusion: The NRGs-related signature functions as a novel prognostic predictor of immune microenvironment and therapeutic response in KIRC. en-copyright= kn-copyright= en-aut-name=ChenWenwei en-aut-sei=Chen en-aut-mei=Wenwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LinWenfeng en-aut-sei=Lin en-aut-mei=Wenfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WuLiang en-aut-sei=Wu en-aut-mei=Liang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=XuAbai en-aut-sei=Xu en-aut-mei=Abai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuChunxiao en-aut-sei=Liu en-aut-mei=Chunxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HuangPeng en-aut-sei=Huang en-aut-mei=Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University kn-affil= affil-num=4 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=5 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=prognosis kn-keyword=prognosis en-keyword=immune microenvironment kn-keyword=immune microenvironment en-keyword=therapeutic response kn-keyword=therapeutic response en-keyword=kidney renal clear cell carcinoma kn-keyword=kidney renal clear cell carcinoma en-keyword=necroptosis kn-keyword=necroptosis en-keyword=gene signature kn-keyword=gene signature END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=6 article-no= start-page=885 end-page=894 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509' en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host & apos;s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta increment hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta increment hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509. en-copyright= kn-copyright= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=effector kn-keyword=effector en-keyword=hypersensitive responses kn-keyword=hypersensitive responses en-keyword=Pseudomonas syringae pv kn-keyword=Pseudomonas syringae pv en-keyword=tabaci kn-keyword=tabaci en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=4 article-no= start-page=716 end-page=726 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=200304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Circulating oxidized LDL forms complexes with β(2)-glycoprotein I: implication as an atherogenic autoantigen en-subtitle= kn-subtitle= en-abstract= kn-abstract=beta(2)-glycoprotein I (beta(2)-GPI) is a major antigen for antiphospholipid antibodies (Abs, aPL) present in patients with antiphospholipid syndrome (APS). We recently reported (I. Lipid Res., 42: 697, 200 1; J Lipid Res., 43: 1486, 2002) that beta(2)-GPI specifically binds to Cu2+-oxidized LDL (oxLDL) and that the beta(2)-GPI ligands are omega-carboxylated 7-ketocholesteryl esters. In the present study, we demonstrate that oxLDL forms stable and nondissociable complexes with beta(2)-GPI in serum, and that high serum levels of the complexes are associated with arterial thrombosis in APS. A conjugated ketone function at the 7-position of cholesterol as well as the omega-carboxyl function of the beta(2)-GPI ligands was necessary for beta(2)-GPI binding. The ligand-mediated noncovalent interaction of beta(2)-GPI and oxLDL undergoes a temperature- and time-dependent conversion to much more stable but readily dissociable complexes in vitro at neutral pH. In contrast, stable and nondissociable beta(2)-GPI-oxLDL complexes were frequently detected in sera from patients with APS and/or systemic lupus erythematodes. Both the presence Of beta(2)-GPI-oxLDL complexes and IgG Abs recognizing these complexes were strongly associated with arterial thrombosis. Further, these same Abs correlated with IgG immune complexes containing beta(2)-GPI or LDL.jlr Thus, the beta(2)-GPI-oxLDL complexes acting as an autoantigen are closely associated with autoimmune-mediated atherogenesis. en-copyright= kn-copyright= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KishiMakoto en-aut-sei=Kishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AtsumiTatsuya en-aut-sei=Atsumi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BertolacciniMaria L. en-aut-sei=Bertolaccini en-aut-mei=Maria L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakinoHirofumi en-aut-sei=Makino en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakairiNobuo en-aut-sei=Sakairi en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoItaru en-aut-sei=Yamamoto en-aut-mei=Itaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasudaTatsuji en-aut-sei=Yasuda en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KhamashtaMunther A. en-aut-sei=Khamashta en-aut-mei=Munther A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HughesGraham R. V. en-aut-sei=Hughes en-aut-mei=Graham R. V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KoikeTakao en-aut-sei=Koike en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=VoelkerDennis R. en-aut-sei=Voelker en-aut-mei=Dennis R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=2 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=3 en-affil=Department of Medicine II, Hokkaido University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=5 en-affil=Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Division of Bioscience, Graduate School of Environment Earth Science, Hokkaido University kn-affil= affil-num=7 en-affil=Department of Immunochemistry, Faculty of Pharmaceutical Science, Okayama University kn-affil= affil-num=8 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=9 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=10 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=11 en-affil=Department of Medicine II, Hokkaido University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center kn-affil= affil-num=13 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= en-keyword=antiphospholipid syndrome kn-keyword=antiphospholipid syndrome en-keyword=arterial thrombosis kn-keyword=arterial thrombosis en-keyword=autoantibody kn-keyword=autoantibody END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=3 article-no= start-page=1214 end-page=1228 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of MICALL2 as a Novel Prognostic Biomarker Correlating with Inflammation and T Cell Exhaustion of Kidney Renal Clear Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The interplay of inflammation and immunity affects all stages from tumorigenesis to progression, and even tumor response to therapy. A growing interest has been attracted from the biological function of MICALL2 to its effects on tumor progression. This study was designed to verify whether MICALL2 could be a prognostic biomarker to predict kidney renal clear cell carcinoma (KIRC) progression, inflammation, and immune infiltration within tumor microenvironment (TME).

Methods: We firstly analyzed MICALL2 expressions across 33 cancer types from the UCSC Xena database and verified its expression in KIRC through GEPIA platform and GEO datasets. The clinicopathological characteristics were further analyzed based on the median expression. Kaplan-Meier method, univariate and multivariate analyses were applied to compare survival outcomes. ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration, and a co-expression analysis was conducted to evaluate the correlation between MICALL2 and immunoregulatory genes. Enrichment analysis was finally performed to explore the biological significance of MICALL2.

Results: MICALL2 was highly expressed in 16 types of cancers compared with normal tissues. MICALL2 expression increased with advanced clinicopathological parameters and was an independent predictor for poor prognosis in KIRC. Moreover, MICALL2 closely correlated with inflammation-promoting signatures and immune infiltration including T cell exhaustion markers. Consistently, MICALL2 involved in the regulation of signaling pathways associated with tumor immunity, tumor progression, and impaired metabolic activities.

Conclusion: MICALL2 can function as a prognostic biomarker mediating inflammation, immune infiltration, and T cell exhaustion within the microenvironment of KIRC. en-copyright= kn-copyright= en-aut-name=LinWenfeng en-aut-sei=Lin en-aut-mei=Wenfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenWenwei en-aut-sei=Chen en-aut-mei=Wenwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhongJisheng en-aut-sei=Zhong en-aut-mei=Jisheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UekiHideo en-aut-sei=Ueki en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=XuAbai en-aut-sei=Xu en-aut-mei=Abai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiuChunxiao en-aut-sei=Liu en-aut-mei=Chunxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HuangPeng en-aut-sei=Huang en-aut-mei=Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=3 en-affil=School of Medicine, Xiamen University kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=MICALL2 kn-keyword=MICALL2 en-keyword=biomarker kn-keyword=biomarker en-keyword=inflammation kn-keyword=inflammation en-keyword=T cell exhaustion kn-keyword=T cell exhaustion en-keyword=kidney renal clear cell carcinoma kn-keyword=kidney renal clear cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=26 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=HIV infection diagnosed from delayed wound healing after tonsillectomy : A case report kn-title=口蓋扁桃摘出術後の創傷治癒遅延を契機に判明した HIV 感染症の1例 en-subtitle= kn-subtitle= en-abstract=HIV (human immunodeficiency virus) lowers the immune capacity of the host and causes AIDS (acquired immunodeficiency syndrome) when it progresses. HIV infection is known to have a variety of symptoms, and it is often diagnosed based on the occurrence of various otorhinolaryngological conditions. We experienced a case in which an HIV infection was diagnosed based on delayed wound healing after tonsillectomy. The early initiation of treatment for HIV infection is known to be effective for controlling progression, so it is important to detect HIV infection as early as possible. Preoperative HIV screening tests may lead to the early detection of HIV, and such tests are also important to prevent delayed wound healing. In Japan, it remains a problem that preoperative HIV screening is sometimes not allowed under by the Japanese National health insurance system. kn-abstract=HIV(human immunodeficiency virus)は感染すると宿主の免疫能を低下させ、進行すると AIDS(acquired immunodeficiency syndrome)を引き起こす。HIV 感染症は多彩な症状を呈することが知られており、創傷治癒遅延もその一つである。今回われわれは口蓋扁桃摘出術後の創傷治癒遅延から HIV 感染症と判明した症例を経験した。HIV 感染症は早期の治療開始が予後改善のために推奨されており、早期発見が重要である。手術前 HIV スクリーニング検査は創傷治癒遅延を防ぐ意味でも重要と考えられるが、現行の保険制度上は認められない場合があり、保険適用範囲の拡大が望まれる。 en-copyright= kn-copyright= en-aut-name=KariyaAkifumi en-aut-sei=Kariya en-aut-mei=Akifumi kn-aut-name=假谷彰文 kn-aut-sei=假谷 kn-aut-mei=彰文 aut-affil-num=1 ORCID= en-aut-name=IshiharaHisashi en-aut-sei=Ishihara en-aut-mei=Hisashi kn-aut-name=石原久司 kn-aut-sei=石原 kn-aut-mei=久司 aut-affil-num=2 ORCID= en-aut-name=AkisadaNaoki en-aut-sei=Akisada en-aut-mei=Naoki kn-aut-name=秋定直樹 kn-aut-sei=秋定 kn-aut-mei=直樹 aut-affil-num=3 ORCID= en-aut-name=FujisawaIku en-aut-sei=Fujisawa en-aut-mei=Iku kn-aut-name=藤澤郁 kn-aut-sei=藤澤 kn-aut-mei=郁 aut-affil-num=4 ORCID= en-aut-name=FujiSayaka en-aut-sei=Fuji en-aut-mei=Sayaka kn-aut-name=藤さやか kn-aut-sei=藤 kn-aut-mei=さやか aut-affil-num=5 ORCID= en-aut-name=AkagiSeiko en-aut-sei=Akagi en-aut-mei=Seiko kn-aut-name=赤木成子 kn-aut-sei=赤木 kn-aut-mei=成子 aut-affil-num=6 ORCID= en-aut-name=TakeuchiAyako en-aut-sei=Takeuchi en-aut-mei=Ayako kn-aut-name=竹内彩子 kn-aut-sei=竹内 kn-aut-mei=彩子 aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=2 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=3 en-affil=Department of Head and Neck Surgery, Shikoku Cancer Center kn-affil=国立病院機構四国がんセンター頭頸科 affil-num=4 en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学 affil-num=5 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=6 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 affil-num=7 en-affil=Department of Otorhinolaryngology, Japanese Red Cross Okayama Hospital kn-affil=岡山赤十字病院耳鼻咽喉科 en-keyword=HIV(human immunodeficiency virus) kn-keyword=HIV(human immunodeficiency virus) en-keyword=創傷治癒遅延 kn-keyword=創傷治癒遅延 en-keyword=口蓋扁桃摘出術 kn-keyword=口蓋扁桃摘出術 en-keyword=手術合併症 kn-keyword=手術合併症 en-keyword=性感染症 kn-keyword=性感染症 END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=11 article-no= start-page=1662 end-page=1675 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Small GTPase OsRac1 Forms Two Distinct Immune Receptor Complexes Containing the PRR OsCERK1 and the NLR Pit en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1. en-copyright= kn-copyright= en-aut-name=AkamatsuAkira en-aut-sei=Akamatsu en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasayuki en-aut-sei=Fujiwara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaSatoshi en-aut-sei=Hamada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakabayashiMegumi en-aut-sei=Wakabayashi en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YaoAi en-aut-sei=Yao en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangQiong en-aut-sei=Wang en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KosamiKen-ichi en-aut-sei=Kosami en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DangThu Thi en-aut-sei=Dang en-aut-mei=Thu Thi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Kaneko-KawanoTakako en-aut-sei=Kaneko-Kawano en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShimamotoKo en-aut-sei=Shimamoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Biosciences, Kwansei Gakuin University kn-affil= affil-num=2 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=3 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=4 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=5 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=6 en-affil=Department of Horticulture and Plant Protection kn-affil= affil-num=7 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=9 en-affil=College of Pharmaceutical Sciences, Ritsumeikan University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources kn-affil= affil-num=11 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=12 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=e0258977 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Upregulation of a nuclear factor-kappa B-interacting immune gene network in mice cochleae with age-related hearing loss en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidemiological data suggest that inflammation and innate immunity play significant roles in the pathogenesis of age-related hearing loss (ARHL) in humans. In this mouse study, real-time RT-PCR array targeting 84 immune-related genes revealed that the expressions of 40 genes (47.6%) were differentially regulated with greater than a twofold change in 12-month-old cochleae with ARHL relative to young control mice, 33 (39.3%) of which were upregulated. These differentially regulated genes (DEGs) were involved in functional pathways for cytokine-cytokine receptor interaction, chemokine signaling, TNF signaling, and Toll-like receptor signaling. An NF-kappa B subunit, Nfkb1, was upregulated in aged cochleae, and bioinformatic analyses predicted that NF-kappa B would interact with the genomic regulatory regions of eight upregulated DEGs, including Tnf and Ptgs2. In aging cochleae, major proinflammatory molecules, IL1B and IL18rap, were upregulated by 6 months of age and thereafter. Remarkable upregulations of seven immune-related genes (Casp1, IL18r1, IL1B, Card9, Clec4e, Ifit1, and Tlr9) occurred at an advanced stage (between 9 and 12 months of age) of ARHL. Immunohistochemistry analysis of cochlear sections from the 12-month-old mice indicated that IL-18r1 and IL-1B were localized to the spiral ligament, spiral limbus, and organ of Corti. The two NF-kappa B-interacting inflammatory molecules, TNF alpha and PTGS2, immunolocalized ubiquitously in cochlear structures, including the lateral wall (the stria vascularis and spiral ligament), in the histological sections of aged cochleae. IBA1-positive macrophages were observed in the stria vascularis and spiral ligament in aged mice. Therefore, inflammatory and immune reactions are modulated in aged cochlear tissues with ARHL. en-copyright= kn-copyright= en-aut-name=UraguchiKensuke en-aut-sei=Uraguchi en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaYukihide en-aut-sei=Maeda en-aut-mei=Yukihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaharaJunko en-aut-sei=Takahara en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimotoShohei en-aut-sei=Fujimoto en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KariyaShin en-aut-sei=Kariya en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishizakiKazunori en-aut-sei=Nishizaki en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=703298 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based- cellular immunotherapy for hematological malignancies. Immune reactions not only promote graft-versus-tumor effects that kill hematological malignant cells but also graft-versus-host disease (GVHD) that is the primary complication characterized by systemic organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD has long been recognized as an immunological reaction that requires an immunosuppressive treatment targeting immune cells. However immune suppression cannot always prevent GVHD or effectively treat it once it has developed. Recent studies using high-throughput sequencing technology investigated the impact of microbial flora on GVHD and provided profound insights of the mechanism of GVHD other than immune cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that can alter intestinal homeostasis and the severity of experimental GVHD. This axis can potentially be manipulated via dietary intervention or metabolites produced by intestinal bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of experimental GVHD regulation by the complex microbial community-metabolites-host tissue axis. Furthermore, we summarize the major findings of microbiome-based immunotherapeutic approaches that protect tissues from experimental GVHD. Understanding the complex relationships between gut microbiota-metabolites-host tissues axis provides crucial insight into the pathogenesis of GVHD and advances the development of new therapeutic approaches. en-copyright= kn-copyright= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=graft-versus-host disease kn-keyword=graft-versus-host disease en-keyword=microbial metabolite kn-keyword=microbial metabolite en-keyword=dysbiosis kn-keyword=dysbiosis en-keyword=microbiota kn-keyword=microbiota en-keyword=allogeneic stem cell transplantation kn-keyword=allogeneic stem cell transplantation END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Proton beam therapy followed by pembrolizumab for giant ocular surface conjunctival malignant melanoma: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=The present study describes proton beam therapy as a clinical option to achieve local control of giant conjunctival melanoma in an aged person, instead of orbital exenteration. An 80‑year‑old woman with one‑year history of left‑eye injection and hemorrhage experienced rapid growth of the ocular surface black mass. At the initial visit, a black, elastic hard, hemorrhage‑prone, thickened mass in the size of 30x40 mm with a presumed wide stalk covered the total area of the lid fissure on the left side. Biopsy of the mass demonstrated anomalous melanin‑containing cells in fibrin and hemorrhage, which were positive for cocktail‑mix antibodies against tyrosinase, melanoma antigen recognized by T cells‑1 and human melanoma black‑45, indicative of malignant melanoma. One month after the initial visit, the patient underwent proton beam therapy at the total dose of 70.4 Gy (relative biological effectiveness) in 32 fractions (~10 min each) in one and a half months. One month after the end of proton beam therapy, 3.5 months from the initial visit, the patient was found by computed tomographic scan to have multiple metastatic lesions in bilateral lung fields. With the evidence of absent BRAF mutation, the patient underwent intravenous administration of pembrolizumab 77.2 mg every three weeks five times in total. Then, three months after proton beam therapy, ocular surface melanoma almost subsided and the clear cornea allowed visualization of the intraocular lens inside the eye. In three weeks, spontaneous corneal perforation was plugged with iris incarceration. The patient died suddenly of unknown cause 7.5 months from the initial visit. The local control of giant conjunctival melanoma was achieved by proton beam therapy, leading to patient's satisfaction and better quality of life. Proton beam therapy, followed by immune checkpoint inhibitors, would become the future standard of care for unresectable giant conjunctival melanoma. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakiTakahiro en-aut-sei=Waki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Radiation Oncology, Department of Radiology, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Radiology, Tsuyama Chuo Hospital kn-affil= en-keyword=ocular surface kn-keyword=ocular surface en-keyword=conjunctiva kn-keyword=conjunctiva en-keyword=malignant melanoma kn-keyword=malignant melanoma en-keyword=proton beam therapy kn-keyword=proton beam therapy en-keyword=pembrolizumab kn-keyword=pembrolizumab en-keyword=PD‑1 inhibitor kn-keyword=PD‑1 inhibitor en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=corneal perforation kn-keyword=corneal perforation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=11 article-no= start-page=e003134 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Patients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples.

Methods
We established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort.

Results
Two patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance.

Conclusions
The TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer. en-copyright= kn-copyright= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HonobeAkiko en-aut-sei=Honobe en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawasakiTomonori en-aut-sei=Kawasaki en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FukushimaSatoshi en-aut-sei=Fukushima en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IkeharaYuzuru en-aut-sei=Ikehara en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MatsueHiroyuki en-aut-sei=Matsue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=2 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=3 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=6 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=7 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=8 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=9 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=10 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=11 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=12 en-affil=Department of Pathology, Saitama Medical University International Medical Center kn-affil= affil-num=13 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=14 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University kn-affil= affil-num=16 en-affil=Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine kn-affil= affil-num=17 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=19 en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center kn-affil= affil-num=20 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=リポソーム化α-ガラクトシルセラミドはドナー制御性T細胞を増加させ、濾胞ヘルパーT細胞に作用し、強皮症型慢性移植片対宿主病の発症を予防する kn-title=Donor Treg expansion by liposomal α‐galactosylceramide modulates Tfh cells and prevents sclerodermatous chronic graft‐versus‐host disease en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SugiuraHiroyuki en-aut-sei=Sugiura en-aut-mei=Hiroyuki kn-aut-name=杉浦弘幸 kn-aut-sei=杉浦 kn-aut-mei=弘幸 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=592 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased expression of TAZ and associated upregulation of PD-L1 in cervical cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background As an important component of the Hippo pathway, WW domain-containing transcription regulator 1 (TAZ), is a transcriptional coactivator that is responsible for the progression of various types of cancers. Programmed cell death protein 1 (PD-1) receptors in activated T cells and their ligand programming death force 1 (PD-L1) are the main checkpoint signals that control T cell activity. Studies have shown high levels of PD-L1 in various cancers and that PD-L1/PD-1 signals to evade T-cell immunity. Recent data have demonstrated that TAZ can regulate the characteristics of cancer cells via PD-L1. Cervical cancer is a common gynecological disease worldwide. In this study, we attempted to evaluate the effects of TAZ and PD-L1 on cervical cancer.
Methods Hela cervical cancer cells were transfected with TAZ plasmid or TAZ siRNA or PD-L1 siRNA by using Lipofectamine 2000. The relationship between TAZ and PD-L1 in cervical cancer cells was determined by qRT-PCR and western blotting. The functional roles of TAZ were confirmed via CCK-8, Transwell and flow cytometry assays. Western blotting was utilized to observe the expression of BCL-2 and Caspase-3. The clinicopathological correlation of TAZ and PD-L1 was evaluated via relevant databases.
Result TAZ is upregulated in cervical cancer and induces the growth and metastasis of cervical cancer cells by targeting PD-L1and inhibiting the ratio of apoptotic of cancer cells. High TAZ and PD-L1 expression was observed in different stage, grade, histological patterns, and ages of cervical cancer groups compared with normal cervix groups. Furthermore, high TAZ expression was positively correlated with the infiltration levels of immune cells and the expression of PD-L1. en-copyright= kn-copyright= en-aut-name=HanYanyan en-aut-sei=Han en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuDandan en-aut-sei=Liu en-aut-mei=Dandan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiLianhong en-aut-sei=Li en-aut-mei=Lianhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=The Fourth Medical Center of The General Hospital of the Chinese People’s Liberation Army kn-affil= affil-num=3 en-affil=Pathology Department of Dalian Medical University kn-affil= en-keyword=TAZ kn-keyword=TAZ en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Cervical cancer kn-keyword=Cervical cancer END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=740610 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species en-subtitle= kn-subtitle= en-abstract= kn-abstract=The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs. en-copyright= kn-copyright= en-aut-name=AlessaOla en-aut-sei=Alessa en-aut-mei=Ola kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OguraYoshitoshi en-aut-sei=Ogura en-aut-mei=Yoshitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaniYoshiko en-aut-sei=Fujitani en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamiHideto en-aut-sei=Takami en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiTetsuya en-aut-sei=Hayashi en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SahinNurettin en-aut-sei=Sahin en-aut-mei=Nurettin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=6 en-affil=Egitim Fakultesi, Mugla Sitki Kocman University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Methylobacterium kn-keyword=Methylobacterium en-keyword=comparative genomics kn-keyword=comparative genomics en-keyword=methylotroph kn-keyword=methylotroph en-keyword=methanol dehydrogenase kn-keyword=methanol dehydrogenase en-keyword=Methylorubrum kn-keyword=Methylorubrum END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset en-subtitle= kn-subtitle= en-abstract= kn-abstract=This prespecified subanalysis of the global, randomized controlled phase Ill KEYNOTE-024 study of pembrolizumab vs chemotherapy in previously untreated metastatic non-small-cell lung cancer without EGFR/ALK alterations and a programmed death-ligand 1 (PD-L1) tumor proportion score of 50% or greater evaluated clinical outcomes among patients enrolled in Japan. Treatment consisted of pembrolizumab 200 mg every 3 weeks (35 cycles) or platinum-based chemotherapy (four to six cycles). The primary end-point was progression-free survival; secondary end-points included overall survival and safety. Of 305 patients randomized in KEYNOTE-024 overall, 40 patients were enrolled in Japan (all received treatment: pembrolizumab, n = 21; chemotherapy, n = 19). The hazard ratio (HR) for progression-free survival by independent central review (data cut-off date, 10 July 2017) was 0.25 (95% confidence interval [CI], 0.10-0.64; one-sided, nominal P = .001). The HR for overall survival (data cut-off date, 15 February 2019) was 0.39 (95% CI, 0.17-0.91; one-sided, nominal P = .012). Treatment-related adverse events occurred in 21/21 (100%) pembrolizumab-treated and 18/19 (95%) chemotherapy-treated patients; eight patients (38%) and nine patients (47%), respectively, had grade 3-5 events. Immune-mediated adverse events and infusion reactions occurred in 11 patients (52%) and four patients (21%), respectively; four patients (19%) and one patient (5%), respectively, had grade 3-5 events. Consistent with results from KEYNOTE-024 overall, first-line pembrolizumab improved progression-free survival and overall survival vs chemotherapy with manageable safety among Japanese patients with metastatic non-small-cell lung cancer without EGFRIALK alterations and a PD-L1 tumor proportion score of 50% or greater. en-copyright= kn-copyright= en-aut-name=SatouchiMiyako en-aut-sei=Satouchi en-aut-mei=Miyako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NosakiKaname en-aut-sei=Nosaki en-aut-mei=Kaname kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaKazuhiko en-aut-sei=Nakagawa en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AoeKeisuke en-aut-sei=Aoe en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurataTakayasu en-aut-sei=Kurata en-aut-mei=Takayasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SekineAkimasa en-aut-sei=Sekine en-aut-mei=Akimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HoriikeAtsushi en-aut-sei=Horiike en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FukuharaTatsuro en-aut-sei=Fukuhara en-aut-mei=Tatsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugawaraShunichi en-aut-sei=Sugawara en-aut-mei=Shunichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UmemuraShigeki en-aut-sei=Umemura en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakaHideo en-aut-sei=Saka en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamotoIsamu en-aut-sei=Okamoto en-aut-mei=Isamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoNobuyuki en-aut-sei=Yamamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SakaiHiroshi en-aut-sei=Sakai en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KishiKazuma en-aut-sei=Kishi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KatakamiNobuyuki en-aut-sei=Katakami en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HidaToyoaki en-aut-sei=Hida en-aut-mei=Toyoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OkamotoHiroaki en-aut-sei=Okamoto en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AtagiShinji en-aut-sei=Atagi en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=OhiraTatsuo en-aut-sei=Ohira en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HanShi Rong en-aut-sei=Han en-aut-mei=Shi Rong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NoguchiKazuo en-aut-sei=Noguchi en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=EbianaVictoria en-aut-sei=Ebiana en-aut-mei=Victoria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Department of Thoracic Oncology, Hyogo Cancer Center kn-affil= affil-num=2 en-affil=Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center kn-affil= affil-num=3 en-affil=Division of Thoracic Oncology, Shizuoka Cancer Center kn-affil= affil-num=4 en-affil=Department of Medical Oncology, Faculty of Medicine, Kindai University kn-affil= affil-num=5 en-affil=Department of Medical Oncology, National Hospital Organization Yamaguchi Ube Medical Center kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center kn-affil= affil-num=8 en-affil=Department of Thoracic Medical Oncology, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research kn-affil= affil-num=9 en-affil=Miyagi Cancer Center kn-affil= affil-num=10 en-affil=Department of Pulmonary Medicine, Sendai Kousei Hospital kn-affil= affil-num=11 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine and Medical Oncology, National Hospital Organization Nagoya Medical Center kn-affil= affil-num=13 en-affil=Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=14 en-affil=Internal Medicine III, Wakayama Medical University kn-affil= affil-num=15 en-affil=Department of Thoracic Oncology, Saitama Cancer Center kn-affil= affil-num=16 en-affil=Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital kn-affil= affil-num=17 en-affil=Division of Integrated Oncology, Institute of Biomedical Research and Innovation Hospital kn-affil= affil-num=18 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=19 en-affil=Department of Thoracic Oncology, Aichi Cancer Center kn-affil= affil-num=20 en-affil=Department of Respiratory Medicine and Medical Oncology, Yokohama Municipal Citizen’s Hospital kn-affil= affil-num=21 en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center kn-affil= affil-num=22 en-affil=Department of Surgery, Tokyo Medical University kn-affil= affil-num=23 en-affil=MSD K.K. kn-affil= affil-num=24 en-affil=MSD K.K. kn-affil= affil-num=25 en-affil=Merck & Co., Inc. kn-affil= affil-num=26 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=Japan kn-keyword=Japan en-keyword=non-small-cell lung carcinoma kn-keyword=non-small-cell lung carcinoma en-keyword=PD-L1 protein kn-keyword=PD-L1 protein en-keyword=pembrolizumab kn-keyword=pembrolizumab en-keyword=treatment outcome kn-keyword=treatment outcome END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=671 end-page=675 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple Roles of Histidine-Rich Glycoprotein in Vascular Homeostasis and Angiogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Histidine-rich glycoprotein (HRG) is a 75 kDa plasma protein that is synthesized in the liver of many verte-brates and present in their plasma at relatively high concentrations of 100-150 μg/mL. HRG is an abundant and well-characterized protein having a multidomain structure that enable it to interact with many ligands, func-tion as an adaptor molecule, and participate in numerous physiological and pathological processes. As a plasma protein, HRG has been reported to regulate vascular biology, including coagulation, fibrinolysis and angiogenesis, through its binding with several ligands (heparin, FXII, fibrinogen, thrombospondin, and plas-minogen) and interaction with many types of cells (endothelial cells, erythrocytes, neutrophils and platelets). This review aims to summarize the roles of HRG in maintaining vascular homeostasis and regulating angiogen-esis in various pathological conditions. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=vascular biology kn-keyword=vascular biology en-keyword=coagulation kn-keyword=coagulation en-keyword=angiogenesis kn-keyword=angiogenesis END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue= article-no= start-page=138 end-page=146 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called "Outer Membrane Vesicles" (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra-and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized. en-copyright= kn-copyright= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirotaKatsuhiko en-aut-sei=Hirota en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaKaya en-aut-sei=Yoshida en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WengYao en-aut-sei=Weng en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HeYuhan en-aut-sei=He en-aut-mei=Yuhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiotsuNoriko en-aut-sei=Shiotsu en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkegameMika en-aut-sei=Ikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanaiAiri en-aut-sei=Tanai en-aut-mei=Airi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GuoJiajie en-aut-sei=Guo en-aut-mei=Jiajie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College kn-affil= affil-num=3 en-affil=Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=4 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Extracellular vesicles kn-keyword=Extracellular vesicles en-keyword=Outer membrane vesicles kn-keyword=Outer membrane vesicles en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Host cell interaction kn-keyword=Host cell interaction en-keyword=In vivo imaging kn-keyword=In vivo imaging END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=567 end-page=574 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Manifestations of Patients with Influenza Differ by Age : A Prospective, Multi-centered Study in the Setouchi Marine Area en-subtitle= kn-subtitle= en-abstract= kn-abstract=Influenza potentially has a high mortality rate when it affects the elderly. We aimed to examine the differences in clinical manifestations in patients with influenza according to their age. This multicenter prospective study was performed in six medical institutions in Okayama and Kagawa prefectures (Japan). Between December 1, 2019 and March 31, 2020, we collected data on adult patients diagnosed with influenza type A, who were strat-ified into younger (20-49 years), middle-aged (50-64 years), and older groups (≥ 65 years). We compared the presence or absence of fever, respiratory symptoms, and extrapulmonary symptoms according to age group. In total, 203 patients (113, younger; 51, middle-aged; and 39, older) were eligible for the analysis. The maxi-mum body temperature and temperature at first physician visit in the older group were significantly lower than those in the younger group. The incidence of respiratory symptoms was not different among the three groups. Chills, muscle pain, and arthralgia as systemic symptoms were noted significantly more frequently in the younger (80.9%) and middle-aged (75.5%) groups than in the older group (51.3%) (p = 0.002). Fever and sys-temic symptoms were less likely to appear in older patients, possibly resulting in the delaying of hospital visits among older adults. en-copyright= kn-copyright= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHiroko en-aut-sei=Ogawa en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObikaMikako en-aut-sei=Obika en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KataokaHitomi en-aut-sei=Kataoka en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanayamaYoshihisa en-aut-sei=Hanayama en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=influenza, kn-keyword=influenza, en-keyword=elderly kn-keyword=elderly en-keyword= fever kn-keyword= fever en-keyword=respiratory symptom kn-keyword=respiratory symptom END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=549 end-page=556 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Glial Cells as Possible Targets of Neuroprotection through Neurotrophic and Antioxidative Molecules in the Central and Enteric Nervous Systems in Parkinson’s Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. The loss of nigrostriatal dopaminergic neurons produces its characteristic motor symptoms, but PD patients also have non-motor symptoms such as constipation and orthostatic hypotension. The pathological hallmark of PD is the presence of α-synuclein-containing Lewy bodies and neurites in the brain. However, the PD pathology is observed in not only the central nervous system (CNS) but also in parts of the peripheral nervous system such as the enteric nervous system (ENS). Since constipation is a typical prodromal non-motor symptom in PD, often preceding motor symptoms by 10-20 years, it has been hypothesized that PD pathology propagates from the ENS to the CNS via the vagal nerve. Discovery of pharmacological and other methods to halt this progression of neurodegeneration in PD has the potential to improve millions of lives. Astrocytes protect neurons in the CNS by secretion of neurotrophic and antioxidative factors. Similarly, astrocyte-like enteric glial cells (EGCs) are known to secrete neuroprotective factors in the ENS. In this article, we summarize the neuroprotective function of astrocytes and EGCs and discuss therapeutic strategies for the prevention of neurodegeneration in PD targeting neurotrophic and antioxidative molecules in glial cells. en-copyright= kn-copyright= en-aut-name=IsookaNami en-aut-sei=Isooka en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Parkinson’s disease kn-keyword=Parkinson’s disease en-keyword=astrocyte kn-keyword=astrocyte en-keyword=enteric glial cell kn-keyword=enteric glial cell en-keyword=neurotrophic factor kn-keyword=neurotrophic factor en-keyword=antioxidative molecule kn-keyword=antioxidative molecule END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=2 article-no= start-page=90 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2020 Incentive Award of the Okayama Medical Association in Cancer Research (2020 Hayashibara Prize and Yamada Prize) kn-title=令和2年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name=金谷信彦 kn-aut-sei=金谷 kn-aut-mei=信彦 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 消化器外科学 END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=9 article-no= start-page=e04574 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Longitudinal observation of insulin secretory ability before and after the onset of immune checkpoint inhibitor-induced diabetes mellitus: A report of two cases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitor-induced diabetes mellitus is a rare immune-related adverse event. This report illustrates clinical data and insulin secretory ability before and after the onset of immune checkpoint inhibitor-induced diabetes. en-copyright= kn-copyright= en-aut-name=FujiwaraNoriko en-aut-sei=Fujiwara en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaAkihiro en-aut-sei=Katayama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NodaYohei en-aut-sei=Noda en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KataokaHitomi en-aut-sei=Kataoka en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Primary Care and Medical Education, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Diabetes Center, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Primary Care and Medical Education, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Minimally Invasive Therapy Center, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=C-peptide kn-keyword=C-peptide en-keyword=diabetes mellitus kn-keyword=diabetes mellitus en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=insulin secretion kn-keyword=insulin secretion END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=10 article-no= start-page=2920 end-page=2930 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210521 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local oncolytic adenovirotherapy produces an abscopal effect via tumor-derived extracellular vesicles en-subtitle= kn-subtitle= en-abstract= kn-abstract=Extracellular vesicles (EVs) play important roles in various intercellular communication processes. The abscopal effect is an interesting phenomenon in cancer treatment, in which immune activation is generally considered a main factor. We previously developed a telomerase-specific oncolytic adenovirus, Telomelysin (OBP-301), and occasionally observed therapeutic effects on distal tumors after local treatment in immunodeficient mice. In this study, we hypothesized that EVs may be involved in the abscopal effect of OBP-301. EVs isolated from the supernatant of HCT116 human colon carcinoma cells treated with OBP-301 were confirmed to contain OBP-301, and they showed cytotoxic activity (apoptosis and autophagy) similar to OBP-301. In bilateral subcutaneous HCT116 and CT26 tumor models, intratumoral administration of OBP-301 produced potent antitumor effects on tumors that were not directly treated with OBP-301, involving direct mediation by tumor-derived EVs containing OBP-301. This indicates that immune activation is not the main factor in this abscopal effect. Moreover, tumor-derived EVs exhibited high tumor tropism in orthotopic HCT116 rectal tumors, in which adenovirus E1A and adenovirus type 5 proteins were observed in metastatic liver tumors after localized rectal tumor treatment. In conclusion, local treatment with OBP-301 has the potential to produce abscopal effects via tumor-derived EVs. en-copyright= kn-copyright= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumonKento en-aut-sei=Kumon en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsumuraTomoko en-aut-sei=Tsumura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiChiaki en-aut-sei=Yagi en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoRyoma en-aut-sei=Sugimoto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HamadaYuki en-aut-sei=Hamada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=15 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Extracellular vesicles kn-keyword=Extracellular vesicles en-keyword=Exosome kn-keyword=Exosome en-keyword=Abscopal effect kn-keyword=Abscopal effect en-keyword=Oncolytic adenovirus kn-keyword=Oncolytic adenovirus en-keyword=Local treatment kn-keyword=Local treatment en-keyword=Systemic delivery kn-keyword=Systemic delivery en-keyword=Drug delivery system kn-keyword=Drug delivery system END