start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-α?induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-α
kn-keyword=tumor necrosis factor-α
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=S1
article-no=
start-page=7
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Basic biology is not just “for the birds”: how avian studies have informed us about vertebrate reproduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Avian reproductive physiology has been studied for centuries, largely because of the importance of birds as food animals. It is likely that the ubiquity and ease of access to domesticated chickens led to them being used in some of the first experiments on transplantation of endocrine structures?in this case, the testes. Since then, study of seasonal changes in reproductive physiology (photoperiodism) in different orders of bird species has led to advances in the understanding of endocrine regulation of reproductive physiology and behavior. These include mechanisms of adult neuroplasticity, sexual selection, sperm competition, stress physiology, and circadian physiology. Here, we focus mainly on the discovery in birds of a neuropeptide named gonadotropin-inhibitory hormone that mostly has inhibitory effects on reproduction. This hormone has since been shown to exist in all mammals studied to date, including humans (it is known as RFamide-related peptide in mammals). We discuss the history and implications of avian studies on gonadotropin-inhibitory hormone/RFamide-related peptide for human reproductive biology.
en-copyright=
kn-copyright=
en-aut-name=BentleyGeorge E.
en-aut-sei=Bentley
en-aut-mei=George E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=GnIH
kn-keyword=GnIH
en-keyword=RFamide
kn-keyword=RFamide
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=8
article-no=
start-page=1261
end-page=1268
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overview of task shifting guidelines in Japan: from radiologists to radiological technologists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As one of the key pillars of work style reform for physicians, task shifting and sharing from radiologists to radiological technologists has been considered. In May 2021, the Radiological Technologists Act was amended, allowing for the expansion of several duties. Alongside these legal and regulatory changes, a notice from Ministry of Health, Labour and Welfare was issued, highlighting tasks to be particularly promoted under the current system prior to the amendment of the Radiological Technologists Act. These amendments authorize radiological technologists to perform advanced and specialized tasks, such as securing venous access for contrast agent administration, which require significantly higher skill levels than their traditional roles. However, the amended legislation did not include specific guidelines, rules, or considerations for the practical implementation of these new duties in daily medical practice, especially from the perspectives of patient safety and quality of care. To address this, the Japan Radiological Society, the Japanese College of Radiology, and the Japan Association of Radiological Technologists collaborated with other related societies to develop guidelines on five key topics:-Guidelines for Safe Conduct of CT/MRI Contrast-Enhanced Examinations: Considering the expanded scope of practice for radiological technologists. -Guidelines for Safe Conduct of Nuclear Medicine Examinations: Aligned with the expanded responsibilities of radiological technologists. -Guidelines for Clinical application of Image-Guided Radiation Therapy (IGRT). -Guidelines for Safe Conduct of Angiography and Interventional Radiology (IR): Adapted for the expanded roles of radiological technologists. -Guidelines for Reporting Findings of STAT Imaging: Addressing urgent conditions with potential impact on life prognosis.
en-copyright=
kn-copyright=
en-aut-name=KidoAki
en-aut-sei=Kido
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhnoKazuko
en-aut-sei=Ohno
en-aut-mei=Kazuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKei
en-aut-sei=Yamada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakadoKoichiro
en-aut-sei=Yamakado
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MizowakiTakashi
en-aut-sei=Mizowaki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AidaNoriko
en-aut-sei=Aida
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Oyama-ManabeNoriko
en-aut-sei=Oyama-Manabe
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KodamaNaoki
en-aut-sei=Kodama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UedaKatsuhiko
en-aut-sei=Ueda
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AokiShigeki
en-aut-sei=Aoki
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TomiyamaNoriyuki
en-aut-sei=Tomiyama
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Toyama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Kyoto University of Medial Science
kn-affil=
affil-num=3
en-affil=Department of Radiology, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, The Hospital of Hyogo College of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Radiology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare
kn-affil=
affil-num=10
en-affil=Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
kn-affil=
affil-num=11
en-affil=Health Data Science, Department of Radiology/Data Science, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=12
en-affil=Department of Radiology, Osaka University Graduate School of Medicine
kn-affil=
en-keyword=Task shifting and sharing
kn-keyword=Task shifting and sharing
en-keyword=Radiological technologists
kn-keyword=Radiological technologists
en-keyword=Guideline
kn-keyword=Guideline
en-keyword=IGRT
kn-keyword=IGRT
en-keyword=STAT
kn-keyword=STAT
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=8
article-no=
start-page=1217
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly γ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoKazunari
en-aut-sei=Ito
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaninoYuka
en-aut-sei=Tanino
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiHayato
en-aut-sei=Takeuchi
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=5
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=6
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amino acid
kn-keyword=Amino acid
en-keyword=GABA
kn-keyword=GABA
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=rice koji
kn-keyword=rice koji
en-keyword=Thai-colored rice
kn-keyword=Thai-colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=6
article-no=
start-page=uoaf044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry.
en-copyright=
kn-copyright=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMomo
en-aut-sei=Kondo
en-aut-mei=Momo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItakuraShoko
en-aut-sei=Itakura
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoshinoYujiro
en-aut-sei=Hoshino
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaMakiya
en-aut-sei=Nishikawa
en-aut-mei=Makiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusamoriKosuke
en-aut-sei=Kusamori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment and Information Sciences, Yokohama National University
kn-affil=
affil-num=6
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=photoredox catalysis
kn-keyword=photoredox catalysis
en-keyword=[2 + 2] cycloaddition
kn-keyword=[2 + 2] cycloaddition
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The stress?strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films.
en-copyright=
kn-copyright=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=raduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=140
cd-vols=
no-issue=
article-no=
start-page=745
end-page=776
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 °C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShahriarMamun
en-aut-sei=Shahriar
en-aut-mei=Mamun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KhanM. Azizur R.
en-aut-sei=Khan
en-aut-mei=M. Azizur R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Taufiq-YapYun Hin
en-aut-sei=Taufiq-Yap
en-aut-mei=Yun Hin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MohantaSuman C.
en-aut-sei=Mohanta
en-aut-mei=Suman C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=19
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=20
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Advanced materials
kn-keyword=Advanced materials
en-keyword=Fuel cell
kn-keyword=Fuel cell
en-keyword=Hydrogen gas generation
kn-keyword=Hydrogen gas generation
en-keyword=Proton exchange membrane
kn-keyword=Proton exchange membrane
en-keyword=Polymer
kn-keyword=Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=
article-no=
start-page=173
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photocatalytic hydrogen (H?) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H? production.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalekAbdul
en-aut-sei=Malek
en-aut-mei=Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NipaFarzana Yeasmin
en-aut-sei=Nipa
en-aut-mei=Farzana Yeasmin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RaihanObayed
en-aut-sei=Raihan
en-aut-mei=Obayed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UddinMd. Elias
en-aut-sei=Uddin
en-aut-mei=Md. Elias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbrahimMohd Lokman
en-aut-sei=Ibrahim
en-aut-mei=Mohd Lokman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Abdulkareem-AlsultanG.
en-aut-sei=Abdulkareem-Alsultan
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MondalAlam Hossain
en-aut-sei=Mondal
en-aut-mei=Alam Hossain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University
kn-affil=
affil-num=6
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=7
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=8
en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA
kn-affil=
affil-num=9
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=10
en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=19
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=21
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=22
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=H2
kn-keyword=H2
en-keyword=Sustainability
kn-keyword=Sustainability
en-keyword=Photocatalytic
kn-keyword=Photocatalytic
en-keyword=Photo-stability
kn-keyword=Photo-stability
en-keyword=Heterojunction
kn-keyword=Heterojunction
en-keyword=CdS
kn-keyword=CdS
END
start-ver=1.4
cd-journal=joma
no-vol=390
cd-vols=
no-issue=
article-no=
start-page=116594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extension’s pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadachiKazuma
en-aut-sei=Tadachi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Soft robot
kn-keyword=Soft robot
en-keyword=Extension soft actuator
kn-keyword=Extension soft actuator
en-keyword=Link mechanism
kn-keyword=Link mechanism
en-keyword=Pantograph
kn-keyword=Pantograph
en-keyword=Attitude control
kn-keyword=Attitude control
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japan’s current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japan’s position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japan’s goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide.
en-copyright=
kn-copyright=
en-aut-name=NguyenThu Huong
en-aut-sei=Nguyen
en-aut-mei=Thu Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTaku
en-aut-sei=Fujiwara
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaHiromasa
en-aut-sei=Yamashita
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogawaHironori
en-aut-sei=Togawa
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHaruo
en-aut-sei=Miyake
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoMasako
en-aut-sei=Goto
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMasato
en-aut-sei=Nakamura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OritateFumiko
en-aut-sei=Oritate
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IharaHirotaka
en-aut-sei=Ihara
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=4
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=5
en-affil=R & D Department, Japan Sewage Works Agency
kn-affil=
affil-num=6
en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=9
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=10
en-affil=Institute for Agro-Environmental Sciences, NARO
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Japan
kn-keyword=Japan
en-keyword=Sewage sludge
kn-keyword=Sewage sludge
en-keyword=Agriculture
kn-keyword=Agriculture
en-keyword=Sludge fertilizers
kn-keyword=Sludge fertilizers
en-keyword=Governmental initiatives
kn-keyword=Governmental initiatives
END
start-ver=1.4
cd-journal=joma
no-vol=343
cd-vols=
no-issue=
article-no=
start-page=103558
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SwarazA.M.
en-aut-sei=Swaraz
en-aut-mei=A.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=3
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=4
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=5
en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=11
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=14
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=16
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=17
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=18
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Silicon-based materials
kn-keyword=Silicon-based materials
en-keyword=Water splitting
kn-keyword=Water splitting
en-keyword=Hydrogen
kn-keyword=Hydrogen
en-keyword=Sustainable
kn-keyword=Sustainable
en-keyword=Clean and renewable energy
kn-keyword=Clean and renewable energy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250810
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the relationship between solid‐state photoluminescence and crystal structures in 2,6‐substituted naphthalene derivatives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials.
en-copyright=
kn-copyright=
en-aut-name=YamajiMinoru
en-aut-sei=Yamaji
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshikawaIsao
en-aut-sei=Yoshikawa
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MutaiToshiki
en-aut-sei=Mutai
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoujouHirohiko
en-aut-sei=Houjou
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoKenta
en-aut-sei=Goto
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniFumito
en-aut-sei=Tani
en-aut-mei=Fumito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiKengo
en-aut-sei=Suzuki
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoHideki
en-aut-sei=Okamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University
kn-affil=
affil-num=2
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Technology Transfer Service Corporation
kn-affil=
affil-num=4
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=6
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=7
en-affil=Hamamatsu Photonics K.K
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University
kn-affil=
en-keyword=herringbone
kn-keyword=herringbone
en-keyword=polycyclic aromatic hydrocarbon
kn-keyword=polycyclic aromatic hydrocarbon
en-keyword=solid-state emission
kn-keyword=solid-state emission
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=2
article-no=
start-page=71
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300?nm) and plasma emission UV sheet (347 ± 52?nm, hereafter 350?nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600?mJ/cm2), and 350?nm (14,400?mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350?nm, but at other wavelengths (i.e., 265, 280, and 300?nm) the removals were more than 64%. Therefore, UV radiation at 350?nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design.
en-copyright=
kn-copyright=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaShiho
en-aut-sei=Yoshida
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EchigoShinya
en-aut-sei=Echigo
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiRyohei
en-aut-sei=Takanami
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Shimane University
kn-affil=
affil-num=3
en-affil=Graduate School of Global Environmental Studies, Kyoto University
kn-affil=
affil-num=4
en-affil=Faculty of Design Technology, Osaka Sangyo University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=trichloramine
kn-keyword=trichloramine
en-keyword=disinfection byproducts
kn-keyword=disinfection byproducts
en-keyword=drinking water
kn-keyword=drinking water
en-keyword=ultraviolet light
kn-keyword=ultraviolet light
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyaHirosato
en-aut-sei=Yokoya
en-aut-mei=Hirosato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiomiShun
en-aut-sei=Shiomi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakenori
en-aut-sei=Uehara
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fan-shaped pneumatic soft actuator
kn-keyword=fan-shaped pneumatic soft actuator
en-keyword=ankle-joint rehabilitation device
kn-keyword=ankle-joint rehabilitation device
en-keyword=hysteresis
kn-keyword=hysteresis
en-keyword=range of motion
kn-keyword=range of motion
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design.
en-copyright=
kn-copyright=
en-aut-name=ImDohyun
en-aut-sei=Im
en-aut-mei=Dohyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JormakkaMika
en-aut-sei=Jormakka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JugeNarinobu
en-aut-sei=Juge
en-aut-mei=Narinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KishikawaJun-ichi
en-aut-sei=Kishikawa
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugitaYukihiko
en-aut-sei=Sugita
en-aut-mei=Yukihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NodaTakeshi
en-aut-sei=Noda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UemuraTomoko
en-aut-sei=Uemura
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShiimuraYuki
en-aut-sei=Shiimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaHidetsugu
en-aut-sei=Asada
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Applied Biology, Kyoto Institute of Technology
kn-affil=
affil-num=5
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=6
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=7
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=487
cd-vols=
no-issue=
article-no=
start-page=137307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
en-copyright=
kn-copyright=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium detoxification
kn-keyword=Cadmium detoxification
en-keyword=Coprecipitation
kn-keyword=Coprecipitation
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Gastrointestinal tract
kn-keyword=Gastrointestinal tract
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2503029
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polyglycerol‐Grafted Graphene Oxide with pH‐Responsive Charge‐Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=charge conversion
kn-keyword=charge conversion
en-keyword=in vivo tumor internalization
kn-keyword=in vivo tumor internalization
en-keyword=non-specific interaction
kn-keyword=non-specific interaction
en-keyword=pH-responsiveness
kn-keyword=pH-responsiveness
en-keyword=polyglycerol-grafted graphene oxide
kn-keyword=polyglycerol-grafted graphene oxide
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=350
end-page=359
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-Phenylphenothiazine Radical Cation with Extended π-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 °C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described.
en-copyright=
kn-copyright=
en-aut-name=YanoMasafumi
en-aut-sei=Yano
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaMinami
en-aut-sei=Ueda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YajimaTatsuo
en-aut-sei=Yajima
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KashiwagiYukiyasu
en-aut-sei=Kashiwagi
en-aut-mei=Yukiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=2
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=3
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Osaka Research Institute of Industrial Science and Technology
kn-affil=
en-keyword=triarylamines
kn-keyword=triarylamines
en-keyword=N-phenylphenothiazine
kn-keyword=N-phenylphenothiazine
en-keyword=radical cation
kn-keyword=radical cation
en-keyword=near-infrared absorption
kn-keyword=near-infrared absorption
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating a discretized data acquisition method for couch modeling to streamline the commissioning process of radiological instruments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The commissioning of radiotherapy treatment planning system (RTPS) involves many time-consuming tests to maintain consistency between actual and planned dose. As the number of new technologies and peripheral devices increases year by year, there is a need for time-efficient and accurate commissioning of radiation therapy equipment. Couch modeling is one type of commissioning, and there are no recommended values for CT due to differences in equipment calibration between facilities. This study evaluated the optimal electron density (ED) for the couch using discretized gantry angles.
Results All discrete-angle groups showed a high correlation between the surface ED and dose difference between the actual and planned doses (|r|>?0.9). AcurosXB did not demonstrate a significant correlation between dose differences and each energy. For a small number of discretized gantry groups, the optimal couch modeling results revealed several combinations of surface and interior ED with the same score. Upon adding all couch thickness scores, all energy scores, and both algorithm scores, the optimal surface and interior EDs with the highest score across all couch thicknesses were 0.4 and 0.07, respectively.
Conclusions The optimal couch surface ED dose difference trend was identified, and the effectiveness indicated using the dose difference score from discrete-angle couch modeling. Using this method, couch modeling can be evaluated in a highly precise and quick manner, which helps in the commissioning of complicated linear accelerator and radiological treatment plans.
en-copyright=
kn-copyright=
en-aut-name=TomimotoSyouta
en-aut-sei=Tomimoto
en-aut-mei=Syouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaekiYusuke
en-aut-sei=Saeki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotodaOkihiro
en-aut-sei=Motoda
en-aut-mei=Okihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsumotoSyouki
en-aut-sei=Tsumoto
en-aut-mei=Syouki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaHana
en-aut-sei=Nishikawa
en-aut-mei=Hana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyashimaYuki
en-aut-sei=Miyashima
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiMakiko
en-aut-sei=Higuchi
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniTadashi
en-aut-sei=Tani
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatsuiKuniaki
en-aut-sei=Katsui
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Couch modeling
kn-keyword=Couch modeling
en-keyword=Commissioning
kn-keyword=Commissioning
en-keyword=Attenuation of couch
kn-keyword=Attenuation of couch
en-keyword=Linear accelerator
kn-keyword=Linear accelerator
en-keyword=Radiotherapy planning system
kn-keyword=Radiotherapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen Embrittlement Characteristics of Austenitic Stainless Steels After Punching Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates the influence of microstructural characteristics on the hydrogen embrittlement of SUS304 austenitic stainless steel. The investigation utilized SUS304 sheets with a thickness of 1.5 mm, which were processed by punching with an 8 mm diameter to make specimens. Severe plastic deformation was localized near the punching edge, with the extent of deformation determined by the punching speed. Slower punching speeds induced more pronounced plastic strain, which was closely associated with work hardening and strain-induced martensitic (SIM) transformation. The SIM phase was predominantly observed within a depth of approximately 0.1 mm from the punched edge when processed at a punching speed of 0.25 mm/s, corresponding to roughly 10% of the cross-sectional area of the sample. These microstructural changes led to a significant reduction in tensile and fatigue strength, thereby exacerbating susceptibility to severe hydrogen embrittlement, despite the limited extent of microstructural alteration. Based on these findings, a modified Goodman diagram for SUS304 austenitic stainless steel, incorporating mechanical properties and hydrogen embrittlement behavior, was proposed.
en-copyright=
kn-copyright=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiXichang
en-aut-sei=Li
en-aut-mei=Xichang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawakamiTomohisa
en-aut-sei=Kawakami
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=SHOYO SANGYO Co., Ltd.
kn-affil=
en-keyword= Hydrogen embrittlement
kn-keyword= Hydrogen embrittlement
en-keyword=Stainless steel
kn-keyword=Stainless steel
en-keyword=Punching process
kn-keyword=Punching process
en-keyword=Fatigue
kn-keyword=Fatigue
en-keyword=Tensile strength
kn-keyword=Tensile strength
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=113243
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays ? An application of an energy-resolving photon-counting detector (ERPCD)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30?40 keV) and high (40?60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5?20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5?20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast.
en-copyright=
kn-copyright=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HabaTomonobu
en-aut-sei=Haba
en-aut-mei=Tomonobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=6
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University
kn-affil=
affil-num=8
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Medical X-ray diagnosis
kn-keyword=Medical X-ray diagnosis
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=High contrast image
kn-keyword=High contrast image
en-keyword=Virtual monochromatic image
kn-keyword=Virtual monochromatic image
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
en-keyword=Ultra-low energy image
kn-keyword=Ultra-low energy image
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects.
en-copyright=
kn-copyright=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsumataAkitoshi
en-aut-sei=Katsumata
en-aut-mei=Akitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Health Science, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=8
en-affil=Oral Radiology and Artificial Intelligence, Asahi University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=Pulse pile-up
kn-keyword=Pulse pile-up
en-keyword=Dead time
kn-keyword=Dead time
en-keyword=Counting-loss correction
kn-keyword=Counting-loss correction
en-keyword=Charge-sharing effect
kn-keyword=Charge-sharing effect
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 ?g/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 ?g/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10× MIC, with killing rates during the first 3 h ranging from 4.04 ± 0.01 to 4.31 ± 0.03 h?1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 ?g/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 ?g/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=2
article-no=
start-page=151495
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
en-copyright=
kn-copyright=
en-aut-name=TamuraShiori
en-aut-sei=Tamura
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PasangClarissa Ellice Talitha
en-aut-sei=Pasang
en-aut-mei=Clarissa Ellice Talitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaMinami
en-aut-sei=Tsuda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaShilan
en-aut-sei=Ma
en-aut-mei=Shilan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShindoHiromasa
en-aut-sei=Shindo
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhkuboTomoki
en-aut-sei=Ohkubo
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiyamaYoichi
en-aut-sei=Fujiyama
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaiMiho
en-aut-sei=Tamai
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TagawaYoh-ichi
en-aut-sei=Tagawa
en-aut-mei=Yoh-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=8
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=9
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=10
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
en-keyword=Intestine chip
kn-keyword=Intestine chip
en-keyword=Inflammatory bowel disease
kn-keyword=Inflammatory bowel disease
en-keyword=Co-culture
kn-keyword=Co-culture
en-keyword=Tri-culture
kn-keyword=Tri-culture
en-keyword=Fluidic device
kn-keyword=Fluidic device
en-keyword=Disease model
kn-keyword=Disease model
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Inflammation
kn-keyword=Inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=508
cd-vols=
no-issue=
article-no=
start-page=111242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced aboveground biomass density estimation in Central Vietnamese forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74?7.04 % in R2, 8.73?10.91 % in RMSE, and 13.62?15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=4
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Forest aboveground biomass density
kn-keyword=Forest aboveground biomass density
en-keyword=Random forest
kn-keyword=Random forest
en-keyword=Ordinary kriging
kn-keyword=Ordinary kriging
en-keyword=Co-kriging
kn-keyword=Co-kriging
en-keyword=Multispectral
kn-keyword=Multispectral
en-keyword=Multi-frequency synthetic aperture radar
kn-keyword=Multi-frequency synthetic aperture radar
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=5
article-no=
start-page=1554
end-page=1577
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Understanding the spatial variability of soil organic carbon density (SOCD) in tropical forests is necessary for efficient climate change mitigation initiatives. However, accurately modeling SOCD in these landscapes is challenging due to low-density sampling efforts and the limited availability of in-situ data caused by constrained accessibility. In this study, we aimed to explore the most suitable modeling technique for SOCD estimation in the context of tropical forest ecosystems.
Methods To support the research, thirty predictor covariates derived from remote sensing data, topographic attributes, climatic factors, and geographic positions were utilized, along with 104 soil samples collected from the top 30 cm of soil in Central Vietnamese tropical forests. We compared the effectiveness of geostatistics (ordinary kriging, universal kriging, and kriging with external drift), machine learning (ML) algorithms (random forest and boosted regression tree), and their hybrid approaches (random forest regression kriging and boosted regression tree regression kriging) for the prediction of SOCD. Prediction accuracy was evaluated using the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE) obtained from leave-one-out cross-validation.
Results The study results indicated that hybrid approaches performed best in predicting forest SOCD with the greatest values of R2 and the lowest values of MAE and RMSE, and the ML algorithms were more accurate than geostatistics. Additionally, the prediction maps produced by the hybridization showed the most realistic SOCD pattern, whereas the kriged maps were prone to have smoother patterns, and ML-based maps were inclined to possess more detailed patterns. The result also revealed the superiority of the ML plus residual kriging approaches over the ML models in reducing the underestimation of large SOCD values in high-altitude mountain areas and the overestimation of low SOCD values in low-lying terrain areas.
Conclusion Our findings suggest that the hybrid approaches of geostatistics and ML models are most suitable for modeling SOCD in tropical forests.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NguyenThi Thuong
en-aut-sei=Nguyen
en-aut-mei=Thi Thuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=5
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Digital soil mapping
kn-keyword=Digital soil mapping
en-keyword=Hybrid approaches
kn-keyword=Hybrid approaches
en-keyword=Kriging
kn-keyword=Kriging
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Soil organic carbon density
kn-keyword=Soil organic carbon density
en-keyword=Tropical forests
kn-keyword=Tropical forests
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1892
end-page=1893
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessing the Proportion of Clinical Trial Eligibility Criteria Expressible with Standard EHR Data Elements
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Patient recruitment for clinical trials often requires substantial human effort and experiences delays, leading to increased drug development costs. Leveraging electronic health records (EHRs) may improve the accuracy of estimates of potentially recruitable patients. We evaluated the feasibility of using EHRs by analyzing the proportion of computable eligibility criteria.
en-copyright=
kn-copyright=
en-aut-name=OkazakiRisa
en-aut-sei=Okazaki
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamikawaKunihisa
en-aut-sei=Kamikawa
en-aut-mei=Kunihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnoHideki
en-aut-sei=Uno
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkudaHiroto
en-aut-sei=Okuda
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NambaShihoko
en-aut-sei=Namba
en-aut-mei=Shihoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanoMitsunobu
en-aut-sei=Kano
en-aut-mei=Mitsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in liquid biopsy for bone and soft-tissue sarcomas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone and soft-tissue sarcomas are a heterogeneous group of malignant tumors originating from mesenchymal tissues, accounting for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. While blood-based tumor markers are available in major types of cancers, evidence demonstrating useful circulating biomarkers is limited in bone and soft-tissue sarcomas. Despite the development of combined modality treatments, a significant proportion of sarcoma patients respond poorly to chemotherapy or radiotherapy, leading to local relapse or distant metastasis. However, imaging methods, such as X-ray, computed tomography, positron emission tomography, magnetic resonance imaging, and scintigraphy, are mostly used to detect or monitor tumor development. Liquid biopsy is an emerging minimally invasive diagnostic technique that detects tumor-derived molecules in body fluids, including circulating tumor cells, circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and circulating extracellular vesicles. This method offers new possibilities for early tumor detection, prognostic evaluation, and therapeutic monitoring and may serve as a benchmark for treatment modification. This review focuses on the current technological advances in liquid biopsy for bone and soft-tissue sarcoma and explores its potential role in guiding personalized treatments. If these modalities could determine resistance to ongoing therapy or the presence of minimal residual disease at the end of the treatment protocol, the obtained data would be important for determining whether to change treatment approaches or add adjuvant therapies.
en-copyright=
kn-copyright=
en-aut-name=WangYilang
en-aut-sei=Wang
en-aut-mei=Yilang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimaruTakahiko
en-aut-sei=Ishimaru
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Liquid biopsy
kn-keyword=Liquid biopsy
en-keyword=Bone sarcoma
kn-keyword=Bone sarcoma
en-keyword=Soft-tissue sarcoma
kn-keyword=Soft-tissue sarcoma
en-keyword=Circulating tumor cells
kn-keyword=Circulating tumor cells
en-keyword=Circulating nucleic acids
kn-keyword=Circulating nucleic acids
en-keyword=Circulating microvesicles
kn-keyword=Circulating microvesicles
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=654
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biogeochemical impact of nickel and urea in the great oxidation event
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Great Oxidation Event marks the first substantial increase in atmospheric oxygen on Earth. Despite the oxygenic photosynthesis that emerged hundreds of million years before this event, the specific biogeochemical mechanisms responsible for maintaining low oxygen levels for an extended period remain elusive. Here, we show the critical role of urea as a nitrogen source for cyanobacteria, the cascading impact of nickel on abiotic urea production, and their combined effects on the proliferation of cyanobacteria leading to the great oxidation event. Urea formation was experimentally evaluated under simulated Archean conditions and cyanobacterial growth was monitored providing urea as the nitrogen source. Our findings demonstrate that urea can be produced in the Archean cyanobacterial habitats with UV-C irradiation, shedding light on the controversy regarding the evolution of nitrogen-fixing enzymes in primitive cyanobacteria. We propose that environmental conditions in the early Archean, characterized by elevated urea and nickel concentration, may have hindered cyanobacterial expansion, contributing to the delay between the evolution of oxygenic photosynthesis and the onset of the great oxidation event.
en-copyright=
kn-copyright=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=
article-no=
start-page=1319
end-page=1323
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Method for predicting crack size using amplitude change in titanium alloy under bending vibration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The natural frequency of a material decreases owing to the presence of cracks. Thus, when a crack initiates in a material under vibration, the amplitude of the vibration changes with the crack propagation. In this study, we investigated a method for predicting crack size using the amplitude change in a plate specimen of a titanium alloy under bending vibration. The bending displacement amplitudes were measured using high-speed camera images of the specimens. The crack sizes were measured using optical microscopy images of plastic replicas of the specimen surfaces that were obtained after interrupting tests at specified intervals. By using the relationship between the total area of the cracks and bending displacement amplitude for tests at two different vibration frequencies as well as the relationship between the vibration frequency and bending displacement amplitude for an undamaged specimen, the bending displacement amplitude at any vibration frequency can be monitored to predict the total area of the cracks.
en-copyright=
kn-copyright=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vibration
kn-keyword=Vibration
en-keyword=Fatigue crack propagation
kn-keyword=Fatigue crack propagation
en-keyword=Non-destructive inspection
kn-keyword=Non-destructive inspection
en-keyword=Titanium alloy
kn-keyword=Titanium alloy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression???50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p?=?0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=MoriTakeru
en-aut-sei=Mori
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaMio
en-aut-sei=Kitagawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaTomokazu
en-aut-sei=Hasegawa
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomeyaMasanori
en-aut-sei=Someya
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuchiyaTakaaki
en-aut-sei=Tsuchiya
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GochoToshio
en-aut-sei=Gocho
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateMirei
en-aut-sei=Date
en-aut-mei=Mirei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriiMariko
en-aut-sei=Morii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Autoantibodies
kn-keyword=Autoantibodies
en-keyword=PACIFIC regimen
kn-keyword=PACIFIC regimen
en-keyword=ICIs
kn-keyword=ICIs
en-keyword=Immune monitoring
kn-keyword=Immune monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250811
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study of the Mechanical Properties of Al?Mg ADC6 Aluminum Alloy Produced by Unidirectional Casting Under Various Cooling Rates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To create the high strength and high ductility of Al?Mg-based aluminum alloy (JIS?ADC6), ADC6 samples were produced by the unidirectional continuous casting (HMC). The HMC process was conducted with direct water cooling to melt ADC6, which can make fine microstructures and control crystal orientation. The cast samples were prepared under various cooling rates (CRs): 6.3, 34, and 62 K/s. The microstructure and crystal orientation of the samples were altered with CR. At CRs of 34 K/s and 62 K/s, the α-Al phases and intermetallic compounds, e.g., Mg2Si and Al15(Fe, Mn)3Si2, became finer and more spherical. The secondary dendrite arm spacing for the sample at 62 K/s was 8.7 ?m?more than 70% smaller than the ADC6 sample (ingot) made by a gravity casting process. Notably, at a CR of 34 K/s, the crystal orientation was predominantly arranged with the (101) plane. Tensile properties?ultimate tensile strength (σUTS), 0.2% proof stress (σ0.2), and failure strain (εf)?varied with the CR. The tensile strength (σUTS and σ0.2) consistently increased with increasing the CR. The improvement in the tensile strength resulted from the refined microstructures, such as the α-Al phase and intermetallic compounds. Similarly, the failure strain also increased with increasing CR, which was severely affected by the finer and more spherical intermetallic compounds. In this case, the εf value of the sample at 34 K/s was, however, slightly higher than that at 62 K/s, due to more uniformly organized crystal orientation, while their ductility was much higher than that of the gravity cast sample. The tensile properties in detail were further analyzed using their failure characteristics.
en-copyright=
kn-copyright=
en-aut-name=TakeuchiS.
en-aut-sei=Takeuchi
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkayasuM.
en-aut-sei=Okayasu
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=Al-Mg alloy
kn-keyword=Al-Mg alloy
en-keyword=heated mold continuous casting
kn-keyword=heated mold continuous casting
en-keyword=mechanical property
kn-keyword=mechanical property
en-keyword=microstructural characteristics
kn-keyword=microstructural characteristics
en-keyword=crystal orientation
kn-keyword=crystal orientation
en-keyword=fractography
kn-keyword=fractography
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=11
article-no=
start-page=348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241030
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coronal Cementum and Reduced Enamel Epithelium on Occlusal Surface of Impacted Wisdom Tooth in a Human
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: There is only limited research on the coronal cementum of a tooth, and the mechanisms of its forming process are not well-defined. This report presents a coronal cementum on the occlusal surfaces of enamel in an impacted wisdom tooth in a human, which is not nearly the cervical portion. Materials and Methods: The tooth (Tooth #1) was derived from a 46-year-old female. Histological analysis, including hematoxylin and eosin (HE) and toluidine blue (TB) staining, and Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometer (SEM-EDS) analysis of the extracted tooth were conducted. Radiographic examination showed that Tooth #1 was horizontally impacted in the maxilla and had the apex of a single root placed between the buccal and palatal roots of Tooth #2. Results: Coronal cementum was distributed widely on the enamel, and reduced enamel epithelium was also found with enamel matrix proteins histologically. The formation of acellular cementum was observed to be more predominant than that of the cellular cementum in Tooth #1. SEM showed that the occlusal cementum connected directly with enamel. Calcium mapping revealed an almost similar occlusal cementum and enamel. In addition, the spectrum of elements in coronal cementum resembled the primary cementum according to SEM-EDS. Discussion: Thus, coronal cementogenesis in impacted human teeth might be related to the existence of reduced enamel epithelium.
en-copyright=
kn-copyright=
en-aut-name=HorieNaohiro
en-aut-sei=Horie
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataMasaru
en-aut-sei=Murata
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinamidaYasuhito
en-aut-sei=Minamida
en-aut-mei=Yasuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagayasuHiroki
en-aut-sei=Nagayasu
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimoTsuyoshi
en-aut-sei=Shimo
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkazawaToshiyuki
en-aut-sei=Akazawa
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujigiwaHidetsugu
en-aut-sei=Tsujigiwa
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaikelYoussef
en-aut-sei=Haikel
en-aut-mei=Youssef
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=2
en-affil=Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=3
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=4
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=5
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=6
en-affil=Industrial Technology and Environment Research Development, Hokkaido Research Organization
kn-affil=
affil-num=7
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=8
en-affil=Department of Biomaterials and Bioengineering, Institut National de la Sant? et de la Recherche m?dicale Unit? Mixte de Recherche (INSERM UMR) _S 1121, University of Strasbourg
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=coronal cementum
kn-keyword=coronal cementum
en-keyword=human
kn-keyword=human
en-keyword=reduced epithelium
kn-keyword=reduced epithelium
en-keyword=impacted tooth
kn-keyword=impacted tooth
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=391
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trend of Digital Biomarkers (dBM) as Endpoints in Clinical Trials: Secondary Analysis of Open Data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study examined clinical trial trends to guide digital biomarker (dBM) guideline development. Analysis of 2005?2023 data was conducted to assess the frequency and types of dBM used as endpoints (dEP) in these trials and the associated target diseases. Clinical trials using dEP increased from 0?7 per year (2005?2019) to 15?20 annually from 2020. Endocrine and metabolic conditions were the most common targets, showing a distinct disease distribution compared to overall trials. Most measurements used actigraphy devices or blood glucose sensors, with glucose sensors focusing on metabolic conditions while actigraphy covered broader applications. Additionally, 42.4% of trials used dEP as primary endpoints. While dEP use is growing, it remains limited in disease scope and device variety. Expanding both would enhance their utility in clinical research.
en-copyright=
kn-copyright=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonjohMina
en-aut-sei=Honjoh
en-aut-mei=Mina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Clinical endpoint,
kn-keyword=Clinical endpoint,
en-keyword=clinical outcomes
kn-keyword=clinical outcomes
en-keyword=wearable devices
kn-keyword=wearable devices
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e06765
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250731
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Droplet Transportation on Janus Harp Wires for Enhanced Fog Harvesting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ensuring freshwater resources is a vital issue for human beings worldwide. Fog harvesting is one promising way to provide water from unconventional sources. However, clogging by the captured liquid depresses the fog harvesting performance. Here, a harp-shaped Janus harvesting system, which has thin wires with a superhydrophobic side facing the fog stream and a superhydrophilic back side to transport the droplets, is used to yield simultaneous fog capturing and water transport abilities. Attached droplets on the Janus wire transported along the periphery avoided clogging and enhanced the performance. The Janus system thus suppressed the increase and fluctuations of actual shade coefficients, which indicated blockage of the fog stream. This optimized the design of the harvester. Experiments using a multilayered Janus harvester demonstrated a significant enhancement compared with that constructed with mono-wettability wires. Overall, the results indicated the promise of droplet transportation on single wires for improving fog harvesting, as well as for other applications such as oil mist recovery and demulsification.
en-copyright=
kn-copyright=
en-aut-name=YamadaYutaka
en-aut-sei=Yamada
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaTaku
en-aut-sei=Ishikawa
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsobeKazuma
en-aut-sei=Isobe
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoribeAkihiko
en-aut-sei=Horibe
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=droplet transport
kn-keyword=droplet transport
en-keyword=fog harvesting
kn-keyword=fog harvesting
en-keyword=janus wire
kn-keyword=janus wire
en-keyword=wettability difference
kn-keyword=wettability difference
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=32
article-no=
start-page=e2501933122
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250805
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions?a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues?K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12?creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species.
en-copyright=
kn-copyright=
en-aut-name=Nguyen ThaoTran
en-aut-sei=Nguyen Thao
en-aut-mei=Tran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UranoRyo
en-aut-sei=Urano
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangPeitong
en-aut-sei=Wang
en-aut-mei=Peitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShinodaWataru
en-aut-sei=Shinoda
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=10
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=aluminum resistance
kn-keyword=aluminum resistance
en-keyword=membrane protein structure
kn-keyword=membrane protein structure
en-keyword=citrate transporter
kn-keyword=citrate transporter
en-keyword=MATE transporter
kn-keyword=MATE transporter
END
start-ver=1.4
cd-journal=joma
no-vol=90
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the phylogenetic relationships among <i>Alpinia</i> species native to the Nansei Islands, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Alpinia species (A. intermedia, A. zerumbet, A. formosana, A. uraiensis, and unidentified strains native to the Daito Islands), which are native to the Nansei Islands, Japan are ornamental plants that can be used as resources to produce seasonings and antibacterial and antiviral substances. Despite the usefulness of these plants, little scientific research has been conducted on their phylogenetic relationships. In this study, their phylogenetic relationships were examined based on genomic and chloroplast DNA polymorphisms, repetitive sequence abundance, and cytogenetic perspectives. The results indicated that A. formosana is most likely the outcome of a hybrid of A. zerumbet and A. intermedia, and the unidentified strains native to the Daito Islands are the outcomes of a hybrid of A. zerumbet and A. uraiensis. Immunostaining with a newly produced anti-centromere-specific histone H3 (CENH3) antibody revealed that the number of chromosomes in these species was 2n=48.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NarusakaMari
en-aut-sei=Narusaka
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NarusakaYoshihiro
en-aut-sei=Narusaka
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
affil-num=3
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
en-keyword=Alpinia
kn-keyword=Alpinia
en-keyword=Nansei Islands
kn-keyword=Nansei Islands
en-keyword=Chromosome number
kn-keyword=Chromosome number
en-keyword=CENH3 (centromere-specific histone H3)
kn-keyword=CENH3 (centromere-specific histone H3)
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=12
article-no=
start-page=e202402802
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90?92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
en-copyright=
kn-copyright=
en-aut-name=TekAhmet L
en-aut-sei=Tek
en-aut-mei=Ahmet L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Y?ld?z Akkam??H?meyra
en-aut-sei=Y?ld?z Akkam??
en-aut-mei=H?meyra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=8
article-no=
start-page=522
end-page=532
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6?305??M, MIC: 0.5?128??g?ml?1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTeruhiko
en-aut-sei=Ishikawa
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiYoko
en-aut-sei=Eguchi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgarashiMasayuki
en-aut-sei=Igarashi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkajimaToshihide
en-aut-sei=Okajima
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitaKohei
en-aut-sei=Mita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYuri
en-aut-sei=Yamasaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumikuraKaho
en-aut-sei=Sumikura
en-aut-mei=Kaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkumuraTaisei
en-aut-sei=Okumura
en-aut-mei=Taisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabuchiYuna
en-aut-sei=Tabuchi
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiChigusa
en-aut-sei=Hayashi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PasquaMartina
en-aut-sei=Pasqua
en-aut-mei=Martina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ColucciaMarco
en-aut-sei=Coluccia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ProssedaGianni
en-aut-sei=Prosseda
en-aut-mei=Gianni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ColonnaBianca
en-aut-sei=Colonna
en-aut-mei=Bianca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KohayakawaChie
en-aut-sei=Kohayakawa
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TaniAkiyoshi
en-aut-sei=Tani
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HarutaJun-ichi
en-aut-sei=Haruta
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=UtsumiRyutaro
en-aut-sei=Utsumi
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University
kn-affil=
affil-num=3
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=4
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=11
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=12
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=13
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=14
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=15
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=16
en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=17
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=18
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tailoring Mechanical Properties and Ionic Conductivity of Poly(ionic liquid)-Based Ion Gels by Tuning Anion Compositions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Poly(ionic liquid) (PIL)-based ion gels have emerged as promising materials for advanced electrochemical applications because of their excellent miscibility with ionic liquids (IL), tunable mechanical properties, and high ionic conductivity. Despite extensive studies on PIL-based ion gels, a comprehensive understanding of how different anion combinations in the system affect physicochemical properties is lacking. In this study, we systematically investigate the effect of different anion species, such as bis(trifluoromethanesulfonyl)imide (TFSI) and hexafluorophosphate (PF6), on the mechanical, viscoelastic, and ion conductive behaviors of PIL-based ion gels. We investigate the interplay between anion size, packing density, and polymer segmental dynamics by varying the anion composition in both the PIL network and IL component. Rheological analysis and uniaxial tensile testing results indicate that PF6-containing ion gels exhibit enhanced higher Young’s modulus because of their restricted chain mobility resulting in higher glass transition temperature (Tg). In addition, we confirm the anion exchange between PIL and IL during gel preparation and find that the mechanical and ion conductive properties of the gels are governed by the total molar ratio of anions in the gels. Our findings highlight that tuning the anion composition in PIL-based ion gels provides an effective strategy to tailor their performance, with potential applications for flexible electronics and solid-state electrochemical devices.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTakaichi
en-aut-sei=Watanabe
en-aut-mei=Takaichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MizutaniYuna
en-aut-sei=Mizutani
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LopezCarlos G.
en-aut-sei=Lopez
en-aut-mei=Carlos G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnoTsutomu
en-aut-sei=Ono
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Material Science and Engineering Department, The Pennsylvania State University, 80 Pollock Road, State College
kn-affil=
affil-num=4
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=poly(ionic liquid)
kn-keyword=poly(ionic liquid)
en-keyword=anion exchange
kn-keyword=anion exchange
en-keyword=gel
kn-keyword=gel
en-keyword=conductivity
kn-keyword=conductivity
en-keyword=toughness
kn-keyword=toughness
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrostatically‐Driven Collapse of Polyelectrolytes: The?Role of the Solvent's Dielectric Constant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced
polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of ε ? 12 ? 180 is investigated. For high and intermediate ε media, typical polyelectrolyte behavior is observed: the correlation length (ξ) scales with concentration (c) as ξ ? c?1?2, as predicted by various theories. When the dielectric constant of the solvent decreases below ? 22, a scaling of ξ ? c?1?3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions.
en-copyright=
kn-copyright=
en-aut-name=GulatiAnish
en-aut-sei=Gulati
en-aut-mei=Anish
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MengLingzi
en-aut-sei=Meng
en-aut-mei=Lingzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeTakaichi
en-aut-sei=Watanabe
en-aut-mei=Takaichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LopezCarlos G.
en-aut-sei=Lopez
en-aut-mei=Carlos G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Physical Chemistry, RWTH Aachen University
kn-affil=
affil-num=2
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
en-keyword=counterion
kn-keyword=counterion
en-keyword=dipole
kn-keyword=dipole
en-keyword=polyelectrolyte
kn-keyword=polyelectrolyte
en-keyword=SANS
kn-keyword=SANS
en-keyword=SAXS
kn-keyword=SAXS
en-keyword=scattering
kn-keyword=scattering
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=9
article-no=
start-page=e70105
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ultrahigh‐Field MR‐Compatible Mechanical Tactile Stimulator for Investigating Somatosensory Processing in Small‐Bodied Animals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Common marmosets (Callithrix jacchus), small-bodied New World primates that share similar sensory processing pathways with human beings, have gained great interests. Their small body size allows imaging of brain activity with high spatial resolution and on a whole-brain scale using ultrahigh-field (UHF) magnetic resonance imaging (MRI) scanners. However, the strong magnetic field and the small size of the hand and forearm pose challenges in delivering tactile stimulation during fMRI experiments. In the present study, we developed an MR-compatible tactile dual-point stimulator to provide high-precision mechanical stimulation for exploring somatosensory processing in small-bodied animals. The study population consisted of a water phantom and three male common marmosets. Cerebral blood volume (CBV) weighted fMRI data were obtained with a gradient echo (GE), echo-planar imaging (EPI) sequence at 7T scanner. The output performance of the device was tested by a pressure sensor. The MR compatibility of the device was verified by measuring the temporal signal-to-noise ratio (tSNR) of a water phantom. To test the effectiveness of tactile stimulation, we conducted block designed tactile stimulation experiments on marmosets. A one-way repeated measures ANOVA was conducted for comparing the tSNR results. We performed one-sample t-tests to investigate the negative response of the forearm and hand stimulation with a threshold of t > 1.96 (p < 0.05). Performance tests revealed that mechanical stimulation (averaged force: 31.69?g) was applied with a delay of 12?ms. Phantom experiments confirmed that there was no significant difference in the tSNR among three (10?Hz, 1?Hz, and no-stimulus) conditions (F (2, 798) = 0.71, p = 0.49). The CBV activity results showed that the stimulator successfully elicited hand and forearm somatosensory activations in primary somatosensory areas. These results indicated that the device is well suited for small-bodied animal somatosensory studies.
en-copyright=
kn-copyright=
en-aut-name=WangChenyu
en-aut-sei=Wang
en-aut-mei=Chenyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImaiHirohiko
en-aut-sei=Imai
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukunagaMasaki
en-aut-sei=Fukunaga
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoHiroki
en-aut-sei=Yamamoto
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekiKazuhiko
en-aut-sei=Seki
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HanakawaTakashi
en-aut-sei=Hanakawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmedaTatsuya
en-aut-sei=Umeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Innovation Research Center for Quantum Medicine, Gifu University School of Medicine
kn-affil=
affil-num=3
en-affil=Section of Brain Function Information, National Institute for Physiological Sciences
kn-affil=
affil-num=4
en-affil=Graduate School of Human and Environmental Studies, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurophysiology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=7
en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=primary somatosensory cortex
kn-keyword=primary somatosensory cortex
en-keyword=small-bodied animals
kn-keyword=small-bodied animals
en-keyword=tactile stimulation device
kn-keyword=tactile stimulation device
en-keyword=ultrahigh-field magnetic resonance imaging
kn-keyword=ultrahigh-field magnetic resonance imaging
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=6155
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia?resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric?differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SpirrettFiona
en-aut-sei=Spirrett
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiriharaSoshu
en-aut-sei=Kirihara
en-aut-mei=Soshu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=3
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuven
kn-affil=
affil-num=7
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
en-keyword=additive manufacturing
kn-keyword=additive manufacturing
en-keyword=subtractive manufacturing
kn-keyword=subtractive manufacturing
en-keyword=dental prosthesis
kn-keyword=dental prosthesis
en-keyword=ceramic prosthesis
kn-keyword=ceramic prosthesis
en-keyword=zirconia laminates
kn-keyword=zirconia laminates
en-keyword=stereolithography
kn-keyword=stereolithography
en-keyword=thermogravimetry?differential thermal analysis
kn-keyword=thermogravimetry?differential thermal analysis
en-keyword=X-ray diffraction
kn-keyword=X-ray diffraction
en-keyword=scanning electron microscopy
kn-keyword=scanning electron microscopy
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=2
article-no=
start-page=395
end-page=412.e6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
en-copyright=
kn-copyright=
en-aut-name=YaoNa
en-aut-sei=Yao
en-aut-mei=Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinouchiKenichiro
en-aut-sei=Kinouchi
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshtianiKousha Changizi
en-aut-sei=Ashtiani
en-aut-mei=Kousha Changizi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbdelkarimSherif
en-aut-sei=Abdelkarim
en-aut-mei=Sherif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoHiroyuki
en-aut-sei=Morimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TorimitsuTakuto
en-aut-sei=Torimitsu
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KozumaTakahide
en-aut-sei=Kozuma
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwaharaAkihide
en-aut-sei=Iwahara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KosugiShotaro
en-aut-sei=Kosugi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKyosuke
en-aut-sei=Kato
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TonomuraShun
en-aut-sei=Tonomura
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraToshifumi
en-aut-sei=Nakamura
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItohArata
en-aut-sei=Itoh
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaguchiShintaro
en-aut-sei=Yamaguchi
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshinoJun
en-aut-sei=Yoshino
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrieJunichiro
en-aut-sei=Irie
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=SatohAkiko
en-aut-sei=Satoh
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MikamiYohei
en-aut-sei=Mikami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UchidaShusaku
en-aut-sei=Uchida
en-aut-mei=Shusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UekiTakatoshi
en-aut-sei=Ueki
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=BaldiPierre
en-aut-sei=Baldi
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiKaori
en-aut-sei=Hayashi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ItohHiroshi
en-aut-sei=Itoh
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=5
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=6
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=7
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=21
en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University
kn-affil=
affil-num=22
en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=24
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=25
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=26
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=27
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=28
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
en-keyword=circadian rhythm
kn-keyword=circadian rhythm
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=circadian clock
kn-keyword=circadian clock
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=developmental origins of health and disease
kn-keyword=developmental origins of health and disease
en-keyword=obesity
kn-keyword=obesity
en-keyword=leptin
kn-keyword=leptin
en-keyword=time-restricted feeding
kn-keyword=time-restricted feeding
en-keyword=caloric restriction
kn-keyword=caloric restriction
en-keyword=eating behavior
kn-keyword=eating behavior
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses.
en-copyright=
kn-copyright=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BallingerMatthew J.
en-aut-sei=Ballinger
en-aut-mei=Matthew J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BaoYiming
en-aut-sei=Bao
en-aut-mei=Yiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BlasdellKim R.
en-aut-sei=Blasdell
en-aut-mei=Kim R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BrieseThomas
en-aut-sei=Briese
en-aut-mei=Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrignoneJulia
en-aut-sei=Brignone
en-aut-mei=Julia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CarreraJean Paul
en-aut-sei=Carrera
en-aut-mei=Jean Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=De ConinckLander
en-aut-sei=De Coninck
en-aut-mei=Lander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=de SouzaWilliam Marciel
en-aut-sei=de Souza
en-aut-mei=William Marciel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=D?rrwaldRalf
en-aut-sei=D?rrwald
en-aut-mei=Ralf
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ErdinMert
en-aut-sei=Erdin
en-aut-mei=Mert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FooksAnthony R.
en-aut-sei=Fooks
en-aut-mei=Anthony R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ForbesKristian M.
en-aut-sei=Forbes
en-aut-mei=Kristian M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Freitas-Ast?aJuliana
en-aut-sei=Freitas-Ast?a
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=GarciaJorge B.
en-aut-sei=Garcia
en-aut-mei=Jorge B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GeogheganJemma L.
en-aut-sei=Geoghegan
en-aut-mei=Jemma L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GrimwoodRebecca M.
en-aut-sei=Grimwood
en-aut-mei=Rebecca M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HorieMasayuki
en-aut-sei=Horie
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HyndmanTimothy H.
en-aut-sei=Hyndman
en-aut-mei=Timothy H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohneReimar
en-aut-sei=Johne
en-aut-mei=Reimar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KlenaJohn D.
en-aut-sei=Klena
en-aut-mei=John D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KooninEugene V.
en-aut-sei=Koonin
en-aut-mei=Eugene V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KostygovAlexei Y.
en-aut-sei=Kostygov
en-aut-mei=Alexei Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=LetkoMichael
en-aut-sei=Letko
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LiJun-Min
en-aut-sei=Li
en-aut-mei=Jun-Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=LiuYiyun
en-aut-sei=Liu
en-aut-mei=Yiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=MartinMaria Laura
en-aut-sei=Martin
en-aut-mei=Maria Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MullNathaniel
en-aut-sei=Mull
en-aut-mei=Nathaniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NazarYael
en-aut-sei=Nazar
en-aut-mei=Yael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=NowotnyNorbert
en-aut-sei=Nowotny
en-aut-mei=Norbert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NunesM?rcio Roberto Teixeira
en-aut-sei=Nunes
en-aut-mei=M?rcio Roberto Teixeira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=?klandArnfinn Lodden
en-aut-sei=?kland
en-aut-mei=Arnfinn Lodden
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=RubbenstrothDennis
en-aut-sei=Rubbenstroth
en-aut-mei=Dennis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=RussellBrandy J.
en-aut-sei=Russell
en-aut-mei=Brandy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=SchottEric
en-aut-sei=Schott
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SeifertStephanie
en-aut-sei=Seifert
en-aut-mei=Stephanie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SenCarina
en-aut-sei=Sen
en-aut-mei=Carina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ShedroffElizabeth
en-aut-sei=Shedroff
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=SironenTarja
en-aut-sei=Sironen
en-aut-mei=Tarja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=SmuraTeemu
en-aut-sei=Smura
en-aut-mei=Teemu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=TavaresCamila Prestes Dos Santos
en-aut-sei=Tavares
en-aut-mei=Camila Prestes Dos Santos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=TeshRobert B.
en-aut-sei=Tesh
en-aut-mei=Robert B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=TilstonNatasha L.
en-aut-sei=Tilston
en-aut-mei=Natasha L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=TordoNo?l
en-aut-sei=Tordo
en-aut-mei=No?l
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=VasilakisNikos
en-aut-sei=Vasilakis
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WangFei
en-aut-sei=Wang
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=WhitmerShannon L.M.
en-aut-sei=Whitmer
en-aut-mei=Shannon L.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=WolfYuri I.
en-aut-sei=Wolf
en-aut-mei=Yuri I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=XiaHan
en-aut-sei=Xia
en-aut-mei=Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=YeGong-Yin
en-aut-sei=Ye
en-aut-mei=Gong-Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=YeZhuangxin
en-aut-sei=Ye
en-aut-mei=Zhuangxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=YurchenkoVyacheslav
en-aut-sei=Yurchenko
en-aut-mei=Vyacheslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=ZhaoMingli
en-aut-sei=Zhao
en-aut-mei=Mingli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
affil-num=1
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=2
en-affil=Biological Sciences, Mississippi State University
kn-affil=
affil-num=3
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=5
en-affil=CSIRO Health and Biosecurity
kn-affil=
affil-num=6
en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University
kn-affil=
affil-num=7
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=8
en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud
kn-affil=
affil-num=9
en-affil=Division of Clinical and Epidemiological Virology, KU Leuven
kn-affil=
affil-num=10
en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
kn-affil=
affil-num=11
en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=12
en-affil=QAAFI, The University of Queensland
kn-affil=
affil-num=13
en-affil=Robert Koch Institut
kn-affil=
affil-num=14
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=15
en-affil=Animal and Plant Health Agency (APHA)
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, University of Arkansas
kn-affil=
affil-num=17
en-affil=Embrapa Cassava and Fruits
kn-affil=
affil-num=18
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=19
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=20
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=21
en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University
kn-affil=
affil-num=22
en-affil=School of Veterinary Medicine, Murdoch University
kn-affil=
affil-num=23
en-affil=German Federal Institute for Risk Assessment
kn-affil=
affil-num=24
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=25
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=26
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=27
en-affil=University of Ostrava
kn-affil=
affil-num=28
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=29
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=30
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=31
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=32
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=33
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=34
en-affil=Department of Natural Sciences, Shawnee State University
kn-affil=
affil-num=35
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=36
en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health
kn-affil=
affil-num=37
en-affil=Universidade Federal do Par?
kn-affil=
affil-num=38
en-affil=Pharmaq Analytiq
kn-affil=
affil-num=39
en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut
kn-affil=
affil-num=40
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=41
en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science
kn-affil=
affil-num=42
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=43
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=44
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=45
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=46
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=47
en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran?
kn-affil=
affil-num=48
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=49
en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine
kn-affil=
affil-num=50
en-affil=Institut Pasteur
kn-affil=
affil-num=51
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=52
en-affil=University of Queensland
kn-affil=
affil-num=53
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=54
en-affil=North Carolina State University
kn-affil=
affil-num=55
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=56
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=57
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=58
en-affil=Institute of Insect Sciences, Zhejiang University
kn-affil=
affil-num=59
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=60
en-affil=University of Ostrava
kn-affil=
affil-num=61
en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-Iba?ezJos? T.
en-aut-sei=Ascencio-Iba?ez
en-aut-mei=Jos? T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=Hafr?nAnders
en-aut-sei=Hafr?n
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasi?w-JaroszewskaBeata
en-aut-sei=Hasi?w-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=Hern?ndezCarmen
en-aut-sei=Hern?ndez
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=L?pez-LambertiniPaola M.
en-aut-sei=L?pez-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=M?kinenKristiina
en-aut-sei=M?kinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJes?s
en-aut-sei=Navas-Castillo
en-aut-mei=Jes?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=Pall?sVicente
en-aut-sei=Pall?s
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-Gonz?lezPedro L.
en-aut-sei=Ramos-Gonz?lez
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-P?ggelerKatja R.
en-aut-sei=Richert-P?ggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=?af??ov?Dana
en-aut-sei=?af??ov?
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=Sanfa?onH?l?ne
en-aut-sei=Sanfa?on
en-aut-mei=H?l?ne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=S?meraMerike
en-aut-sei=S?mera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRen? A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=Ren? A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Fran?ais de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortali?as
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Gen?ticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=9
article-no=
start-page=2604
end-page=2611
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA?PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
en-copyright=
kn-copyright=
en-aut-name=SchorrKathrin
en-aut-sei=Schorr
en-aut-mei=Kathrin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LangJohannes
en-aut-sei=Lang
en-aut-mei=Johannes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GoepferichAchim
en-aut-sei=Goepferich
en-aut-mei=Achim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=2
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital W?rzburg
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
en-keyword=polymer nanoparticles
kn-keyword=polymer nanoparticles
en-keyword=direct 99mTc-labeling
kn-keyword=direct 99mTc-labeling
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
en-keyword=radio-thin layer chromatography
kn-keyword=radio-thin layer chromatography
en-keyword=radiocolloids
kn-keyword=radiocolloids
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=4984
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=cardiomyopathy
kn-keyword=cardiomyopathy
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative therapy
kn-keyword=regenerative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=13
article-no=
start-page=7238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH.
en-copyright=
kn-copyright=
en-aut-name=LeeYoung-Hyeon
en-aut-sei=Lee
en-aut-mei=Young-Hyeon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeoMin-Ho
en-aut-sei=Yeo
en-aut-mei=Min-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoonWeon-Jong
en-aut-sei=Yoon
en-aut-mei=Weon-Jong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJongwan
en-aut-sei=Kim
en-aut-mei=Jongwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHye-Ran
en-aut-sei=Kim
en-aut-mei=Hye-Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=3
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=4
en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)
kn-affil=
affil-num=5
en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anatomy, College of Medicine, Dongguk University
kn-affil=
affil-num=7
en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology
kn-affil=
en-keyword=metabolic dysfunction-associated steatohepatitis
kn-keyword=metabolic dysfunction-associated steatohepatitis
en-keyword=Distylium racemosum
kn-keyword=Distylium racemosum
en-keyword=ethyl acetate fraction
kn-keyword=ethyl acetate fraction
en-keyword=extract
kn-keyword=extract
END
start-ver=1.4
cd-journal=joma
no-vol=144-145
cd-vols=
no-issue=
article-no=
start-page=109001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the fate of Zirconium-89 labelled antibody in cynomolgus macaques
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Preclinical pharmacokinetic studies of therapeutic antibodies in non-human primates are desired because of the difficulty in extrapolating ADME data from animal models to humans. We evaluated the pharmacokinetics of 89Zr (Zirconium-89) -labelled anti-KLH human IgG and its metabolites to confirm their non-specific/physiological accumulation in healthy cynomolgus macaques. The anti-KLH antibody was used as a negative control, ensuring that the observed distribution reflected general IgG behavior rather than antigen-specific accumulation. This provides a valuable reference for comparing the biodistribution of targeted antibodies.
Methods: Selected IgG was conjugated to desferrioxamine (DFO), labelled with 89Zr, and injected into healthy cynomolgus macaques. PET/CT images at the whole-body level were acquired at different time points, and standard uptake values (SUV) in regions of interest, such as the heart, liver, spleen, kidneys, bone, and muscles, were calculated. The distribution of a shortened antibody variant, 89Zr-labelled Fab, as well as that of [89Zr]Zr-DFO and [89Zr]Zr-oxalate, the expected metabolites of 89Zr- labelled IgG, was also assessed.
Results: After 89Zr-labelled IgG injection, the SUV in the heart, vertebral body, and muscle decreased, in line with the 89Zr concentration decrease in the circulation, whereas radioactivity increased over time in the kidneys and liver. Autoradiography of the renal sections indicated that most of the 89Zr- labelled IgG radioactivity accumulated in the renal cortex. Relatively high accumulation in the kidneys was also observed in 89Zr- labelled Fab-injected macaques, and renal autoradiographs of these animals showed that the renal cortex was the preferred accumulation site. However, [89Zr]Zr-DFO was rapidly excreted into the urine, whereas [89Zr]Zr-oxalate was highly accumulated in the epiphysis of the long bones and vertebral body.
Conclusion: In the non-human primate cynomolgus macaque, 89Zr- labelled IgG accumulated in the kidneys and the liver. However, [89Zr]Zr-DFO and 89Zr did not accumulate in these organs. This preclinical pharmacokinetic study performed with human IgG in a non-human primate model using PET is of great significance as it sheds light on the basic fate and distribution of 89Zr- labelled IgG.
en-copyright=
kn-copyright=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraSadaaki
en-aut-sei=Kimura
en-aut-mei=Sadaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NodaAkihiro
en-aut-sei=Noda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiYoshihiro
en-aut-sei=Murakami
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiSosuke
en-aut-sei=Miyoshi
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=3
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=4
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=5
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=PET imaging
kn-keyword=PET imaging
en-keyword=Zirconium-89
kn-keyword=Zirconium-89
en-keyword=Therapeutic antibodies
kn-keyword=Therapeutic antibodies
en-keyword=Non-human primates
kn-keyword=Non-human primates
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=9
article-no=
start-page=1203
end-page=1205
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Technique for Implanting the Second Valve Accompanied by Simultaneous Snorkel Stenting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TodaHironobu
en-aut-sei=Toda
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UekiYuta
en-aut-sei=Ueki
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaraShohei
en-aut-sei=Hara
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=sinus sequestration
kn-keyword=sinus sequestration
en-keyword=snorkel stenting
kn-keyword=snorkel stenting
en-keyword=structural valve deterioration
kn-keyword=structural valve deterioration
en-keyword=TAVR-in-TAVR
kn-keyword=TAVR-in-TAVR
en-keyword=transvalvular leakage
kn-keyword=transvalvular leakage
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=14
article-no=
start-page=e2024GL114146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Small-scale scatterers observed in the mid-lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)-bearing stishovite with four compositions at simultaneously high P-T conditions combining Raman spectroscopy and X-ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ?1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2?12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum-Pacific region. These results deepen our understanding on the complex features of mid-lower mantle seismic scatterers and corresponding dynamic processes.
en-copyright=
kn-copyright=
en-aut-name=YuYingxin
en-aut-sei=Yu
en-aut-mei=Yingxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangYouyue
en-aut-sei=Zhang
en-aut-mei=Youyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiLuo
en-aut-sei=Li
en-aut-mei=Luo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhangXinyue
en-aut-sei=Zhang
en-aut-mei=Xinyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangDenglei
en-aut-sei=Wang
en-aut-mei=Denglei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaoZhu
en-aut-sei=Mao
en-aut-mei=Zhu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SunNingyu
en-aut-sei=Sun
en-aut-mei=Ningyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangYanyao
en-aut-sei=Zhang
en-aut-mei=Yanyao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiXinyang
en-aut-sei=Li
en-aut-mei=Xinyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LiWancai
en-aut-sei=Li
en-aut-mei=Wancai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SpezialeSergio
en-aut-sei=Speziale
en-aut-mei=Sergio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhangDongzhou
en-aut-sei=Zhang
en-aut-mei=Dongzhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LinJung‐Fu
en-aut-sei=Lin
en-aut-mei=Jung‐Fu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YoshinoTakashi
en-aut-sei=Yoshino
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=4
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=5
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=6
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=7
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=8
en-affil=Earth and Planetary Sciences, Stanford University
kn-affil=
affil-num=9
en-affil=State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University
kn-affil=
affil-num=10
en-affil=CAS Key Laboratory of Crust‐Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=11
en-affil=GFZ German Research Centre for Geosciences
kn-affil=
affil-num=12
en-affil=GeoSoilEnviroCARS, University of Chicago
kn-affil=
affil-num=13
en-affil=Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin
kn-affil=
affil-num=14
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=(Al, H)-bearing stishovite
kn-keyword=(Al, H)-bearing stishovite
en-keyword=phase transition
kn-keyword=phase transition
en-keyword=mid-lower mantle
kn-keyword=mid-lower mantle
en-keyword=small-scale seismic scatterers
kn-keyword=small-scale seismic scatterers
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=5
article-no=
start-page=686
end-page=689
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=L or M1?Critical Challenges in Mediation Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methods for causal mediation analysis have developed dramatically over the past few decades.1?7 In the causal mediation literature, several causal quantities?or estimands?have been proposed, including natural direct and indirect effects, interventional direct and indirect effects, and separable direct and indirect effects. As another possible causal estimand, Chen and Lin8 proposed separable path-specific effects, which is an extension of the separable effects framework to cases that involve multiple ordered mediators. In this commentary, I briefly discuss the newly proposed method from a broader perspective on causal mediation analysis. For readers less familiar with common causal mediation approaches, please see related literature.1?3,9?11
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=3
article-no=
start-page=104810
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99°C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field.
en-copyright=
kn-copyright=
en-aut-name=TakanoAruto
en-aut-sei=Takano
en-aut-mei=Aruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmaliDennis V.
en-aut-sei=Umali
en-aut-mei=Dennis V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WardhanaApril H.
en-aut-sei=Wardhana
en-aut-mei=April H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SawitriDyah H.
en-aut-sei=Sawitri
en-aut-mei=Dyah H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TeramotoIsao
en-aut-sei=Teramoto
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HatabuToshimitsu
en-aut-sei=Hatabu
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KidoYasutoshi
en-aut-sei=Kido
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoAkira
en-aut-sei=Kaneko
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SasaiKazumi
en-aut-sei=Sasai
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatohHiromitsu
en-aut-sei=Katoh
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsubayashiMakoto
en-aut-sei=Matsubayashi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Ba?os, College
kn-affil=
affil-num=3
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=4
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=5
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=10
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=11
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
en-keyword=Coccidian parasite
kn-keyword=Coccidian parasite
en-keyword=Eimeria tenella
kn-keyword=Eimeria tenella
en-keyword=Extraction
kn-keyword=Extraction
en-keyword=Molecular identification
kn-keyword=Molecular identification
en-keyword=Oocyst
kn-keyword=Oocyst
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie ? CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJos? L.
en-aut-sei=Jorcano
en-aut-mei=Jos? L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Mart?nCristina
en-aut-sei=Mart?n
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrochemical Generation of Sulfonamidyl Radicals via Anodic Oxidation of Hydrogen Bonding Complexes: Applications to Electrosynthesis of Benzosultams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amidyl radicals and sulfonamidyl radicals are widely used in the field of organic synthesis. In particular, the electrochemical oxidation of amides in the presence of bases is one of the most practical methods for generating amidyl radicals. However, it is often difficult to observe the “true” radical precursor, such as an amide anion and/or a hydrogen bonding complex with an amide and a base. We found that a sulfonamide and Bu4NOAc form a 1:1 hydrogen bonding complex by spectroscopic experiments. Cyclic voltammetry suggested that 1:1 hydrogen bonding complexes should be oxidized predominantly under the optimized conditions to afford a sulfonamidyl radical via the proton-coupled electron transfer (PCET) process by the oxidation of the complex. Thus-generated sulfonamidyl radicals could be used in the electrochemical synthesis of a variety of benzosultams.
en-copyright=
kn-copyright=
en-aut-name=OkumuraYasuyuki
en-aut-sei=Okumura
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=electrochemical generation
kn-keyword=electrochemical generation
en-keyword=sulfonamidyl radicals
kn-keyword=sulfonamidyl radicals
en-keyword=hydrogen bonding complexes
kn-keyword=hydrogen bonding complexes
en-keyword=anodic oxidation
kn-keyword=anodic oxidation
en-keyword=proton-coupled electron transfer
kn-keyword=proton-coupled electron transfer
en-keyword=electrosynthesis
kn-keyword=electrosynthesis
en-keyword=benzosultams
kn-keyword=benzosultams
en-keyword=cyclization
kn-keyword=cyclization
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=11
article-no=
start-page=uhae248
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies.
en-copyright=
kn-copyright=
en-aut-name=NagasakaKyoka
en-aut-sei=Nagasaka
en-aut-mei=Kyoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamagataKeigo
en-aut-sei=Yamagata
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaSoichiro
en-aut-sei=Nishiyama
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaneHisayo
en-aut-sei=Yamane
en-aut-mei=Hisayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaoRyutaro
en-aut-sei=Tao
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoRyohei
en-aut-sei=Nakano
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakazakiTetsuya
en-aut-sei=Nakazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=9
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25?cm; inner diameter, 9?cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7?cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=34
article-no=
start-page=36114
end-page=36121
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Engineering Zeolitic-Imidazolate-Framework-Derived Mo-Doped Cobalt Phosphide for Efficient OER Catalysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Designing a cheap, competent, and durable catalyst for the oxygen evolution reaction (OER) is exceedingly necessary for generating oxygen through a water-splitting reaction. In this project, we have designed a ZIF-67-originated molybdenum-doped cobalt phosphide (CoP) using a simplistic dissolution?regrowth method using Na2MoO4 and a subsequent phosphidation process. This leads to the formation of an exceptional hollow nanocage morphology that is useful for enhanced catalytic activity. Metal?organic frameworks, especially ZIF-67, can be used both as a template and as a metal (cobalt) precursor. Molybdenum-doped CoP was fabricated through a two-step synthesis process, and the fabricated Mo-doped CoP showed excellent catalytic activity during the OER with a lower value of overpotential. Furthermore, the effect of the Mo amount on the catalytic activity has been explored. The best catalyst (CoMoP-2) showed an onset potential of around 1.49 V at 10 mA cm?2 to give rise to a Tafel slope of 62.1 mV dec?1. The improved catalytic activity can be attributed to the increased porosity and surface area of the resultant catalyst.
en-copyright=
kn-copyright=
en-aut-name=RahmanMohammad Atiqur
en-aut-sei=Rahman
en-aut-mei=Mohammad Atiqur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=CaiZe
en-aut-sei=Cai
en-aut-mei=Ze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoushumyZannatul Mumtarin
en-aut-sei=Moushumy
en-aut-mei=Zannatul Mumtarin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TagawaRyuta
en-aut-sei=Tagawa
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HidakaYoshiharu
en-aut-sei=Hidaka
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IslamMd. Saidul
en-aut-sei=Islam
en-aut-mei=Md. Saidul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SekineYoshihiro
en-aut-sei=Sekine
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IdaShintaro
en-aut-sei=Ida
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayamiShinya
en-aut-sei=Hayami
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=6
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University
kn-affil=
affil-num=9
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University
kn-affil=
affil-num=11
en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=120296
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications.
en-copyright=
kn-copyright=
en-aut-name=KimuraRyota
en-aut-sei=Kimura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ferr?-PujolPilar
en-aut-sei=Ferr?-Pujol
en-aut-mei=Pilar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Virus adsorption
kn-keyword=Virus adsorption
en-keyword=Dye adsorption
kn-keyword=Dye adsorption
en-keyword=Cationic polymer composites
kn-keyword=Cationic polymer composites
en-keyword=Adsorbent
kn-keyword=Adsorbent
en-keyword=Aggregation
kn-keyword=Aggregation
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=76
article-no=
start-page=10544
end-page=10547
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions.
en-copyright=
kn-copyright=
en-aut-name=AhmedMd Razu
en-aut-sei=Ahmed
en-aut-mei=Md Razu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AnayaIsrael Ortiz
en-aut-sei=Anaya
en-aut-mei=Israel Ortiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and ??900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was?0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at ? 900 HU had a maximum difference between facilities of?>?5%, and the dose difference corresponding to an LN-300 lung CT value difference of?>?20 HU was?>?1% at a field size of 2?×?2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.
en-copyright=
kn-copyright=
en-aut-name=NomuraMia
en-aut-sei=Nomura
en-aut-mei=Mia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoShunsuke
en-aut-sei=Goto
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaMizuki
en-aut-sei=Yoshioka
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYuiko
en-aut-sei=Kato
en-aut-mei=Yuiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsunodaAyaka
en-aut-sei=Tsunoda
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiokaKunio
en-aut-sei=Nishioka
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Dose calculation
kn-keyword=Dose calculation
en-keyword=Inter-facility variation
kn-keyword=Inter-facility variation
en-keyword=Low-density regions
kn-keyword=Low-density regions
en-keyword=Percentage depth dose
kn-keyword=Percentage depth dose
en-keyword=Radiation therapy planning system
kn-keyword=Radiation therapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=213
end-page=231
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RKPM: Restricted Kernel Page Mechanism to?Mitigate Privilege Escalation Attacks
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Kernel memory corruption attacks against operating systems exploit kernel vulnerabilities to overwrite kernel data. Kernel address space layout randomization makes it difficult to identify kernel data by randomizing their virtual address space. Control flow integrity (CFI) prevents unauthorized kernel code execution by verifying kernel function calls. However, these countermeasures do not prohibit writing to kernel data. If the virtual address of privileged information is specified and CFI is circumvented, the privileged information can be modified by a kernel memory corruption attack. In this paper, we propose a restricted kernel page mechanism (RKPM) to mitigate kernel memory corruption attacks by introducing restricted kernel pages to protect the kernel data specified in the kernel. The RKPM focuses on the fact that kernel memory corruption attacks attempt to read the virtual addresses around the privileged information. The RKPM adopts page table mapping handling and a memory protection key to control the read and write restrictions of the restricted kernel pages. This allows us to mitigate kernel memory corruption attacks by capturing reads to the restricted kernel page before the privileged information is overwritten. As an evaluation of the RKPM, we confirmed that it can mitigate privilege escalation attacks on the latest Linux kernel. We also measured that there was a certain overhead in the kernel performance. This study enhances kernel security by mitigating privilege escalation attacks through the use of software or hardware based restricted kernel pages.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=66
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=kdMonitor: Kernel Data Monitor for Detecting Kernel Memory Corruption
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Privilege escalation attacks through memory corruption via kernel vulnerabilities pose significant threats to operating systems. Although the extended Berkley Packet Filter has been employed to trace kernel code execution by inserting interrupts before and after kernel code invocations, it does not track operations before and after kernel data writes, thus hindering effective kernel data monitoring. In this study, we introduce a kernel data monitor (kdMonitor), which is a novel security mechanism designed to detect unauthorized alterations in the monitored kernel data of a dedicated kernel page. The kdMonitor incorporates two distinct methods. The first is periodic monitoring which regularly outputs the monitored kernel data of the dedicated kernel pages. The second is dynamic monitoring, which restricts write access to a dedicated kernel page, supplements any write operations with page faults, and outputs the monitored kernel data of dedicated kernel pages. kdMonitor enables real-time tracking of specified kernel data of the dedicated kernel page residing in the kernel's virtual memory space from the separated machine. Using kdMonitor, we demonstrated its capability to pinpoint tampering with user process privileged information stemming from privilege escalation attacks on the kernel. Through an empirical evaluation, we validated the effectiveness of kdMonitor in detecting privilege escalation attacks by user processes on Linux. Performance assessments revealed that kdMonitor achieved an attack detection time of 0.83 seconds with an overhead of 0.726 %.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Okayama University,Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vulnerability countermeasure
kn-keyword=Vulnerability countermeasure
en-keyword=Operating system security
kn-keyword=Operating system security
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=222
end-page=234
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=vkTracer: Vulnerable Kernel Code Tracing to?Generate Profile of?Kernel Vulnerability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Vulnerable kernel codes are a threat to an operating system kernel. An adversary’s user process can forcefully invoke a vulnerable kernel code to cause privilege escalation or denial of service (DoS). Although service providers or security operators have to determine the effect of kernel vulnerabilities on their environment to decide the kernel updating, the list of vulnerable kernel codes are not provided from the common vulnerabilities and exposures (CVE) report. It is difficult to identify the vulnerable kernel codes from the exploitation result of the kernel which indicates the account information or the kernel suspension. To identify the details of kernel vulnerabilities, this study proposes a vulnerable kernel code tracer (vkTracer), which employs an alternative viewpoint using proof-of-concept (PoC) code to create a profile of kernel vulnerability. vkTracer traces the user process of the PoC code and the running kernel to hook the invocation of the vulnerable kernel codes. Moreover, vkTracer extracts the whole kernel component’s information using the running and static kernel image and debug section. The evaluation results indicated that vkTracer could trace PoC code executions (e.g., privilege escalation and DoS), identify vulnerable kernel codes, and generate kernel vulnerability profiles. Furthermore, the implementation of vkTracer revealed that the identification overhead ranged from 5.2683 s to 5.2728 s on the PoC codes and the acceptable system call latency was 3.7197 μs.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Kernel vulnerability
kn-keyword=Kernel vulnerability
en-keyword=Dynamic analysis
kn-keyword=Dynamic analysis
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=ncaf080
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy.
en-copyright=
kn-copyright=
en-aut-name=MaedaTakahiko
en-aut-sei=Maeda
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraMakoto
en-aut-sei=Hara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamasakiHiroyuki
en-aut-sei=Yamasaki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaMakoto
en-aut-sei=Nakahara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=902
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250711
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KameyamaTakeru
en-aut-sei=Kameyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=antimicrobial
kn-keyword=antimicrobial
en-keyword=denture liner
kn-keyword=denture liner
en-keyword=cetylpyridiniumchloride
kn-keyword=cetylpyridiniumchloride
en-keyword=drug release
kn-keyword=drug release
en-keyword=drug recharge
kn-keyword=drug recharge
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=5
article-no=
start-page=e70046
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spider mite tetranins elicit different defense responses in different host habitats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant.
en-copyright=
kn-copyright=
en-aut-name=EndoYukiko
en-aut-sei=Endo
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMiku
en-aut-sei=Tanaka
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemuraTakuya
en-aut-sei=Uemura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimuraKaori
en-aut-sei=Tanimura
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DesakiYoshitake
en-aut-sei=Desaki
en-aut-mei=Yoshitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzawaRika
en-aut-sei=Ozawa
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonzanoSara
en-aut-sei=Bonzano
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaffeiMassimo E.
en-aut-sei=Maffei
en-aut-mei=Massimo E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArimuraGen‐ichiro
en-aut-sei=Arimura
en-aut-mei=Gen‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=6
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=8
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=11
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
en-keyword=Cucumis sativus
kn-keyword=Cucumis sativus
en-keyword=elicitor
kn-keyword=elicitor
en-keyword=Phaseolus vulgaris
kn-keyword=Phaseolus vulgaris
en-keyword=spider mite (Tetranychus urticae)
kn-keyword=spider mite (Tetranychus urticae)
en-keyword=tetranin
kn-keyword=tetranin
END
start-ver=1.4
cd-journal=joma
no-vol=637
cd-vols=
no-issue=8046
article-no=
start-page=744
end-page=748
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ‘centrophilic’ retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
en-copyright=
kn-copyright=
en-aut-name=TsukaharaSayuri
en-aut-sei=Tsukahara
en-aut-mei=Sayuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BousiosAlexandros
en-aut-sei=Bousios
en-aut-mei=Alexandros
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Perez-RomanEstela
en-aut-sei=Perez-Roman
en-aut-mei=Estela
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiSota
en-aut-sei=Yamaguchi
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LeduqueBasile
en-aut-sei=Leduque
en-aut-mei=Basile
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoAimi
en-aut-sei=Nakano
en-aut-mei=Aimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaishMatthew
en-aut-sei=Naish
en-aut-mei=Matthew
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OsakabeAkihisa
en-aut-sei=Osakabe
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyodaAtsushi
en-aut-sei=Toyoda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoHidetaka
en-aut-sei=Ito
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EderaAlejandro
en-aut-sei=Edera
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TominagaSayaka
en-aut-sei=Tominaga
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Juliarni
en-aut-sei=Juliarni
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatoKae
en-aut-sei=Kato
en-aut-mei=Kae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OdaShoko
en-aut-sei=Oda
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InagakiSoichi
en-aut-sei=Inagaki
en-aut-mei=Soichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Lorkovi?Zdravko
en-aut-sei=Lorkovi?
en-aut-mei=Zdravko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=BergerFr?d?ric
en-aut-sei=Berger
en-aut-mei=Fr?d?ric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KawabeAkira
en-aut-sei=Kawabe
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=QuadranaLeandro
en-aut-sei=Quadrana
en-aut-mei=Leandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HendersonIan
en-aut-sei=Henderson
en-aut-mei=Ian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakutaniTetsuji
en-aut-sei=Kakutani
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=3
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=4
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=6
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Center for Genetic Resource Information, National Institute of Genetics
kn-affil=
affil-num=10
en-affil=Faculty of Science, Hokkaido University
kn-affil=
affil-num=11
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=12
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Integrated Genetics, National Institute of Genetics
kn-affil=
affil-num=15
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=18
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=19
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=20
en-affil=Faculty of Life Sciences, Kyoto Sangyo University
kn-affil=
affil-num=21
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=22
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=23
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=118030
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
en-copyright=
kn-copyright=
en-aut-name=Aoki-SaitoHaruka
en-aut-sei=Aoki-Saito
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakakuraTakashi
en-aut-sei=Nakakura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiTsutomu
en-aut-sei=Sasaki
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraTadahiro
en-aut-sei=Kitamura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisadaTakeshi
en-aut-sei=Hisada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaShuichi
en-aut-sei=Okada
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaMasanobu
en-aut-sei=Yamada
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Anatomy, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Gunma University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diabetes, Soleiyu Asahi Clinic
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
en-keyword=(+)-Terrein
kn-keyword=(+)-Terrein
en-keyword=Brown adipose tissue
kn-keyword=Brown adipose tissue
en-keyword=Thermogenesis
kn-keyword=Thermogenesis
en-keyword=Obesity
kn-keyword=Obesity
en-keyword=PPARγ
kn-keyword=PPARγ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From Carboxylic Acids or Their Derivatives to Amines and Ethers: Modern Decarboxylative Approaches for Sustainable C?N and C?O Bond Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C?N and C?O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C?heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C?N or C?O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.
en-copyright=
kn-copyright=
en-aut-name=YanWeidan
en-aut-sei=Yan
en-aut-mei=Weidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TianTian
en-aut-sei=Tian
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00678
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alkoxy‐Substituted Anthrabis(Thiadiazole)‐Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c′]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs).
en-copyright=
kn-copyright=
en-aut-name=YanYi
en-aut-sei=Yan
en-aut-mei=Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriHiroki
en-aut-sei=Mori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTomoki
en-aut-sei=Yoshino
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InamiRyuki
en-aut-sei=Inami
en-aut-mei=Ryuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJiaxin
en-aut-sei=Chang
en-aut-mei=Jiaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoJunqing
en-aut-sei=Gao
en-aut-mei=Junqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Backbone conformation
kn-keyword=Backbone conformation
en-keyword=Conjugated polymers
kn-keyword=Conjugated polymers
en-keyword=Organic solar cells
kn-keyword=Organic solar cells
en-keyword=Semiconducting polymers
kn-keyword=Semiconducting polymers
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=8
article-no=
start-page=1653
end-page=1660
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemical composition of essential oil of Acacia crassicarpa Benth. (Fabaceae) from Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This research aimed to identify the volatile compounds found in the fresh leaves of Acacia crassicarpa Benth. This is the first phytochemical investigation of this species. Essential oils from the leaves of A. crassicarpa were obtained by hydro-distillation and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Sixty-one compounds accounting for 95.8% of the leaf oil were identified. The classes of compounds identified in the oil sample were aldehydes (30.7%), sesquiterpene hydrocarbons (25.2%), alkanes (19.1%), oxygenated monoterpenes (3.6%) oxygenated sesquiterpenes (2.3%), monoterpene hydrocarbons (0.8%) and others (14.2%). The major constituents in the leaf oil were tridecanal (24.5%), (E)-caryophyllene (11.7%), n-heneicosane (7.2%), squalene (6.5%), and 7-tetradecenal (5.9%).
en-copyright=
kn-copyright=
en-aut-name=Quoc DoanTuan
en-aut-sei=Quoc Doan
en-aut-mei=Tuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Tien DinhTai
en-aut-sei=Tien Dinh
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=K. MatsumotoTetsuya
en-aut-sei=K. Matsumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DinhDien
en-aut-sei=Dinh
en-aut-mei=Dien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MikiNaoko
en-aut-sei=Miki
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirobeMuneto
en-aut-sei=Hirobe
en-aut-mei=Muneto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Thi NguyenHoai
en-aut-sei=Thi Nguyen
en-aut-mei=Hoai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Hue Union of Science and Technology Associations (HUSTA)
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Engineering, Ibaraki University
kn-affil=
affil-num=4
en-affil=Phong Dien Nature Reserve, Phong Dien district, Thua Thien Hue province
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University
kn-affil=
en-keyword=Acacia crassicarpa
kn-keyword=Acacia crassicarpa
en-keyword=Essential oil
kn-keyword=Essential oil
en-keyword=Tridecanal
kn-keyword=Tridecanal
en-keyword=(E)-Caryophyllene
kn-keyword=(E)-Caryophyllene
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10712
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone “florigen” differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses.
en-copyright=
kn-copyright=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShaoJi Feng
en-aut-sei=Shao
en-aut-mei=Ji Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanukiShota
en-aut-sei=Watanuki
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=12857
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250414
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=OsPIP2;4 aquaporin water channel primarily expressed in roots of rice mediates both water and nonselective Na+ and K+ conductance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aquaporin (AQP)-dependent water transport across membranes is indispensable in plants. Recent evidence shows that several AQPs, including plasma membrane intrinsic proteins (PIPs), facilitate the electrogenic transport of ions as well as water transport and are referred to as ion-conducting aquaporins (icAQPs). The present study attempted to identify icAQPs that exhibit cation transport activity among PIPs from rice. Electrophysiological experiments on 11 OsPIPs using Xenopus laevis oocytes revealed that OsPIP2;4 mediated the electrogenic transport of alkali monovalent cations with the selectivity sequence of Na+ ? K+ > Rb+ > Cs+ > Li+, suggesting non-selective cation conductance for Na+ and K+. Transcripts of OsPIP2;4 were abundant in the elongation and mature zones of roots with similar expression levels between the root stelar and remaining outer parts in the cultivar Nipponbare. Immunostaining using sections of the crown roots of Nipponbare plants revealed the expression of OsPIP2;4 in the exodermis and sclerenchyma of the surface region and in the endodermis and pericycle of the stelar region. The present results provide novel insights into OsPIP2;4-dependent non-selective Na+ and K+ transport and its physiological roles in rice.
en-copyright=
kn-copyright=
en-aut-name=TranSen Thi Huong
en-aut-sei=Tran
en-aut-mei=Sen Thi Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitoYunosuke
en-aut-sei=Mito
en-aut-mei=Yunosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnishiAya
en-aut-sei=Onishi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigaAyaka
en-aut-sei=Higa
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnoShuntaro
en-aut-sei=Ono
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PaulNewton Chandra
en-aut-sei=Paul
en-aut-mei=Newton Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HorieRie
en-aut-sei=Horie
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HaradaYoshihiko
en-aut-sei=Harada
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HorieTomoaki
en-aut-sei=Horie
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=9
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=10
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
en-keyword=Ion-conducting Aquaporins
kn-keyword=Ion-conducting Aquaporins
en-keyword=Non-selective cation channel
kn-keyword=Non-selective cation channel
en-keyword=Rice
kn-keyword=Rice
en-keyword=Roots
kn-keyword=Roots
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=23
article-no=
start-page=17720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs.
en-copyright=
kn-copyright=
en-aut-name=WangKai
en-aut-sei=Wang
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JinnaiSeihou
en-aut-sei=Jinnai
en-aut-mei=Seihou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UesakaKaito
en-aut-sei=Uesaka
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IeYutaka
en-aut-sei=Ie
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=2
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=
article-no=
start-page=155745
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recent progress on phenothiazine organophotoredox catalysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photoredox catalysis has garnered significant attention in recent years due to its broad applicability in visible-light-induced organic transformations. While significant progress has been made in the development of highly oxidizing catalysts, such as acridinium catalysts, there remains a notable shortage of strongly reducing organophotoredox catalysts. Phenothiazines are widely used as photoredox catalysts owing to their unique redox potentials, particularly their low excited-state oxidation potentials (Eox* = ?1.35 V to ?3.51 V vs. SCE). Thus, they can be applied to a variety of photoredox reactions with oxidative-quenching cycles, and effectively reduce various organic molecules, such as aryl and alkyl halides, alkenes, malonyl peroxides, cobalt complexes, and redox-active esters. Due to their unique properties, this review focuses on the recent advances in phenothiazine organophotoredox catalysis.
en-copyright=
kn-copyright=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Phenothiazine
kn-keyword=Phenothiazine
en-keyword=Photoredox catalysis
kn-keyword=Photoredox catalysis
en-keyword=Visible light
kn-keyword=Visible light
en-keyword=Radical
kn-keyword=Radical
END
start-ver=1.4
cd-journal=joma
no-vol=965
cd-vols=
no-issue=1
article-no=
start-page=52
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unraveling the Cr Isotopes of Ryugu: An Accurate Aqueous Alteration Age and the Least Thermally Processed Solar System Material
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn?Cr method using bulk samples, yielding an age of 4.13 + 0.62/?0.55 Myr after the formation of Ca?Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/?0.67 Myr ago. The higher 55Mn/52Cr, ε54Cr, and initial ε53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 ± 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The ε54Cr and initial ε53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct Δ'17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk.
en-copyright=
kn-copyright=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiklusicakNoah
en-aut-sei=Miklusicak
en-aut-mei=Noah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiChie
en-aut-sei=Sakaguchi
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiKatsura
en-aut-sei=Kobayashi
en-aut-mei=Katsura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamanakaMasahiro
en-aut-sei=Yamanaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AbeMasanao
en-aut-sei=Abe
en-aut-mei=Masanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyazakiAkiko
en-aut-sei=Miyazaki
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakatoAiko
en-aut-sei=Nakato
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakazawaSatoru
en-aut-sei=Nakazawa
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishimuraMasahiro
en-aut-sei=Nishimura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OkadaTatsuaki
en-aut-sei=Okada
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SaikiTakanao
en-aut-sei=Saiki
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaSatoshi
en-aut-sei=Tanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TeruiFuyuto
en-aut-sei=Terui
en-aut-mei=Fuyuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TsudaYuichi
en-aut-sei=Tsuda
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UsuiTomohiro
en-aut-sei=Usui
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeSei-ichiro
en-aut-sei=Watanabe
en-aut-mei=Sei-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YadaToru
en-aut-sei=Yada
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=YogataKasumi
en-aut-sei=Yogata
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaMakoto
en-aut-sei=Yoshikawa
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=6
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=7
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=8
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=9
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=10
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=11
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=12
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=13
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=14
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=15
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=16
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=17
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=18
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=19
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=20
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=21
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=22
en-affil=Department of Earth and Planetary Sciences, Nagoya University
kn-affil=
affil-num=23
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=24
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=25
en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
kn-affil=
affil-num=26
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=599
cd-vols=
no-issue=13
article-no=
start-page=1914
end-page=1924
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438?463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435?505) directly interacted with EGFP-CaMKKα/1 residues 435?505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
en-copyright=
kn-copyright=
en-aut-name=UenoyamaShun
en-aut-sei=Uenoyama
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NittaHayato
en-aut-sei=Nitta
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukaSatomi
en-aut-sei=Ohtsuka
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuizuFutoshi
en-aut-sei=Suizu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokumitsuHiroshi
en-aut-sei=Tokumitsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=calmodulin
kn-keyword=calmodulin
en-keyword=calmodulin-kinase cascade
kn-keyword=calmodulin-kinase cascade
en-keyword=CaMKKa/
kn-keyword=CaMKKa/
en-keyword=oligomerization
kn-keyword=oligomerization
en-keyword=protein?protein interaction
kn-keyword=protein?protein interaction
en-keyword=regulatory domain
kn-keyword=regulatory domain
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=5
article-no=
start-page=705
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) “Akashinriki” is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group?associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKoki
en-aut-sei=Nakamura
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiYuichi
en-aut-sei=Kikuchi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiragaMizuho
en-aut-sei=Shiraga
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotakeToshihisa
en-aut-sei=Kotake
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaketaShin
en-aut-sei=Taketa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaYoko
en-aut-sei=Ikeda
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=awn development
kn-keyword=awn development
en-keyword=EMBRYONIC FLOWER 1 (EMF1)
kn-keyword=EMBRYONIC FLOWER 1 (EMF1)
en-keyword=homeotic genes
kn-keyword=homeotic genes
en-keyword=H3K27 trimethylation
kn-keyword=H3K27 trimethylation
en-keyword=epigenetic regulation
kn-keyword=epigenetic regulation
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=13
article-no=
start-page=9595
end-page=9603
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microagglomerate of VO2 Particles Packing Paraffin Wax Using Capillary Force as a Latent Thermal Energy Storage Medium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study proposed a material to retain paraffin wax with vanadium dioxide (VO2) particles as a latent thermal energy storage medium, an alternative to core?shell microcapsules containing phase change materials. VO2 microparticles, which were synthesized through a sol?gel method and annealing process, were dispersed in the oil-in-water microemulsion to obtain microagglomerates of VO2 microparticles. The average diameter of microagglomerates was 5 μm, and they retained paraffin wax at the vacancies among VO2 particles. Although the microagglomerates had no complete shells similar to core?shell microcapsules, the microagglomerates successfully trapped paraffin wax droplets without any leakage even in a high-temperature environment. It was because capillary forces acting among VO2 particles strictly prevented any leakage of paraffin waxes. The differential scanning calorimetry revealed that the microagglomerates contained only 16.5 wt % of n-octadecane, used as a paraffin wax. However, since VO2 particles can release or absorb latent heat due to their metal?insulator phase transition, the proposed microagglomerates exhibited higher thermal energy storage densities than phase change microcapsules whose shells do not show phase transitions. Moreover, the microagglomerates exhibited higher thermal conductivity than microcapsules with amorphous inorganic shells because the VO2 particles were crystallized through annealing. The proposed microagglomerate is a promising form for further improving the thermal energy storage density and thermal performance of the latent thermal energy storage medium, especially in the temperature range of 30 to 70 °C.
en-copyright=
kn-copyright=
en-aut-name=IsobeKazuma
en-aut-sei=Isobe
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiKaketo
en-aut-sei=Yamauchi
en-aut-mei=Kaketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaYutaka
en-aut-sei=Yamada
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoribeAkihiko
en-aut-sei=Horibe
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=microagglomerate
kn-keyword=microagglomerate
en-keyword=vanadium dioxide
kn-keyword=vanadium dioxide
en-keyword=paraffin wax
kn-keyword=paraffin wax
en-keyword=latent thermal energy storage medium
kn-keyword=latent thermal energy storage medium
en-keyword=capillary force
kn-keyword=capillary force
en-keyword=thermal energy storage density
kn-keyword=thermal energy storage density
en-keyword=thermal conductivity
kn-keyword=thermal conductivity
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=26
article-no=
start-page=12024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Collective motions in the primary coordination sphere: a critical functional framework for catalytic activity of the oxygen-evolving complex of photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic water oxidation, vital for dioxygen production and light energy conversion, is catalyzed by the oxygen-evolving complex of photosystem II, where the inorganic Mn4CaO5 cluster acts as the catalytic core. In this study, we investigate the functional significance of collective motions of amino acid side chains within the primary coordination sphere of the Mn cluster, focusing on their role in modulating the energetic demands for catalytic transformations in the S3 state. We applied regularized canonical correlation analysis to quantitatively correlate the three-dimensional arrangement of coordinating atoms with catalytic driving forces computed via density functional theory. Our analysis reveals that distinct collective side chain motions profoundly influence the energetic requirements for structural reconfigurations of the Mn cluster, achieved through expansion and contraction of the ligand cavity while fine-tuning its geometry to stabilize key intermediates. Complementary predictions from a neural network-based machine learning model indicate that the coordination sphere exerts a variable energetic impact on the catalytic transformations of the Mn cluster, depending on the S-state environment. Integrated computational analyses suggest that the extended lifetime of the S3YZ? state, consistently observed after three flash illuminations, may result from slow, progressive protein dynamics that continuously reshape the energy landscape, thereby shifting the equilibrium positions of rapid, reversible chemical processes over time. Overall, our findings demonstrate that collective motions in the primary coordination sphere constitute an active, dynamic framework essential for the efficient execution of multi-electron catalysis under ambient conditions, while simultaneously achieving a high selectivity with irreversible nature required for effective 3O2 evolution.
en-copyright=
kn-copyright=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiTakayoshi
en-aut-sei=Suzuki
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Quantum Information and Quantum Biology, Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=2
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of temperature cycles on the sleep-like state in Hydra vulgaris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris.
Results Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5° C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light?dark cycles at a constant temperature.
Conclusions These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state.
en-copyright=
kn-copyright=
en-aut-name=SatoAya
en-aut-sei=Sato
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiguchiManabu
en-aut-sei=Sekiguchi
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakadaKoga
en-aut-sei=Nakada
en-aut-mei=Koga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItohTaichi Q.
en-aut-sei=Itoh
en-aut-mei=Taichi Q.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Systems Life Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
en-keyword=Hydra
kn-keyword=Hydra
en-keyword=Sleep
kn-keyword=Sleep
en-keyword=Temperature
kn-keyword=Temperature
en-keyword=Environmental cues
kn-keyword=Environmental cues
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=7
article-no=
start-page=1073
end-page=1082
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250520
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure.
en-copyright=
kn-copyright=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangShuyan
en-aut-sei=Wang
en-aut-mei=Shuyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Ion channel
kn-keyword=Ion channel
en-keyword=Artificial lipid bilayer
kn-keyword=Artificial lipid bilayer
en-keyword=Suction fixation
kn-keyword=Suction fixation
en-keyword=Soft agarose bead
kn-keyword=Soft agarose bead
en-keyword=Current recording
kn-keyword=Current recording
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=18
article-no=
start-page=2413456
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter Shibae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The reaction center-light harvesting 1 (RC-LH1) complex converts solar energy into electrical energy, driving the initiation of photosynthesis. The authors present a cryo-electron microscopy structure of the RC-LH1 isolated from a marine photoheterotrophic bacterium Dinoroseobacter shibae. The RC comprises four subunits, including a three-heme cytochrome (Cyt) c protein, and is surrounded by a closed LH ring composed of 17 pairs of antenna subunits. Notably, a novel subunit with an N-terminal “helix-turn-helix” motif embedded in the gap between the RC and the LH ring is identified. The purified RC-LH1 complex exhibits high stability in solutions containing Mg2+ or Ca2+. The periplasmic Cyt c2 is predicted to bind at the junction between the Cyt subunit and the membrane plane, enabling electron transfer from Cyt c2 to the proximal heme of the tri-heme Cyt, and subsequently to the special pair of bacteriochlorophylls. These findings provide structural insights into the efficient energy and electron transfer processes within a distinct type of RC-LH1, and shed light on evolutionary adaptations of photosynthesis.
en-copyright=
kn-copyright=
en-aut-name=WangWeiwei
en-aut-sei=Wang
en-aut-mei=Weiwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYanting
en-aut-sei=Liu
en-aut-mei=Yanting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GuJiayi
en-aut-sei=Gu
en-aut-mei=Jiayi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnShaoya
en-aut-sei=An
en-aut-mei=Shaoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaCheng
en-aut-sei=Ma
en-aut-mei=Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoHaichun
en-aut-sei=Gao
en-aut-mei=Haichun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JiaoNianzhi
en-aut-sei=Jiao
en-aut-mei=Nianzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShenJian‐Ren
en-aut-sei=Shen
en-aut-mei=Jian‐Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BeattyJohn Thomas
en-aut-sei=Beatty
en-aut-mei=John Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Kobl??ekMichal
en-aut-sei=Kobl??ek
en-aut-mei=Michal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZhangXing
en-aut-sei=Zhang
en-aut-mei=Xing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhengQiang
en-aut-sei=Zheng
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChenJing‐Hua
en-aut-sei=Chen
en-aut-mei=Jing‐Hua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=2
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=3
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=4
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=7
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Microbiology & Immunology, University of British Columbia
kn-affil=
affil-num=10
en-affil=Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science
kn-affil=
affil-num=11
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=12
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=13
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
en-keyword=energy transfer
kn-keyword=energy transfer
en-keyword=photoheterotrophic bacteria
kn-keyword=photoheterotrophic bacteria
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=reaction center
kn-keyword=reaction center
en-keyword=structure
kn-keyword=structure
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter and Receptor Mapping in Drosophila Circadian Clock Neurons via T2A-GAL4 Screening
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The circadian neuronal network in the brain comprises central pacemaker neurons and associated input and output pathways. These components work together to generate coherent rhythmicity, synchronize with environmental time cues, and convey circadian information to downstream neurons that regulate behaviors such as the sleep/wake cycle. To mediate these functions, neurotransmitters and neuromodulators play essential roles in transmitting and modulating signals between neurons. In Drosophila melanogaster, approximately 240 brain neurons function as clock neurons. Previous studies have identified several neurotransmitters and neuromodulators, including the Pigment-dispersing factor (PDF) neuropeptide, along with their corresponding receptors in clock neurons. However, our understanding of the neurotransmitters and receptors involved in the circadian system remains incomplete. In this study, we conducted a T2A-GAL4-based screening for neurotransmitter and receptor genes expressed in clock neurons. We identified 2 neurotransmitter-related genes and 22 receptor genes. Notably, while previous studies had reported the expression of 6 neuropeptide receptor genes in large ventrolateral neurons (l-LNv), we also found that 14 receptor genes?including those for dopamine, serotonin, and γ-aminobutyric acid?are expressed in l-LNv neurons. These findings suggest that l-LNv neurons serve as key integrative hubs within the circadian network, receiving diverse external signals.
en-copyright=
kn-copyright=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoAika
en-aut-sei=Saito
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=clock neurons
kn-keyword=clock neurons
en-keyword=neurotransmitter
kn-keyword=neurotransmitter
en-keyword=T2A-GAL4
kn-keyword=T2A-GAL4
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=Drosophila
kn-keyword=Drosophila
END
start-ver=1.4
cd-journal=joma
no-vol=297
cd-vols=
no-issue=
article-no=
start-page=128540
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microfluidic paper-based analytical devices for antioxidant vitamins C and E in foods
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we developed microfluidic paper-based analytical devices (μPADs) for the determination of antioxidant vitamins. The proposed μPADs utilize the reduction of metal ions by hydrophilic and hydrophobic antioxidant vitamins, which is followed by colorimetric reactions with chelating reagents. Hydrophilic vitamin C reduces Fe(III) to Fe(II) and forms a stable Fe(II)-bathophenanthroline complex in an aqueous solution. By contrast, this complex is unstable in organic solvents, and hydrophobic vitamin E requires Fe(III) and bathophenanthroline to be replaced with Cu(II) and bathocuproine. In these results, the relationship between the logarithm of a vitamin's concentration and its color intensity was linear and ranged from 4.4 to 35 mg L?1 for ascorbic acid and 50?200 mg L?1 for α-tocopherol. The limits of detection, estimated from the standard deviation of blank samples, were 3.1 mg L?1 for ascorbic acid and either 27 mg L?1 (in hexane) or 48 mg L?1 (in ethanol) for α-tocopherol. The proposed method was used to quantify vitamin C in bell peppers, mandarin oranges, kiwifruit, and lemons, as well as vitamin E in almonds, almond milk, and dietary supplements. The results demonstrate the effectiveness of these μPADs for the practical analysis of antioxidant vitamins in food samples.
en-copyright=
kn-copyright=
en-aut-name=KawaharaMana
en-aut-sei=Kawahara
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DanchanaKaewta
en-aut-sei=Danchana
en-aut-mei=Kaewta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Microfluidic paper-based analytical device
kn-keyword=Microfluidic paper-based analytical device
en-keyword=Vitamin C
kn-keyword=Vitamin C
en-keyword=Vitamin E
kn-keyword=Vitamin E
en-keyword=Antioxidant vitamin
kn-keyword=Antioxidant vitamin
en-keyword=Metal complex
kn-keyword=Metal complex
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two types of analytical instruments and devices?one sophisticated high-performance instrument and another portable device?have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter?detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable.
en-copyright=
kn-copyright=
en-aut-name=SeetasangSasikarn
en-aut-sei=Seetasang
en-aut-mei=Sasikarn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmedaMika I.
en-aut-sei=Umeda
en-aut-mei=Mika I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RenJianchao
en-aut-sei=Ren
en-aut-mei=Jianchao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Point-of-care testing
kn-keyword=Point-of-care testing
en-keyword=Onsite analysis
kn-keyword=Onsite analysis
en-keyword=Paper-based analytical device
kn-keyword=Paper-based analytical device
en-keyword=Paired emitter?detector light-emitting diode
kn-keyword=Paired emitter?detector light-emitting diode
en-keyword=Photometer
kn-keyword=Photometer
en-keyword=Environmental analysis
kn-keyword=Environmental analysis
en-keyword=Food analysis
kn-keyword=Food analysis
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=12
article-no=
start-page=2916
end-page=2926.e3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxytocin facilitates human touch-induced play behavior in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions.
en-copyright=
kn-copyright=
en-aut-name=HayashiHimeka
en-aut-sei=Hayashi
en-aut-mei=Himeka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TateishiSayaka
en-aut-sei=Tateishi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InutsukaAyumu
en-aut-sei=Inutsuka
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaejimaSho
en-aut-sei=Maejima
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HagiwaraDaisuke
en-aut-sei=Hagiwara
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakumaYasuo
en-aut-sei=Sakuma
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnakaTatsushi
en-aut-sei=Onaka
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GrinevichValery
en-aut-sei=Grinevich
en-aut-mei=Valery
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=6
en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School
kn-affil=
affil-num=7
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=8
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=9
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
en-keyword=tickling
kn-keyword=tickling
en-keyword=oxytocin
kn-keyword=oxytocin
en-keyword=oxytocin receptor
kn-keyword=oxytocin receptor
en-keyword=ventrolateral part of the ventromedial hypothalamus
kn-keyword=ventrolateral part of the ventromedial hypothalamus
en-keyword=affinity-like behaviors
kn-keyword=affinity-like behaviors
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=4
article-no=
start-page=329
end-page=334
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels.
en-copyright=
kn-copyright=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Human BK channel
kn-keyword=Human BK channel
en-keyword=Artificial lipid bilayer recording
kn-keyword=Artificial lipid bilayer recording
en-keyword=Ion channel current
kn-keyword=Ion channel current
en-keyword=Single-channel recording
kn-keyword=Single-channel recording
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=2
article-no=
start-page=99
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Evaluation of Drying Process of a Slurry Droplet Containing Water-soluble Polymer
kn-title=水溶性高分子含有スラリー液滴乾燥過程の評価
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The granulation process of a slurry droplet containing a water-soluble polymer in a spray dryer is investigated. Although there have been many studies on the drying behavior of a single-component slurry droplet, there have been few reports for a multicomponent slurry droplet. This is due to the complexity and difficulty in evaluating the drying behavior of a multicomponent slurry droplet. Therefore, for the production of granules from multicomponent materials by a spray dryer, its operating conditions are usually determined by trial and error. To optimize the practical granule production process, the drying behavior of multicomponent slurry droplets should be studied. In this study, the drying behavior of a silica slurry droplet containing polyvinyl alcohol (PVA) is investigated. The drying behavior of a droplet suspended on the tip of a needle was observed. The effect of the volume fraction of PVA on the drying behavior and the morphology of a dried granule is studied. The effect of drying condition on the granule formation process is also investigated. As a result, the structure of dried granules was strongly influenced by PVA concentration. Segregation of PVA in the dried granules was observed. Based on the results, the drying process diagram is presented.
en-copyright=
kn-copyright=
en-aut-name=NakasoKoichi
en-aut-sei=Nakaso
en-aut-mei=Koichi
kn-aut-name=中曽浩一
kn-aut-sei=中曽
kn-aut-mei=浩一
aut-affil-num=1
ORCID=
en-aut-name=YamashitaDaichi
en-aut-sei=Yamashita
en-aut-mei=Daichi
kn-aut-name=山下大智
kn-aut-sei=山下
kn-aut-mei=大智
aut-affil-num=2
ORCID=
en-aut-name=AoyamaYutaro
en-aut-sei=Aoyama
en-aut-mei=Yutaro
kn-aut-name=青山祐太郎
kn-aut-sei=青山
kn-aut-mei=祐太郎
aut-affil-num=3
ORCID=
en-aut-name=MinoYasushi
en-aut-sei=Mino
en-aut-mei=Yasushi
kn-aut-name=三野泰志
kn-aut-sei=三野
kn-aut-mei=泰志
aut-affil-num=4
ORCID=
en-aut-name=GotohKuniaki
en-aut-sei=Gotoh
en-aut-mei=Kuniaki
kn-aut-name=後藤邦彰
kn-aut-sei=後藤
kn-aut-mei=邦彰
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
en-keyword=Spray Dryer
kn-keyword=Spray Dryer
en-keyword=Drying
kn-keyword=Drying
en-keyword=Droplet
kn-keyword=Droplet
en-keyword=Slurry
kn-keyword=Slurry
en-keyword=Water-Soluble Polymer
kn-keyword=Water-Soluble Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=One-pot synthesis of trans-2,3-diaminoindolines through 2,3-diamination of electrophilic indolines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite recent advances in the synthesis of 2,3-diaminoindole derivatives, construction of 2,3-diaminoindolines, whose two amine moieties on each molecule differ from one another has yet to be achieved. In this work, we developed a concise one-pot protocol for differentiated diamination involving reacting a C2,C3-electrophilic indole reagent with amines to access a variety of previously inaccessible 2,3-diaminoindolines. Furthermore, the synthetic utility of this protocol was demonstrated by a successful gram-scale reaction and further transformation of the 2,3-diaminoindolines.
en-copyright=
kn-copyright=
en-aut-name=KoboriYuito
en-aut-sei=Kobori
en-aut-mei=Yuito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TokushigeKeisuke
en-aut-sei=Tokushige
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e202510319
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a Vinylated Cyclic Allene: A Fleeting Strained Diene for the Diels?Alder Reaction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fleeting molecules possessing strained multiple bonds are important components in organic synthesis due to their ability to undergo various chemical reactions driven by the release of strain energy. Although the use of strained π-bonds as 2π components, represented by dienophiles in Diels?Alder reactions, has been well studied, “the strained diene (4π component) approach” for molecular construction remains underexplored. Herein, we report the design of a vinyl cyclic allene (1-vinyl-1,2-cyclohexadiene) as a highly reactive strained diene and the development of its Diels?Alder reactions. Experimental and computational studies of vinyl cyclic allenes revealed that this diene system undergoes cycloaddition with dienophiles regio- and stereoselectively under mild reaction conditions. These studies also provide insight into the reactivity and selectivity of the system. The strained diene approach enables the convergent construction of polycyclic molecules through bond disconnections distinct from conventional retrosynthetic analysis, thus offering an efficient strategy for the assembly of functional molecules.
en-copyright=
kn-copyright=
en-aut-name=MizoguchiHaruki
en-aut-sei=Mizoguchi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataTakumi
en-aut-sei=Obata
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraiTaiki
en-aut-sei=Hirai
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KomatsuManaka
en-aut-sei=Komatsu
en-aut-mei=Manaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakakuraAkira
en-aut-sei=Sakakura
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Activation strain model
kn-keyword=Activation strain model
en-keyword=Carbocycles
kn-keyword=Carbocycles
en-keyword=Diels?Alder reaction
kn-keyword=Diels?Alder reaction
en-keyword=Strained diene
kn-keyword=Strained diene
en-keyword=Vinylated cyclic allene
kn-keyword=Vinylated cyclic allene
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Towards SBOM-based Access Control for Transparent and Explicit Program Execution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although a Software Bill of Materials (SBOM) plays a key role in software transparency, inconsistencies in SBOM descriptions can undermine its value. To address this, we propose a novel approach to program access control, SBOMAC, which leverages Mandatory Access Control (MAC) systems to ensure transparent and explicit program execution. In this study, we identify the challenges associated with implementing this approach and present preliminary investigation results to address these challenges.
en-copyright=
kn-copyright=
en-aut-name=ShimamotoYuta
en-aut-sei=Shimamoto
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UekawaHiroyuki
en-aut-sei=Uekawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkiyamaMitsuaki
en-aut-sei=Akiyama
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=NTT Social Informatics Laboratories
kn-affil=
affil-num=3
en-affil=NTT Social Informatics Laboratories
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=91
cd-vols=
no-issue=946
article-no=
start-page=24-00128
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Development of a guideline proposal system for correcting cutting conditions based on the overhang length of ball end-mills
kn-title=ボールエンドミルの突き出し長さに応じた切削条件補正システムの開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the field of die and mold machining, determining appropriate cutting conditions is crucial. Factors such as tool geometry, machining path, work material characteristics, machining efficiency, and finishing accuracy must be taken into consideration. However, the current method of determining cutting conditions relies heavily on the intuition and experience of skilled engineers, and there is a need for a system to replace such knowledge. One of the critical factors affecting machining accuracy and efficiency is the tool overhang length, which is directly related to tool geometry. Unfortunately, there is no clear guideline for its determination. In a previous study, researchers developed a system to quickly derive cutting conditions using a data mining method and Random Forest Regression (RFR) applied to a tool catalog database. In this study, we constructed a new cutting condition compensation system based on the existing model, which accounts for the tool overhang length. The results of cutting experiments under high aspect ratio overhang lengths confirm that the correction coefficients proposed by the system are significant.
en-copyright=
kn-copyright=
en-aut-name=KODAMAHiroyuki
en-aut-sei=KODAMA
en-aut-mei=Hiroyuki
kn-aut-name=児玉紘幸
kn-aut-sei=児玉
kn-aut-mei=紘幸
aut-affil-num=1
ORCID=
en-aut-name=MORIYAYuki
en-aut-sei=MORIYA
en-aut-mei=Yuki
kn-aut-name=守屋祐輝
kn-aut-sei=守屋
kn-aut-mei=祐輝
aut-affil-num=2
ORCID=
en-aut-name=MORIMOTOTatsuo
en-aut-sei=MORIMOTO
en-aut-mei=Tatsuo
kn-aut-name=盛元達雄
kn-aut-sei=盛元
kn-aut-mei=達雄
aut-affil-num=3
ORCID=
en-aut-name=OHASHIKazuhito
en-aut-sei=OHASHI
en-aut-mei=Kazuhito
kn-aut-name=大橋一仁
kn-aut-sei=大橋
kn-aut-mei=一仁
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 学術研究院環境生命自然科学学域
affil-num=2
en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 大学院環境生命自然科学研究科
affil-num=3
en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 大学院環境生命自然科学研究科
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 学術研究院環境生命自然科学学域
en-keyword=Data mining
kn-keyword=Data mining
en-keyword=Cutting conditions
kn-keyword=Cutting conditions
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Random Forest Regression
kn-keyword=Random Forest Regression
en-keyword=Ball end-mill
kn-keyword=Ball end-mill
en-keyword=Tool overhang length
kn-keyword=Tool overhang length
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=3
article-no=
start-page=337
end-page=345
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Grinding Temperature of Workpiece in Side Plunge Grinding Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Grinding is used to finish thrust metal attachment parts, such as crankshafts, which have both journal and thrust surfaces. In side plunge grinding, a thrust surface and a cylindrical surface of a shaft workpiece with collars are finished in a single plunge grinding process. However, the surface quality near the ground internal corner, where grinding fluid may not penetrate, can deteriorate, causing high residual stress and cracks owing to grinding heat. While it has been reported that quality issues at the inner corners of the ground surface can be mitigated by reducing the grinding point temperature through efficient cooling fluid supply, the mechanisms of grinding phenomena and heat generation in side plunge grinding are not yet fully understood. In this study, the variations in the grinding temperature at the thrust surface of a workpiece with a collar were experimentally investigated using a wire/workpiece thermocouple to clarify these phenomena. The results revealed a significant increase in the grinding temperature at the corners of the grinding zone. However, it slightly decreases as the thermocouple output approaches the center of the workpiece, indicating a slight effect of the grinding speed. The surface temperature of the workpiece in side plunge grinding is primarily influenced by the wheel depth-of-cut in the thrust direction. Additionally, the effect of workpiece rotational speed and grinding infeed speed on temperature distribution has been demonstrated.
en-copyright=
kn-copyright=
en-aut-name=GaoLingxiao
en-aut-sei=Gao
en-aut-mei=Lingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuidaMotoki
en-aut-sei=Kuida
en-aut-mei=Motoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaHiroyuki
en-aut-sei=Kodama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKazuhito
en-aut-sei=Ohashi
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=grinding
kn-keyword=grinding
en-keyword=thrust surface
kn-keyword=thrust surface
en-keyword=grinding temperature
kn-keyword=grinding temperature
en-keyword=thermocouple
kn-keyword=thermocouple
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=85
end-page=104
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CyNER: Information Extraction from?Unstructured Text of?CTI Sources with?Noncontextual IOCs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cybersecurity threats have been increasing and growing more sophisticated year by year. In such circumstances, gathering Cyber Threat Intelligence (CTI) and following up with up-to-date threat information is crucial. Structured CTI such as Structured Threat Information eXpression (STIX) is particularly useful because it can automate security operations such as updating FW/IDS rules and analyzing attack trends. However, as most CTIs are written in natural language, manual analysis with domain knowledge is required, which becomes quite time-consuming.
In this work, we propose CyNER, a method for automatically structuring CTIs and converting them into STIX format. CyNER extracts named entities in the context of CTI and then extracts the relations between named entities and IOCs in order to convert them into STIX. In addition, by using key phrase extraction, CyNER can extract relations between IOCs that lack contextual information, such as those listed at the bottom of a CTI, and named entities. We describe our design and implementation of CyNER and demonstrate that it can extract named entities with the F-measure of 0.80 and extract relations between named entities and IOCs with the maximum accuracy of 81.6%. Our analysis of structured CTI showed that CyNER can extract IOCs that are not included in existing reputation sites, and that it can automatically extract IOCs that have been exploited for a long time and across multiple attack groups. CyNER is thus expected to contribute to the efficiency of CTI analysis.
en-copyright=
kn-copyright=
en-aut-name=FujiiShota
en-aut-sei=Fujii
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaguchiNobutaka
en-aut-sei=Kawaguchi
en-aut-mei=Nobutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShigemotoTomohiro
en-aut-sei=Shigemoto
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research & Development Group, Hitachi, Ltd.
kn-affil=
affil-num=3
en-affil=Research & Development Group, Hitachi, Ltd.
kn-affil=
affil-num=4
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=292
end-page=297
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analyzing Post-injection Attacker Activities in IoT Devices: A Comprehensive Log Analysis Approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=With the continuous proliferation of Internet of Things (IoT) devices, malware threats that specifically target these devices continue to increase. The urgent need for robust security measures is predicated on a comprehensive understanding of the behavioral patterns of IoT malware. However, previous studies have often overlooked the analysis of command sequences in Telnet logs. This study bridges this research gap by examining the post-injection behaviors of attackers. By analyzing a vast dataset comprising more than ten million logs collected from an IoT honeypot, we reveal three distinct post-injection activity patterns, each with unique characteristics. These patterns provide pivotal insights that not only help distinguish between legitimate operations and attempted attacks, but also drive the development of robust cybersecurity measures that effectively deter such behaviors. The nuances discovered in this study contribute significantly to IoT security by enhancing our understanding of malware tactics and informing targeted defense strategies.
en-copyright=
kn-copyright=
en-aut-name=VictorHervet
en-aut-sei=Victor
en-aut-mei=Hervet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Malware analysis
kn-keyword=Malware analysis
en-keyword=IoT
kn-keyword=IoT
en-keyword=Honeypot
kn-keyword=Honeypot
en-keyword=Log analysis
kn-keyword=Log analysis
en-keyword=Attack patterns
kn-keyword=Attack patterns
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=274
end-page=278
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevention Method for Stack Buffer Overflow Attack in TA Command Calls in OP-TEE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=TEE systems provide normal world and secure world. It is impossible to gain access to the secure world directly from the normal world. However, vulnerabilities in the secure world can cause attacks to compromise the secure world. In this study, we investigate the security features applied to trusted applications (TA) in OP-TEE and clarify the lack of protection against stack buffer overflow in TA command calls. We also propose a method for preventing attacks that exploit stack buffer overflows in TA command calls. In addition, the experimental results show that attacks on the vulnerable TAs can be prevented with the proposed method and the overhead can be evaluated.
en-copyright=
kn-copyright=
en-aut-name=ShibaKaito
en-aut-sei=Shiba
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Trusted execution environment
kn-keyword=Trusted execution environment
en-keyword=Stack overflow prevention method
kn-keyword=Stack overflow prevention method
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=161
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of Effectiveness of MAC Systems Based on LSM for Protecting IoT Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Numerous active attacks targeting Internet of Things (IoT) devices exist. They exploit the latest vulnerabilities discovered in IoT devices. Therefore, Mandatory Access Control (MAC) systems based on Linux Security Modules (LSM), such as SELinux and AppArmor, are effective security features for IoT devices because they can mitigate the impact of attacks even if software vulnerabilities are discovered. However, they are not adopted by most IoT devices. The existing approaches are insufficient for investigating the causes of this problem.In this study, we comprehensively investigated what factors can affect the applicability of MAC systems based on LSM in IoT devices. We focused on how frequently cases can occur where they cannot be adopted, owing to each factor. To increase the comprehensiveness of the factors affecting the adoption of MAC systems in IoT devices, we investigated the kernel version, CPU architecture, and support for BusyBox in addition to the investigation of resources, which conducted in previous studies. We also conducted simulated experiments based on the attack method of Mirai to investigate whether MAC systems can protect against IoT malware. Finally, we discuss the impact of a combination of these factors on MAC system adoption.
en-copyright=
kn-copyright=
en-aut-name=MikiMasato
en-aut-sei=Miki
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Mandatory Access Control System
kn-keyword=Mandatory Access Control System
en-keyword=IoT Security
kn-keyword=IoT Security
en-keyword=Linux Security Modules
kn-keyword=Linux Security Modules
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=236
end-page=244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Non Real-Time Data Transmission Performance Analysis of PROFINET for Assuring Data Transmission Quality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The industrial Ethernet PROFINET supports three different data transmission modes: isochronous real-time (IRT), real-time (RT), and non real-time (NRT) transmitting data requiring hard, soft, and no real-time performances, respectively. The data transmission latency in the NRT increased with the amount of data transmission in the IRT, RT, and NRT. Therefore, the quality of data transmission in NRT may degrade as the amount of data transmission in IRT, RT, and NRT increases. In this study, we derived the average data transmission latency in an NRT with data transmission in IRT and RT by applying stochastic processes. This allowed us to maintain the quality of data transmission in the NRT by adjusting the number of devices connected to the network and the number of applications transmitting data in the NRT so that the average latency of data in the NRT does not exceed a certain value.
en-copyright=
kn-copyright=
en-aut-name=NorimatsuTakashi
en-aut-sei=Norimatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Industrial Ethernet
kn-keyword=Industrial Ethernet
en-keyword=PROFINET
kn-keyword=PROFINET
en-keyword=Non Real Time
kn-keyword=Non Real Time
en-keyword=Real-Time
kn-keyword=Real-Time
en-keyword=Isochronous Real Time
kn-keyword=Isochronous Real Time
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=267
end-page=273
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Supporting Multiple OS Types on Estimation of System Call Hook Point by Virtual Machine Monitor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methods to hook system calls issued by a guest operating system (OS) running on a virtual machine using a virtual machine monitor are proposed. The address of the hook point is derived from the guest OS’s source code and established prior to the kernel startup process. Due to changes in system call processing in OS updates and address space layout randomization, the addresses of these hook points cannot always be pre-determined before the kernel startup process. To address this challenge, a method for estimating the system call hook point is proposed in Linux by analyzing the guest OS memory on x86-64 CPUs rather than pre-calculation. Although the method supports Linux, the method can be extended to support other OS types. In this paper, we propose a method to extend the method to support additional OSes. Specifically, we present analysis results and a novel method for estimating hook points on FreeBSD, NetBSD, and OpenBSD. The effectiveness of our proposed method is also demonstrated through evaluation.
en-copyright=
kn-copyright=
en-aut-name=SatoMasaya
en-aut-sei=Sato
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriTaku
en-aut-sei=Omori
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiHideo
en-aut-sei=Taniguchi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama Prefectural University
kn-affil=
affil-num=2
en-affil=Okayama Prefectural University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
en-keyword=system call
kn-keyword=system call
en-keyword=virtual machine monitor
kn-keyword=virtual machine monitor
en-keyword=operating system
kn-keyword=operating system
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=107
end-page=119
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation Towards Detecting Landing Websites for?Fake Japanese Shopping Websites
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, the number of victims of fake shopping websites that imitate legitimate ones to defraud people has been increasing. It has been shown that fake shopping websites use legitimate defaced landing websites as their leading paths. Therefore, if the detection of landing websites for fake shopping websites can be achieved, it can assist in addressing these websites and reduce the opportunities for users to be redirected to fake shopping websites. In this study, we collect and investigate existing landing websites that redirect users to fake Japanese shopping websites and identify effective features for detecting them. We identified effective search terms for collecting landing websites for fake Japanese shopping websites and found that using Google searches with queries of top-level domain and product names was effective. We also investigated the conditions for activating analytical evasion functions in the collected landing websites for fake Japanese shopping websites and clarified the differences in search results between crawlers and users.
en-copyright=
kn-copyright=
en-aut-name=MichishitaDaigo
en-aut-sei=Michishita
en-aut-mei=Daigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=227
cd-vols=
no-issue=
article-no=
start-page=110168
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The hidden cation-selective pore in ion-conducting aquaporin OsPIP2;4 from rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ion-conducting aquaporins (icAQPs) transport ions as well as water. Although the molecular mechanism of how AQPs establish selective permeability for water molecules is well understood, the ion-transporting mechanism in icAQPs has not yet been fully elucidated. In this study, we investigated the molecular mechanism of cation transport in OsPIP2;4, an icAQP in rice, by homology modeling and the electrophysiological analysis using Xenopus laevis oocytes. Water and ion transport assays using OsPIP2;4 T227M and G278K mutants strongly suggested that water- and cation-transporting pathways are independent of each other. Data from amino acid substitutions V54I and A143G in OsPIP2;4 led to the identification of a novel hidden pathway for cation transport located on the side surfaces of the tetramer channel, where two protomers are in contact, which is distinct from conventional monomeric pores and the tetrameric central pore in AQPs. Moreover, the present results provide the possibility that this hypothetical hidden pore also functions in the barley icAQP HvPIP2;8. The overall structure of this novel pathway appears to differ from the structure of general cation channels. However, the arrangement of hydrophilic amino acids at the entrance of the pathway of OsPIP2;4 was found to be comparable to that of some cation channels, which implies that the molecular mechanism of dehydration of hydrated ions might resemble that of the channels. Although direct structural evidence is needed to confirm the proposed pathway, the present study can be a stepping stone toward unraveling the mechanism of dual water and ion transport through icAQPs in plants.
en-copyright=
kn-copyright=
en-aut-name=OnoShuntaro
en-aut-sei=Ono
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TranSen Thi Huong
en-aut-sei=Tran
en-aut-mei=Sen Thi Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UtsugiShigeko
en-aut-sei=Utsugi
en-aut-mei=Shigeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HorieTomoaki
en-aut-sei=Horie
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Rice
kn-keyword=Rice
en-keyword=Barley
kn-keyword=Barley
en-keyword=Ion transport
kn-keyword=Ion transport
en-keyword=Ion-conducting aquaporin (icAQP)
kn-keyword=Ion-conducting aquaporin (icAQP)
en-keyword=Plasma membrane intrinsic protein (PIP)
kn-keyword=Plasma membrane intrinsic protein (PIP)
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=7
article-no=
start-page=110291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A repertoire of visible light?sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457?517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light?sensitive opsins, including the uniquely tuned Opn5.
en-copyright=
kn-copyright=
en-aut-name=NagataYuya
en-aut-sei=Nagata
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoNorio
en-aut-sei=Miyamoto
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYosuke
en-aut-sei=Nishimura
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniokaYuki
en-aut-sei=Tanioka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamanakaYuji
en-aut-sei=Yamanaka
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiKuto
en-aut-sei=Takahashi
en-aut-mei=Kuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ObayashiKohei
en-aut-sei=Obayashi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsukamotoHisao
en-aut-sei=Tsukamoto
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakaiKen
en-aut-sei=Takai
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=10
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=11
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=14
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=opsin
kn-keyword=opsin
en-keyword=G protein?coupled receptor
kn-keyword=G protein?coupled receptor
en-keyword=signal transduction
kn-keyword=signal transduction
en-keyword=photoreceptor
kn-keyword=photoreceptor
en-keyword=vision
kn-keyword=vision
en-keyword=photobiology
kn-keyword=photobiology
en-keyword=vent shrimp
kn-keyword=vent shrimp
en-keyword=deep sea
kn-keyword=deep sea
en-keyword=molecular evolution
kn-keyword=molecular evolution
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transformation of α,β-Unsaturated Aldehydes with a Small Amount of Electricity: Cyanosilylation, Isomerization, and Nucleophilic Addition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An electrochemical method was developed to convert α,β-unsaturated aldehydes into carboxylic acid derivatives via cyanosilylation, isomerization, and nucleophilic addition. This reaction is more sustainable than the usual electrochemical organic reaction because this reaction proceeds catalytically with active species generated by a very small amount of electricity. Furthermore, scale-up synthesis with a flow reactor has been achieved.
en-copyright=
kn-copyright=
en-aut-name=FujiiMayu
en-aut-sei=Fujii
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UenoNanaho
en-aut-sei=Ueno
en-aut-mei=Nanaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)?expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=32
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stability and water solubility of calcium ferrite-type aluminum-rich phase: implications for deep water cycle caused by subducting basaltic crusts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The subducting crustal materials serve as a crucial channel for transporting water to the lower mantle. Recent experimental studies suggest that crustal materials such as basaltic crust can be a main water carrier and reservoir playing an important role on water cycling in the lower mantle. Despite being a primary mineral in crustal materials, the water solubility of calcium ferrite-type (CF) phase and its stability are unclear yet. A recent phase relation study of hydrous basalts showed Na-depletion in lower-mantle minerals, suggesting the presence of fluid possibly with high Na concentration and the absence of CF phase along the low-temperature slab geotherms, where Al-rich hydrous phase H and ferropericlase appear instead. These phases could consequently produce Na-depleted CF phase when reaching the dehydration temperature of Al-rich hydrous phase H. In this study, we investigated the stability and water solubility of CF-type MgAl2O4, which is a main CF component in a hydrous basalt, in water-bearing systems at 26?32 GPa and 1200?1900 °C using a Kawai-type multi-anvil press. Our results indicate that the stability of the CF phase is strongly influenced by water content in the system. Water contents of recovered CF phases estimated by Fourier-transform infrared spectroscopy show a limited variation between 73 and 87 ppm wt at a pressure of 26 GPa and temperatures of 1500?1900 °C. We suggest that CF phase could not be a primary water carrier at lower mantle depths. This emphasizes contributions of hydrous aluminous silica minerals to Earth’s deep water cycling and heterogeneous structures in the lower mantle due to the strong water partitioning to this phase compared with other constituent minerals.
en-copyright=
kn-copyright=
en-aut-name=ZhangXinyue
en-aut-sei=Zhang
en-aut-mei=Xinyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MashinoIzumi
en-aut-sei=Mashino
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Water solubility
kn-keyword=Water solubility
en-keyword=CF phase
kn-keyword=CF phase
en-keyword=Single crystal
kn-keyword=Single crystal
en-keyword=FTIR
kn-keyword=FTIR
en-keyword=MORB
kn-keyword=MORB
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=e70119
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantitative quality control of 3D water tank using image analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objective: Accurate beam data acquisition using three-dimensional (3D) water tanks is essential for beam commissioning and quality control (QC) in clinical radiation therapy. This study introduces a novel method for quantitative QC of the system, utilizing MV images and webcam videos. The stability of the motor drive speed and the positional accuracy of the fixture were evaluated under two measurement modes: “continuous mode” and “step-by-step mode.”
Methods: A TRUFIX mounting system (PTW Freiburg Inc., Germany) was used to attach the center of the steel ball to its top, ensuring alignment with the water surface of the tank. To assess deviations from the radiation isocenter, MV images were acquired and compared with digitally reconstructed radiographs (DRRs). These evaluations were performed at different speed settings (slow, medium, and fast) using ET CT Body Marker (BRAINLAB Inc., USA) mounted on the drive unit. A webcam was utilized to capture the images, and custom-developed tracking software was employed to analyze deviations in driving speed and positional errors.
Results: The mean error of the radiation isocenter was 0.37 ± 0.09 mm. As the motor drive speed increased, the discrepancy between the set speed and the actual speed observed in the analysis also became larger. In “continuous mode,” the deviation from the displayed value was greater than that observed in “step-by-step mode.”
Conclusion: It is demonstrated that the proposed analysis method can quantitatively evaluate radiation isocenter misalignment, tank setup position deviation, and both the indicated drive speed values and their stability. At higher drive speeds, the “step-by-step mode” showed smaller deviations from the indicated values.
en-copyright=
kn-copyright=
en-aut-name=TanimotoYuki
en-aut-sei=Tanimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoKohei
en-aut-sei=Sugimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoshiKazunobu
en-aut-sei=Koshi
en-aut-mei=Kazunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiroshigeAkira
en-aut-sei=Hiroshige
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaShohei
en-aut-sei=Yoshida
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujitaYoshiki
en-aut-sei=Fujita
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakahiraAtsuki
en-aut-sei=Nakahira
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanishiDaiki
en-aut-sei=Nakanishi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HondaHirofumi
en-aut-sei=Honda
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiology, NHO Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=3
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Radiology, Department of Medical Technology, Kyushu University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Ehime University Hospital
kn-affil=
affil-num=10
en-affil=Department of Healthcare Science, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=3D water tank
kn-keyword=3D water tank
en-keyword=drive speed stability
kn-keyword=drive speed stability
en-keyword=quality control
kn-keyword=quality control
en-keyword=radiation isocenter
kn-keyword=radiation isocenter
en-keyword=x-ray image analysis
kn-keyword=x-ray image analysis
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=78
end-page=85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.
en-copyright=
kn-copyright=
en-aut-name=TanimotoYuki
en-aut-sei=Tanimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoshiKazunobu
en-aut-sei=Koshi
en-aut-mei=Kazunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiwakiKiyoshi
en-aut-sei=Ishiwaki
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiramatsuFutoshi
en-aut-sei=Hiramatsu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiToshihisa
en-aut-sei=Sasaki
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IseHiroki
en-aut-sei=Ise
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyagawaTakashi
en-aut-sei=Miyagawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkahiraShinsuke
en-aut-sei=Okahira
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HamaguchiTakashi
en-aut-sei=Hamaguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaguchiTatsuya
en-aut-sei=Kawaguchi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FunadaNorihiro
en-aut-sei=Funada
en-aut-mei=Norihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamamotoShuhei
en-aut-sei=Yamamoto
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HiroshigeAkira
en-aut-sei=Hiroshige
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MukaiYuki
en-aut-sei=Mukai
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshidaShohei
en-aut-sei=Yoshida
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujitaYoshiki
en-aut-sei=Fujita
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NakahiraAtsuki
en-aut-sei=Nakahira
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HondaHirofumi
en-aut-sei=Honda
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Department of Healthcare Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Radiology, NHO Iwakuni Medical Center
kn-affil=
affil-num=5
en-affil=Department of Radiology, NHO Hamada Medical Center
kn-affil=
affil-num=6
en-affil=Department of Radiology, NHO Higashi-Hiroshima Medical Center
kn-affil=
affil-num=7
en-affil=Department of Radiology, NHO Iwakuni Medical Center
kn-affil=
affil-num=8
en-affil=Department of Radiology, NHO Kanmon Medical Center
kn-affil=
affil-num=9
en-affil=Department of Radiology, NHO Kochi National Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, NHO Yamaguchi-Ube Medical Center
kn-affil=
affil-num=11
en-affil=Department of Radiology, NHO Okayama Medical Center
kn-affil=
affil-num=12
en-affil=Department of Radiology, NHO Shikoku Medical Center for Children and Adults
kn-affil=
affil-num=13
en-affil=Department of Radiology, NHO Hamada Medical Center
kn-affil=
affil-num=14
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=15
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=17
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=18
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Radiological Technology, Ehime University Hospital
kn-affil=
en-keyword=Radiation therapy
kn-keyword=Radiation therapy
en-keyword=Quality control
kn-keyword=Quality control
en-keyword=Failure mode and effects analysis
kn-keyword=Failure mode and effects analysis
en-keyword=Cost-effectiveness
kn-keyword=Cost-effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=3
article-no=
start-page=976
end-page=991
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities I(Q) measured with different scattering contrasts are de?com?posed into partial scattering functions S(Q) of the self- and cross-correlations between components. Since the measurement has a measurement error, S(Q) must be estimated statistically from I(Q). If no prior knowledge about S(Q) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of S(Q), based on Gaussian process regression using prior knowledge about the smoothness and flatness of S(Q). We demonstrate the method using synthetic core?shell and experimental polyrotaxane SANS data.
en-copyright=
kn-copyright=
en-aut-name=ObayashiIppei
en-aut-sei=Obayashi
en-aut-mei=Ippei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyajimaShinya
en-aut-sei=Miyajima
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaKazuaki
en-aut-sei=Tanaka
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MayumiKoichi
en-aut-sei=Mayumi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Science and Engineering, Iwate University
kn-affil=
affil-num=3
en-affil=Global Center for Science and Engineering, Waseda University
kn-affil=
affil-num=4
en-affil=Institute for Solid State Physics, University of Tokyo
kn-affil=
en-keyword=contrast variation small-angle neutron scattering
kn-keyword=contrast variation small-angle neutron scattering
en-keyword=CV-SANS
kn-keyword=CV-SANS
en-keyword=partial scattering functions
kn-keyword=partial scattering functions
en-keyword=multi-component systems
kn-keyword=multi-component systems
en-keyword=statistical methods
kn-keyword=statistical methods
en-keyword=Bayesian inference
kn-keyword=Bayesian inference
en-keyword=contrast variation
kn-keyword=contrast variation
en-keyword=Gaussian process regression
kn-keyword=Gaussian process regression
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Leg-biting fights reduce the number of sperm transferred by the loser and in draws in Zophobas atratus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intra-sexual selection has been observed across a wide range of species. Male-male combat can not only determine the winner and loser but also affect subsequent reproductive success. The effects of combat outcomes on reproduction are thought to depend on the reproductive ecology of the target species. However, to our knowledge, studies examining the impact of combat outcomes on sperm competition and fitness remain limited. In the giant mealworm (Zophobas atratus), male’s combat involves biting each other's hind legs. Females mated to the losers of leg-biting contests had significantly fewer eggs and fewer offspring than females mated to males that were not in a contest. Possible explanations for this fitness reduction include the inability of males to transfer sperm effectively due to the combat outcome or the inability of their sperm to fertilize eggs due to female cryptic sperm choice, and the mechanisms underlying this reduction remain unclear. Previous studies have observed distorted mating postures in losing males, leading us to hypothesize that leg-biting during combat might affect sperm transfer. To test this, we allowed uncontested males, winners, losers, and males with a draw outcome to mate with females and compared the number of sperm within the female’s spermatheca. Additionally, we examined the correlation between combat duration and sperm count. Results showed that losers and males with draw transferred fewer sperm than non-combat males. Moreover, the longer the combat duration, the fewer sperm males were able to transfer. These findings suggest that the reduction in sperm transferred was affected by both losing in combat and prolonged combat duration in leg-biting encounters.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraTeruhisa
en-aut-sei=Matsuura
en-aut-mei=Teruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Male combat
kn-keyword=Male combat
en-keyword=Male-male competition
kn-keyword=Male-male competition
en-keyword=Sperm transfer
kn-keyword=Sperm transfer
en-keyword=Sperm biology
kn-keyword=Sperm biology
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=5
article-no=
start-page=733
end-page=747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
en-copyright=
kn-copyright=
en-aut-name=LiangDi
en-aut-sei=Liang
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangDongyong
en-aut-sei=Yang
en-aut-mei=Dongyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiTai
en-aut-sei=Li
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuZhe
en-aut-sei=Zhu
en-aut-mei=Zhe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanBingxiao
en-aut-sei=Yan
en-aut-mei=Bingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HeYang
en-aut-sei=He
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiXiaoyuan
en-aut-sei=Li
en-aut-mei=Xiaoyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhaiKeran
en-aut-sei=Zhai
en-aut-mei=Keran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiuJiyun
en-aut-sei=Liu
en-aut-mei=Jiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DengYiwen
en-aut-sei=Deng
en-aut-mei=Yiwen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WuXu Na
en-aut-sei=Wu
en-aut-mei=Xu Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LiuJunzhong
en-aut-sei=Liu
en-aut-mei=Junzhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HeZuhua
en-aut-sei=He
en-aut-mei=Zuhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=4
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=5
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, ShanghaiTech University
kn-affil=
affil-num=8
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=9
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=12
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=13
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=14
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
en-keyword=Prenylated Rab acceptor
kn-keyword=Prenylated Rab acceptor
en-keyword=PigmR
kn-keyword=PigmR
en-keyword=Trafficking vesicles
kn-keyword=Trafficking vesicles
en-keyword=OsRab5a
kn-keyword=OsRab5a
en-keyword=Blast resistance
kn-keyword=Blast resistance
END
start-ver=1.4
cd-journal=joma
no-vol=695
cd-vols=
no-issue=
article-no=
start-page=137727
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tunable interlayer distance in graphene oxide through alkylamine surface coverage and chain length
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Layered materials have unique structures that can be modified by adjusting the space between layers through pillaring or surface functionalization. Unlike typical crystalline layered materials, graphene oxide (GO) possesses reactive oxygenated functional groups, which lead to spontaneous reduction and stacking upon thermal treatment. Here, we investigated the functionalization of GO with different amounts of hexylamine to control the degree of surface coverage. Furthermore, octylamine and dodecylamine were employed to confirm the effect of the alkyl chain length on the interlayer distance of the resultant GO derivatives. Subsequent thermal treatment produced reduced GO (rGO) functionalized with alkylamines, demonstrating the retention of the interlayer distance. Additionally, amine-functionalized rGOs exhibited varying porous structures.
en-copyright=
kn-copyright=
en-aut-name=Ortiz-AnayaIsrael
en-aut-sei=Ortiz-Anaya
en-aut-mei=Israel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataSeiji
en-aut-sei=Obata
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Layered material
kn-keyword=Layered material
en-keyword=Interlayer distance
kn-keyword=Interlayer distance
en-keyword=Functionalization
kn-keyword=Functionalization
en-keyword=Alkylamines
kn-keyword=Alkylamines
en-keyword=Nitrogen physisorption
kn-keyword=Nitrogen physisorption
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=RP99858
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein?protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XingJian
en-aut-sei=Xing
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaHaruya
en-aut-sei=Ogawa
en-aut-mei=Haruya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラジカルを経由する有機合成反応に用いる可視光応答型ナノカーボン触媒の開発
kn-title=Visible-Light-Responsive Nanocarbon Catalyst for Radical-Mediated Organic Transformations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MD RAZU AHMED
en-aut-sei=MD RAZU AHMED
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=トリウム229原子核アイソマー状態からの脱励起光の観測
kn-title=Observation of the Radiative Decay from the Isomeric State of Thorium-229
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKAIKoichi
en-aut-sei=OKAI
en-aut-mei=Koichi
kn-aut-name=岡井晃一
kn-aut-sei=岡井
kn-aut-mei=晃一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=和歌山県紀伊半島の四万十帯の美山付加コンプレックスと竜神付加コンプレックスにおける構造性メランジュの未固結から岩石化初期の剪断変形構造に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKESUENorito
en-aut-sei=TAKESUE
en-aut-mei=Norito
kn-aut-name=竹末勘人
kn-aut-sei=竹末
kn-aut-mei=勘人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化
kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUWADAEriko
en-aut-sei=KUWADA
en-aut-mei=Eriko
kn-aut-name=纉c恵理子
kn-aut-sei=纉c
kn-aut-mei=恵理子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=タンパク質の限界発現により引き起こされるタンパク質毒性と細胞表現型の解析
kn-title=Analysis of Protein Toxicity and Cellular Phenotypes Triggered by the Maximum Overexpression of Proteins in Yeast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAMBAShotaro
en-aut-sei=NAMBA
en-aut-mei=Shotaro
kn-aut-name=難波匠太郎
kn-aut-sei=難波
kn-aut-mei=匠太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=酸化グラフェンの3次元組織化による吸着特性の精密制御
kn-title=Tuning the 3D Structure of Graphene Oxide Assembly for Precisely Controlled Adsorption Properties
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ISRAEL ORTIZ ANAYA
en-aut-sei=ISRAEL ORTIZ ANAYA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=複雑な分子骨格の迅速構築を指向した1,2-転位を基盤とする合成法の開発
kn-title=Development of synthetic methods for complex molecular frameworks via 1,2-rearrangement reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAMADAHidetoshi
en-aut-sei=KAMADA
en-aut-mei=Hidetoshi
kn-aut-name=鎌田英寿
kn-aut-sei=鎌田
kn-aut-mei=英寿
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=有機電解合成における反応素過程の機構解明のための事例研究
kn-title=Deeper Mechanistic Understanding of Some Reaction Processes in Electroorganic Synthesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NIKIYuta
en-aut-sei=NIKI
en-aut-mei=Yuta
kn-aut-name=仁木祐太
kn-aut-sei=仁木
kn-aut-mei=祐太
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=高性能ワイヤ放電加工のための油加工液特性の最適化に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIUShixian
en-aut-sei=LIU
en-aut-mei=Shixian
kn-aut-name=劉世賢
kn-aut-sei=劉
kn-aut-mei=世賢
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=組紐製造技術による繊維強化型人工筋肉の製作手法の確立と変位センシングの実現
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TIANWEIHANG
en-aut-sei=TIAN
en-aut-mei=WEIHANG
kn-aut-name=田偉航
kn-aut-sei=田
kn-aut-mei=偉航
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=数理統計学と情報理論を用いた限定的な事前情報下での意思決定補助手法に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TANABASHIShuto
en-aut-sei=TANABASHI
en-aut-mei=Shuto
kn-aut-name=棚橋秀斗
kn-aut-sei=棚橋
kn-aut-mei=秀斗
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Bサイト金属カチオン置換に伴う結晶構造変化を利用したハロゲン化物ペロブスカイト材料のバンドギャップ制御
kn-title=Bandgap tuning of halide perovskite materials using crystal structure changes associated with B-site metal cation substitution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=THIRI HTUN
en-aut-sei=THIRI HTUN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Dockerイメージ生成およびFlutterプログラミング演習問題解答のためのWebアプリケーションシステムの実装
kn-title=Implementations of Web Application Systems for Docker Image Generation and Flutter Programming Exercise Answer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LYNN HTET AUNG
en-aut-sei=LYNN HTET AUNG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=リハビリ目的の運動ゲームシステムにおけるゲーム操作のためのハンドジェスチャーの研究
kn-title=A Study of Hand Gestures for Controlling Video Games in Rehabilitation Exergame System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=RADHIATUL HUSNA
en-aut-sei=RADHIATUL HUSNA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=IEEE 802.11n2.4GHz無線LANにおける動作AP構成手法の高度化に関する研究
kn-title=Enhancements of Active Access-Point Configuration for IEEE 802.11n 2.4GHz Wireless Local-Area Network
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Mousumi Saha
en-aut-sei=Mousumi Saha
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=行動の社会的要因:歩行者の衝突回避におけるダイナミクスの定量化
kn-title=Social Factors in Motion: Quantifying the Dynamics of Dyad?Individual Collision Avoidance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Adrien Thibaud Marie GREGORJ
en-aut-sei=Adrien Thibaud Marie GREGORJ
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=TCP/IPインターネットプロトコルスイートを利用したエンドツーエンドの通信の情報セキュリティの研究
kn-title=A Study on Information Security for End-to-End Communication by TCP/IP Internet Protocol Suite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NORIMATSUTakashi
en-aut-sei=NORIMATSU
en-aut-mei=Takashi
kn-aut-name=乗松隆志
kn-aut-sei=乗松
kn-aut-mei=隆志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベンゾチアジアゾール系有機光起電力ドナー材料の合成と性質
kn-title=Synthesis and Properties of Benzothiadiazole-Based Organic Photovoltaic Donor Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YANYi
en-aut-sei=YAN
en-aut-mei=Yi
kn-aut-name=??
kn-aut-sei=?
kn-aut-mei=?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=パラジウム触媒によるカルボン酸誘導体の脱カルボニル化を伴うハロゲン化反応
kn-title=Palladium-Catalyzed Decarbonylative Halogenation of Carboxylic Acid Derivatives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TIANTian
en-aut-sei=TIAN
en-aut-mei=Tian
kn-aut-name=田天
kn-aut-sei=田
kn-aut-mei=天
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=分子シミュレーション及び積分方程式理論に基づく水中または単純液体中における溶質間有効相互作用に関する研究
kn-title=Molecular Simulation and Integral Equation Studies of the Solute-Solute Effective Interactions in Water and Simple Liquids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAITOHidefumi
en-aut-sei=NAITO
en-aut-mei=Hidefumi
kn-aut-name=内藤秀文
kn-aut-sei=内藤
kn-aut-mei=秀文
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=イオンモデル開発を伴うアルコール及びPNIPAM水溶液の分子シミュレーション研究
kn-title=MOLECULAR SIMULATION STUDY ON AQUEOUS SOLUTIONS OF ALCOHOLS AND PNIPAM WITH DEVELOPMENT OF ION MODELS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAIRAAoi
en-aut-sei=TAIRA
en-aut-mei=Aoi
kn-aut-name=平良碧生
kn-aut-sei=平良
kn-aut-mei=碧生
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=げっ歯類における性的二型行動とそのホルモン調節機構
kn-title=Sexually dimorphic behavior and its hormonal regulation in rodents
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HAYASHIHimeka
en-aut-sei=HAYASHI
en-aut-mei=Himeka
kn-aut-name=林姫花
kn-aut-sei=林
kn-aut-mei=姫花
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=分光法とペーパー分析デバイスに基づく酵素活性測定法の開発
kn-title=Development of Enzyme Activity Assays Based on Spectrometric Methods and Paper-Based Analytical Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=RENJIANCHAO
en-aut-sei=REN
en-aut-mei=JIANCHAO
kn-aut-name=任健超
kn-aut-sei=任
kn-aut-mei=健超
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マイクロ流体ペーパー分析デバイスによる窒素化合物の現場環境分析法の開発
kn-title=Development of on-site environmental analytical methods for nitrogen compounds using microfluidic paper-based analytical devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UMEDA (ISOYAMA)Mika
en-aut-sei=UMEDA (ISOYAMA)
en-aut-mei=Mika
kn-aut-name=梅田(礒山)美華
kn-aut-sei=梅田(礒山)
kn-aut-mei=美華
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=焼成による二次元物質上での物質形成を用いたナノポーラス材料の構造設計
kn-title=Structural Design of Nanoporous Materials with Substance Formation on Two-Dimensional Materials Using Calcination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKEUCHIYuki
en-aut-sei=TAKEUCHI
en-aut-mei=Yuki
kn-aut-name=武内裕城
kn-aut-sei=武内
kn-aut-mei=裕城
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=炭素材料の内部状態解析に向けた固体NMR観測手法の革新と応用
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ANDOHideka
en-aut-sei=ANDO
en-aut-mei=Hideka
kn-aut-name=安東映香
kn-aut-sei=安東
kn-aut-mei=映香
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=酸化グラフェンを用いた新規ナノ多孔性炭素の合成と特性評価
kn-title=Synthesis and characterization of novel nanoporous carbons using graphene oxide
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIZhao
en-aut-sei=LI
en-aut-mei=Zhao
kn-aut-name=李昭
kn-aut-sei=李
kn-aut-mei=昭
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=宇宙マイクロ波背景放射観測衛星のための全天スキャン戦略の設計と系統的効果の制御
kn-title=Design of the full-sky scanning strategy and systematic effect control in a cosmic microwave background probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKASEYusuke
en-aut-sei=TAKASE
en-aut-mei=Yusuke
kn-aut-name=瀬祐介
kn-aut-sei=瀬
kn-aut-mei=祐介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=経口胆道鏡検査におけるAIを用いた色素内視鏡画像への疑似変換
kn-title=Virtual indigo carmine chromoendoscopy images: a novel modality for peroral cholangioscopy using artificial intelligence technology (with video)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SATORyosuke
en-aut-sei=SATO
en-aut-mei=Ryosuke
kn-aut-name=佐藤亮介
kn-aut-sei=佐藤
kn-aut-mei=亮介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=295
cd-vols=
no-issue=
article-no=
start-page=128303
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (μPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This μPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the μPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L?1 with a detection limit of 0.089 mg L?1 and a quantification limit of 0.269 mg L?1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this μPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This μPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications.
en-copyright=
kn-copyright=
en-aut-name=DanchanaKaewta
en-aut-sei=Danchana
en-aut-mei=Kaewta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NambaHaruka
en-aut-sei=Namba
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Phosphate
kn-keyword=Phosphate
en-keyword=Microfluidic paper-based analytical device
kn-keyword=Microfluidic paper-based analytical device
en-keyword=Solid-phase extraction
kn-keyword=Solid-phase extraction
en-keyword=Anion exchanger
kn-keyword=Anion exchanger
en-keyword=Molybdenum blue method
kn-keyword=Molybdenum blue method
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=20
article-no=
start-page=eadv7488
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a photosystem I supercomplex from Galdieria sulphuraria close to an ancestral red alga
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Red algae exhibit unique photosynthetic adaptations, characterized by photosystem I (PSI) supercomplexes containing light-harvesting complexes (LHCs), forming PSI-LHCI supercomplexes. In this study, we solved the PSI-LHCI structure of Galdieria sulphuraria NIES-3638 at 2.19-angstrom resolution using cryo-electron microscopy, revealing a PSI monomer core associated with seven LHCI subunits. Structural analysis uncovered the absence of phylloquinones, the common secondary electron acceptor in PSI of photosynthetic organisms, suggesting adaptation to a benzoquinone-like molecule. Phylogenetic analysis suggests that G. sulphuraria retains traits characteristic of an ancestral red alga, including distinctive LHCI binding and interaction patterns. Variations in LHCI composition and interactions across red algae, particularly in red-lineage chlorophyll a/b-binding-like protein and red algal LHCs, highlight evolutionary divergence and specialization. These findings not only deepen our understanding of red algal PSI-LHCI diversification but also enable us to predict features of an ancestral red algal PSI-LHCI supercomplex, providing a framework to explore evolutionary adaptations from an ancestral red alga.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=3
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=4
en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science
kn-affil=
affil-num=5
en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=5
article-no=
start-page=e0320426
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications.
en-copyright=
kn-copyright=
en-aut-name=SariYuita Arum
en-aut-sei=Sari
en-aut-mei=Yuita Arum
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakazawaAtsushi
en-aut-sei=Nakazawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WaniYudi Arimba
en-aut-sei=Wani
en-aut-mei=Yudi Arimba
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=4175
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores.
en-copyright=
kn-copyright=
en-aut-name=La RoccaRomain
en-aut-sei=La Rocca
en-aut-mei=Romain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsaiPi-Cheng
en-aut-sei=Tsai
en-aut-mei=Pi-Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
en-keyword=advanced glycation end product
kn-keyword=advanced glycation end product
en-keyword=aging
kn-keyword=aging
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=collagen
kn-keyword=collagen
en-keyword=aggrecan
kn-keyword=aggrecan
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=5
article-no=
start-page=58
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel.
en-copyright=
kn-copyright=
en-aut-name=BufetovAlexander I.
en-aut-sei=Bufetov
en-aut-mei=Alexander I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamotoYosuke
en-aut-sei=Kawamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Steklov Mathematical Institute of RAS
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Random matrices
kn-keyword=Random matrices
en-keyword=Intertwining relation
kn-keyword=Intertwining relation
en-keyword=Interacting Brownian motions
kn-keyword=Interacting Brownian motions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e202500439
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=2-Hydroxy-3-(Pyrrolidin-1-yl)-Indolines: A Platform for Accessing Decorated Deaminokynurenines Enabled by a Double Tautomeric Control
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study we introduce indoline hemiaminals as phenacyl bromide surrogates for the synthesis of deaminokynurenine derivatives through cyclic-linear tautomeric intermediates. The reaction proceeds through a tandem process involving the ring opening of indoline hemiaminals, generating transient acyclic aldehydes which are then trapped with in situ generated enolate species. Our protocol overcomes traditional dilemma in production of polar-mismatch 1,4-dicarbonyl compounds by utilizing a transient highly electrophilic linear aldehyde and late-stage transposition of carbonyl moiety. The synthetic utility of our transformation was demonstrated by follow-up transformations, including the first total synthesis of quinoline-2,4-dione alkaloid.
en-copyright=
kn-copyright=
en-aut-name=TokushigeKeisuke
en-aut-sei=Tokushige
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Deaminokynurenines
kn-keyword=Deaminokynurenines
en-keyword=Enolates
kn-keyword=Enolates
en-keyword=Indoline hemiaminals
kn-keyword=Indoline hemiaminals
en-keyword=Potassium tertbutoxide
kn-keyword=Potassium tertbutoxide
en-keyword=Tautomerism
kn-keyword=Tautomerism
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=18
article-no=
start-page=4737
end-page=4741
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrochemical Oxidation of Benzyl Alcohols via Hydrogen Atom Transfer Mediated by 2,2,2-Trifluoroethanol
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a novel electrochemical oxidation of benzyl alcohols. We found that trifluoroethanol plays a role as a hydrogen atom transfer (HAT) mediator, enabling the oxidation of electron-deficient substrates that are difficult to directly oxidize on electrode surfaces. Density functional theory calculations, cyclic voltammetry measurements, and constant potential electrolysis studies supported the proposed HAT mechanism. Moreover, the obtained carbonyl compounds could be functionalized in an electrochemical one-pot manner, further highlighting their synthetic utility.
en-copyright=
kn-copyright=
en-aut-name=KawajiriTakahiro
en-aut-sei=Kawajiri
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HosoyaMasahiro
en-aut-sei=Hosoya
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaSatoshi
en-aut-sei=Goda
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=2
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=3
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=241001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metamorphic pressure-temperature conditions of garnet granulite from the Eastern Iratsu body in the Sambagawa belt, SW Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several coarse-grained mafic bodies with evidence for eclogite-facies metamorphism are present in the Besshi area of the Sambagawa subduction-type metamorphic belt, SW Japan. Among them the granulite-bearing Eastern Iratsu metagabbro body involves an unresolved problem of whether it originated in the hanging-wall or footwall side of the subduction zone. The key to settle this problem is its relationship with the adjacent Western Iratsu metabasaltic body, which includes thick marble layer and certainly has the footwall ocean-floor origin. Several previous studies consider that the Western and Eastern Iratsu bodies were originally coherent in the footwall side and formed the shallower and deeper parts of a thick oceanic crust, respectively. The validity of this hypothesis may be assessed by deriving pressure-temperature history of the Eastern Iratsu body, or especially the pressure (depth) condition of the granulite-facies metamorphism before the eclogite-facies overprinting because, if the pressure was relatively high, the oceanic crust assumed in the above hypothesis might be too thick to tectonically achieve the present-day adjacence of the two bodies on the geological map. This study petrologically analyzes a garnet-bearing granulite from the Eastern Iratsu body and newly reports stable coexistence of garnet and orthopyroxene in the sample. By utilizing a garnet-orthopyroxene geothermobarometer, the minimum P-T conditions of the granulite-facies stage was estimated to be 0.8 GPa (? 27 km in depth) and 780 °C. If the Western and Eastern Iratsu bodies were assumed to have formed a coherent oceanic crust before their subduction, the original thickness of it was >27 km and this demands unusually strong ductile shortening (<1/9) or unrealistically large vertical displacement on intraplate faulting, suggesting invalidity of the assumption. The Western and Eastern Iratsu bodies, therefore, are originally bounded by subduction-boundary fault and the obtained pressure of 0.8 GPa can be interpreted to represent that of the hanging-wall lower continental crust in the subduction zone, where the Eastern Iratsu body originated. After the granulite-facies metamorphism, the Western Iratsu body, which was located near the footwall surface, initiated subduction and was subsequently juxtaposed with the above-located Eastern Iratsu body at the corresponding depth (? 27 km or greater) along the subduction boundary.
en-copyright=
kn-copyright=
en-aut-name=NAKAMURADaisuke
en-aut-sei=NAKAMURA
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AOYAMutsuki
en-aut-sei=AOYA
en-aut-mei=Mutsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OKAMURATomoki
en-aut-sei=OKAMURA
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Sambagawa belt
kn-keyword=Sambagawa belt
en-keyword=Iratsu body
kn-keyword=Iratsu body
en-keyword=Metagabbro
kn-keyword=Metagabbro
en-keyword=Granulite
kn-keyword=Granulite
en-keyword=Hanging wall
kn-keyword=Hanging wall
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70087
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence.
en-copyright=
kn-copyright=
en-aut-name=WatanabeYuta
en-aut-sei=Watanabe
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunishiKotomi
en-aut-sei=Kunishi
en-aut-mei=Kotomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Agriculture,Okayama University
kn-affil=
affil-num=3
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=horizontal gene transfer
kn-keyword=horizontal gene transfer
en-keyword=integrative and conjugative elements
kn-keyword=integrative and conjugative elements
en-keyword=pathogenicity island
kn-keyword=pathogenicity island
en-keyword=Pseudomonas syringae
kn-keyword=Pseudomonas syringae
en-keyword=tabtoxin
kn-keyword=tabtoxin
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=2
article-no=
start-page=94
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years.
en-copyright=
kn-copyright=
en-aut-name=SamTruong Thao
en-aut-sei=Sam
en-aut-mei=Truong Thao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=hydrological model
kn-keyword=hydrological model
en-keyword=drought
kn-keyword=drought
en-keyword=coffee irrigation
kn-keyword=coffee irrigation
en-keyword=water-saving technique
kn-keyword=water-saving technique
en-keyword=water allocation
kn-keyword=water allocation
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=9
article-no=
start-page=1983
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Initial Bonding Performance to CAD/CAM Restorative Materials: The Impact of Stepwise Concentration Variation in 8-Methacryloxyoctyl Trimethoxy Silane and 3-Methacryloxypropyl Trimethoxy Silane on Feldspathic Ceramic, Lithium Disilicate Glass-Ceramic, and Polymer-Infiltrated Ceramic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the effects of varying concentrations of two distinct silane agents, 8-methacryloxyoctyl trimethoxy silane (8-MOTS) and 3-methacryloxypropyl trimethoxy silane (γ-MPTS), on their initial bonding efficacy to feldspathic ceramic (FC), lithium disilicate glass-ceramic (LD) and polymer-infiltrated ceramic (PIC) specimens, in 10% increments for concentrations ranging from 10% to 40%. Shear bond strengths between the ceramic substrates and the luting material were assessed following 24 h incubation in distilled water. For FC, the median value of shear bond strength peaked at 20% of γ-MPTS (7.4 MPa), while 8-MOTS exhibited a concentration-dependent increase, reaching its highest value at 40% (13.1 MPa). For LD, γ-MPTS above 10% yielded similar strength median values (10.2 MPa), whereas 8-MOTS at 30% (15.8 MPa) and 40% (13.4 MPa) yielded higher strength values than at 10% (2.9 MPa) and 20% (4.1 MPa), with the highest median value exhibited at 30%. For PIC, both γ-MPTS and 8-MOTS demonstrated similarly low bond strength values which were not significantly different from the non-silane-treated specimens. When applied on silica-based FC and LD, silane revealed a concentration-dependent bonding effect, with 8-MOTS exhibiting superior bond strength to γ-MPTS. However, PIC, characterized by a high inorganic filler content, demonstrated limited bondability with both silanes.
en-copyright=
kn-copyright=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IrieMasao
en-aut-sei=Irie
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshizaneMai
en-aut-sei=Yoshizane
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiyamaKentaro
en-aut-sei=Akiyama
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Health Research Institute, National Institute of Advanced Industrial Science and Technology
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=6
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=silane coupling
kn-keyword=silane coupling
en-keyword=bond strength
kn-keyword=bond strength
en-keyword=ceramic
kn-keyword=ceramic
en-keyword=feldspathic
kn-keyword=feldspathic
en-keyword=lithium
kn-keyword=lithium
en-keyword=polymer-infiltrated ceramic
kn-keyword=polymer-infiltrated ceramic
en-keyword=CAD/CAM
kn-keyword=CAD/CAM
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TRPV2 mediates stress resilience in mouse cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The heart dynamically compensates for haemodynamic stress, but how this resilience forms during cardiac growth is not clear. Using a temporally inducible, cardiac-specific knockout in mice we show that the Transient receptor potential vanilloid family 2 (TRPV2) channel is crucial for the maturation of cardiomyocyte stress resilience. TRPV2 defects in growing hearts lead to small morphology, abnormal intercalated discs, weak contractility, and low expression of serum response factor and Insulin-like growth factor-1 (IGF-1) signalling. Individual cardiomyocytes of TRPV2-deficient hearts show reduced contractility with abnormal Ca2+ handling. In cultured neonatal cardiomyocytes, mechanical Ca2+ response, excitation-contraction coupling, sarcoplasmic reticulum Ca2+ content, actin formation, nuclear localisation of Myocyte enhancer factor 2c, and IGF-1 expression require TRPV2. TRPV2-deficient hearts show a defective response to dobutamine stress and no compensatory hypertrophic response to phenylephrine administration, but no stress response to pressure overload. These data suggest TRPV2 mediates the maturation of cardiomyocyte stress resilience, and will advance therapeutic interventions and drug discovery for heart disease.
en-copyright=
kn-copyright=
en-aut-name=DongYubing
en-aut-sei=Dong
en-aut-mei=Yubing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangGuohao
en-aut-sei=Wang
en-aut-mei=Guohao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjiharaYoshihiro
en-aut-sei=Ujihara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYanzhu
en-aut-sei=Chen
en-aut-mei=Yanzhu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatanosakaKimiaki
en-aut-sei=Katanosaka
en-aut-mei=Kimiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana.
en-copyright=
kn-copyright=
en-aut-name=KuroeKana
en-aut-sei=Kuroe
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakafumi
en-aut-sei=Nishimura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KashiharaSachi
en-aut-sei=Kashihara
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=poly T3E mutant
kn-keyword=poly T3E mutant
en-keyword=type III effector
kn-keyword=type III effector
en-keyword=type III secretion system
kn-keyword=type III secretion system
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=4
article-no=
start-page=043024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of the thorium-229 defect structure in CaF2 crystals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advancements in laser excitation of the low-energy thorium-229 (229Th) nuclear isomeric state in calcium fluoride (CaF2) single crystals render this system a promising candidate for a solid-state nuclear clock. Nonetheless, the precise experimental determination of the microscopic ion configuration surrounding the doped 229Th and its electronic charge state remains a critical challenge. Such characterization is essential for precisely controlling the clock transition and evaluating the performance of this solid-state nuclear clock system. In this study, we use x-ray absorption fine structure spectroscopy of 229Th:CaF2 to investigate the charge state and coordination environment of doped 229Th. The results indicate that 229Th displays a 4+ oxidation state at the substitutional site of a Ca2+ ion, with charge compensated provided by two F? ions positioned at interstitial sites adjacent to 229Th.
en-copyright=
kn-copyright=
en-aut-name=TakatoriS.
en-aut-sei=Takatori
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PimonM.
en-aut-sei=Pimon
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PollittS.
en-aut-sei=Pollitt
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BartokosM.
en-aut-sei=Bartokos
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BeeksK.
en-aut-sei=Beeks
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GrueneisA.
en-aut-sei=Grueneis
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirakiT.
en-aut-sei=Hiraki
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HonmaT.
en-aut-sei=Honma
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosseiniN.
en-aut-sei=Hosseini
en-aut-mei=N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeitnerA.
en-aut-sei=Leitner
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaT.
en-aut-sei=Masuda
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorawetzI
en-aut-sei=Morawetz
en-aut-mei=I
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NittaK.
en-aut-sei=Nitta
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkaiK.
en-aut-sei=Okai
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RiebnerT.
en-aut-sei=Riebner
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SchadenF.
en-aut-sei=Schaden
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SchummT.
en-aut-sei=Schumm
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SekizawaO.
en-aut-sei=Sekizawa
en-aut-mei=O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SikorskyT.
en-aut-sei=Sikorsky
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiY.
en-aut-sei=Takahashi
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=De ColCol, L. Toscani
en-aut-sei=De Col
en-aut-mei=Col, L. Toscani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamamotoR.
en-aut-sei=Yamamoto
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YomogidaT.
en-aut-sei=Yomogida
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=YoshimiA.
en-aut-sei=Yoshimi
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshimuraK.
en-aut-sei=Yoshimura
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=3
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=4
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=5
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=6
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=8
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=9
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=10
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=11
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=12
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=13
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=14
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=15
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=16
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=17
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=18
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=19
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=20
en-affil=Department of Earth and Planetary Science, The University of Tokyo
kn-affil=
affil-num=21
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=22
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=23
en-affil=Department of Earth and Planetary Science, The University of Tokyo
kn-affil=
affil-num=24
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=25
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
en-keyword=solid-state nuclear clock
kn-keyword=solid-state nuclear clock
en-keyword=thorium-229
kn-keyword=thorium-229
en-keyword=XAFS
kn-keyword=XAFS
END
start-ver=1.4
cd-journal=joma
no-vol=116
cd-vols=
no-issue=5
article-no=
start-page=1214
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Regulatory T (Treg) cells have an immunosuppressive function, and programmed death-1 (PD-1)-expressing Treg cells reportedly induce resistance to PD-1 blockade therapies through their reactivation. However, the effects of antigenicity on PD-1 expression in Treg cells and the resistance to PD-1 blockade therapy remain unclear. Here, we show that Treg cells gain high PD-1 expression through an antigen with high antigenicity. Additionally, tumors with high antigenicity for Treg cells were resistant to PD-1 blockade in vivo due to PD-1+ Treg-cell infiltration. Because such PD-1+ Treg cells have high cytotoxic T lymphocyte antigen (CTLA)-4 expression, resistance could be overcome by combination with an anti-CTLA-4 monoclonal antibody (mAb). Patients who responded to combination therapy with anti-PD-1 and anti-CTLA-4 mAbs sequentially after primary resistance to PD-1 blockade monotherapy showed high Treg cell infiltration. We propose that the high antigenicity of Treg cells confers resistance to PD-1 blockade therapy via high PD-1 expression in Treg cells, which can be overcome by combination therapy with an anti-CTLA-4 mAb.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraHiroaki
en-aut-sei=Matsuura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MutoYoshinori
en-aut-sei=Muto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=7
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=8
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=9
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
en-keyword=antigenicity
kn-keyword=antigenicity
en-keyword=cancer immunotherapy
kn-keyword=cancer immunotherapy
en-keyword=CTLA-4
kn-keyword=CTLA-4
en-keyword=PD-1
kn-keyword=PD-1
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=18515
end-page=18529
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources.
en-copyright=
kn-copyright=
en-aut-name=ShimomuraYu
en-aut-sei=Shimomura
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsanoTakashi
en-aut-sei=Asano
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiharaAyumi
en-aut-sei=Ishihara
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NodaSusumu
en-aut-sei=Noda
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYasushi
en-aut-sei=Takahashi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=4
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=214
cd-vols=
no-issue=
article-no=
start-page=32
end-page=41
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Medaka approach to evolutionary social neuroscience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
en-copyright=
kn-copyright=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hiraki-KajiyamaTowako
en-aut-sei=Hiraki-Kajiyama
en-aut-mei=Towako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaRyutaro
en-aut-sei=Ueda
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoiSaori
en-aut-sei=Yokoi
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsumuraTakafumi
en-aut-sei=Katsumura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Hokkaido University
kn-affil=
affil-num=6
en-affil=School of Medicine, Kitasato University
kn-affil=
affil-num=7
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Evolutionary neuroscience
kn-keyword=Evolutionary neuroscience
en-keyword=Comparative neuroscience
kn-keyword=Comparative neuroscience
en-keyword=Medaka bioresource
kn-keyword=Medaka bioresource
en-keyword=Visual mate preference
kn-keyword=Visual mate preference
en-keyword=Sexual selection
kn-keyword=Sexual selection
en-keyword=Genetic manipulation
kn-keyword=Genetic manipulation
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=15
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Improved sedimentary layer model including the accretionary prism in the fore-arc region of the Ryukyu arc, Japan
kn-title=南西諸島の前弧域における付加体を含む堆積層のモデル化
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We combine the recent seismic reflection profiles to construct a new seismic velocity model of the sedimentary layer incorporating the accretionary prism along the Ryukyu trench. In constructing the new model, we refer to the zoning (ZONE1 to ZONE4) identified by Okamura et al. (2017, Tectonophys.). The construction process consists of the following steps: First, we digitize either unconformities or VP=4 to 5 km/s lines as the seismic basement, whichever is more clearly identifiable. Second, the digitized thickness data of the sedimentary layer from the reflection profiles are geometrically modeled and interpolated to make the three-dimensional structure model. Finally, we supplement the external region of the constructed 3-D sedimentary model using the J-SHIS model provided by the NIED to complete the velocity structure model in the entire Ryukyu arc. The main features of our model are as follows: In ZONE1, off Ishigaki-jima island, the thick sedimentary layer extends about 50 km wide from the Ryukyu trench. In ZONE2, off Miyako-jima island, the thinner layer compared to the other zones is found near the trench, with a thin sedimentary terrace covering the area behind it. In ZONE3, off Okinawa-jima island, the sedimentary layer deepens as it approaches the trench. In ZONE4, off Tokara islands, the deepest layer among all zones is identified. We then conduct 3-D finite-difference simulations of seismic wave propagation using the new and the previous models to confirm the improvement of the new model. In the simulations, the effects of the accretionary prism along the Ryukyu trench on the seismic wave propagation are clearly identified.
en-copyright=
kn-copyright=
en-aut-name=KOMATSUMasanao
en-aut-sei=KOMATSU
en-aut-mei=Masanao
kn-aut-name=小松正直
kn-aut-sei=小松
kn-aut-mei=正直
aut-affil-num=1
ORCID=
en-aut-name=URAKAMISohei
en-aut-sei=URAKAMI
en-aut-mei=Sohei
kn-aut-name=浦上想平
kn-aut-sei=浦上
kn-aut-mei=想平
aut-affil-num=2
ORCID=
en-aut-name=OKAMOTOTaro
en-aut-sei=OKAMOTO
en-aut-mei=Taro
kn-aut-name=岡元太郎
kn-aut-sei=岡元
kn-aut-mei=太郎
aut-affil-num=3
ORCID=
en-aut-name=TAKENAKAHiroshi
en-aut-sei=TAKENAKA
en-aut-mei=Hiroshi
kn-aut-name=竹中博士
kn-aut-sei=竹中
kn-aut-mei=博士
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama Gakuin University
kn-affil=岡山学院大学
affil-num=2
en-affil=Formerly Department of Earth Sciences, Okayama University
kn-affil=元・岡山大学大学院自然科学研究科
affil-num=3
en-affil=Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo
kn-affil=東京科学大学理学院地球惑星科学系
affil-num=4
en-affil=Department of Earth Sciences, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
en-keyword=Sedimentary layer model
kn-keyword=Sedimentary layer model
en-keyword=Accretionary prism
kn-keyword=Accretionary prism
en-keyword=Ryukyu arc
kn-keyword=Ryukyu arc
END
start-ver=1.4
cd-journal=joma
no-vol=220
cd-vols=
no-issue=
article-no=
start-page=115401
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic landscape and clinical impact of homologous recombination repair gene mutation in small bowel adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Small bowel adenocarcinoma (SBA) is a rare malignancy with a poor prognosis and limited treatment options. Although homologous recombination deficiency has been studied as a biomarker for other cancer types, the clinical and genomic implications of homologous recombination repair (HRR) gene mutations in SBA remain unclear.
Methods: We retrospectively analyzed the data of 628 patients with advanced or recurrent SBA from a nationwide genomic database. Patients were categorized into HRR mutation and non-HRR mutation groups and compared for their clinical and genomic characteristics including tumor mutational burden (TMB) and microsatellite instability-high (MSI-H) were compared. Treatment efficacy and overall survival (OS) were assessed based on HRR gene mutation status and primary tumor site (duodenal adenocarcinoma [DA] vs. small intestinal carcinoma [SIC]).
Results: Patients with the HRR mutations had higher frequencies of TMB and MSI-H than those without the mutation (P?0.0001). In DA, HRR gene mutation positivity was associated with improved OS and higher overall response rates (ORR) to platinum-based chemotherapy (OS: not reached vs. 23.5 months, P?=?0.040; ORR: 33?% vs. 19?%, P?=?0.046), whereas no significant associations were observed with SIC.
Conclusion: HRR gene mutation may be a potential biomarker for platinum-based chemotherapy efficacy in SBA, especially in DA, highlighting the need for site-specific therapies.
en-copyright=
kn-copyright=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Homologous recombination repair
kn-keyword=Homologous recombination repair
en-keyword=Small bowel adenocarcinoma
kn-keyword=Small bowel adenocarcinoma
en-keyword=Genome
kn-keyword=Genome
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=2323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
en-copyright=
kn-copyright=
en-aut-name=AndoYushin
en-aut-sei=Ando
en-aut-mei=Yushin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakawaAyako
en-aut-sei=Yamakawa
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonomaSuzuna
en-aut-sei=Konoma
en-aut-mei=Suzuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiYuki
en-aut-sei=Kobayashi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItohYuzuru
en-aut-sei=Itoh
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=4
article-no=
start-page=139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions.
en-copyright=
kn-copyright=
en-aut-name=KongDezheng
en-aut-sei=Kong
en-aut-mei=Dezheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FangShihao
en-aut-sei=Fang
en-aut-mei=Shihao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NopriantoMitsuhiro
en-aut-sei=Noprianto
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PuspitaningayuPradini
en-aut-sei=Puspitaningayu
en-aut-mei=Pradini
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya
kn-affil=
en-keyword=creep test
kn-keyword=creep test
en-keyword=Raspberry Pi
kn-keyword=Raspberry Pi
en-keyword=dial gauge
kn-keyword=dial gauge
en-keyword=needle reading
kn-keyword=needle reading
en-keyword=smart lighting
kn-keyword=smart lighting
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=2
article-no=
start-page=43
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250317
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular Iodine-Catalyzed Synthesis of 3,3-Disubstituted Isatins: Total Synthesis of Indole Alkaloid, 3,3-Dimethoxy-2-oxindole
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=3,3-Dialkoxy-2-oxindoles are prevalent in natural products and exhibit unique biological activities. Among them, acyclic alkoxy analogues show instability in acidic conditions, making access to acyclic isatin ketals highly challenging. Conventional methods for the synthesis of 3,3-dialkoxy-2-oxindoles usually require strongly acidic and harsh reaction conditions, resulting in a low overall efficiency. Herein, we report on an acid- and metal-free protocol for the synthesis of 3,3-dialkoxy-2-oxindoles from isatins through an iodine-catalyzed ketalization. This photochemical protocol does not require the use of any specific reagents such as metal catalysts. Furthermore, the total synthesis of an unprecedented 2-oxindole alkaloid bearing 3,3-dimethoxy moiety is achieved.
en-copyright=
kn-copyright=
en-aut-name=TokushigeKeisuke
en-aut-sei=Tokushige
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsaiShota
en-aut-sei=Asai
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Shujitsu University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=3,3-dialkoxyisatins
kn-keyword=3,3-dialkoxyisatins
en-keyword=isatins
kn-keyword=isatins
en-keyword=ketalization
kn-keyword=ketalization
en-keyword=iodine
kn-keyword=iodine
en-keyword=indole alkaloid
kn-keyword=indole alkaloid
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=3
article-no=
start-page=374
end-page=380
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect Modification in Settings with “Truncation by Death”
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidemiologic studies recruiting individuals with higher-than-population-average mortality can be affected by “truncation by death,” whereby the outcome of interest (e.g., quality of life) is considered not to be defined for individuals who die before the end of follow-up. Here, we use the potential outcomes framework and principal stratification to derive conditions under which the survivor average causal effect, an estimand defined for the “always-survivors” stratum, is modified by a variable that represents a possible common cause of survival and the outcome of interest and by a variable that only affects survival. Further, we show that this principal effect can be expressed as a weighted average of this treatment effect for individuals with each level of these variables, and that these weights depend not only on the relative frequencies of the levels in the total population but also on the “always-survivors” principal stratum. We also discuss the implications of this work for the transportability of the survivor average causal effect.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Comparative Biomedical Sciences, Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Causal inference
kn-keyword=Causal inference
en-keyword=Effect modification
kn-keyword=Effect modification
en-keyword=Principal stratification
kn-keyword=Principal stratification
en-keyword=Transportability
kn-keyword=Transportability
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=8
article-no=
start-page=e70793
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Differences and Distinct TP53 Mutation Site-Linked Chemosensitivity in Early- and Late-Onset Gastric Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastric cancer (GC) in younger patients often exhibits aggressive behavior and a poorer prognosis than that in older patients. Although the clinical differences may stem from oncogenic gene variations, it is unclear whether genetic differences exist between these groups. This study compared the genetic profiles of early- and late-onset GC and evaluated their impact on treatment outcomes.
Methods: We analyzed genetic data from 1284 patients with GC in the Japanese nationwide Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, comparing early-onset (<= 39 years; n = 143) and late-onset (>= 65 years; n = 1141) groups. The influence of TP53 mutations on the time to treatment failure (TTF) with platinum-based chemotherapy and the sensitivity of cancer cells with different TP53 mutation sites to oxaliplatin were assessed in vitro.
Results: Early- and late-onset GC showed distinct genetic profiles, with fewer neoantigen-associated genetic changes observed in early-onset cases. In particular, TP53 has distinct mutation sites; R175H and R273 mutations are more frequent in early- and late-onset GC, respectively. The R175H mutation showed higher sensitivity to oxaliplatin in vitro, consistent with the longer TTF in early-onset patients (17.3 vs. 7.0 months, p = 0.013) when focusing on the patients with TP53 mutations.
Conclusion: Genomic differences, particularly in TP53 mutation sites, between early- and late-onset GC support the need for age-specific treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirosunaKensuke
en-aut-sei=Hirosuna
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=early-onset gastric cancer
kn-keyword=early-onset gastric cancer
en-keyword=oxaliplatin
kn-keyword=oxaliplatin
en-keyword=TP53
kn-keyword=TP53
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=6
article-no=
start-page=1108
end-page=1116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spray-drying of polymer solutions across a broad concentration range and the subsequent formation of a few micro- ?nano-meter sized fibers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spray drying is a widely utilized technique for the concentration and fine particulation of dried products. This study demonstrated that a versatile spray dryer, equipped with a two-fluid nozzle atomizer, can convert polymer solutions into nanoscale fibers by manipulating the conditions of the polymer solutions. The polymers employed in this research included polyvinylpyrrolidones (Mw 24.5 k to 60?kDa), dextrans (70 k to 450?650?kDa), pullulan, gum Arabic, Eudragit and agar, with methanol and water serving as solvents. Various combinations of polymers and solvents were subjected to spray drying at polymer concentrations ranging from 5 to 1000?g/L. Scanning electron microscopy analyses of the spray-dried samples indicated that the products transitioned from micrometer-sized particles to sub-micrometer fibers in several instances when the polymer concentrations exceeded specific threshold levels. The investigation also explored the relationship between these threshold concentrations and the surface tension and viscosity of the polymer solutions.
en-copyright=
kn-copyright=
en-aut-name=AragaChika
en-aut-sei=Araga
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukushimaKaito
en-aut-sei=Fukushima
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoHaruna
en-aut-sei=Sato
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HondaNao
en-aut-sei=Honda
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HasegawaTakato
en-aut-sei=Hasegawa
en-aut-mei=Takato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakasoKoichi
en-aut-sei=Nakaso
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshidaNaoyuki
en-aut-sei=Ishida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ImamuraKoreyoshi
en-aut-sei=Imamura
en-aut-mei=Koreyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Chemical Engineering and Material Sciences, Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=8
en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Sub-micron fiber
kn-keyword=Sub-micron fiber
en-keyword=spray-drying
kn-keyword=spray-drying
en-keyword=two fluid nozzle atomizer
kn-keyword=two fluid nozzle atomizer
en-keyword=polyvinylpyrrolidone
kn-keyword=polyvinylpyrrolidone
en-keyword=polysaccharide
kn-keyword=polysaccharide
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250419
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings.
en-copyright=
kn-copyright=
en-aut-name=SudoRyutaro
en-aut-sei=Sudo
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoKohta
en-aut-sei=Miyamoto
en-aut-mei=Kohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdoHirofumi
en-aut-sei=Ido
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Forestry and Forest Products Research Institute
kn-affil=
affil-num=3
en-affil=Forestry and Forest Products Research Institute
kn-affil=
en-keyword=Laminated veneer lumber (LVL)
kn-keyword=Laminated veneer lumber (LVL)
en-keyword=Partial compressive load
kn-keyword=Partial compressive load
en-keyword=Bearing strength
kn-keyword=Bearing strength
en-keyword=Embedment strength
kn-keyword=Embedment strength
en-keyword=Partial compression perpendicular to grain (PCPG)
kn-keyword=Partial compression perpendicular to grain (PCPG)
en-keyword=Adhesive layer
kn-keyword=Adhesive layer
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=109
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their children’s 4-month health examination. The relationships between postpartum depression and the mothers’ background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score ≧9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the woman’s personality traits is needed.
en-copyright=
kn-copyright=
en-aut-name=AwaiKyoko
en-aut-sei=Awai
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakatsukaMikiya
en-aut-sei=Nakatsuka
en-aut-mei=Mikiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=infertility treatment
kn-keyword=infertility treatment
en-keyword=assisted reproductive technology
kn-keyword=assisted reproductive technology
en-keyword=postpartum
kn-keyword=postpartum
en-keyword=postpartum depression
kn-keyword=postpartum depression
en-keyword=personality trait
kn-keyword=personality trait
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=93
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacher’s roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession.
en-copyright=
kn-copyright=
en-aut-name=TsuchieRina
en-aut-sei=Tsuchie
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsumuraHideki
en-aut-sei=Tsumura
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=work engagement
kn-keyword=work engagement
en-keyword=school teachers
kn-keyword=school teachers
en-keyword=insomnia
kn-keyword=insomnia
en-keyword=psychological distress
kn-keyword=psychological distress
en-keyword=neck pain
kn-keyword=neck pain
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=75
end-page=80
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Potential for Radiation Dose Reduction in Temporal Bone CT Imaging Using Photon-Counting Detector CT
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Temporal bone computed tomography (CT) is frequently performed for pediatric patients with ear diseases. Advances in CT technology have improved diagnostic imaging quality, but reduction of radiation exposure remains a goal. We evaluated the potential for radiation dose reduction in temporal bone CT examinations using porcine ear ossicles and a photon-counting detector CT system. Three scans of the bilateral temporal bone were performed on each of three pig cadaver heads. In each of seven successive imaging sessions, the radiation dose was reduced by an additional one-seventh of the recommended dose (RD). Two board-certified radiologists independently scored the resulting images on a scale of 1 to 5 points, where 5 represented the image quality at the RD. Images scoring ?4.5 points were considered acceptable. Noise was assessed in a 2-cm-diameter region near the ear ossicles, and standard deviation was measured for each of the seven decrements from the RD. As the radiation dose decreased, the noise progressively increased, and visual assessment scores progressively decreased. Acceptable image scores were obtained at six-sevenths (4.9), five-sevenths (4.8), four-sevenths (4.7), and three-sevenths (4.6) of the RD. Thus, acceptable porcine temporal bone CT images were obtained with a radiation dose reduction of approximately 50%.
en-copyright=
kn-copyright=
en-aut-name=HigakiFumiyo
en-aut-sei=Higaki
en-aut-mei=Fumiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HwangSung Il
en-aut-sei=Hwang
en-aut-mei=Sung Il
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitayamaTakahiro
en-aut-sei=Kitayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiYuka
en-aut-sei=Takahashi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugayaAkiko
en-aut-sei=Sugaya
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Seoul National University Bundang Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=photon-counting detector computed tomography
kn-keyword=photon-counting detector computed tomography
en-keyword=ear ossicle
kn-keyword=ear ossicle
en-keyword=energy-integrating detector computed tomography
kn-keyword=energy-integrating detector computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=7
article-no=
start-page=2221
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle.
en-copyright=
kn-copyright=
en-aut-name=NiYilei
en-aut-sei=Ni
en-aut-mei=Yilei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakimotoShuichi
en-aut-sei=Wakimoto
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TianWeihang
en-aut-sei=Tian
en-aut-mei=Weihang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KandaTakefumi
en-aut-sei=Kanda
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaguchiDaisuke
en-aut-sei=Yamaguchi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=McKibben artificial muscle
kn-keyword=McKibben artificial muscle
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=optical fiber
kn-keyword=optical fiber
en-keyword=motion estimation
kn-keyword=motion estimation
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=12
article-no=
start-page=135
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elliptic virtual structure constants and generalizations of BCOV-Zinger formula to projective Fano hypersurfaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we propose a method for computing genus 1 Gromov-Witten invariants of Calabi-Yau and Fano projective hypersurfaces using the B-model. Our formalism is applicable to both Calabi-Yau and Fano cases. In the Calabi-Yau case, significant cancellation of terms within our formalism occurs, resulting in an alternative representation of the BCOV-Zinger formula for projective Calabi-Yau hypersurfaces.
en-copyright=
kn-copyright=
en-aut-name=JinzenjiMasao
en-aut-sei=Jinzenji
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwataKen
en-aut-sei=Kuwata
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Education, National Institute of Technology, Kagawa College
kn-affil=
en-keyword=Nonperturbative Effects
kn-keyword=Nonperturbative Effects
en-keyword=String Duality
kn-keyword=String Duality
en-keyword=Topological Field Theories
kn-keyword=Topological Field Theories
en-keyword=Topological Strings
kn-keyword=Topological Strings
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=
article-no=
start-page=35
end-page=37
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 16th International Symposium for Future Technology Creating Better Human Health and Society
kn-title=第16回 高度医療都市を創出する未来技術国際シンポジウム
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YANGJiajia
en-aut-sei=YANG
en-aut-mei=Jiajia
kn-aut-name=楊家家
kn-aut-sei=楊
kn-aut-mei=家家
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡??学学術研究院ヘルスシステム統合科学学域
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=
article-no=
start-page=1
end-page=9
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Corporate decision-making process for exploration time
kn-title=知の探索時間についての企業の意思決定プロセス
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In order for companies to innovate through business co-creation, it is necessary to explore a wide range of external knowledge and technologies. However, there is no clear answer as to how much time should be spent for exploration. Under these circumstances, companies must take into account constraints such as the amount of management resources that can be invested, and make decisions about the time to spend for exploration. The purpose of this paper is to clarify the process of how companies that have introduced corporate accelerator program recognize the relationship between the program period and the results of business co-creation, and how they make decisions about the program period. We conducted a case study of several companies that have introduced corporate accelerator program in Japan. In addition, this paper established a hypothesis about decision-making about the time for exploration from case studies.
en-copyright=
kn-copyright=
en-aut-name=SHIMIZUTakeshi
en-aut-sei=SHIMIZU
en-aut-mei=Takeshi
kn-aut-name=志水武史
kn-aut-sei=志水
kn-aut-mei=武史
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems Okayama University
kn-affil=国立大学法人岡山大学学術研究院ヘルスシステム統合科学研究学域
en-keyword=corporate accelerator program
kn-keyword=corporate accelerator program
en-keyword=co-creation
kn-keyword=co-creation
en-keyword=exploration
kn-keyword=exploration
en-keyword=Time Compression Diseconomies
kn-keyword=Time Compression Diseconomies
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=99
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The best constant of the Sobolev inequality corresponding to a bending problem of a string with a rectangular spring constant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Sobolev inequality shows that the supremum of a function defined on a whole line is estimated from the above by constant multiples of the potential energy. Among such constants, the smallest constant is the best constant. If we replace a constant by the best constant in the Sobolev inequality, then the equality holds for the best function. The aim of this paper is to find the best constant and the best function. In the background, there is a bending problem of a string with a rectangular spring constant. The Green function is an important function because the best constant and the best function consist of the Green function.
en-copyright=
kn-copyright=
en-aut-name=YamagishiHiroyuki
en-aut-sei=Yamagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KametakaYoshinori
en-aut-sei=Kametaka
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Tokyo Metropolitan College of Industrial Technology
kn-affil=
affil-num=2
en-affil=Faculty of Engineering Science, Osaka University
kn-affil=
en-keyword=Sobolev inequality
kn-keyword=Sobolev inequality
en-keyword=Green function
kn-keyword=Green function
en-keyword=reproducing kernel
kn-keyword=reproducing kernel
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=28
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inseparable Gauss maps and dormant opers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper aims to generalize a result by H. Kaji on Gauss maps in positive characteristic and establish an interaction with the study of dormant opers and Frobenius-projective structures. We prove a correspondence between dormant opers on a smooth projective variety and closed immersions into a projective space with purely inseparable Gauss map. By using this, we determine the subfields of the function field of a smooth curve in positive characteristic induced by Gauss maps. Moreover, this correspondence gives us a Frobenius-projective structure on a Fermat hypersurface.
en-copyright=
kn-copyright=
en-aut-name=WakabayashiYasuhiro
en-aut-sei=Wakabayashi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Information Science and Technology, Osaka University
kn-affil=
en-keyword=Gauss map
kn-keyword=Gauss map
en-keyword=Frobenius-projective structure
kn-keyword=Frobenius-projective structure
en-keyword=dormant
kn-keyword=dormant
en-keyword=indigenous bundle
kn-keyword=indigenous bundle
en-keyword=oper
kn-keyword=oper
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=1
article-no=
start-page=100
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction:Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC).
Materials and Methods:The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC.
Results:For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity.
Conclusion:It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis.
en-copyright=
kn-copyright=
en-aut-name=OhataMiyu
en-aut-sei=Ohata
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiRyohei
en-aut-sei=Fukui
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiDaichi
en-aut-sei=Kobayashi
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamauchiTakatsugu
en-aut-sei=Yamauchi
en-aut-mei=Takatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HondaMitsugi
en-aut-sei=Honda
en-aut-mei=Mitsugi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayashiAiko
en-aut-sei=Hayashi
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasegawaKoshi
en-aut-sei=Hasegawa
en-aut-mei=Koshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KidaKatsuhiro
en-aut-sei=Kida
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=GotoSachiko
en-aut-sei=Goto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University
kn-affil=
en-keyword=Image quality
kn-keyword=Image quality
en-keyword=photon-counting computed tomography
kn-keyword=photon-counting computed tomography
en-keyword=quantum iterative reconstruction
kn-keyword=quantum iterative reconstruction
en-keyword=radiomics
kn-keyword=radiomics
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=3
article-no=
start-page=143
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Hair Drawing Evaluation Algorithm for Exactness Assessment Method in Portrait Drawing Learning Assistant System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, portrait drawing has become increasingly popular as a means of developing artistic skills and nurturing emotional expression. However, it is challenging for novices to start learning it, as they usually lack a solid grasp of proportions and structural foundations of the five senses. To address this problem, we have studied Portrait Drawing Learning Assistant System (PDLAS) for guiding novices by providing auxiliary lines of facial features, generated by utilizing OpenPose and OpenCV libraries. For PDLAS, we have also presented the exactness assessment method to evaluate drawing accuracy using the Normalized Cross-Correlation (NCC) algorithm. It calculates the similarity score between the drawing result and the initial portrait photo. Unfortunately, the current method does not assess the hair drawing, although it occupies a large part of a portrait and often determines its quality. In this paper, we present a hair drawing evaluation algorithm for the exactness assessment method to offer comprehensive feedback to users in PDLAS. To emphasize hair lines, this algorithm extracts the texture of the hair region by computing the eigenvalues and eigenvectors of the hair image. For evaluations, we applied the proposal to drawing results by seven students from Okayama University, Japan and confirmed the validity. In addition, we observed the NCC score improvement in PDLAS by modifying the face parts with low similarity scores from the exactness assessment method.
en-copyright=
kn-copyright=
en-aut-name=ZhangYue
en-aut-sei=Zhang
en-aut-mei=Yue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FebriantiErita Cicilia
en-aut-sei=Febrianti
en-aut-mei=Erita Cicilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudarsonoAmang
en-aut-sei=Sudarsono
en-aut-mei=Amang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HsuChenchien
en-aut-sei=Hsu
en-aut-mei=Chenchien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya
kn-affil=
affil-num=4
en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya
kn-affil=
affil-num=5
en-affil=Department of Electrical Engineering, National Taiwan Normal University
kn-affil=
en-keyword=portrait drawing
kn-keyword=portrait drawing
en-keyword=auxiliary lines
kn-keyword=auxiliary lines
en-keyword=OpenPose
kn-keyword=OpenPose
en-keyword=OpenCV
kn-keyword=OpenCV
en-keyword=normalized cross-correlation (NCC)
kn-keyword=normalized cross-correlation (NCC)
en-keyword=hair texture
kn-keyword=hair texture
en-keyword=exactness assessment method
kn-keyword=exactness assessment method
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=3
article-no=
start-page=033907
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of density measurement at high pressure and high temperature using the x-ray absorption method combined with laser-heated diamond anvil cell
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The densities of liquid materials at high pressures and high temperatures are important information to understand the elastic behavior of liquids at extreme conditions, which is closely related to the formation and evolution processes of the Earth and planetary interiors. The x-ray absorption method is an effective method to measure the density of non-crystalline materials at high pressures. However, the temperature condition of the x-ray absorption method using a diamond anvil cell (DAC) has been limited to 720 K to date. To significantly expand the measurable temperature condition of this method, in this study, we developed a density measurement technique using the x-ray absorption method in combination with a laser-heated DAC. The density of solid Ni was measured up to 26 GPa and 1800 K using the x-ray absorption method and evaluated by comparison with the density obtained from the x-ray diffraction. The density of solid Ni with a thickness >17 μm was determined with an accuracy of 0.01%?2.2% (0.001?0.20 g/cm3) and a precision of 0.8%?1.8% (0.07?0.16 g/cm3) in the x-ray absorption method. The density of liquid Ni was also determined to be 8.70 ± 0.15?8.98 ± 0.38 g/cm3 at 16?23 GPa and 2230?2480 K. Consequently, the temperature limit of the x-ray absorption method can be expanded from 720 to 2480 K by combining it with a laser-heated DAC in this study.
en-copyright=
kn-copyright=
en-aut-name=TerasakiHidenori
en-aut-sei=Terasaki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KaminaHiroyuki
en-aut-sei=Kamina
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiSaori I.
en-aut-sei=Kawaguchi
en-aut-mei=Saori I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTadashi
en-aut-sei=Kondo
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriokaKo
en-aut-sei=Morioka
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsuruokaRyo
en-aut-sei=Tsuruoka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuraiMoe
en-aut-sei=Sakurai
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YonedaAkira
en-aut-sei=Yoneda
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamadaSeiji
en-aut-sei=Kamada
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiraoNaohisa
en-aut-sei=Hirao
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=4
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=7
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=9
en-affil=AD Science Incorporation
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2485
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases.
en-copyright=
kn-copyright=
en-aut-name=NishiiNaoko
en-aut-sei=Nishii
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiTomoko
en-aut-sei=Kawai
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaYuika
en-aut-sei=Harada
en-aut-mei=Yuika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiShunai
en-aut-sei=Li
en-aut-mei=Shunai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukanoMoemi
en-aut-sei=Tsukano
en-aut-mei=Moemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=VGLUT3
kn-keyword=VGLUT3
en-keyword=glutamate
kn-keyword=glutamate
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=glutamatergic transmission
kn-keyword=glutamatergic transmission
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=4
article-no=
start-page=108334
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-.
en-copyright=
kn-copyright=
en-aut-name=NakamaMasaki
en-aut-sei=Nakama
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojiTomoyasu
en-aut-sei=Noji
en-aut-mei=Tomoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=microbial rhodopsin
kn-keyword=microbial rhodopsin
en-keyword=anion transport
kn-keyword=anion transport
en-keyword=retinal
kn-keyword=retinal
en-keyword=membrane protein
kn-keyword=membrane protein
en-keyword=photobiology
kn-keyword=photobiology
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=3
article-no=
start-page=124
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Facial Privacy Protection with Dynamic Multi-User Access Control for Online Photo Platforms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the digital age, sharing moments through photos has become a daily habit. However, every face captured in these photos is vulnerable to unauthorized identification and potential misuse through AI-powered synthetic content generation. Previously, we introduced SnapSafe, a secure system for enabling selective image privacy focusing on facial regions for single-party scenarios. Recognizing that group photos with multiple subjects are a more common scenario, we extend SnapSafe to support multi-user facial privacy protection with dynamic access control designed for online photo platforms. Our approach introduces key splitting for access control, an owner-centric permission system for granting and revoking access to facial regions, and a request-based mechanism allowing subjects to initiate access permissions. These features ensure that facial regions remain protected while maintaining the visibility of non-facial content for general viewing. To ensure reproducibility and isolation, we implemented our solution using Docker containers. Our experimental assessment covered diverse scenarios, categorized as "Single", "Small", "Medium", and "Large", based on the number of faces in the photos. The results demonstrate the system's effectiveness across all test scenarios, consistently performing face encryption operations in under 350 ms and achieving average face decryption times below 286 ms across various group sizes. The key-splitting operations maintained a 100% success rate across all group configurations, while revocation operations were executed efficiently with server processing times remaining under 16 ms. These results validate the system's capability in managing facial privacy while maintaining practical usability in online photo sharing contexts.
en-copyright=
kn-copyright=
en-aut-name=SantosoAndri
en-aut-sei=Santoso
en-aut-mei=Andri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HudaSamsul
en-aut-sei=Huda
en-aut-mei=Samsul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoderaYuta
en-aut-sei=Kodera
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NogamiYasuyuki
en-aut-sei=Nogami
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Green Innovation Center, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=facial privacy protection
kn-keyword=facial privacy protection
en-keyword=selective facial encryption
kn-keyword=selective facial encryption
en-keyword=multi-user access control
kn-keyword=multi-user access control
en-keyword=deep-learning applications
kn-keyword=deep-learning applications
en-keyword=online photo platform
kn-keyword=online photo platform
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=
article-no=
start-page=670
end-page=679
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemically assisted synthesis of phenacenes fluorinated at the terminal benzene rings and their electronic spectra
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=[n]Phenacenes ([n] = 5-7), octafluorinated at the terminal benzene rings (F8-phenacenes: F8PIC, F8FUL, and F87PHEN), were photochemically synthesized, and their electronic spectra were investigated to reveal the effects of the fluorination on the electronic features of phenacene molecules. F8-Phenacenes were conveniently synthesized by the Mallory photoreaction of the corresponding fluorinated diarylethenes as the key step. Upon fluorination on the phenacene cores, the absorption and fluorescence bands of the F8-phenacenes in CHCl3 systematically red-shifted by ca. 3-5 nm compared to those of the corresponding parent phenacenes. The vibrational progressions of the absorption and fluorescence bands were little affected by the fluorination in the solution phase. In the solid state, the absorption band of F8-phenacenes appeared in the similar wavelength region for the corresponding parent phenacenes whereas their fluorescence bands markedly red-shifted and broadened. These observations suggest that the intermolecular interactions of excited-state F8-phenacene molecules are significantly different from those of the corresponding parent molecules, most likely due to different crystalline packing motifs.
en-copyright=
kn-copyright=
en-aut-name=IshiiYuuki
en-aut-sei=Ishii
en-aut-mei=Yuuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiMinoru
en-aut-sei=Yamaji
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaniFumito
en-aut-sei=Tani
en-aut-mei=Fumito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotoKenta
en-aut-sei=Goto
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KubozonoYoshihiro
en-aut-sei=Kubozono
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoHideki
en-aut-sei=Okamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University
kn-affil=
affil-num=3
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=4
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fluorescence
kn-keyword=fluorescence
en-keyword=fluorinated aromatics
kn-keyword=fluorinated aromatics
en-keyword=phenacene
kn-keyword=phenacene
en-keyword=photoreaction
kn-keyword=photoreaction
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=668
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Robustness of Machine Learning Predictions for Determining Whether Deep Inspiration Breath-Hold Is Required in Breast Cancer Radiation Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Deep inspiration breath-hold (DIBH) is a commonly used technique to reduce the mean heart dose (MHD), which is critical for minimizing late cardiac side effects in breast cancer patients undergoing radiation therapy (RT). Although previous studies have explored the potential of machine learning (ML) to predict which patients might benefit from DIBH, none have rigorously assessed ML model performance across various MHD thresholds and parameter settings. This study aims to evaluate the robustness of ML models in predicting the need for DIBH across different clinical scenarios. Methods: Using data from 207 breast cancer patients treated with RT, we developed and tested ML models at three MHD cut-off values (240, 270, and 300 cGy), considering variations in the number of independent variables (three vs. six) and folds in the cross-validation (three, four, and five). Robustness was defined as achieving high F2 scores and low instability in predictive performance. Results: Our findings indicate that the decision tree (DT) model demonstrated consistently high robustness at 240 and 270 cGy, while the random forest model performed optimally at 300 cGy. At 240 cGy, a threshold critical to minimize late cardiac risks, the DT model exhibited stable predictive power, reducing the risk of overestimating DIBH necessity. Conclusions: These results suggest that the DT model, particularly at lower MHD thresholds, may be the most reliable for clinical applications. By providing a tool for targeted DIBH implementation, this model has the potential to enhance patient-specific treatment planning and improve clinical outcomes in RT.
en-copyright=
kn-copyright=
en-aut-name=Al-HammadWlla E.
en-aut-sei=Al-Hammad
en-aut-mei=Wlla E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaMasahiro
en-aut-sei=Kuroda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Al JamalJamal, Ghaida
en-aut-sei=Al Jamal
en-aut-mei=Jamal, Ghaida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamizakiRyo
en-aut-sei=Kamizaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugimotoKohei
en-aut-sei=Sugimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugiantoIrfan
en-aut-sei=Sugianto
en-aut-mei=Irfan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BarhamMajd
en-aut-sei=Barham
en-aut-mei=Majd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TekikiNouha
en-aut-sei=Tekiki
en-aut-mei=Nouha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University
kn-affil=
affil-num=13
en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University
kn-affil=
affil-num=14
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=radiation therapy
kn-keyword=radiation therapy
en-keyword=heart dose
kn-keyword=heart dose
en-keyword=cut-off value
kn-keyword=cut-off value
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=robustness
kn-keyword=robustness
en-keyword=instability
kn-keyword=instability
en-keyword=F2 score
kn-keyword=F2 score
en-keyword=deep inspiration breath-hold technique
kn-keyword=deep inspiration breath-hold technique
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=790
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated.
en-copyright=
kn-copyright=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaMasahiro
en-aut-sei=Kuroda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukumuraYuka
en-aut-sei=Fukumura
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamitsuYuki
en-aut-sei=Nakamitsu
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Al-HammadWlla E.
en-aut-sei=Al-Hammad
en-aut-mei=Wlla E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuYudai
en-aut-sei=Shimizu
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugiantoIrfan
en-aut-sei=Sugianto
en-aut-mei=Irfan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BarhamMajd
en-aut-sei=Barham
en-aut-mei=Majd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TekikiNouha
en-aut-sei=Tekiki
en-aut-mei=Nouha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KamaruddinNurul N.
en-aut-sei=Kamaruddin
en-aut-mei=Nurul N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University
kn-affil=
affil-num=12
en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=head and neck tumors
kn-keyword=head and neck tumors
en-keyword=mean kurtosis
kn-keyword=mean kurtosis
en-keyword=simple diffusion kurtosis imaging
kn-keyword=simple diffusion kurtosis imaging
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=apparent diffusion coefficient value
kn-keyword=apparent diffusion coefficient value
en-keyword=diffusion kurtosis imaging
kn-keyword=diffusion kurtosis imaging
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=bi-parameter analysis
kn-keyword=bi-parameter analysis
en-keyword=gradient boosting
kn-keyword=gradient boosting
en-keyword=differential diagnosis of benign and malignant
kn-keyword=differential diagnosis of benign and malignant
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=8366
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2.
en-copyright=
kn-copyright=
en-aut-name=LiYajun
en-aut-sei=Li
en-aut-mei=Yajun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HashimotoYusuke
en-aut-sei=Hashimoto
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KataokaNoriyuki
en-aut-sei=Kataoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunZexu
en-aut-sei=Sun
en-aut-mei=Zexu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawamuraSota
en-aut-sei=Kawamura
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomitaHiroto
en-aut-sei=Tomita
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SetoguchiTaro
en-aut-sei=Setoguchi
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiSoichiro
en-aut-sei=Takeuchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KogaShunjo
en-aut-sei=Koga
en-aut-mei=Shunjo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamagamiKohei
en-aut-sei=Yamagami
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KotaniYoshinori
en-aut-sei=Kotani
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DemuraSatoshi
en-aut-sei=Demura
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NoguchiKanako
en-aut-sei=Noguchi
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakataHideaki
en-aut-sei=Sakata
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MatsushitaTomohiro
en-aut-sei=Matsushita
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=WakitaTakanori
en-aut-sei=Wakita
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MuraokaYuji
en-aut-sei=Muraoka
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YokoyaTakayoshi
en-aut-sei=Yokoya
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=5
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=6
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=9
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute (JASRI)
kn-affil=
affil-num=11
en-affil=Japan Synchrotron Radiation Research Institute (JASRI)
kn-affil=
affil-num=12
en-affil=Department of Physics, College of Science and Technology(CST), Nihon University
kn-affil=
affil-num=13
en-affil=Tokyo University of Science
kn-affil=
affil-num=14
en-affil=Tokyo University of Science
kn-affil=
affil-num=15
en-affil=Nara Institute of Science and Technology (NAIST)
kn-affil=
affil-num=16
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=18
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=6
article-no=
start-page=1082
end-page=1096
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti?PD-1 mAb or anti?CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti?PD-1 and anti?CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti?CTLA4 and anti?PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti?CTLA4 and anti?PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti?PD-1 mAb. B-cell?activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non?small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti?PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases.
en-copyright=
kn-copyright=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OkamotoIsamu
en-aut-sei=Okamoto
en-aut-mei=Isamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=
article-no=
start-page=91
end-page=105
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250328
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Reflections of Early Care and Education Practitioners, as Indicated in the Content on the Care and Education of Kindergarten Children Published by Japan’s Ministry of Education, Culture, Sports, Science and Technology
kn-title=幼稚園の保育全体に関する文部科学省公表資料に示されている保育者の振り返りの仕方の検討
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 本研究では,まず,我が国の保育施設におけるカリキュラム・マネジメントに関する先行研究を概観し,カリキュラム・マネジメントを実現するために必要な,保育の目標・ねらい・内容の連関性の確保された全体的計画の作成が困難な状況にあることを確認した。続いて,保育の目標・ねらい・内容の連関性を確保する上で,そのことを可能にする保育者の振り返りの仕方が不可欠となることを踏まえて,幼稚園の保育全体に関する文部科学省公表資料に示されている,保育者の振り返りの目的,観点,方法を抽出し整理し,検討した。その結果,保育者の長期の振り返りに関して示されている記述では,具体性が乏しく,保育の目標・ねらい・内容の連関性の確保された長期指導計画及び全体的計画を作成する上で,実用的ではないことを明らかにした。
en-copyright=
kn-copyright=
en-aut-name=ARITASho
en-aut-sei=ARITA
en-aut-mei=Sho
kn-aut-name=有田翔
kn-aut-sei=有田
kn-aut-mei=翔
aut-affil-num=1
ORCID=
en-aut-name=YOKOMATSUTomoyoshi
en-aut-sei=YOKOMATSU
en-aut-mei=Tomoyoshi
kn-aut-name=横松友義
kn-aut-sei=横松
kn-aut-mei=友義
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University (Master’s Course)
kn-affil=岡山大学大学院教育学研究科大学院生
affil-num=2
en-affil=Faculty of Education, Okayama University
kn-affil=岡山大学学術研究院教育学域
en-keyword=保育者の振り返り (reflections of early care and education practitioners)
kn-keyword=保育者の振り返り (reflections of early care and education practitioners)
en-keyword=幼稚園 (kindergarten)
kn-keyword=幼稚園 (kindergarten)
en-keyword=カリキュラム・マネジメント (curriculum management)
kn-keyword=カリキュラム・マネジメント (curriculum management)
en-keyword=文部科学省公表資料 (the content on the care and education of kindergarten children published by Japan’s Ministry of Education, Culture, Sports, Science and Technology)
kn-keyword=文部科学省公表資料 (the content on the care and education of kindergarten children published by Japan’s Ministry of Education, Culture, Sports, Science and Technology)
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=2480231
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation.
en-copyright=
kn-copyright=
en-aut-name=MutsudaKoki
en-aut-sei=Mutsuda
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiYuichi
en-aut-sei=Nishii
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyoshimaTomohiko
en-aut-sei=Toyoshima
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaHiroko
en-aut-sei=Fukushima
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=mRNA translation
kn-keyword=mRNA translation
en-keyword=RPL10
kn-keyword=RPL10
en-keyword=suppressor mutant
kn-keyword=suppressor mutant
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=uORF
kn-keyword=uORF
END