start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=4984
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=cardiomyopathy
kn-keyword=cardiomyopathy
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative therapy
kn-keyword=regenerative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From Carboxylic Acids or Their Derivatives to Amines and Ethers: Modern Decarboxylative Approaches for Sustainable C–N and C–O Bond Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.
en-copyright=
kn-copyright=
en-aut-name=YanWeidan
en-aut-sei=Yan
en-aut-mei=Weidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TianTian
en-aut-sei=Tian
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PEÑATIRSO
en-aut-sei=PEÑA
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=げっ歯類における性的二型行動とそのホルモン調節機構
kn-title=Sexually dimorphic behavior and its hormonal regulation in rodents
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HAYASHIHimeka
en-aut-sei=HAYASHI
en-aut-mei=Himeka
kn-aut-name=林姫花
kn-aut-sei=林
kn-aut-mei=姫花
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスIII型細胞におけるCcn3の機能の探索
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Kuanyu Wang
en-aut-sei=Kuanyu Wang
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ワーク・エンゲージメントが低いことは、日本の中学校および高等学校の教員において、不眠、心理的苦痛、首の痛みと関連している
kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TSUCHIERina
en-aut-sei=TSUCHIE
en-aut-mei=Rina
kn-aut-name=土江梨奈
kn-aut-sei=土江
kn-aut-mei=梨奈
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=神経線維腫症1型患者における遺伝型-表現型の相関:遺伝性腫瘍コホート
kn-title=Genotypes and phenotypes of neurofibromatosis type 1 patients in Japan: A Hereditary Tumor Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUTAGAWAMashu
en-aut-sei=FUTAGAWA
en-aut-mei=Mashu
kn-aut-name=二川摩周
kn-aut-sei=二川
kn-aut-mei=摩周
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CTLA-4阻害の抗腫瘍効果はTreg細胞のCTLA-4非依存性免疫抑制機構の活性化によって減弱する
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WATANABETomofumi
en-aut-sei=WATANABE
en-aut-mei=Tomofumi
kn-aut-name=渡部智文
kn-aut-sei=渡部
kn-aut-mei=智文
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=左心低形成症候群ノーウッド術後の右室-肺動脈シャントに対し、ヘモクリップとバルーン血管形成術を組み合わせた肺血流制御の有用性
kn-title=Pulmonary Flow Management by Combination Therapy of Hemostatic Clipping and Balloon Angioplasty for Right Ventricular-Pulmonary Artery Shunt in Hypoplastic Left Heart Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHIGEMITSUYusuke
en-aut-sei=SHIGEMITSU
en-aut-mei=Yusuke
kn-aut-name=重光祐輔
kn-aut-sei=重光
kn-aut-mei=祐輔
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺癌術後の気管支断端瘻を回避するために組織弁が果たす予防的効果
kn-title=Prophylactic effect of tissue flap in the prevention of bronchopleural fistula after surgery for lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HABUTomohiro
en-aut-sei=HABU
en-aut-mei=Tomohiro
kn-aut-name=土生智大
kn-aut-sei=土生
kn-aut-mei=智大
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=心停止ドナーからの肺移植においてNr4a1の欠損は内皮細胞障害を抑制し血管外漏出を改善する
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWANAShinichi
en-aut-sei=KAWANA
en-aut-mei=Shinichi
kn-aut-name=川名伸一
kn-aut-sei=川名
kn-aut-mei=伸一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=93
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacher’s roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession.
en-copyright=
kn-copyright=
en-aut-name=TsuchieRina
en-aut-sei=Tsuchie
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsumuraHideki
en-aut-sei=Tsumura
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=work engagement
kn-keyword=work engagement
en-keyword=school teachers
kn-keyword=school teachers
en-keyword=insomnia
kn-keyword=insomnia
en-keyword=psychological distress
kn-keyword=psychological distress
en-keyword=neck pain
kn-keyword=neck pain
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=100016
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in adrenoceptor expression level contribute to the cellular plasticity of glioblastoma cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma cells are known to regulate their cellular plasticity in response to their surrounding microenvironment, but it is not fully understood what factors contribute to the cells' changing plasticity. Here, we found that glioblastoma cells alter the expression level of adrenoreceptors depending on their differentiation stage. Catecholamines are abundant in the central nervous system, and we found that noradrenaline, in particular, enhances the stemness of glioblastoma cells and promotes the dedifferentiation potential of already differentiated glioblastoma cells. Antagonist and RNAi experiments revealed that signaling through alpha 1D-adrenoreceptor is important for noradrenaline action on glioblastoma cells. We also found that high alpha 1Dadrenoreceptor expression was associated with poor prognosis in patients with gliomas. These data suggest that glioblastoma cells increase the expression level of their own adrenoreceptors to alter the surrounding tumor microenvironment favorably for survival. We believe that our findings will contribute to the development of new therapeutic strategies for glioblastoma.
en-copyright=
kn-copyright=
en-aut-name=AsakaYutaro
en-aut-sei=Asaka
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasumotoToshio
en-aut-sei=Masumoto
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChinVanessa D.
en-aut-sei=Chin
en-aut-mei=Vanessa D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PenaTirso
en-aut-sei=Pena
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University
kn-affil=
affil-num=11
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Adrenoceptors
kn-keyword=Adrenoceptors
en-keyword=Glioma stem-like cells
kn-keyword=Glioma stem-like cells
en-keyword=Differentiated glioma cells
kn-keyword=Differentiated glioma cells
en-keyword=Noradrenaline
kn-keyword=Noradrenaline
en-keyword=Cellular plasticity
kn-keyword=Cellular plasticity
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary chest wall sarcoma: advances in surgical management and outcomes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Although rare, primary chest wall sarcomas are complex malignancies necessitating optimal local control and comprehensive treatment. This study aimed to review 9 years of cases of primary chest wall sarcomas at a single institution, focusing on their histology, surgical management, and prognosis.
Methods A retrospective analysis was performed on 19 patients undergoing chest wall resection for sarcoma from 2012 to 2020. Data on demographics, tumor specifics, resection extent, and adjuvant therapies were collected. Surgical and postoperative outcomes were also assessed.
Results The median patient age was 64 years. Chondrosarcoma was the most common histology. R0 resection was achieved in all patients, with early postoperative complications occurring in 11% of the patients. Robust chest wall reconstruction was performed, resulting in minimal respiratory complications. The 5-year overall survival and disease-free survival rates were 94% and 68%, respectively. Tumor size and patient age were significant prognostic factors for local recurrence.
Conclusion Comprehensive surgical resection, coupled with multidisciplinary preoperative planning, achieves favorable outcomes. Patients aged ≥ 70 years and with tumor size ≥ 5 cm (P = .047) should be carefully followed up for local recurrence.
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Primary chest wall sarcomas
kn-keyword=Primary chest wall sarcomas
en-keyword=Chest wall resection
kn-keyword=Chest wall resection
en-keyword=Chondrosarcoma
kn-keyword=Chondrosarcoma
en-keyword=Robust chest wall reconstruction
kn-keyword=Robust chest wall reconstruction
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=16
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The preoperative flexion tear gap affects postoperative meniscus stability after pullout repair for medial meniscus posterior root tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background We investigated whether the preoperative flexion tear gap (FTG) observed in open magnetic resonance imaging (MRI) affects meniscus stability after medial meniscus (MM) posterior root (MMPR) repairs. Furthermore, time-correlated MRI findings from MMPR tear occurrence were evaluated.
Methods This retrospective observational study included 54 patients (mean age, 64.6 years; 13 males and 41 females) who underwent pullout repair for radial degenerative MMPR tear. Meniscus stability (scored 0-4 points) was assessed using a semi-quantitative arthroscopic scoring system during second-look arthroscopy 1 year postoperatively. The FTG was evaluated on preoperative axial MRI at 90 degrees knee flexion. Other MRI measurements included MM extrusion (MME) at 10 degrees knee flexion, MM posterior extrusion (MMPE) at 90 degrees knee flexion, and MM posteromedial extrusion (MMpmE) at 90 degrees knee flexion preoperatively and 1 year postoperatively. The correlation between the arthroscopic stability score and MRI findings was investigated. A receiver-operating characteristic curve was calculated to predict a good meniscus healing score (3-4 points). The correlation between the FTG and patient demographics, including time from injury to MRI, was analyzed.
Results At 1 year postoperatively, MME increased by 1.1 mm, while MMpmE and MMPE decreased by 0.4 mm and 1.0 mm, respectively. The meniscus stability score was negatively correlated with the preoperative FTG (r = -0.61, p < 0.01). The time from injury to MRI was significantly correlated with the preoperative FTG. The receiver-operating characteristic curve identified an FTG cut-off value of 8.7 mm for predicting good postoperative stability, with sensitivity and specificity of 67% and 85%, respectively.
Conclusions FTG evaluated with open MRI at 90 degrees knee flexion was associated with time from injury and affected meniscus stability following pullout repair. MMPR tears should be treated in the early phase to increase meniscus healing stability.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitayamaTakahiro
en-aut-sei=Kitayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Distance
kn-keyword=Distance
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Second-look arthroscopy
kn-keyword=Second-look arthroscopy
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=
article-no=
start-page=1543543
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HanzawaMana
en-aut-sei=Hanzawa
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaganoAkihito
en-aut-sei=Nagano
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaNaoko
en-aut-sei=Maeda
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaShinichirou
en-aut-sei=Yoshida
en-aut-mei=Shinichirou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EndoMakoto
en-aut-sei=Endo
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YokoyamaNobuhiko
en-aut-sei=Yokoyama
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OchiMotoharu
en-aut-sei=Ochi
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHisashi
en-aut-sei=Ishida
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaHideki
en-aut-sei=Katayama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Palliative and Supportive Care, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=generative AI chatbot
kn-keyword=generative AI chatbot
en-keyword=large language model
kn-keyword=large language model
en-keyword=pediatric cancer
kn-keyword=pediatric cancer
en-keyword=adolescent and young adult (AYA)
kn-keyword=adolescent and young adult (AYA)
en-keyword=psychological support
kn-keyword=psychological support
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=2
article-no=
start-page=101
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiographic and Clinical Assessment of Unidirectional Porous Beta-Tricalcium Phosphate to Treat Benign Bone Tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of this study was to evaluate radiographic changes, clinical outcomes, and complications following unidirectional porous beta-tricalcium phosphate (UDPTCP) implantation for the treatment of benign bone tumors. We retrospectively analyzed 46 patients who underwent intralesional resection. The patients were divided into two cohorts: Cohort 1 (n = 32), which included all bones except the phalanges and metacarpal/tarsal bones, and Cohort 2 (n = 14), which included the phalanges and metacarpal/tarsal bones. Radiographic changes were assessed at each reading based on resorption of the implanted UDPTCP and bone trabeculation through the defect. UDPTCP resorption and bone trabeculation were observed on radiographs within 3 months of surgery in all patients. Bone remodeling in the cavity progressed steadily for up to 3 years postoperatively. In Cohort 1, resorption and trabeculation progressed significantly in young patients, and trabeculation developed significantly in small lesions. The rates of resorption and trabeculation at 3 months postoperatively correlated statistically with their increased rates at one year. There was no statistical difference in resorption and trabeculation rates between Cohort 1 and Cohort 2. There were no cases of postoperative deep infections or allergic reactions related to the implant. UDPTCP is a useful bone-filling substitute for the treatment of benign bone tumors and has a low complication rate.
en-copyright=
kn-copyright=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=unidirectional porous beta-tricalcium phosphate
kn-keyword=unidirectional porous beta-tricalcium phosphate
en-keyword= bone tumor
kn-keyword= bone tumor
en-keyword= bone graft
kn-keyword= bone graft
en-keyword= radiography
kn-keyword= radiography
en-keyword= bone remodeling
kn-keyword= bone remodeling
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Management Strategies for Truncus Arteriosus: A Comparative Analysis of Staged vs. Primary Repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We reviewed the outcomes of truncus arteriosus repair (primary vs. staged repair incorporating bilateral pulmonary artery banding), focusing on survival, reintervention, and functional data. We analyzed 39 patients who underwent a first intervention for truncus arteriosus (staged, n = 19; primary, n = 20) between 1992 and 2022. The median follow-up period was 8.0 (2.2–13.2) years. Survival, freedom from reoperation, and freedom from catheter intervention were estimated using the Kaplan–Meier method. High-risk patients were defined as those with a weight ≤ 2.5 kg, ≥ moderate truncal valve regurgitation, interrupted aortic arch, or preoperative shock. In the staged group, patients with a median weight of 2.6 kg had a median intensive care unit stay of 5 days and no hospital mortality after bilateral pulmonary artery banding. At repair, the staged group had a larger conduit for the right ventricular outflow tract (14 vs. 12 mm; P = .008). Catheter intervention on the branch pulmonary artery was required in 67% of patients in the staged group, but right ventricular end-diastolic pressure at follow-up was comparable between the groups (P = .541). Survival rates were higher among high-risk patients in the staged group (87.5% vs. 21.4% at 15 years; P = .004) but were comparable between groups for standard-risk patients (P = 1.000). Bilateral pulmonary artery banding was a safe, effective procedure. Reintervention for branch pulmonary artery was common but did not affect functional outcomes. Staged repair may play a pivotal role regarding survival in high-risk patients, and risk stratification is vital.
en-copyright=
kn-copyright=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SanoShunji
en-aut-sei=Sano
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NarumiyaYuto
en-aut-sei=Narumiya
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KimuraAyari
en-aut-sei=Kimura
en-aut-mei=Ayari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatric Cardiac Surgery, Showa University Hospital Toyosu
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
en-keyword=Truncus arteriosus
kn-keyword=Truncus arteriosus
en-keyword=Staged repair
kn-keyword=Staged repair
en-keyword=Primary repair
kn-keyword=Primary repair
en-keyword=Pulmonary artery banding
kn-keyword=Pulmonary artery banding
en-keyword=Risk stratification
kn-keyword=Risk stratification
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=
article-no=
start-page=11
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Uncovering the role of arcuate kisspeptin neurons as a source of the gonadotropin-releasing hormone pulse generator using gene-modified rats
kn-title=遺伝子改変ラットを用いた弓状核キスペプチンニューロンの性腺刺激ホルモン放出ホルモンパルスジェネレーターとしての役割解明
en-subtitle=
kn-subtitle=
en-abstract= 世界において,乳牛の受胎率(妊娠率)が低下しており,家畜の繁殖成績向上のための効果的な治療法が必要とされている.家畜を含む哺乳類において,生殖機能は視床下部-下垂体-性腺軸から分泌されるホルモンによって制御されている.これらのホルモンのうち,性腺刺激ホルモン放出ホルモン(GnRH)のパルス状分泌(GnRH パルス)は,性腺刺激ホルモン分泌と性腺機能に本質的に重要である.したがって,GnRH パルスを制御するメカニズム(GnRH パルスジェネレーター)を解明することは,家畜の生殖技術を向上させるために不可欠である.本総説では,著者らの遺伝子改変ラットモデルを用いた弓状核キスペプチンニューロン(ΚNDy ニューロンとしても知られる)がGnRH パルスジェネレーターの本体であることの直接的な証拠を示した研究を中心として,過去20年間の研究を概説した.また,ΚNDy ニューロンが分泌するニューロキニンB,グルタミン酸,ダイノルフィンA がΚNDy ニューロンの神経活動を同期させ,GnRH パルスを発生させるメカニズムについて論じた.遺伝子改変ラットモデルから得られた知識は,GnRH/ 性腺刺激ホルモンパルスを刺激して,家畜の繁殖能力を向上させる新規繁殖促進剤開発に寄与すると期待できる.
kn-abstract= Strategies for increasing reproductive performance are needed for domestic animals because for example the conception (pregnancy) rate has decreased in dairy cows around the world. Reproductive function is controlled by hormones released by the hypothalamus-pituitary-gonadal axis in mammals, including domestic animals. Of those hormones, tonic (pulsatile) gonadotropin-releasing hormone (GnRH) release is fundamentally important for gonadotropin release and gonadal activity. Therefore, uncovering the mechanism controlling GnRH pulses, that is GnRH pulse generator, is essential to improve reproductive technologies for domestic animals. The present review is focused on the indispensable role of arcuate nucleus (ARC) kisspeptin neurons (also known as KNDy neurons) as the GnRH pulse generator in mammals. First, we give a brief overview of studies on hypothalamic kisspeptin neurons throughout the past two decades. Second, we review studies that have provided direct evidence that ARC kisspeptin neurons serve as the GnRH pulse generator, with a special focus on our gene-modified rat models. Finally, we discuss the mechanism underlying GnRH pulse generation. The knowledge obtained from gene-modified rat models should be clinically important and could be adapted to new tools to improve reproductive performance in livestock by stimulating GnRH/gonadotropin pulses.
en-copyright=
kn-copyright=
en-aut-name=NagaeMayuko
en-aut-sei=Nagae
en-aut-mei=Mayuko
kn-aut-name=長江麻佑子
kn-aut-sei=長江
kn-aut-mei=麻佑子
aut-affil-num=1
ORCID=
en-aut-name=UenoyamaYoshihisa
en-aut-sei=Uenoyama
en-aut-mei=Yoshihisa
kn-aut-name=上野山賀久
kn-aut-sei=上野山
kn-aut-mei=賀久
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
affil-num=2
en-affil=Graduate School of Bioagricultural Sciences, Nagoya University
kn-affil=名古屋大学大学院生命農学研究科
en-keyword=gene-modified rats
kn-keyword=gene-modified rats
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=kisspeptin
kn-keyword=kisspeptin
en-keyword=LH
kn-keyword=LH
en-keyword=pulse generator
kn-keyword=pulse generator
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. Methods: We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components. Both models used identical U-Net-based architectures, differing only in their annotation approaches. Performance was evaluated using an independent validation dataset. Results: Although both models achieved high diagnostic accuracy (AUC: 0.99 vs. 0.98), the 3C model demonstrated superior operational characteristics. At a standardized cutoff value of 0.2, the 3C model maintained balanced performance (sensitivity: 93.28%, specificity: 92.21%), whereas the 1C model showed compromised specificity (83.58%) despite high sensitivity (98.88%). Notably, at the 25th percentile threshold, both models showed identical false-negative rates despite significantly different cutoff values (3C: 0.661 vs. 1C: 0.985), indicating the ability of the 3C model to maintain diagnostic accuracy at substantially lower thresholds. Conclusions: This study demonstrated that anatomically informed three-class annotation can enhance AI model performance for rare disease detection without requiring additional training data. The improved stability at lower thresholds suggests that thoughtful annotation strategies can optimize the AI model training, particularly in contexts where training data are limited.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYujiro
en-aut-sei=Otsuka
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraYusuke
en-aut-sei=Nakamura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OsakiShuhei
en-aut-sei=Osaki
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HironariTamiya
en-aut-sei=Hironari
en-aut-mei=Tamiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiwaShinji
en-aut-sei=Miwa
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhshikaShusa
en-aut-sei=Ohshika
en-aut-mei=Shusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraShunji
en-aut-sei=Nishimura
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KaharaNaoaki
en-aut-sei=Kahara
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=4
en-affil=Plusman LCC
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=6
en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital
kn-affil=
affil-num=7
en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kindai University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=osteosarcoma
kn-keyword=osteosarcoma
en-keyword=medical image annotation
kn-keyword=medical image annotation
en-keyword=anatomical annotation method
kn-keyword=anatomical annotation method
en-keyword=rare cancer
kn-keyword=rare cancer
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=1
article-no=
start-page=e16291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions.
en-copyright=
kn-copyright=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=bioinformatics
kn-keyword=bioinformatics
en-keyword=Ccn3
kn-keyword=Ccn3
en-keyword=Type III taste cell
kn-keyword=Type III taste cell
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=2
article-no=
start-page=249
end-page=260
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241005
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD.
Methods: Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1−/−) mice.
Results: NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1−/− donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1−/− donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1−/− recipient.
Conclusions: Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.
en-copyright=
kn-copyright=
en-aut-name=KawanaShinichi
en-aut-sei=Kawana
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaueTomohisa
en-aut-sei=Sakaue
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashimotoKohei
en-aut-sei=Hashimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChoshiHaruki
en-aut-sei=Choshi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhtaniShinji
en-aut-sei=Ohtani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=ischemia-reperfusion injury
kn-keyword=ischemia-reperfusion injury
en-keyword=donation after circulatory death
kn-keyword=donation after circulatory death
en-keyword=nuclear receptor subfamily 4 group A member 1
kn-keyword=nuclear receptor subfamily 4 group A member 1
en-keyword=endothelial cell
kn-keyword=endothelial cell
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=453
end-page=458
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Case of Radiation-Induced Angiosarcoma after Breast-Conserving Surgery with Hypofractionated Radiotherapy in a Japanese Patient
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radiation-induced angiosarcoma (RIAS) is a rare, late adverse event of radiotherapy comprising approximately half of all radiation-induced sarcomas. It has a relatively short latency period and generally unfavorable prognosis. This study presents a case of RIAS that developed 5 years and 11 months after the completion of hypofractionated radiotherapy (42.56 Gy/16 fractions) following partial mastectomy. The patient was diagnosed with RIAS 10 months after the onset of skin redness. She underwent skin tumor resection, followed by paclitaxel, then pazopanib administration, but no radiotherapy. At 6 years and 2 months after surgery, no RIAS recurrence has been detected.
en-copyright=
kn-copyright=
en-aut-name=KawataYujiro
en-aut-sei=Kawata
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeKenta
en-aut-sei=Watanabe
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokiyaRyoji
en-aut-sei=Tokiya
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsunoTakeshi
en-aut-sei=Matsuno
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaRyo
en-aut-sei=Tanaka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatsuiKuniaki
en-aut-sei=Katsui
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Breast and Thyroid Surgery, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=hypofractionated radiotherapy
kn-keyword=hypofractionated radiotherapy
en-keyword=radiation-induced angiosarcoma
kn-keyword=radiation-induced angiosarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=2
article-no=
start-page=292
end-page=305
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The role of C1orf50 in breast cancer progression and prognosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although the prognosis of breast cancer has significantly improved compared to other types of cancer, there are still some patients who expire due to recurrence or metastasis. Therefore, it is necessary to develop a method to identify patients with poor prognosis at the early stages of cancer. In the process of discovering new prognostic markers from genes of unknown function, we found that the expression of C1orf50 determines the prognosis of breast cancer patients, especially for those with Luminal A breast cancer. This study aims to elucidate the molecular role of C1orf50 in breast cancer progression. Bioinformatic analyses of the breast cancer dataset of TCGA, and in vitro analyses, reveal the molecular pathways influenced by C1orf50 expression. C1orf50 knockdown suppressed the cell cycle of breast cancer cells and weakened their ability to maintain the undifferentiated state and self-renewal capacity. Interestingly, upregulation of C1orf50 increased sensitivity to CDK4/6 inhibition. In addition, C1orf50 was found to be more abundant in breast cancer cells than in normal breast epithelium, suggesting C1orf50’s involvement in breast cancer pathogenesis. Furthermore, the mRNA expression level of C1orf50 was positively correlated with the expression of PD-L1 and its related factors. These results suggest that C1orf50 promotes breast cancer progression through cell cycle upregulation, maintenance of cancer stemness, and immune evasion mechanisms. Our study uncovers the biological functions of C1orf50 in Luminal breast cancer progression, a finding not previously reported in any type of cancer.
en-copyright=
kn-copyright=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAtsushi
en-aut-sei=Tanaka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaekawaMasaki
en-aut-sei=Maekawa
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PeñaTirso
en-aut-sei=Peña
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RogachevskayaAnna
en-aut-sei=Rogachevskaya
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=RoehrlMichael H.
en-aut-sei=Roehrl
en-aut-mei=Michael H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Surgery, Kawasaki Medical School General Medical Center
kn-affil=
affil-num=13
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=14
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=Luminal A breast cancer
kn-keyword=Luminal A breast cancer
en-keyword=Cell cycle
kn-keyword=Cell cycle
en-keyword=Immune evasion
kn-keyword=Immune evasion
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=42
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genotypes and phenotypes of neurofibromatosis type 1 patients in Japan: A Hereditary Tumor Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Neurofibromatosis type 1 (NF1) presents with a broad spectrum of clinical manifestations, including an increased risk of tumor development and hypertension. Comprehensive data on genotype‒phenotype correlations in patients with NF1 are limited. Therefore, in this study, we aimed to elucidate the detailed genetic and clinical characteristics of NF1 in a hereditary tumor cohort. We performed sequencing and copy number assays in a clinical laboratory and analyzed the clinical data of 44 patients with suspected NF1. Germline pathogenic variants were detected in 36 patients (81.8%), and 20.7% of the variants were novel. Notably, 40.0% of adult patients presented with malignancies; female breast cancer occurred in 20.0% of patients, which was a higher rate than that previously reported. Hypertension was observed in 30.6% of the adult patients, with one patient experiencing sudden death and another developing pheochromocytoma. Three patients with large deletions in NF1 exhibited prominent cutaneous, skeletal, and neurological manifestations. These results highlight the importance of regular surveillance, particularly for patients with malignancies and hypertension. Our findings provide valuable insights for genetic counseling and clinical management, highlighting the multiple health risks associated with NF1 and the need for comprehensive and multidisciplinary care.
en-copyright=
kn-copyright=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiTetsuya
en-aut-sei=Okazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukanoChika
en-aut-sei=Fukano
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OsumiRisa
en-aut-sei=Osumi
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoFumino
en-aut-sei=Kato
en-aut-mei=Fumino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UrakawaYusaku
en-aut-sei=Urakawa
en-aut-mei=Yusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Genetics and Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genetics and Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=8
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=線維化を伴う膵がん微小環境の立体培養法による新規in vitroモデルの構築と解析
kn-title=Establishment and Analysis of Novel In Vitro 3D Cell Culture Models of the Fibrotic Tumor Microenvironment in Pancreatic Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TANAKAHiroyoshi
en-aut-sei=TANAKA
en-aut-mei=Hiroyoshi
kn-aut-name=田中啓祥
kn-aut-sei=田中
kn-aut-mei=啓祥
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=岡山大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=免疫不全/調節異常に起因する古典的ホジキンリンパ腫における9p24.1のコピー数解析
kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OHSAWAKumiko
en-aut-sei=OHSAWA
en-aut-mei=Kumiko
kn-aut-name=大澤久美子
kn-aut-sei=大澤
kn-aut-mei=久美子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=内側半月板後根部分断裂に対するpullout修復術は完全断裂と比較し術後により良好な組織修復が得られる
kn-title=Superior outcomes of pullout repairs for medial meniscus posterior root tears in partial tear compared to complete radial tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAMURAMasanori
en-aut-sei=TAMURA
en-aut-mei=Masanori
kn-aut-name=田村優典
kn-aut-sei=田村
kn-aut-mei=優典
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=悪性末梢神経鞘腫瘍のがん幹細胞性維持に対するカテコラミン合成酵素の役割
kn-title=Role of catecholamine synthases in the maintenance of cancer stem-like cells in malignant peripheral nerve sheath tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KATAYAMAHaruyoshi
en-aut-sei=KATAYAMA
en-aut-mei=Haruyoshi
kn-aut-name=片山晴喜
kn-aut-sei=片山
kn-aut-mei=晴喜
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=PAI-1は非小細胞肺がんにおけるMET標的治療の獲得耐性に関与する
kn-title=PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YIN MIN THU
en-aut-sei=YIN MIN THU
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=8
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Meniscus extrusion is a predisposing factor for determining arthroscopic treatments in partial medial meniscus posterior root tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Patients with partial medial meniscus posterior root tears (MMPRTs) sometimes require arthroscopic pullout repair because of their intolerable/repeated knee pains and continuous disturbance in gait during activities of daily living. However, the predisposing factors for future knee surgery in patients with partial MMPRTs remain unclear. We compared the findings of magnetic resonance imaging (MRI) between patients who underwent pullout repair and nonoperative management following partial MMPRTs.
Methods Twenty-five patients who required arthroscopic repair for partial MMPRTs and 23 patients who were managed nonoperatively were evaluated during a mean follow-up period of 27.1 months. Sex, age, height, body weight, body mass index, duration from onset to initial MRI, MRI findings, and medial meniscus (MM) extrusion were compared between the two groups. Linear regression analysis was used to assess the correlation between MM extrusion and duration from onset to MRI examination.
Results No significant differences were observed between the pullout repair and nonoperative management groups in terms of patient demographics and the positive ratio of MRI-based root tear signs. However, absolute MM extrusion in the pullout repair group (3.49 ± 0.82 mm) was larger than that in the nonoperative management group (2.48 ± 0.60 mm, P < 0.001). Extrusion of the MM (> 3 mm) was detected more frequently in the pullout repair group than in the nonoperative management group (P < 0.001). The odds ratio in the pullout repair and MM extrusion > 3 mm cases was 9.662. Linear regression analysis revealed a fair correlation between the duration from onset to MRI and MM extrusion only in the pullout repair group (0.462 mm/month increase in MM extrusion).
Conclusions This study demonstrated that more severe MM extrusions were observed in the pullout repair group than in the nonoperative management group. Major extrusion (> 3 mm) was also observed more in the pullout repair group than in the nonoperative group. Assessing MM extrusion and its severity can help determine a valid treatment for patients with partial MMPRTs.
Level of evidence IV, Retrospective comparative study.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=XueHaowei
en-aut-sei=Xue
en-aut-mei=Haowei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root
kn-keyword=Posterior root
en-keyword=Partial tear
kn-keyword=Partial tear
en-keyword=Meniscal extrusion
kn-keyword=Meniscal extrusion
en-keyword=Operative indication
kn-keyword=Operative indication
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=11
article-no=
start-page=3695
end-page=3704
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYujiro
en-aut-sei=Otsuka
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraYusuke
en-aut-sei=Nakamura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HironariTamiya
en-aut-sei=Hironari
en-aut-mei=Tamiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaharaNaoaki
en-aut-sei=Kahara
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiwaShinji
en-aut-sei=Miwa
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhshikaShusa
en-aut-sei=Ohshika
en-aut-mei=Shusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishimuraShunji
en-aut-sei=Nishimura
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OsakiShuhei
en-aut-sei=Osaki
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital
kn-affil=
affil-num=7
en-affil= Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Kindai University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Musculoskeletal Oncology, National Cancer Center Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=clinical decision support
kn-keyword=clinical decision support
en-keyword=diagnostic imaging
kn-keyword=diagnostic imaging
en-keyword=image annotation
kn-keyword=image annotation
en-keyword=osteosarcoma detection
kn-keyword=osteosarcoma detection
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=15
article-no=
start-page=2617
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Utilizing the Metaverse to Provide Innovative Psychosocial Support for Pediatric, Adolescent, and Young Adult Patients with Rare Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the potential of the metaverse in providing psychological support for pediatric and AYA cancer patients, with a focus on those with rare cancers. The research involved ten cancer patients and survivors from four distinct regions in Japan, who participated in metaverse sessions using customizable avatars, facilitating interactions across geographical and temporal barriers. Surveys and qualitative feedback were collected to assess the psychosocial impact of the intervention. The results demonstrated that the metaverse enabled patients to connect with peers, share experiences, and receive emotional support. The anonymity provided by avatars helped reduce appearance-related anxiety and stigma associated with cancer treatment. A case study of a 19-year-old male with spinal Ewing’s sarcoma highlighted the profound emotional relief fostered by metaverse interactions. The findings suggest that integrating virtual spaces into healthcare models can effectively address the unique needs of pediatric and AYA cancer patients, offering a transformative approach to delivering psychosocial support and fostering a global patient community. This innovative intervention has the potential to revolutionize patient care in the digital age.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshidaHisashi
en-aut-sei=Ishida
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaHideki
en-aut-sei=Katayama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaNaoko
en-aut-sei=Maeda
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaganoAkihito
en-aut-sei=Nagano
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OchiMotoharu
en-aut-sei=Ochi
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamuraMasako
en-aut-sei=Okamura
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwataShintaro
en-aut-sei=Iwata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshidaShinichirou
en-aut-sei=Yoshida
en-aut-mei=Shinichirou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Palliative and Supportive Care, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Survivorship, Institute for Cancer Control, National Cancer Center
kn-affil=
affil-num=8
en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University
kn-affil=
affil-num=11
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=virtual reality
kn-keyword=virtual reality
en-keyword=metaverse
kn-keyword=metaverse
en-keyword=adolescent and young adult
kn-keyword=adolescent and young adult
en-keyword=rare cancer
kn-keyword=rare cancer
en-keyword=mental health
kn-keyword=mental health
END
start-ver=1.4
cd-journal=joma
no-vol=46
cd-vols=
no-issue=6
article-no=
start-page=1635
end-page=1642
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Flow Management by Combination Therapy of Hemostatic Clipping and Balloon Angioplasty for Right Ventricular-Pulmonary Artery Shunt in Hypoplastic Left Heart Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Controlling pulmonary blood flow in patients who have undergone Norwood palliation, especially early postoperatively, is challenging due to a change in the balance of systemic and pulmonary vascular resistance. We applied a combination therapy of clipping and balloon angioplasty for right ventricle—pulmonary artery (RV-PA) shunt to control pulmonary blood flow, but the influence of the combination therapy on the PA condition is uncertain. Retrospectively analysis was conducted of all infants with hypoplastic left heart syndrome who had undergone Norwood palliation with RV-PA shunt at Okayama University Hospital from January 2008 to September 2022. A total of 50 consecutive patients underwent Norwood palliation with RV-PA shunt in this study period. Of them, 29 patients underwent RV-PA shunt flow clipping, and the remaining 21 had unclipped RV-PA shunt. Twenty-three patients underwent balloon angioplasty for RV-PA shunt with clips. After balloon angioplasty, oxygen saturation significantly increased from 69 (59–76)% to 80 (72–86)% (p < 0.001), and the narrowest portion of the clipped conduit significantly improved from 2.8 (1.8–3.4) to 3.8 (2.9–4.6) mm (p < 0.001). In cardiac catheterizations prior to Bidirectional cavo-pulmonary shunt (BCPS), there were no significant differences in pulmonary-to-systemic flow ratio (Qp/Qs), ventricular end-diastolic pressure, Nakata index, arterial saturation, mean pulmonary artery pressure and pulmonary vascular resistance index. On the other hand, in Cardiac catheterizations prior to Fontan, Nakata index was larger in the clipped group (p = 0.02). There was no statistically significant difference in the 5-year survival between the two groups (clipped group 96%, unclipped group 74%, log-rank test: p = 0.13). At least, our combination therapy of clipping and balloon angioplasty for RV-PA shunt did not negatively impact PA growth. Although there is a trend toward better but not statistically significant difference in outcomes in the clipped group compared to the non-clipped group, this treatment strategy may play an important role in improving outcomes in hypoplastic left heart syndrome.
en-copyright=
kn-copyright=
en-aut-name=ShigemitsuYusuke
en-aut-sei=Shigemitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KuritaYoshihiko
en-aut-sei=Kurita
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaYosuke
en-aut-sei=Fukushima
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawamotoYuya
en-aut-sei=Kawamoto
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaraMayuko
en-aut-sei=Hara
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KataokaKoichi
en-aut-sei=Kataoka
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
en-keyword=Hypoplastic left heart syndrome
kn-keyword=Hypoplastic left heart syndrome
en-keyword=Norwood palliation
kn-keyword=Norwood palliation
en-keyword=Balloon angioplasty
kn-keyword=Balloon angioplasty
en-keyword=Congenital heart disease
kn-keyword=Congenital heart disease
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=e7351
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors.
Methods: This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test.
Results: In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma.
Conclusions: NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OgawaToru
en-aut-sei=Ogawa
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaguchiTomoyuki
en-aut-sei=Taguchi
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HattoriKana
en-aut-sei=Hattori
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KohsakaShinji
en-aut-sei=Kohsaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd
kn-affil=
affil-num=4
en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd
kn-affil=
affil-num=5
en-affil=Medical Affairs & Pharmacovigilance, Bayer Yakuhin, Ltd
kn-affil=
affil-num=6
en-affil=National Cancer Center Research Institute
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=neurotrophic tropomyosin receptor kinase (NTRK) gene fusion
kn-keyword=neurotrophic tropomyosin receptor kinase (NTRK) gene fusion
en-keyword=next-generation sequencing
kn-keyword=next-generation sequencing
en-keyword=solid tumors
kn-keyword=solid tumors
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=5
article-no=
start-page=e0300644
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240517
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.
en-copyright=
kn-copyright=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiKosuke
en-aut-sei=Ochi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsudakaShimpei
en-aut-sei=Tsudaka
en-aut-mei=Shimpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakatsuFumiaki
en-aut-sei=Takatsu
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DateKeiichi
en-aut-sei=Date
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsudaNaoki
en-aut-sei=Matsuda
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwataKazuma
en-aut-sei=Iwata
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=414
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240424
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Go/No-Go Ratios Modulate Inhibition-Related Brain Activity: An Event-Related Potential Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=(1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model.
en-copyright=
kn-copyright=
en-aut-name=ZhangNan
en-aut-sei=Zhang
en-aut-mei=Nan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AnWeichao
en-aut-sei=An
en-aut-mei=Weichao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WuJinglong
en-aut-sei=Wu
en-aut-mei=Jinglong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=response inhibition
kn-keyword=response inhibition
en-keyword=ratio
kn-keyword=ratio
en-keyword=go/no-go task
kn-keyword=go/no-go task
en-keyword=ERP
kn-keyword=ERP
en-keyword=NoGo-P3 component
kn-keyword=NoGo-P3 component
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=5
article-no=
start-page=294
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Application of Unidirectional Porous Hydroxyapatite to Bone Tumor Surgery and Other Orthopedic Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of bone tumors. Excellent bone formation within and around the implant was observed in all patients treated with intralesional resection and UDPHAp implantation for benign bone tumors. The absorption of UDPHAp and remodeling of the bone marrow space was observed in 45% of the patients at a mean of 17 months postoperatively and was significantly more common in younger patients. Preoperative cortical thinning was completely regenerated in 84% of patients at a mean of 10 months postoperatively. No complications related to the implanted UDPHAp were observed. In a pediatric patient with bone sarcoma, when the defect after fibular resection was filled with UDPHAp implants, radiography showed complete resorption of the implant and clear formation of cortex and marrow in the resected part of the fibula. The patient could walk well without crutches and participate in sports activities. UDPHAp is a useful bone graft substitute for the treatment of benign bone tumors, and the use of this material has a low complication rate. We also review and discuss the potential of UDPHAp as a bone graft substitute in the clinical setting of orthopedic surgery.
en-copyright=
kn-copyright=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKohei
en-aut-sei=Sato
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KondoAyana
en-aut-sei=Kondo
en-aut-mei=Ayana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=hydroxyapatite
kn-keyword=hydroxyapatite
en-keyword=bone tumor
kn-keyword=bone tumor
en-keyword=orthopedic surgery
kn-keyword=orthopedic surgery
en-keyword=unidirectional porous hydroxyapatite
kn-keyword=unidirectional porous hydroxyapatite
en-keyword=bone graft
kn-keyword=bone graft
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=477
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model.
en-copyright=
kn-copyright=
en-aut-name=IchikawaKosuke
en-aut-sei=Ichikawa
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoHaruo
en-aut-sei=Sato
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=geological disposal
kn-keyword=geological disposal
en-keyword=buffer material
kn-keyword=buffer material
en-keyword=Ca-montmorillonite
kn-keyword=Ca-montmorillonite
en-keyword=bentonite
kn-keyword=bentonite
en-keyword=swelling stress
kn-keyword=swelling stress
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=非小細胞肺癌におけるがん関連線維芽細胞由来ペリオスチンの腫瘍促進効果および薬剤耐性誘導効果
kn-title=Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKATSUFumiaki
en-aut-sei=TAKATSU
en-aut-mei=Fumiaki
kn-aut-name=髙津史明
kn-aut-sei=髙津
kn-aut-mei=史明
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=結合組織型肥満細胞はNoradrenalineを貯蔵、放出する
kn-title=Connective tissue mast cells store and release noradrenaline
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTANIYusuke
en-aut-sei=OTANI
en-aut-mei=Yusuke
kn-aut-name=大谷悠介
kn-aut-sei=大谷
kn-aut-mei=悠介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=88
end-page=97
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing effect of the coexisting alpha-tocopherol on quercetin absorption and metabolism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study is to investigate the modulating effect of coexisting food components on the absorption and metabolism of quercetin and blood plasma antioxidant potentials. The combination of quercetin with α-tocopherol (αT), cellulose, or a commercially available vegetable beverage containing αT and dietary fiber was orally administered to mice. Compared to the single administration of quercetin aglycone, the coadministration of αT with quercetin significantly increased the plasma quercetin concentration at 0.5 h, whereas the combination of quercetin and cellulose decreased it. Interestingly, the administration of quercetin mixed with the vegetable beverage showed no significant change in the quercetin concentration in the mice plasma. The treatment of the cells with the blood plasma after the coadministration of αT with quercetin significantly upregulated the gene expression of the antioxidant enzyme (heme oxygenase-1), whereas the quercetin and cellulose combination did not. In the plasma of the quercetin-administered mice, eight types of quercetin metabolites were detected, and their quantities were affected by the combination with αT. The potentials of the heme oxygenase-1 gene expression by these metabolites were very limited, although several metabolites showed radical scavenging activities comparable to aglycone in the in vitro assays. These results suggested that the combination of αT potentiates the quercetin absorption and metabolism and thus the plasma antioxidant potentials, at least in part, by the quantitative changes in the quercetin metabolites.
en-copyright=
kn-copyright=
en-aut-name=MitsuzaneRikito
en-aut-sei=Mitsuzane
en-aut-mei=Rikito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkuboReiko
en-aut-sei=Okubo
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikawaMiyu
en-aut-sei=Nishikawa
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkushiroShinichi
en-aut-sei=Ikushiro
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University
kn-affil=
affil-num=4
en-affil=Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=quercetin
kn-keyword=quercetin
en-keyword=metabolite
kn-keyword=metabolite
en-keyword=absorption
kn-keyword=absorption
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=antioxidant activity
kn-keyword=antioxidant activity
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in Spinal Instability After Conventional Radiotherapy for Painful Vertebral Bone Metastases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Precise assessment of spinal instability is critical before and after radiotherapy (RT) for evaluating the effectiveness of RT. Therefore, we retrospectively evaluated the efficacy of RT in spinal instability over a period of 6 months after RT, utilizing the spinal instability neoplastic score (SINS) in patients with painful spinal metastasis. We retrospectively evaluated 108 patients who received RT for painful vertebral metastasis in our institution. Mechanical pain at metastatic vertebrae, radiological responses of irradiated vertebrae, and spinal instability were assessed. Follow-up assessments were done at the start of and at intervals of 1, 2, 3, 4, and 6 months after RT, with the pain disappearing in 67%, 85%, 93%, 97%, and 100% of the patients, respectively. The median SINS were 8, 6, 6, 5, 5, and 4 at the beginning and after 1, 2, 3, 4, and 6 months of RT, respectively. Multivariate analysis revealed that posterolateral involvement of spinal elements (PLISE) was the only risk factor for continuous potentially unstable/unstable spine at 1 month. In conclusion, there was improvement of pain, and recalcification results in regaining spinal stability over time after RT although vertebral body collapse and malalignment occur in some irradiated vertebrae. Clinicians should pay attention to PLISE in predicting continuous potentially unstable/unstable spine.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Shikoku Cancer Center
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=spinal metastases
kn-keyword=spinal metastases
en-keyword=spinal instability neoplastic score
kn-keyword=spinal instability neoplastic score
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=posterolateral involvement of spinal elements
kn-keyword=posterolateral involvement of spinal elements
en-keyword=risk factor
kn-keyword=risk factor
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=7
article-no=
start-page=2333
end-page=2345
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adrenergic microenvironment driven by cancer-associated Schwann cells contributes to chemoresistance in patients with lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.
en-copyright=
kn-copyright=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ZhuYidan
en-aut-sei=Zhu
en-aut-mei=Yidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShigehiraTakafumi
en-aut-sei=Shigehira
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University
kn-affil=
affil-num=5
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=adrenaline
kn-keyword=adrenaline
en-keyword=cancer-associated Schwann cells
kn-keyword=cancer-associated Schwann cells
en-keyword=doublecortin
kn-keyword=doublecortin
en-keyword=microenvironment
kn-keyword=microenvironment
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=10
article-no=
start-page=e4763
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular mechanism of the common and opposing cosolvent effects of fluorinated alcohol and urea on a coiled coil protein
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Alcohols and urea are widely used as effective protein denaturants. Among monohydric alcohols, 2,2,2-trifluoroethanol (TFE) has large cosolvent effects as a helix stabilizer in proteins. In contrast, urea efficiently denatures ordered native structures, including helices, into coils. These opposing cosolvent effects of TFE and urea are well known, even though both preferentially bind to proteins; however, the underlying molecular mechanism remains controversial. Cosolvent-dependent relative stability between native and denatured states is rigorously related to the difference in preferential binding parameters (PBPs) between these states. In this study, GCN4-p1 with two-stranded coiled coil helices was employed as a model protein, and molecular dynamics simulations for the helix dimer and isolated coil were conducted in aqueous solutions with 2 M TFE and urea. As 2 M cosolvent aqueous solutions did not exhibit clustering of cosolvent molecules, we were able to directly investigate the molecular origin of the excess PBP without considering the enhancement effect of PBPs arising from the concentration fluctuations. The calculated excess PBPs of TFE for the helices and those of urea for the coils were consistent with experimentally observed stabilization of helix by TFE and that of coil by urea. The former was caused by electrostatic interactions between TFE and side chains of the helices, while the latter was attributed to both electrostatic and dispersion interactions between urea and the main chains. Unexpectedly, reverse-micelle-like orientations of TFE molecules strengthened the electrostatic interactions between TFE and the side chains, resulting in strengthening of TFE solvation.
en-copyright=
kn-copyright=
en-aut-name=NakataNoa
en-aut-sei=Nakata
en-aut-mei=Noa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoRyuichi
en-aut-sei=Okamoto
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SumiTomonari
en-aut-sei=Sumi
en-aut-mei=Tomonari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KogaKenichiro
en-aut-sei=Koga
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaTakeshi
en-aut-sei=Morita
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImamuraHiroshi
en-aut-sei=Imamura
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Information Science, University of Hyogo
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Science, Chiba University
kn-affil=
affil-num=6
en-affil=Department of Bio-Science, Nagahama Institute of Bio-Science and Technology
kn-affil=
en-keyword=2,2,2-trifluoroethanol
kn-keyword=2,2,2-trifluoroethanol
en-keyword=cosolvent effects
kn-keyword=cosolvent effects
en-keyword=preferential binding parameter
kn-keyword=preferential binding parameter
en-keyword=protein folding stability
kn-keyword=protein folding stability
en-keyword=urea
kn-keyword=urea
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=1298
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240327
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A subset of patients with rheumatoid arthritis receiving methotrexate develop immune deficiencies and dysregulation-associated lymphoproliferative disorders. Patients with these disorders often exhibit spontaneous regression after MTX withdrawal; however, chemotherapeutic intervention is frequently required in patients with classic Hodgkin lymphoma arising in immune deficiency/dysregulation. In this study, we examined PD-L1 expression levels and 9p24.1 copy number alterations in 27 patients with classic Hodgkin lymphoma arising from immune deficiency/dysregulation. All patients demonstrated PD-L1 protein expression and harbored 9p24.1 copy number alterations on the tumor cells. When comparing clinicopathological data and associations with 9p24.1 copy number features, the copy gain group showed a significantly higher incidence of extranodal lesions and clinical stages than the amplification group. Notably, all cases in the amplification group had latency type II, while 6/8 (75%) in the copy gain group had latency type II, and 2/8 (25%) had latency type I. Thus, a subset of the copy-gain group demonstrated more extensive extranodal lesions and higher clinical stages. This finding speculates the presence of a genetically distinct subgroup within the group of patients who develop immune deficiencies and dysregulation-associated lymphoproliferative disorders, which may explain certain characteristic features.
en-copyright=
kn-copyright=
en-aut-name=OhsawaKumiko
en-aut-sei=Ohsawa
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MomoseShuji
en-aut-sei=Momose
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GionYuka
en-aut-sei=Gion
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SawadaKeisuke
en-aut-sei=Sawada
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiMorihiro
en-aut-sei=Higashi
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokuhiraMichihide
en-aut-sei=Tokuhira
en-aut-mei=Michihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaruJun-Ichi
en-aut-sei=Tamaru
en-aut-mei=Jun-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=7
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=8
en-affil=Department of Hematology, Japan Community Health Care Organization Saitama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=classic Hodgkin lymphoma
kn-keyword=classic Hodgkin lymphoma
en-keyword=methotrexate
kn-keyword=methotrexate
en-keyword=immunodeficiency
kn-keyword=immunodeficiency
en-keyword=programmed cell death-ligand 1
kn-keyword=programmed cell death-ligand 1
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=11
article-no=
start-page=1009
end-page=1018
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230825
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in treatment of alveolar soft part sarcoma: an updated review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Alveolar soft part sarcoma is a rare neoplasm of uncertain histogenesis that belongs to a newly defined category of ultra-rare sarcomas. The neoplasm is characterized by a specific chromosomal translocation, der (17) t(X; 17)(p11.2;q25), that results in ASPSCR1–TFE3 gene fusion. The natural history of alveolar soft part sarcoma describes indolent behaviour with slow progression in deep soft tissues of the extremities, trunk and head/neck in adolescents and young adults. A high rate of detection of distant metastasis at presentation has been reported, and the most common metastatic sites in decreasing order of frequency are the lung, bone and brain. Complete surgical resection remains the standard treatment strategy, whereas radiotherapy is indicated for patients with inadequate surgical margins or unresectable tumours. Although alveolar soft part sarcoma is refractory to conventional doxorubicin-based chemotherapy, monotherapy or combination therapy using tyrosine kinase inhibitors and immune checkpoint inhibitors have provided antitumor activity and emerged as new treatment strategies. This article provides an overview of the current understanding of this ultra-rare sarcoma and recent advancements in treatments according to the clinical stage of alveolar soft part sarcoma.
en-copyright=
kn-copyright=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishidaKenji
en-aut-sei=Nishida
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraTomoki
en-aut-sei=Nakamura
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaKazuhiro
en-aut-sei=Tanaka
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Mie University
kn-affil=
affil-num=7
en-affil=Department of Advanced Medical Sciences, Oita University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=alveolar soft part sarcoma
kn-keyword=alveolar soft part sarcoma
en-keyword=surgery
kn-keyword=surgery
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=targeted therapy
kn-keyword=targeted therapy
en-keyword=immunotherapy
kn-keyword=immunotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=130
cd-vols=
no-issue=9
article-no=
start-page=1493
end-page=1504
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PRRX1-TOP2A interaction is a malignancy-promoting factor in human malignant peripheral nerve sheath tumours
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated.
Methods: PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1.
Results: High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1–TOP2A interaction.
Conclusion: Targeting the PRRX1–TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.
en-copyright=
kn-copyright=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HakozakiMichiyuki
en-aut-sei=Hakozaki
en-aut-mei=Michiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=e8643
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vogt-Koyanagi-Harada disease in pregnancy: Case report and review of 32 patients in the literature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 30-year-old woman in 31 weeks of pregnancy with metamorphopsia and headache was diagnosed Vogt-Koyanagi-Harada disease. She underwent steroid pulse therapy and oral prednisolone 20 mg daily for 3 weeks until complete resolution of serous retinal detachment monitored by optical coherence tomography. Oral prednisolone was tapered and discontinued until uneventful delivery.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiKasumi
en-aut-sei=Takahashi
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoTsunemasa
en-aut-sei=Kondo
en-aut-mei=Tsunemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=3
en-affil=Division of Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
en-keyword=delivery
kn-keyword=delivery
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=steroid pulse therapy
kn-keyword=steroid pulse therapy
en-keyword=Vogt-Koyanagi-Harada disease
kn-keyword=Vogt-Koyanagi-Harada disease
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=27
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessing the Frequency and Effectiveness of Various Arthroscopic Treatments in the Management of Symptomatic Isolated Medial Meniscus Injuries Including Medial Meniscus Posterior Root Tear: A Retrospective Observational Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The use of various strategies for arthroscopic meniscal repairs to save the meniscus and prevent the progression of knee osteoarthritis has gradually increased. We investigated the frequency of various arthroscopic treatments and the short-term clinical outcomes of symptomatic isolated medial meniscus (MM) injuries. This retrospective observational study included 193 patients (197 knees) who underwent arthroscopic meniscal treatment for isolated MM injuries between January 2016 and April 2019. Arthroscopic meniscal repairs were divided into two groups: transtibial pullout repairs of MM posterior root tears (MMPRTs) and arthroscopic meniscal repairs for other types of MM injuries. MMPRT pullout repair, other meniscal repairs, and partial meniscectomy were performed in 71.0%, 16.8%, and 12.2% of the knees, respectively. The ratio of women to men and the patient age were higher in the pullout-repair group than the meniscal-repair group. The Preoperative Knee Injury and Osteoarthritis Outcome Score subscale (as an index of daily living activities) was significantly lower in the pullout-repair group than the meniscus-repair group. However, no significant differences were observed in these scores among the two groups postoperatively. Our results suggest that familiarity with the diagnosis and treatment of MMPRTs is necessary for orthopedic surgeons to manage isolated MM injuries.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=knee
kn-keyword=knee
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=arthroscopy
kn-keyword=arthroscopy
en-keyword=pullout repair
kn-keyword=pullout repair
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=1
article-no=
start-page=8
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Superior outcomes of pullout repairs for medial meniscus posterior root tears in partial tear compared to complete radial tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose To reveal the outcomes of partial medial meniscus posterior root tears following transtibial pullout repair compared with the outcomes of complete radial meniscus posterior root tears.
Materials and methods We retrospectively evaluated 15 consecutive patients (male/female, 5/10; average age, 64.4 years) who underwent transtibial pullout repair for partial medial meniscus posterior root tears and compared their results with those of 86 consecutive patients who underwent the same surgery for complete medial meniscus posterior root tears. All patients underwent second-look arthroscopy on average 1 year postoperatively, and a semi-quantitative meniscal healing score (anteroposterior width, stability, and synovial coverage, total 10 points) was evaluated. Medial meniscus extrusion was evaluated preoperatively and at second-look arthroscopy.
Results Postoperative clinical scores were not significantly different in the short term. However, second-look arthroscopy revealed a significant difference in repaired meniscal stability (partial tear; 3.3 points, complete tear; 2.3 points, p < 0.001) and total meniscal healing scores (partial tear; 8.3 points, complete tear; 7.1 points, p < 0.001). Medial meniscus extrusion progression was significantly different (partial tear; 0.4 mm, complete tear; 1.0 mm, p < 0.001).
Conclusion Partial medial meniscus posterior root tears showed better meniscal healing and less medial meniscus extrusion progression following pullout repair than complete medial meniscus posterior root tears.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Knee injuries
kn-keyword=Knee injuries
en-keyword=Arthroscopy
kn-keyword=Arthroscopy
en-keyword=Meniscus
kn-keyword=Meniscus
en-keyword=Root tear
kn-keyword=Root tear
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=3
article-no=
start-page=871
end-page=882
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of catecholamine synthases in the maintenance of cancer stem-like cells in malignant peripheral nerve sheath tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that are derived from Schwann cell lineage around peripheral nerves. As in many other cancer types, cancer stem cells (CSCs) have been identified in MPNSTs, and they are considered the cause of treatment resistance, recurrence, and metastasis. As an element defining the cancer stemness of MPNSTs, we previously reported a molecular mechanism by which exogenous adrenaline activates a core cancer stemness factor, YAP/TAZ, through β2 adrenoceptor (ADRB2). In this study, we found that MPNST cells express catecholamine synthases and that these enzymes are essential for maintaining cancer stemness, such as the ability to self-renew and maintain an undifferentiated state. Through gene knockdown and inhibition of these enzymes, we confirmed that catecholamines are indeed synthesized in MPNST cells. The results confirmed that catecholamine synthase knockdown in MPNST cells reduces the activity of YAP/TAZ. These data suggest that a mechanism of YAP/TAZ activation by de novo synthesized adrenaline, as well as exogenous adrenaline, may exist in the maintenance of cancer stemness of MPNST cells. This mechanism not only helps to understand the pathology of MPNST, but could also contribute to the development of therapeutic strategies for MPNST.
en-copyright=
kn-copyright=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=benserazide
kn-keyword=benserazide
en-keyword=cancer stem cell
kn-keyword=cancer stem cell
en-keyword=catecholamine synthase
kn-keyword=catecholamine synthase
en-keyword=malignant peripheral nerve sheath tumor
kn-keyword=malignant peripheral nerve sheath tumor
en-keyword=Schwann cell
kn-keyword=Schwann cell
en-keyword=vesicular monoamine transporter
kn-keyword=vesicular monoamine transporter
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=6
article-no=
start-page=655
end-page=663
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison between Cases of Total Hip Arthroplasty Followed by Colonna Capsular Arthroplasty and Lorenz Cast Reduction in Patients with Developmental Dysplasia of the Hip
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most patients with developmental dysplasia of the hip (DDH) now receive closed-reduction treatment within 6 months after birth. The long-term outcomes of patients with late-detection DDH have remained unclear. We reviewed the clinical records of 18 patients who underwent Colonna capsular arthroplasty (n=8) or closed reduction (n=10) for developmental dysplasia of the hip as infants or young children and underwent total hip arthroplasty approximately in midlife. Both the Colonna capsular arthroplasty and closed reduction groups achieved good clinical results after total hip arthroplasty. However, the operating time was longer and the improvements of hip range of motion and clinical score were significantly worse in the Colonna capsular arthroplasty group than in the closed reduction group.
en-copyright=
kn-copyright=
en-aut-name=EndoHirosuke
en-aut-sei=Endo
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NambaYoshifumi
en-aut-sei=Namba
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugimotoYoshihisa
en-aut-sei=Sugimoto
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitaniShigeru
en-aut-sei=Mitani
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=developmental hip dysplasia
kn-keyword=developmental hip dysplasia
en-keyword=long-term follow-up
kn-keyword=long-term follow-up
en-keyword=closed reduction
kn-keyword=closed reduction
en-keyword=Colonna capsular arthroplasty
kn-keyword=Colonna capsular arthroplasty
en-keyword=total hip arthroplasty
kn-keyword=total hip arthroplasty
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=サガリバナ (Barringtonia racemosa) の成分研究を例にした植物の分類体系解析
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YOSHIKAWAShinji
en-aut-sei=YOSHIKAWA
en-aut-mei=Shinji
kn-aut-name=吉川伸仁
kn-aut-sei=吉川
kn-aut-mei=伸仁
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=乳がん進展におけるLysyl oxidase-like 4 (LOXL4) の新しい重要機能の発見−LOXL4はAnnexin A2を介して乳がんの増生を促進する−
kn-title=Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NI LUH GEDE YONI KOMALASARI
en-aut-sei=NI LUH GEDE YONI KOMALASARI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=内側半月板後根断裂に対するpullout修復術において、後方アンカリングの追加は内側半月板の後方逸脱を改善させる:後ろ向き研究
kn-title=Concomitant posterior anchoring further reduces posterior meniscal extrusion during pullout repair of medial meniscus posterior root tears: a retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=XUEHAOWEI
en-aut-sei=XUE
en-aut-mei=HAOWEI
kn-aut-name=薛昊嵬
kn-aut-sei=薛
kn-aut-mei=昊嵬
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=1
article-no=
start-page=24
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Connective tissue mast cells store and release noradrenaline
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mast cells are present in mucosal and connective tissues throughout the body. They synthesize and release a wide variety of bioactive molecules, such as histamine, proteases, and cytokines. In this study, we found that a population of connective tissue mast cells (CTMCs) stores and releases noradrenaline, originating from sympathetic nerves. Noradrenaline-storing cells, not neuronal fibers, were predominantly identified in the connective tissues of the skin, mammary gland, gastrointestinal tract, bronchus, thymus, and pancreas in wild-type mice but were absent in mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice. In vitro studies using bone marrow-derived mast cells revealed that extracellular noradrenaline was taken up but not synthesized. Upon ionomycin stimulation, noradrenaline was released. Electron microscopy analyses further suggested that noradrenaline is stored in and released from the secretory granules of mast cells. Finally, we found that noradrenaline-storing CTMCs express organic cation transporter 3 (Oct3), which is also known as an extraneuronal monoamine transporter, SLC22A3. Our findings indicate that mast cells may play a role in regulating noradrenaline concentration by storing and releasing it in somatic tissues.
en-copyright=
kn-copyright=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshikawaSoichiro
en-aut-sei=Yoshikawa
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaoKei
en-aut-sei=Nagao
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Mast cells
kn-keyword=Mast cells
en-keyword=Connective tissue mast cells
kn-keyword=Connective tissue mast cells
en-keyword=Noradrenaline
kn-keyword=Noradrenaline
en-keyword=Immunoelectron microscopy
kn-keyword=Immunoelectron microscopy
en-keyword=SLC22A3
kn-keyword=SLC22A3
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=101786
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A protocol to induce expandable limb-bud mesenchymal cells from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Here, we present a protocol for the selective differentiation of human pluripotent stem cells mimicking human developmental processes into expandable PRRX1+ limb-bud mesenchymal (ExpLBM) cells. This approach enables expansion through serial passage while maintaining capacity for chondrogenic differentiation. For complete details on the use and execution of this protocol, please refer to Yamada et al. (2021, 2022).
en-copyright=
kn-copyright=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=9
article-no=
start-page=4471
end-page=4476
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220823
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surgical Strategies to Approaching the Splenic Artery in Robotic Distal Pancreatectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Understanding different surgical approaches and anatomical landmarks adjacent to the splenic artery (SpA) is important for safe robotic distal pancreatectomy (RDP). Herein, we propose our standardized RDP techniques, focusing on these issues. Patients and Methods: Between April 2021 and April 2022, 19 patients who underwent RDP at our Institution were reviewed. Anatomical patterns of the SpA were classified into three types: Type 1, no pancreatic parenchyma on the root of the SpA; type 2, any pancreatic parenchyma on the root of the SpA; and type 3, dorsal pancreatic artery around the bifurcation of the common hepatic artery and SpA. Next, the surgical strategy for approaching the SPA was determined according to the location of the pancreatic transection line: On the superior mesenteric vein (SMV) or on the left side of the root of the SpA. Results: There were seven cases of type 1, nine cases of type 2, and three cases of type 3. When transecting the pancreas on the SMV, the SpA-first ligation technique was used for type 1 SpA anatomy, and the pancreas-first division technique was applied for types 2 and 3. In patients in whom the pancreas was transected at the left side of the root of the SpA, the SpA-first ligation technique was used. Conclusion: Our standardized surgical strategy based on anatomical landmarks and focusing on the approach to the SpA in RDP is demonstrated. Our strategy should help trainees approach the SpA and perform RDP safely.
en-copyright=
kn-copyright=
en-aut-name=TAKAGIKOSEI
en-aut-sei=TAKAGI
en-aut-mei=KOSEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KUMANOKENJIRO
en-aut-sei=KUMANO
en-aut-mei=KENJIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UMEDAYUZO
en-aut-sei=UMEDA
en-aut-mei=YUZO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YOSHIDARYUICHI
en-aut-sei=YOSHIDA
en-aut-mei=RYUICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FUJITOMOKAZU
en-aut-sei=FUJI
en-aut-mei=TOMOKAZU
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YASUIKAZUYA
en-aut-sei=YASUI
en-aut-mei=KAZUYA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YAGITAKAHITO
en-aut-sei=YAGI
en-aut-mei=TAKAHITO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FUJIWARATOSHIYOSHI
en-aut-sei=FUJIWARA
en-aut-mei=TOSHIYOSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Robot
kn-keyword=Robot
en-keyword=distal pancreatectomy
kn-keyword=distal pancreatectomy
en-keyword=surgical approach
kn-keyword=surgical approach
en-keyword=splenic artery
kn-keyword=splenic artery
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relative stereochemical determination of the C61–C83 fragment of symbiodinolide using a stereodivergent synthetic approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Structural determination is required in the use of marine natural products to create novel drugs and drug leads in medicinal chemistry. Symbiodinolide, which is a polyol marine natural product with a molecular weight of 2860, increases the intracellular Ca2+ concentration and exhibits inhibitory activity against cyclooxygenase-1. Seventy percent of the structure of symbiodinolide has been stereochemically clarified. Herein, we report the elucidation of the relative configuration of the C61–C83 fragment, which is among the remaining thirty percent, using a stereodivergent synthetic strategy. We first assigned the relative configuration of the C61–C74 fragment. Two candidate diastereomers of the C61–C74 fragment were synthesized, and their NMR data were compared with those of the natural product, revealing the relative stereochemistry of this component. We then narrowed down the candidate compounds for the C69–C83 fragment from 16 possible diastereomers by analyzing the NMR data of the natural product, and we thus selected eight candidate diastereomers. Stereodivergent synthesis of the candidates for this fragment and comparison of the NMR data of the natural product and the eight synthetic products resulted in the relative stereostructural clarification of the C69–C83 fragment. These individually determined relative stereochemistries of the C61–C74 and C69–C83 fragments were connected via the common C69–C73 tetrahydropyran moiety of the fragments. Finally, the relative configuration of the C61–C83 fragment of symbiodinolide was determined. The stereodivergent synthetic approach used in this study can be extended to the stereochemical determination of other fragments of symbiodinolide.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HattoriKosuke
en-aut-sei=Hattori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhashiTakumi
en-aut-sei=Ohashi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsuTaichi
en-aut-sei=Otsu
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=
article-no=
start-page=273
end-page=284
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The function of the plant cell wall in plant–microbe interactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The plant cell wall is an interface of plant–microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant–microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall—physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources—in the context of plant–microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
en-copyright=
kn-copyright=
en-aut-name=IshidaKonan
en-aut-sei=Ishida
en-aut-mei=Konan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Biochemistry, University of Cambridge
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Plant cell wall
kn-keyword=Plant cell wall
en-keyword=Plant–microbe interaction
kn-keyword=Plant–microbe interaction
en-keyword=Cell wall integrity
kn-keyword=Cell wall integrity
en-keyword=Receptor-like kinase
kn-keyword=Receptor-like kinase
en-keyword=Plant immunity
kn-keyword=Plant immunity
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=4
article-no=
start-page=345
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220817
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of bacterium in the malignant wounds of soft tissue sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Malignant wounds (MWs) are rare skin lesions, which accompany ulceration, necrosis and infection caused by infiltration or damage by malignant tumor. The present study aimed to investigate the bacterial etiology implicated in MW in soft tissue sarcoma (STS), and the effectiveness of culture‑guided perioperative antibacterial administration. A retrospective evaluation was conducted on medical records of patients who presented with MW between 2006 and 2020. A total of seven patients were included in the present study, in whom all tumors were relatively large (>5 cm) and high‑grade. Subsequently, five patients underwent limb‑sparing surgery, and three patients had distant metastases with a 5‑year overall survival of 71%. Preoperative microbiological sampling from the wound identified 11 different bacterial strains in five patients. The infections were polymicrobial with an average of 2.6 strains isolated per patient (1 aerobic, 1.6 anaerobic bacteria). They were predominantly methicillin‑sensitive Staphylococcus aureus. Patients with MWs from STS reported symptoms, including bleeding (71%), exudation (71%) and malodorous wound (43%) at the initial presentation; these completely resolved after surgery. All but one patient reported pain at the MW site with an average numeric rating scale of 4.4 at presentation that decreased to 1.4 (P=0.14) and 0.6 (P=0.04) one and two weeks after surgery, respectively. The patients had elevated C‑reactive protein (71%), anemia (57%), low albumin (86%) and renal/liver dysfunction (14‑29%). One patient was diagnosed with sepsis. Surgical resection afforded symptomatic relief and resolution of abnormal laboratory values. Although selected antibiotics were administered in four patients based on the preoperative antibiotic sensitivity test, surgical site infection (SSI) occurred in three patients. Therefore, the effectiveness of the selected antibiotics based on the results of the preoperative culture in preventing SSI needs to be investigated in the future. In conclusion, physicians should keep in mind that although surgical resection can improve the symptoms and abnormal values in laboratory examination form MW, it is accompanied with a high rate of SSI and poor prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=malignant wounds
kn-keyword=malignant wounds
en-keyword=soft tissue sarcoma
kn-keyword=soft tissue sarcoma
en-keyword=microbiological analysis
kn-keyword=microbiological analysis
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=prognosis
kn-keyword=prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=3
article-no=
start-page=319
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinicopathological and histological analysis of secondary malignant giant cell tumors of bone without radiotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Giant cell tumor of bone (GCTB) is an intermediate bone tumor that rarely undergoes malignant transformation. Secondary malignant GCTB (SMGCTB) is defined as a lesion in which high‑grade sarcoma occurs at the site of previously treated GCTB. The present study retrospectively reviewed the medical records of patients with GCTB treated at Okayama University Hospital between April 1986 and April 2020. The clinicopathological and histological features of patients with SMGCTB without prior radiotherapy were investigated. A total of three patients (4%) with SMGCTB were detected, and the tumor sites were the distal ulna, distal femur and sacrum. Two of the patients had been treated with curettage and bone graft, and one had been treated with denosumab. In all cases, the lesions were made up of two components, the conventional GCTB component and the malignant component. The Ki67 labeling index was higher in the malignant components of SMGCTB and metastatic lesions compared with that in primary and recurrent conventional GCTB, or the conventional GCTB component of SMGCTB. Moreover, p53 expression was higher in these same components in patients who underwent curettage and bone grafting; however, there was no difference in the patient that received denosumab treatment. In this patient, clinical cancer genomic profiling revealed loss of CDKN2A, CDKN2B and MTAP expression. All three patients developed distant metastasis. The patients with SMGCTB in the ulna and femur died 13 and 54 months after detection of malignant transformation, respectively. The patient with SMGCTB in the sacrum received carbon‑ion radiotherapy to the sacrum and pazopanib; the treatment was effective and the patient was alive at the last follow‑up 3 years later. In conclusion, p53 may be associated with malignant transformation in GCTB. Future studies should investigate the association of between denosumab treatment and malignant transformation, as well as molecular targeted therapy to improve the clinical outcomes of SMGCTB.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=giant cell tumor of bone
kn-keyword=giant cell tumor of bone
en-keyword=malignant transformation
kn-keyword=malignant transformation
en-keyword=p53
kn-keyword=p53
en-keyword=denosumab
kn-keyword=denosumab
en-keyword=molecular targeted therapy
kn-keyword=molecular targeted therapy
END
start-ver=1.4
cd-journal=joma
no-vol=2022
cd-vols=
no-issue=
article-no=
start-page=9776388
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220831
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transtibial Pullout Repair of Lateral Meniscus Posterior Root Tear with Tissue Loss: A Case with Anterior Cruciate Ligament Injury and Medial Meniscus Tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lateral meniscus (LM) posterior root tear (LMPRT) is mainly caused by trauma, especially trauma associated with anterior cruciate ligament (ACL) injuries. Although a transtibial pullout repair or a side-to-side repair is commonly performed for LMPRT, to the best of our knowledge, there is no clinical report of LMPRT with tissue loss using the pullout technique. Thus, the purpose of this report was to describe a clinical, radiographic, and arthroscopic outcome after pullout repair for a case of LMPRT with a large defect with a chronic ACL tear and complex medial meniscus (MM) tears. A 31-year-old man complained of knee pain and restricted range of motion after twisting his knee when he stepped on an iron pipe. The patient had a football-related injury to his right knee 14 years before presentation, and since then, the patient's knee has given out more than 10 times but was left unassessed. Magnetic resonance imaging showed LMPRT with tissue loss, ACL tears, and complex MM tears. Transtibial pullout repair of the LMPRT with ACL reconstruction and MM repairs were performed. Following the pullout repair of the LMPRT, an approximately 6 mm gap remained between the LM posterior root and root insertion. However, magnetic resonance imaging and second-look arthroscopy at 1 year postoperatively revealed meniscal healing, gap filling with some regeneration tissue, of the LM posterior root. Furthermore, the lateral meniscus extrusion in the coronal plane improved from 3.1 mm (preoperative) to 1.6 mm (1 year postoperatively). Transtibial pullout repair with the remaining gap could be a viable treatment option for LMPRT with tissue loss, combined with ACL reconstruction.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=5
article-no=
start-page=e0285273
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Randomized phase II study of daily versus alternate-day administrations of S-1 for the elderly patients with completely resected pathological stage IA (tumor diameter > 2 cm)-IIIA of non-small cell lung cancer: Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
It is shown that the postoperative adjuvant chemotherapy for non-small cell lung cancer (NSCLC) was associated with survival benefit in an elderly population. We aimed to analyze the feasibility and efficacy of alternate-day S-1, an oral fluoropyrimidine, for adjuvant chemotherapy in elderly patients with completely resected pathological stage IA (tumor diameter > 2 cm) to IIIA (UICC TNM Classification of Malignant Tumours, 7th edition) NSCLC.
Methods
Elderly patients were randomly assigned to receive adjuvant chemotherapy for one year consisting of either alternate-day oral administration of S-1 (80 mg/m2/day) for 4 days a week (Arm A) or a daily oral administration of S-1 (80 mg/m2/day) for 14 consecutive days followed by 7-day rest (Arm B). The primary endpoint was feasibility (treatment completion rate), which was defined as the proportion of patients who completed the allocated intervention for 6 months with a relative dose intensity (RDI) of 70% or more.
Results
We enrolled 101 patients in which 97 patients received S-1 treatment. The treatment completion rate at 6 months was 69.4% in Arm A and 64.6% in Arm B (p = 0.67). Treatment completion rate in Arm B tended to be lower compared to Arm A, as the treatment period becomes longer (at 9 and 12 months). RDI of S-1 at 12 months and completion of S-1 administration without dose reduction or postponement at 12 months was significantly better in Arm A than in Arm B (p = 0.026 and p < 0.001, respectively). Among adverse events, anorexia, skin symptoms and lacrimation of any grade were significantly more frequent in Arm B compared with Arm A (p = 0.0036, 0.023 and 0.031, respectively). The 5-year recurrence-free survival rates were 56.9% and 65.7% for Arm A and B, respectively (p = 0.22). The 5-year overall survival rates were 68.6% and 82.0% for Arm A and B, respectively (p = 0.11).
Conclusion
Although several adverse effects were less frequent in Arm A, both alternate-day and daily oral administrations of S-1 were demonstrated to be feasible in elderly patients with completely resected NSCLC.
en-copyright=
kn-copyright=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenichi
en-aut-sei=Gemba
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerazakiYasuhiro
en-aut-sei=Terazaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory S0urgery, Saga-Ken Medical Centre Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi-Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Chest Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=22
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=23
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=24
en-affil=Tokai Central Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=26
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=8
article-no=
start-page=1368
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The demand for higher-strength automotive steel sheets has increased significantly for lightweight and safe body concepts. However, the increment of the steel strength is often limited by the potential occurrence of delayed fracture. This paper discusses proper microstructure control and alloy design to improve the resistance against the delayed fracture of ultrahigh-strength automotive steel sheets in order to increase the usable upper limit of their strength and provides basic data serving as a practical guide for solving the problem of delayed fracture in ultrahigh-strength automotive steel sheets. It is confirmed that grain refinement, the appropriate dual-phase structure of martensite with ferrite or retained austenite, and surface decarburization, increase the resistance to delayed fracture. In terms of alloy design, the effects of Nb, Mo, and B on the delayed fracture resistance of hot-stamped steels have been investigated. The results suggest that there are other reasons for Nb to improve delayed fracture resistance in addition to grain refinement and the ability to trap hydrogen by its precipitates, as has been conventionally believed. Regarding Mo, it was clearly demonstrated that the segregation of this element at the grain boundary plays a main role in improving the delayed fracture resistance.
en-copyright=
kn-copyright=
en-aut-name=SenumaTakehide
en-aut-sei=Senuma
en-aut-mei=Takehide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MohrbacherHardy
en-aut-sei=Mohrbacher
en-aut-mei=Hardy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=NiobelCon BV
kn-affil=
en-keyword=delayed fracture
kn-keyword=delayed fracture
en-keyword=hydrogen embrittlement
kn-keyword=hydrogen embrittlement
en-keyword=high-strength steel
kn-keyword=high-strength steel
en-keyword=automotive steel sheets
kn-keyword=automotive steel sheets
en-keyword=microstructural control
kn-keyword=microstructural control
en-keyword=alloy design
kn-keyword=alloy design
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=599
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230814
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Results of resection of forearm soft tissue sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Soft tissue sarcomas (STS) of the forearm are rare. We aim to assess their oncological and functional outcomes.
Methods We retrospectively evaluated 34 patients who underwent surgical excision for forearm STS at our institution between 1993 and 2020. We analyzed postoperative Musculoskeletal Tumor Society rating scale (MSTS) and local recurrence-free survival (LRFS), metastasis-free survival, and overall survival (OS) rates. The significance of the following variables was determined: age, sex, histology, tumor size, Federation Nationale des Centres de Lutte contre le Cancer grade, American Joint Committee on Cancer stage, surgical margin, unplanned excision, metastases upon initial presentation, receipt of chemotherapy, and radiotherapy (RT).
Results The postoperative median MSTS score was 28. Bone resection or major nerve palsy was the only factor that influenced MSTS scores. The median MSTS scores in patients with or without bone resection or major nerve palsy were 24 and 29, respectively (P < 0.001). The 5-year LRFS rates was 87%. Univariate analysis revealed that the histological diagnosis of myxofibrosarcoma was the only factor that influenced LRFS (P = 0.047). The 5-year MFS rates was 71%. In univariate analysis, no factors were associated with MFS. The 5-year OS rates was 79%. Age was the only factor that influenced OS (P = 0.01).
Conclusion In the treatment of forearm STS, reconstruction of the skin and tendon can compensate for function, while bone resection and major nerve disturbance cannot. Careful follow-up is important, especially in patients with myxofibrosarcoma, due to its likelihood of local recurrence.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Soft tissue sarcomas
kn-keyword=Soft tissue sarcomas
en-keyword=Forearm
kn-keyword=Forearm
en-keyword=Function
kn-keyword=Function
en-keyword=Prognosis
kn-keyword=Prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=4
article-no=
start-page=439
end-page=442
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Boy Safely Treated with Tyrosine Kinase Inhibitors for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia with Osteolysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A three-year-old boy with Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia (Ph+ALL) presented with an osteolytic lesion in his right upper arm. Tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib are an essential component throughout the course of treatment for Ph+ALL. However, TKIs are reported to affect the bone metabolism. In the treatment course of the current patient, the osteolytic lesion quickly improved despite the continuous use of TKIs, even during the concomitant use of corticosteroids. This suggests that TKIs can be safely given with concomitant corticosteroids to children with Ph+ALL, even when osteolytic lesions are present.
en-copyright=
kn-copyright=
en-aut-name=ShiwakuTakahiro
en-aut-sei=Shiwaku
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshidaHisashi
en-aut-sei=Ishida
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TatebeYasuhisa
en-aut-sei=Tatebe
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamefusaKosuke
en-aut-sei=Tamefusa
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OchiMotoharu
en-aut-sei=Ochi
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraKaori
en-aut-sei=Fujiwara
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KuboToshihide
en-aut-sei=Kubo
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
en-keyword=acute lymphoblastic leukemia
kn-keyword=acute lymphoblastic leukemia
en-keyword=children
kn-keyword=children
en-keyword=tyrosine kinase inhibitor
kn-keyword=tyrosine kinase inhibitor
en-keyword=osteolysis
kn-keyword=osteolysis
END
start-ver=1.4
cd-journal=joma
no-vol=2023
cd-vols=
no-issue=6
article-no=
start-page=063H01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Angular correlation of the two gamma rays produced in the thermal neutron capture on gadolinium-155 and gadolinium-157
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ANNRI-Gd collaboration studied in detail the single gamma-ray spectrum produced from the thermal neutron capture on Gd-155 and Gd-157 in our previous publications. Gadolinium targets were exposed to a neutron beam provided by the Japan Spallation Neutron Source (JSNS) in J-PARC, Japan. In the present analysis, one new additional coaxial germanium crystal was used in combination with the 14 germanium crystals in the cluster detectors to study the angular correlation of the two gamma rays emitted in the same neutron capture. We present for the first time angular correlation functions for two gamma rays produced during the electromagnetic cascade transitions in the (n, gamma) reactions on Gd-155 and Gd-157. As expected, we observe mild angular correlations for the strong, but rare transitions from the resonance state to the two energy levels of known spin-parities. Contrariwise, we observe negligibly small angular correlations for arbitrary pairs of two gamma rays produced in the majority of cascade transitions from the resonance state to the dense continuum states.
en-copyright=
kn-copyright=
en-aut-name=GouxPierre
en-aut-sei=Goux
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GlessgenFranz
en-aut-sei=Glessgen
en-aut-mei=Franz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GazzolaEnrico
en-aut-sei=Gazzola
en-aut-mei=Enrico
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ReenMandeep Singh
en-aut-sei=Reen
en-aut-mei=Mandeep Singh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FocillonWilliam
en-aut-sei=Focillon
en-aut-mei=William
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GoninMichel
en-aut-sei=Gonin
en-aut-mei=Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTomoyuki
en-aut-sei=Tanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HagiwaraKaito
en-aut-sei=Hagiwara
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AliAjmi
en-aut-sei=Ali
en-aut-mei=Ajmi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SudoTakashi
en-aut-sei=Sudo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoshioYusuke
en-aut-sei=Koshio
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SakudaMakoto
en-aut-sei=Sakuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=CollazuolGianmaria
en-aut-sei=Collazuol
en-aut-mei=Gianmaria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KimuraAtsushi
en-aut-sei=Kimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShoji
en-aut-sei=Nakamura
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IwamotoNobuyuki
en-aut-sei=Iwamoto
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HaradaHideo
en-aut-sei=Harada
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WurmMichael
en-aut-sei=Wurm
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=Département de Physique, École Polytechnique, IN2P3/CNRS
kn-affil=
affil-num=6
en-affil=Département de Physique, École Polytechnique, IN2P3/CNRS
kn-affil=
affil-num=7
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=13
en-affil=INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica
kn-affil=
affil-num=14
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=15
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=16
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=17
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=18
en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=
article-no=
start-page=1
end-page=6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Accuracy of the newly developed Zimmer Biomet Root Aiming guide in tibial tunnel creation compared with that of conventional guides
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/objective: Accurate tibial tunnel creation is crucial for successful transtibial pullout repair of medial meniscus (MM) posterior root tears (MMPRTs). This study aimed to evaluate the accuracy of the newly developed Zimmer Biomet Root Aiming (ZeBRA) guide for transtibial pullout repair of MMPRTs.Methods: This study included 50 patients who underwent transtibial pullout repair using the Unicorn Meniscal Root (UMR) (n = 25) and ZeBRA (n = 25) guides. The expected anatomic centre (AC) and tibial tunnel centre (TC) were assessed using three-dimensional postoperative computed tomography (CT) images. The expected AC was defined as the centre of the circle tangent to the triangular footprint of the MM posterior root. The expected AC and TC on the tibial surface were assessed using the percentage-based posterolateral location on the tibial surface. The absolute distance between the AC and TC (mm) was evaluated.
Results: The mean AC location was 76.1% +/- 3.1% posterior and 40.8% +/- 2.1% lateral, whereas the mean TC location was 76.7% +/- 5.3% posterior and 37.2% +/- 3.6% lateral using the UMR guide and 75.8% +/- 3.1% posterior and 36.5% +/- 2.4% lateral using the ZeBRA guide. No significant difference was observed in the absolute distance between the UMR and ZeBRA guides (3.9 +/- 1.4 and 3.8 +/- 1.3 mm, respectively; p = 0.617).
Conclusions: The newly developed ZeBRA guide allows accurate tibial tunnel creation, and its accuracy is comparable to that of the conventional UMR guide. Tibial tunnels were created at optimal positions using both guides, and the choice of the guide would depend on the surgeon's preference.
en-copyright=
kn-copyright=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Meniscus
kn-keyword=Meniscus
en-keyword=Musculoskeletal diseases
kn-keyword=Musculoskeletal diseases
en-keyword=Zimmer biomet root aiming guide
kn-keyword=Zimmer biomet root aiming guide
en-keyword=Tibial tunnel
kn-keyword=Tibial tunnel
en-keyword=Orthopaedic procedures
kn-keyword=Orthopaedic procedures
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=分子マーカーを利用したカンボジアメロン在来品種の多様性解析
kn-title=Analysis of genetic diversity and population structure in Cambodian melon landraces using molecular markers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PERVIN MST NAZNIN
en-aut-sei=PERVIN MST NAZNIN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CCN3の関節軟骨における発現は、年齢、荷重の有無に関わらず変形性股関節症と相関する
kn-title=Elevated expression of CCN3 in articular cartilage induces osteoarthritis in hip joints irrespective of age and weight bearing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HIROSEKazuki
en-aut-sei=HIROSE
en-aut-mei=Kazuki
kn-aut-name=廣瀬一樹
kn-aut-sei=廣瀬
kn-aut-mei=一樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺高血圧患者におけるデュアルエナジーCTを用いた肺灌流血液量の定量評価
kn-title=Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UGAWASatoko
en-aut-sei=UGAWA
en-aut-mei=Satoko
kn-aut-name=鵜川聡子
kn-aut-sei=鵜川
kn-aut-mei=聡子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=S100A8/A9阻害による、マウス異所性気管移植モデルでの気道閉塞の改善
kn-title=Inhibiting S100A8/A9 attenuates airway obstruction in a mouse model of heterotopic tracheal transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHIMIZUDai
en-aut-sei=SHIMIZU
en-aut-mei=Dai
kn-aut-name=清水大
kn-aut-sei=清水
kn-aut-mei=大
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=e01160
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230523
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary alveolar proteinosis after lung transplantation: Two case reports and literature review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary alveolar proteinosis (PAP) affecting transplanted lungs is not well recognized. Herein, we report two cases of PAP after lung transplantation (LTx). The first case was a 4-year-old boy with hereditary pulmonary fibrosis who underwent bilateral LTx and presented with respiratory distress on postoperative day (POD) 23. He was initially treated for acute rejection, died due to infection on POD 248, and was diagnosed with PAP at autopsy. The second case involved a 52-year-old man with idiopathic pulmonary fibrosis who underwent bilateral LTx. On POD 99, chest computed tomography revealed ground-glass opacities. Bronchoalveolar lavage and transbronchial biopsy led to a diagnosis of PAP. Follow-up with immunosuppression tapering resulted in clinical and radiological improvement. PAP after lung transplantation mimics common acute rejection; however, is potentially transient or resolved with tapering immunosuppression, as observed in the second case. Transplant physicians should be aware of this rare complication to avoid misconducting immunosuppressive management.
en-copyright=
kn-copyright=
en-aut-name=KawanaShinichi
en-aut-sei=Kawana
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HattoriNoboru
en-aut-sei=Hattori
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Molecular and Internal Medicine, Hiroshima University, Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=graft dysfunction
kn-keyword=graft dysfunction
en-keyword=immunosuppression
kn-keyword=immunosuppression
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=pulmonary alveolar proteinosis
kn-keyword=pulmonary alveolar proteinosis
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=2
article-no=
start-page=350
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between Overall Survival and Activities of Daily Living in Patients with Spinal Bone Metastases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: This study aimed to investigate the association between overall survival (OS) and activities of daily living (ADL) in patients with skeletal-related events. In this study, 265 patients whose clinical parameters were available before radiotherapy were investigated. Methods: Age, sex, ADL, pain, the primary site, spinal level of bone metastases, spinal instability, treatment strategy, including chemotherapy or palliative treatment, and OS were investigated. ADL patients with a Barthel index of >= 90 were classified as the high ADL group, while those with a score < 90 were classified as the low ADL group. For OS, patients surviving >= 160 days were classified as the non-poor prognosis group, and those who survived <160 days were classified as the poor prognosis group. Results: Age, sex, ADL, pain, the primary site, and treatment strategy for OS were different between the two groups (p < 0.1). Logistic regression analysis revealed that ADL, the primary site, and treatment strategy were significant predictors of OS (p < 0.05). High ADL, breast cancer, and chemotherapy had a positive effect on OS. Conclusions: It is suggested that improvements may be obtained by performing rehabilitation interventions to maintain and improve ADL, by constructing a system for monitoring spinal bone metastases with images before ADL decreases, and by performing interventions such as changes in treatment methods such as RT or surgery at appropriate times.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=spinal bone metastases
kn-keyword=spinal bone metastases
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=activities of daily living
kn-keyword=activities of daily living
en-keyword=overall survival
kn-keyword=overall survival
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=1142907
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer.
Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells’ activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach.
Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin β-1, resulting in the locking of integrin β-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth.
Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin β-1 on the cell surface.
en-copyright=
kn-copyright=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-Ich
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ich
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Surgery & Bio-Bank of General Surgery, TheFourth Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=5
en-affil=Department of Microbiology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=12
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology
kn-affil=
affil-num=13
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=14
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=15
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=annexin A2
kn-keyword=annexin A2
en-keyword=integrin
kn-keyword=integrin
en-keyword=cancer microenvironment
kn-keyword=cancer microenvironment
END
start-ver=1.4
cd-journal=joma
no-vol=134
cd-vols=
no-issue=2
article-no=
start-page=63
end-page=65
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2021 Incentive Award of the Okayama Medical Association in General Medical Science (2021 Yuuki Prize)
kn-title=令和3年度岡山医学会賞 総合研究奨励賞(結城賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=山田大祐
kn-aut-sei=山田
kn-aut-mei=大祐
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 組織機能修復学
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=34
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A novel chondrocyte sheet fabrication using human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Cell sheet fabrication for articular cartilage regenerative medicine necessitates a large number of chondrocytes of consistent quality as a cell source. Previously, we have developed human-induced pluripotent stem cell (iPSC)-derived expandable -PRRX1(+) limb-bud mesenchymal cells (ExpLBM) with stable expansion and high chondrogenic capacity, while in this study; our ExpLBM technology was combined with cell sheet engineering to assess its potential as a stable cell source for articular cartilage regeneration.
Methods ExpLBM cells derived from human-induced pluripotent stem cells (hiPSCs), including 414C2 and Ff-KVs09 (HLA homozygous), were seeded onto a culture plate and two-dimensional chondrogenic induction (2-DCI) was initiated. After 2-DCI, ExpLBM-derived chondrocytes were stripped and transferred to temperature-responsive culture inserts and the chondrocyte sheets were histologically examined or transplanted into osteochondral knee defects of immunodeficient rats.
Results Immunohistochemistry revealed that ExpLBM-derived cell sheets were positive for Safranin O, COL2, and ACAN but that they were negative for COL1 and RUNX2. Furthermore, the engrafted tissues in osteochondral knee defects in immunodeficient rats were stained with SafO, human VIMENTIN, ACAN, and COL2.
Conclusions The present study is the first to report the chondrocyte sheet fabrication with hiPSC-derived cell source. hiPSC-derived ExpLBM would be a promising cell source for cell sheet technology in articular cartilage regenerative medicine.
en-copyright=
kn-copyright=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoMasato
en-aut-sei=Sato
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisawaYuki
en-aut-sei=Fujisawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ToyodaEriko
en-aut-sei=Toyoda
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HitsumotoYukio
en-aut-sei=Hitsumoto
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Chondrocyte sheet
kn-keyword=Chondrocyte sheet
en-keyword=Human-induced pluripotent stem cells
kn-keyword=Human-induced pluripotent stem cells
en-keyword=Expandable limb-bud mesenchymal cells
kn-keyword=Expandable limb-bud mesenchymal cells
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Combination therapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) monoclonal antibodies (mAbs) has dramatically improved the prognosis of patients with multiple types of cancer, including renal cell carcinoma (RCC). However, more than half of RCC patients fail to respond to this therapy. Regulatory T cells (Treg cells) are a subset of highly immunosuppressive CD4(+) T cells that promote the immune escape of tumors by suppressing effector T cells in the tumor microenvironment (TME) through various mechanisms. CTLA-4 is constitutively expressed in Treg cells and is regarded as a key molecule for Treg-cell-mediated immunosuppressive functions, suppressing antigen-presenting cells by binding to CD80/CD86. Reducing Treg cells in the TME with an anti-CTLA-4 mAb with antibody-dependent cellular cytotoxicity (ADCC) activity is considered an essential mechanism to achieve tumor regression. In contrast, we demonstrated that CTLA-4 blockade without ADCC activity enhanced CD28 costimulatory signaling pathways in Treg cells and promoted Treg-cell proliferation in mouse models. CTLA-4 blockade also augmented CTLA-4-independent immunosuppressive functions, including cytokine production, leading to insufficient antitumor effects. Similar results were also observed in human peripheral blood lymphocytes and tumor-infiltrating lymphocytes from patients with RCC. Our findings highlight the importance of Treg-cell depletion to achieve tumor regression in response to CTLA-4 blockade therapies.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=antibody-dependent cell cytotoxicity
kn-keyword=antibody-dependent cell cytotoxicity
en-keyword=cytotoxic T-lymphocyte-associated antigen 4
kn-keyword=cytotoxic T-lymphocyte-associated antigen 4
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=3
article-no=
start-page=724
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Pancreatic cancer is difficult to treat. Novel treatment strategies are urgently needed to improve the survival rate, which is approximately 10% five years after diagnosis. The use of nanomedicines, which are formulated within a characteristic size range that favors its specific delivery to the diseased tissue, is being actively explored in cancer treatment. However, fibrosis (the abnormal accumulation of a cell type called fibroblasts and the fibrous protein network that they create) is characteristically seen in pancreatic cancer and hinders the delivery of nanomedicines into cancerous tissue. The decreased efficiency of delivery limits the therapeutic effects of nanomedicine in pancreatic cancer. We call this the "fibrotic barrier" to nanomedicine. To overcome the fibrotic barrier, we could target the fibrotic process and/or optimize the nanomedicine design. In this review, we give a detailed overview of strategies to overcome the fibrotic barriers in pancreatic cancer and highlight key gaps in our understanding. Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
en-copyright=
kn-copyright=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakazawaTakuya
en-aut-sei=Nakazawa
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EnomotoAtsushi
en-aut-sei=Enomoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasamuneAtsushi
en-aut-sei=Masamune
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanoMitsunobu R.
en-aut-sei=Kano
en-aut-mei=Mitsunobu R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=4
en-affil=Division of Gastroenterology, Graduate School of Medicine, Tohoku University
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=nanomedicine
kn-keyword=nanomedicine
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=extracellular matrix
kn-keyword=extracellular matrix
en-keyword=fibroblast
kn-keyword=fibroblast
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2206542
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CDKAL1 Drives the Maintenance of Cancer Stem-Like Cells by Assembling the eIF4F Translation Initiation Complex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2-terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.
en-copyright=
kn-copyright=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoTakahiro
en-aut-sei=Yamamoto
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WeiFanyan
en-aut-sei=Wei
en-aut-mei=Fanyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomizawaKazuhito
en-aut-sei=Tomizawa
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Physiology Kumamoto University Faculty of Life Sciences Kumamoto
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery Hamamatsu University School of Medicine Hamamatsu
kn-affil=
affil-num=6
en-affil=Department of Modomics Biology and Medicine Institute of Development, Aging and Cancer Tohoku University
kn-affil=
affil-num=7
en-affil=Department of Molecular Physiology Kumamoto University Faculty of Life Sciences Kumamoto
kn-affil=
affil-num=8
en-affil=Department of Cellular Physiology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer stem-like cells
kn-keyword=cancer stem-like cells
en-keyword=CG-rich 5'UTR
kn-keyword=CG-rich 5'UTR
en-keyword=eIF4F complex
kn-keyword=eIF4F complex
en-keyword=CDKAL1
kn-keyword=CDKAL1
en-keyword=SALL2
kn-keyword=SALL2
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=81
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Navicular Bone Fracture after Radiofrequency Ablation in a Patient with Osteoid Osteoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoid osteoma (OO) is a benign bone tumor that presents with nocturnal pain. Computed tomography (CT)- guided radiofrequency ablation (RFA) has been widely performed for OO, and major adverse events post-RFA are rare. We report a case of OO in the left navicular bone of a 15-year-old male. He underwent RFA for OO, and the pain improved temporarily. At the 1-month follow-up, the patient complained of left foot pain, and a CT examination revealed a fracture of the ablated navicular bone. Fractures are rare but must be taken into account after bone RFA.
en-copyright=
kn-copyright=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=osteoid osteoma
kn-keyword=osteoid osteoma
en-keyword=radiofrequency ablation
kn-keyword=radiofrequency ablation
en-keyword=navicular bone
kn-keyword=navicular bone
en-keyword=fracture
kn-keyword=fracture
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=2
article-no=
start-page=353
end-page=359
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Do not overwork: cellular communication network factor 3 for life in cartilage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
en-copyright=
kn-copyright=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawakiHarumi
en-aut-sei=Kawaki
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PerbalBernard
en-aut-sei=Perbal
en-aut-mei=Bernard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry
kn-affil=
affil-num=3
en-affil=International CCN Society
kn-affil=
affil-num=4
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School
kn-affil=
affil-num=5
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=CCN family
kn-keyword=CCN family
en-keyword=CCN3
kn-keyword=CCN3
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=chondrocytes
kn-keyword=chondrocytes
en-keyword=energy metabolism
kn-keyword=energy metabolism
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=1
article-no=
start-page=673
end-page=680
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of Postoperative Patients with Breast Cancer Aged 65 Years and Older
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: This study aimed to compare postoperative patients with breast cancer aged >= 65 years with those aged <65 years and clarify the characteristics of postoperative patients with breast cancer aged >= 65. Methods: In total, 376 patients in whom we were able to evaluate survey items one month after surgery were included in the study. Comorbidity, including diabetes mellitus and hypertension, shoulder range of motion (ROM), upper-limb function, and psychological problems, was evaluated. Results: Hypertension and diabetes mellitus were significantly higher in patients aged >= 65 years (the elderly group) than in those aged <65 years (the non-elderly group) (p < 0.05). Preoperative shoulder flexion ROM was significantly restricted in the elderly group compared with the non-elderly group (p < 0.05). Preoperative shoulder abduction ROM was significantly restricted in the elderly group compared with the non-elderly group (p < 0.05). At one month after surgery, upper-limb function was more impaired in the non-elderly group than in the elderly group (p < 0.05). In both groups, both ROM and upper-limb function were significantly impaired one month after surgery compared with before surgery (p < 0.05). Conclusions: Postoperative patients with breast cancer aged >= 65 years should be careful about risk management and intervention during rehabilitation. Preoperative evaluation of shoulder ROM should be performed because patients aged >= 65 years have limited ROM before surgery.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TominagaRitsuko
en-aut-sei=Tominaga
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurokawaHideaki
en-aut-sei=Kurokawa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoMasaki
en-aut-sei=Okamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhsumiShozo
en-aut-sei=Ohsumi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center,
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center,
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=elderly
kn-keyword=elderly
en-keyword=comorbidity
kn-keyword=comorbidity
en-keyword=upper-limb function
kn-keyword=upper-limb function
en-keyword=rehabilitation
kn-keyword=rehabilitation
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=10
article-no=
start-page=2391
end-page=2400
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Concomitant posterior anchoring further reduces posterior meniscal extrusion during pullout repair of medial meniscus posterior root tears: a retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose
Transtibial pullout repair improves the clinical outcomes of medial meniscus (MM) posterior root tears (PRTs); however, reducing MM extrusion remains challenging. Thus, the purpose of this study was to examine the role of additional posterior anchoring (PA) during pullout repair in reducing the severity of MM extrusion compared to pullout repair alone.
Methods
Patients who underwent pullout repair with two-cinch stitches (TCS) only or TCS combined with PA (TCSPA)-deployment of an additional suture anchor in the posteromedial corner of MM-were included retrospectively. MM medial and posterior extrusion (MMME and MMPE), MM extrusion and remaining volume (MMEV and MMRV), and corresponding ratios were evaluated pre-operatively and three months post-operatively using a three-dimensional meniscal model at 10 degrees and 90 degrees of knee flexion and compared within and between groups.
Results
A total of 15 and 16 patients treated with TCS and TCS-PA, respectively, were enrolled. At 90 degrees knee flexion, both techniques significantly reduced MMPE (TCS: 4.2 +/- 0.7 mm to 3.5 +/- 0.6 mm, p < 0.05; TCS-PA: 3.7 +/- 0.8 mm to 2.8 +/- 0.7 mm, p < 0.05) at three months post-operatively. TCS-PA reduced MMPE more significantly than TCS alone (p < 0.05). Only TCS-PA significantly improved the MMEV and MMRV ratios (39.6 +/- 8.9% to 28.1 +/- 6.0%, p < 0.05 and 60.4 +/- 8.9% to 71.9 +/- 6.0%, p < 0.05, respectively). Significance was not found in all other comparisons.
Conclusions
Both techniques improved MMPE at knee flexion at the three month follow-up, with TCS-PA providing significantly superior results. Our findings support the evidence that the application of PA may be an effective surgical option for alleviating persistent MMPE.
en-copyright=
kn-copyright=
en-aut-name=XueHaowei
en-aut-sei=Xue
en-aut-mei=Haowei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXiming
en-aut-sei=Zhang
en-aut-mei=Ximing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Meniscal extrusion
kn-keyword=Meniscal extrusion
en-keyword=Meniscal root tear
kn-keyword=Meniscal root tear
en-keyword=Suture anchor
kn-keyword=Suture anchor
en-keyword=Three-dimensional magnetic resonance imaging
kn-keyword=Three-dimensional magnetic resonance imaging
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=23
article-no=
start-page=15311
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elevated Expression of CCN3 in Articular Cartilage Induces Osteoarthritis in Hip Joints Irrespective of Age and Weight Bearing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoarthritis (OA) occurs not only in the knee but also in peripheral joints throughout the whole body. Previously, we have shown that the expression of cellular communication network factor 3 (CCN3), a matricellular protein, increases with age in knee articular cartilage, and the misexpression of CCN3 in cartilage induces senescence-associated secretory phenotype (SASP) factors, indicating that CCN3 promotes cartilage senescence. Here, we investigated the correlation between CCN3 expression and OA degenerative changes, principally in human femoral head cartilage. Human femoral heads obtained from patients who received total hip arthroplasty were categorized into OA and femoral neck fracture (normal) groups without significant age differences. Gene expression analysis of RNA obtained from femoral head cartilage revealed that CCN3 and MMP-13 expression in the non-weight-bearing part was significantly higher in the OA group than in the normal group, whereas the weight-bearing OA parts and normal cartilage showed no significant differences in the expression of these genes. The expression of COL10A1, however, was significantly higher in weight-bearing OA parts compared with normal weight-bearing parts, and was also higher in weight-bearing parts compared with non-weight-bearing parts in the OA group. In contrast, OA primary chondrocytes from weight-bearing parts showed higher expression of CCN3, p16, ADAMTS4, and IL-1 beta than chondrocytes from the corresponding normal group, and higher ADAMTS4 and IL-1 beta in the non-weight-bearing part compared with the corresponding normal group. Acan expression was significantly lower in the non-weight-bearing group in OA primary chondrocytes than in the corresponding normal chondrocytes. The expression level of CCN3 did not show significant differences between the weight-bearing part and non-weight-bearing part in both OA and normal primary chondrocytes. Immunohistochemical analysis showed accumulated CCN3 and aggrecan neoepitope staining in both the weight-bearing part and non-weight-bearing part in the OA group compared with the normal group. The CCN3 expression level in cartilage had a positive correlation with the Mankin score. X-ray analysis of cartilage-specific CCN3 overexpression mice (Tg) revealed deformation of the femoral and humeral head in the early stage, and immunohistochemical analysis showed accumulated aggrecan neoepitope staining as well as CCN3 staining and the roughening of the joint surface in Tg femoral and humeral heads. Primary chondrocytes from the Tg femoral head showed enhanced expression of Ccn3, Adamts5, p16, Il-6, and Tnf alpha, and decreased expression of Col2a1 and -an. These findings indicate a correlation between OA degenerative changes and the expression of CCN3, irrespective of age and mechanical loading. Furthermore, the Mankin score indicates that the expression level of Ccn3 correlates with the progression of OA.
en-copyright=
kn-copyright=
en-aut-name=HiroseKazuki
en-aut-sei=Hirose
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SaigaKenta
en-aut-sei=Saiga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=hip osteoarthritis
kn-keyword=hip osteoarthritis
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=cellular communication network factor 3 (CCN3)
kn-keyword=cellular communication network factor 3 (CCN3)
en-keyword=senescence-associatedsecretory phenotype (SASP)
kn-keyword=senescence-associatedsecretory phenotype (SASP)
en-keyword=p16
kn-keyword=p16
en-keyword=ADAMTA4/5
kn-keyword=ADAMTA4/5
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=TNFa
kn-keyword=TNFa
en-keyword=aging
kn-keyword=aging
en-keyword=Mankinscore
kn-keyword=Mankinscore
en-keyword=weight-bearing
kn-keyword=weight-bearing
en-keyword=non-weight-bearing
kn-keyword=non-weight-bearing
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=11
article-no=
start-page=673
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Functional Blockage of S100A8/A9 Ameliorates Ischemia-Reperfusion Injury in the Lung
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=(1) Background: Lung ischemia-reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury.
en-copyright=
kn-copyright=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaueTomohisa
en-aut-sei=Sakaue
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomodaYuhei
en-aut-sei=Komoda
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHaruchika
en-aut-sei=Yamamoto
en-aut-mei=Haruchika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil= Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ischemia reperfusion injury
kn-keyword=ischemia reperfusion injury
en-keyword= S100A8/A9
kn-keyword= S100A8/A9
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=damage-associated molecule patterns
kn-keyword=damage-associated molecule patterns
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=645
end-page=650
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fetal Cerebellar Growth Curves Based on Biomathematics in Normally Developing Japanese Fetuses and Fetuses with Trisomy 18
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We used biomathematics to describe and compare cerebellar growth in normally developing and trisomy 18 Japanese fetuses. This retrospective study included 407 singleton pregnancies with fetuses at 14-39 weeks of gestation and 33 fetuses with trisomy 18 at 17-35 weeks. We used ultrasonography to measure fetal transverse cerebellar diameter (TCD) and anteroposterior cerebellar diameter (APCD). We hypothesized that cerebellar growth is proportional to cerebellar length at any given time point. We determined the formula L(t) ≒Keat+r, where e is Napier’s number, t is time, L is cerebellar length, and a, K, and r are constants. We then obtained regression functions for each TCD and APCD in all fetuses. The regression equations for TCD and APCD values in normal fetuses, expressed as exponential functions, were TCD(t)=27.85e0.02788t−28.62 (mm) (adjusted R2=0.997), and APCD(t)=324.29e0.00286t−322.62 (mm) (adjusted R2=0.995). These functions indicated that TCD and APCD grew at constant rates of 2.788%/week and 0.286%/week, respectively, throughout gestation. TCD (0.0153%/week) and APCD (0.000430%/week) grew more slowly in trisomy 18 fetuses. This study demonstrates the potential of biomathematics in clinical research and may aid in biological understanding of fetal cerebellar growth.
en-copyright=
kn-copyright=
en-aut-name=TadaKatsuhiko
en-aut-sei=Tada
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyagiYasunari
en-aut-sei=Miyagi
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KomatsuReina
en-aut-sei=Komatsu
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkimotoNaoki
en-aut-sei=Okimoto
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukaharaSaya
en-aut-sei=Tsukahara
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TateishiYoko
en-aut-sei=Tateishi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OokaNaomi
en-aut-sei=Ooka
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaMizuho
en-aut-sei=Yoshida
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KumazawaKazumasa
en-aut-sei=Kumazawa
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=2
en-affil=Medical Data Labo
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Showa University Koto Toyosu Hospital
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
en-keyword=biomathematics
kn-keyword=biomathematics
en-keyword=cerebellum
kn-keyword=cerebellum
en-keyword=fetus
kn-keyword=fetus
en-keyword=trisomy 18 syndrome
kn-keyword=trisomy 18 syndrome
en-keyword=ultrasonography
kn-keyword=ultrasonography
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=HER2陽性乳癌におけるTrastuzumab・T-DM1耐性化獲得後の治療標的としてのYES1の役割
kn-title=YES1 as a Therapeutic Target for HER2-Positive Breast Cancer after Trastuzumab and Trastuzumab-Emtansine (T-DM1) Resistance Development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUJIHARAMiwa
en-aut-sei=FUJIHARA
en-aut-mei=Miwa
kn-aut-name=藤原みわ
kn-aut-sei=藤原
kn-aut-mei=みわ
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=502
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Insights into Mesenchymal Signatures in Glioblastoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults. Despite decades of research, the prognosis for GBM patients is still disappointing. One major reason for the intense therapeutic resistance of GBM is inter- and intra-tumor heterogeneity. GBM-intrinsic transcriptional profiling has suggested the presence of at least three subtypes of GBM: the proneural, classic, and mesenchymal subtypes. The mesenchymal subtype is the most aggressive, and patients with the mesenchymal subtype of primary and recurrent tumors tend to have a worse prognosis compared with patients with the other subtypes. Furthermore, GBM can shift from other subtypes to the mesenchymal subtype over the course of disease progression or recurrence. This phenotypic transition is driven by diverse tumor-intrinsic molecular mechanisms or microenvironmental factors. Thus, better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new therapeutic strategies. In this review, we provide a comprehensive overview of the current understanding of the elements involved in the mesenchymal transition of GBM and discuss future perspectives.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchikawaTomotsugu
en-aut-sei=Ichikawa
en-aut-mei=Tomotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Hamamatsu University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=glioma
kn-keyword=glioma
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=mesenchymal subtype
kn-keyword=mesenchymal subtype
en-keyword=mesenchymal transition
kn-keyword=mesenchymal transition
en-keyword=heterogeneity
kn-keyword=heterogeneity
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=957890
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221006
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction
The aim of the present study was to characterize the profile and diversity of the oral microbiome of a periodontally non-severe group with >= 20 teeth in comparison with a severe periodontitis group of elderly Japanese people.
Methods
A total of 50 patients who had >= 20 teeth and aged >= 60 years were recruited, and 34 participants (13 non-severe participants) were analyzed. After oral rinse (saliva after rinsing) sample collection, the V3-V4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, richness, and evenness), and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A linear discriminant analysis effect size was calculated to identify bacterial species in the periodontally non-severe group.
Results
The periodontally non-severe group showed lower alpha diversity than that of the severe periodontitis group (p <0.05); however, the beta diversities were not significantly different. A higher relative abundance of four bacterial species (Prevotella nanceiensis, Gemella sanguinis, Fusobacterium periodonticum, and Haemophilus parainfluenzae) was observed in the non-severe group than that in the severe periodontitis group.
Conclusion
The oral microbiome in elderly Japanese people with >= 20 teeth and a non-severe periodontal condition was characterized by low alpha diversity and the presence of four bacterial species.
en-copyright=
kn-copyright=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoiAya
en-aut-sei=Yokoi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuharaDaiki
en-aut-sei=Fukuhara
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IslamMd Monirul
en-aut-sei=Islam
en-aut-mei=Md Monirul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SawadaNanami
en-aut-sei=Sawada
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakashimaYukiho
en-aut-sei=Nakashima
en-aut-mei=Yukiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaharaMomoko
en-aut-sei=Nakahara
en-aut-mei=Momoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SumitaIchiro
en-aut-sei=Sumita
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Preventive Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=oral microbiome
kn-keyword=oral microbiome
en-keyword=elderly people
kn-keyword=elderly people
en-keyword=diversity
kn-keyword=diversity
en-keyword=bacteria
kn-keyword=bacteria
en-keyword=non-severe periodontal condition
kn-keyword=non-severe periodontal condition
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=19
article-no=
start-page=11035
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220920
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune State Conversion of the Mesenteric Lymph Node in a Mouse Breast Cancer Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-gamma production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-gamma expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103(+)CD11b(+) dendritic cells (DCs) into the mLN, along with increased (1 -> 3)-beta-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103(+)CD11b(+) DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development.
en-copyright=
kn-copyright=
en-aut-name=ShigehiroTsukasa
en-aut-sei=Shigehiro
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UenoMaho
en-aut-sei=Ueno
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KijihiraMayumi
en-aut-sei=Kijihira
en-aut-mei=Mayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiRyotaro
en-aut-sei=Takahashi
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UmemuraChiho
en-aut-sei=Umemura
en-aut-mei=Chiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TahaEman A.
en-aut-sei=Taha
en-aut-mei=Eman A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurosakaChisaki
en-aut-sei=Kurosaka
en-aut-mei=Chisaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsayamaMegumi
en-aut-sei=Asayama
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurakamiHiroshi
en-aut-sei=Murakami
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MasudaJunko
en-aut-sei=Masuda
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Research Institute for Biomedical Sciences, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=13
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=breast cancer cells
kn-keyword=breast cancer cells
en-keyword=dendritic cells
kn-keyword=dendritic cells
en-keyword=mesenteric lymph node
kn-keyword=mesenteric lymph node
en-keyword=myeloid-derived suppressor cells
kn-keyword=myeloid-derived suppressor cells
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=4
article-no=
start-page=226
end-page=237
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Diffuse large B-cell lymphoma in the course of systemic sarcoidosis: A case report and review of 30 Japanese patients with sarcoidosis-lymphoma syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a patient with sarcoidosis who developed diffuse large B-cell lymphoma. A 71-year-old woman with persistent cough was diagnosed pathologically with sarcoidosis by resection of the right upper lung lobe with a nodule after an unsuccess�ful attempt of transbronchial needle aspiration for mediastinal lymphadenopathy. She was referred for an eye examination and found to have spotty retinal degeneration on the lower fundi of both eyes, together with residual macular edema and vitreous opacity in the left eye. At 76 years, she underwent cataract surgery and vitrectomy to gain a visual acuity of 0.6 in the left eye. At 77 years, she developed a cough and fever, and showed leukopenia and thrombocytopenia. Computed tomography showed multiple small nodular lesions in both lungs, and bilateral hilar, mediastinal, and hepatic lymphadenopathy. Fluorodeoxyglucose positron emission tomography demonstrated high uptake in the liver, spleen, pancreatic head, and lymph nodes. Bone marrow biopsy was intact, but liver biopsy revealed anomalous large lymphoid cells in the sinusoids which were positive for CD20 and showed a high Ki-67 index, leading to the diagnosis of diffuse large B-cell lymphoma. Chemotherapy with 8 courses of THP-COP (cyclophosphamide, pirarubicin, vincristine, and prednisolone) with rituximab, followed by intra�thecal injection of methotrexate, cytarabine, and dexamethasone, resulted in complete remission. She maintained complete remission for 10 years until 88 years old at present. The literature review found 30 patients, including this case, who developed lymphoma in the course of sarcoidosis. A novel pathological diagnosis is required in the setting of acute ymptomatic changes and novel lesions on imaging in patients with sarcoidosis.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaToshiaki
en-aut-sei=Okada
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NotoharaKenji
en-aut-sei=Notohara
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkadaKazuya
en-aut-sei=Okada
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kurashiki Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=
article-no=
start-page=141
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical outcomes of medial meniscus posterior root repair: A midterm follow-up study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Transtibial pullout repair of medial meniscus posterior root tears (MMPRTs) cannot prevent the progression of knee osteoarthritis. Conversions of knee arthroplasties are occasionally required following MMPRT repair. However, other knee-related surgical treatments following MMPRT repair are unclear. This study was aimed at investigating the midterm clinical outcomes and knee-related surgical events following MMPRT repair.
Methods: Patients with MMPRT underwent pullout repair using FasT-Fix modified Mason -Allen (F-MMA) suturing with an all-inside meniscal repair device. Thirty-two patients with follow-up duration >2 years were enrolled. We assessed the clinical outcomes and postop-erative surgical treatment of both knees.
Results: F-MMA pullout repair improved all clinical evaluation scores in patients with MMPRT at a mean follow-up of 36.1 months. Postoperative arthroscopic debridement was required for one patient. An additional MMPRT repair was performed in one patient on second-look arthroscopy. None of the patients required ipsilateral knee arthroplasty. In the contralateral knees, one pullout repair of a newly developed MMPRT and two knee arthroplasties were performed.
Conclusions: This study demonstrated that F-MMA pullout repair yielded satisfactory clin-ical outcomes. However, subsequent knee-related surgeries were observed in 6.3% of the pullout-repaired knees and 9.4% of the contralateral knees. Our results suggest that sur-geons should be aware of the worsening and/or occurrence of contralateral knee joint dis-ease, even when the postoperative clinical outcomes are satisfactory following MMPRT repair.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazawaShinichi
en-aut-sei=Miyazawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkazakiYoshiki
en-aut-sei=Okazaki
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=MMPRT
kn-keyword=MMPRT
en-keyword=Transtibial pullout repair
kn-keyword=Transtibial pullout repair
en-keyword=Clinical outcome
kn-keyword=Clinical outcome
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=19
article-no=
start-page=2970
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220923
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
en-copyright=
kn-copyright=
en-aut-name=WangDengli
en-aut-sei=Wang
en-aut-mei=Dengli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=QiaoHandong
en-aut-sei=Qiao
en-aut-mei=Handong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZhaoKun
en-aut-sei=Zhao
en-aut-mei=Kun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoShangze
en-aut-sei=Gao
en-aut-mei=Shangze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiuKeyue
en-aut-sei=Liu
en-aut-mei=Keyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeshigawaraKiyoshi
en-aut-sei=Teshigawara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakadaKenzo
en-aut-sei=Takada
en-aut-mei=Kenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Research Fellow of Japan Society for the Promotion of Science
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Tsinghua University
kn-affil=
affil-num=7
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Sapporo Laboratory, EVEC, Inc.
kn-affil=
affil-num=10
en-affil=Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=intracerebral hemorrhage
kn-keyword=intracerebral hemorrhage
en-keyword=HMGB1
kn-keyword=HMGB1
en-keyword=antibody therapy
kn-keyword=antibody therapy
en-keyword=non-human primate
kn-keyword=non-human primate
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=4
article-no=
start-page=391
end-page=398
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Tanden Breathing on Constipation: A Randomized Controlled Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tanden breathing, an ancient health technique, involves expiratory abdominal pressure breathing is practiced in Japan. In this study we examined the ability of Tanden breathing to relieve constipation. The study was designed as a stratified-block randomized controlled trial enrolling 20 participants. Nineteen were female and one was male, none were elderly. During the 6-week intervention period, the participants performed video-guided Tanden breathing about 10 min once day. We evaluated constipation using the Constipation Assessment Scale (CAS). There were significant differences in the mean CAS score between time points (baseline, 3 weeks after baseline, 6 weeks after baseline), groups (intervention and control), and their interaction (time×group) using repeated-measures analysis of variance. The control group showed no change in the mean CAS score; the mean CAS scores of the intervention group changed from 7.2 at baseline to 3.9 at 3 weeks and 3.1 at 6 weeks after baseline. A regression analysis of the difference in the mean CAS between baseline and 6 weeks later showed that the CAS of the intervention group was 4.3 points lower than that of the control group (95% confidence interval, 2.5-6.1). The results suggested that Tanden breathing is effective in relieving constipation among young women.
en-copyright=
kn-copyright=
en-aut-name=HabuHiroshi
en-aut-sei=Habu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokinobuAkiko
en-aut-sei=Tokinobu
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Tanden breathing
kn-keyword=Tanden breathing
en-keyword=Dantian
kn-keyword=Dantian
en-keyword=breathing exercises
kn-keyword=breathing exercises
en-keyword=constipation
kn-keyword=constipation
en-keyword=mind−body therapy
kn-keyword=mind−body therapy
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=14172
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Visual hallucinations in dementia with Lewy bodies originate from necrosis of characteristic neurons and connections in three-module perception model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mathematical and computational approaches were used to investigate dementia with Lewy bodies (DLB), in which recurrent complex visual hallucinations (RCVH) is a very characteristic symptom. Beginning with interpretative analyses of pathological symptoms of patients with RCVH-DLB in comparison with the veridical perceptions of normal subjects, we constructed a three-module scenario concerning function giving rise to perception. The three modules were the visual input module, the memory module, and the perceiving module. Each module interacts with the others, and veridical perceptions were regarded as a certain convergence to one of the perceiving attractors sustained by self-consistent collective fields among the modules. Once a rather large but inhomogeneously distributed area of necrotic neurons and dysfunctional synaptic connections developed due to network disease, causing irreversible damage, then bottom-up information from the input module to both the memory and perceiving modules were severely impaired. These changes made the collective fields unstable and caused transient emergence of mismatched perceiving attractors. This may account for the reason why DLB patients see things that are not there. With the use of our computational model and experiments, the scenario was recreated with complex bifurcation phenomena associated with the destabilization of collective field dynamics in very high-dimensional state space.
en-copyright=
kn-copyright=
en-aut-name=NaraShigetoshi
en-aut-sei=Nara
en-aut-mei=Shigetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiHiroshi
en-aut-sei=Fujii
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsukadaHiromichi
en-aut-sei=Tsukada
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsudaIchiro
en-aut-sei=Tsuda
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Information Science and Engineering, Kyoto Sangyo University
kn-affil=
affil-num=3
en-affil=Center for Mathematical Science and Artifcial Intelligence/Chubu University Academy of Emerging Sciences, Chubu University
kn-affil=
affil-num=4
en-affil=Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artifcial Intelligence, Chubu University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=5
article-no=
start-page=266
end-page=268
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Japanese case of Charcot–Marie–Tooth disease type 2Z with severe retinitis pigmentosa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Charcot-Marie-Tooth disease type 2Z (CMT2Z) shows highly variable clinical features. We report the first Japanese CMT2Z patient with a c.754C>T (p.R252W) substitution of the MORC2 gene, complicating severe retinitis pigmentosa. The MORC2 mutants were involved in a decrease in cell survival through induction of apoptosis. Thus, the MORC2 mutation might be involved in the degeneration of photoreceptors and the development of retinitis pigmentosa.
en-copyright=
kn-copyright=
en-aut-name=NomuraEmi
en-aut-sei=Nomura
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiRyo
en-aut-sei=Sasaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakataYumi
en-aut-sei=Nakata
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AndoMasahiro
en-aut-sei=Ando
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=10
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Charcot-Marie-Tooth disease type 2Z
kn-keyword=Charcot-Marie-Tooth disease type 2Z
en-keyword=MORC2
kn-keyword=MORC2
en-keyword=retinitis pigmentosa
kn-keyword=retinitis pigmentosa
END
start-ver=1.4
cd-journal=joma
no-vol=2022
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Drug repositioning of tranilast to sensitize a cancer therapy by targeting cancer-associated fibroblast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment that mediate resistance of cancer cells to anticancer drugs. Tranilast is an antiallergic drug that suppresses the release of cytokines from various inflammatory cells. In this study, we investigated the inhibitory effect of tranilast on the interactions between non-small cell lung cancer (NSCLC) cells and the CAFs in the tumor microenvironment. Three EGFR-mutant NSCLC cell lines, two KRAS-mutant cell lines, and three CAFs derived from NSCLC patients were used. To mimic the tumor microenvironment, the NSCLC cells were cocultured with the CAFs in vitro, and the molecular profiles and sensitivity to molecular targeted therapy were assessed. Crosstalk between NSCLC cells and CAFs induced multiple biological effects on the NSCLC cells both in vivo and in vitro, including activation of the STAT3 signaling pathway, promotion of xenograft tumor growth, induction of epithelial-mesenchymal transition (EMT), and acquisition of resistance to molecular-targeted therapy, including EGFR-mutant NSCLC cells to osimertinib and of KRAS-mutant NSCLC cells to selumetinib. Treatment with tranilast led to inhibition of IL-6 secretion from the CAFs, which, in turn, resulted in inhibition of CAF-induced phospho-STAT3 upregulation. Tranilast also inhibited CAF-induced EMT in the NSCLC cells. Finally, combined administration of tranilast with molecular-targeted therapy reversed the CAF-mediated resistance of the NSCLC cells to the molecular-targeted drugs, both in vitro and in vivo. Our results showed that combined administration of tranilast with molecular-targeted therapy is a possible new treatment strategy to overcome drug resistance caused by cancer-CAF interaction.
en-copyright=
kn-copyright=
en-aut-name=OchiKosuke
en-aut-sei=Ochi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakatsuFumiaki
en-aut-sei=Takatsu
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsudakaShimpei
en-aut-sei=Tsudaka
en-aut-mei=Shimpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhuYidan
en-aut-sei=Zhu
en-aut-mei=Yidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkamotoYoshiharu
en-aut-sei=Okamoto
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer-associated fibroblast
kn-keyword=cancer-associated fibroblast
en-keyword=drug resistance
kn-keyword=drug resistance
en-keyword=tranilast
kn-keyword=tranilast
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=1
article-no=
start-page=891
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alveolar soft part sarcoma: progress toward improvement in survival? A population-based study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Alveolar soft part sarcoma (ASPS) is a rare histological subtype of soft-tissue sarcoma, which remains refractory to conventional cytotoxic chemotherapy. We aimed to characterize ASPS and investigate whether the oncological outcome has improved over the past decade. Methods One hundred and twenty patients with newly diagnosed ASPS from 2006 to 2017, identified from the Bone and Soft-Tissue Tumor Registry in Japan, were analyzed retrospectively. Results The study cohort comprised 34 (28%) patients with localized ASPS and 86 (72%) with metastatic disease at presentation. The 5-year disease-specific survival (DSS) was 68% for all patients and 86% and 62% for localized and metastatic disease, respectively (p = 0.019). Metastasis at presentation was the only adverse prognostic factor for DSS (hazard ratio [HR]: 7.65; p = 0.048). Patients who were > 25 years (80%; p = 0.023), had deep-seated tumors (75%; p = 0.002), and tumors > 5 cm (5-10 cm, 81%; > 10 cm, 81%; p < 0.001) were more likely to have metastases at presentation. In patients with localized ASPS, adjuvant chemotherapy or radiotherapy did not affect survival, and 13 patients (45%) developed distant metastases in the lung (n = 12, 92%) and brain (n = 2, 15%). In patients with metastatic ASPS (lung, n = 85 [99%]; bone, n = 12 [14%]; and brain n = 9 [11%]), surgery for the primary or metastatic site did not affect survival. Prolonged survival was seen in patients who received pazopanib treatment (p = 0.045), but not in those who received doxorubicin-based cytotoxic chemotherapy. Overall, improved DSS for metastatic ASPS has been observed since 2012 (5-year DSS, from 58 to 65%) when pazopanib was approved for advanced diseases, although without a statistically significant difference (p = 0.117). Conclusion The national study confirmed a unique feature of ASPS with frequent metastasis to the lung and brain but an indolent clinical course. An overall trend toward prolonged survival after the introduction of targeted therapy encourages continuous efforts to develop novel therapeutic options for this therapeutically resistant soft-tissue sarcoma.
en-copyright=
kn-copyright=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiAkira
en-aut-sei=Kawai
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Musculoskeletal Oncology, National Cancer Center Hospital
kn-affil=
en-keyword=Alveolar soft part sarcoma
kn-keyword=Alveolar soft part sarcoma
en-keyword=Survival
kn-keyword=Survival
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Pazopanib
kn-keyword=Pazopanib
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=9
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
en-copyright=
kn-copyright=
en-aut-name=NishiboriM.
en-aut-sei=Nishibori
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Sepsis
kn-keyword=Sepsis
en-keyword=Histidine-rich glycoprotein (HRG)
kn-keyword=Histidine-rich glycoprotein (HRG)
en-keyword=Neutrophil extracellular traps (NETs)
kn-keyword=Neutrophil extracellular traps (NETs)
en-keyword=Endotheliopathy
kn-keyword=Endotheliopathy
en-keyword=COVID-19
kn-keyword=COVID-19
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=
article-no=
start-page=128767
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202207
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ultrasound-dependent RNAi using TatU1A-rose bengal conjugate
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tat-U1A-rose bengal conjugate (TatU1A-RB) was prepared as an ultrasound-sensitive RNA carrier molecule. This molecule consists of Tat cell-penetrating peptide, U1A RNA-binding protein, and rose bengal as a sonosensitizer. We demonstrated that TatU1A-RB delivered RNA via the endocytosis pathway, which was followed by ultrasound-dependent endosomal escape and cytosolic dispersion of the RNA. A short hairpin RNA (shRNA) delivered by TatU1A-RB mediated RNA interference (RNAi) ultrasound-dependently. Even by ultrasound irradiation through blood cells, RNAi could be induced with TatU1A-RB and the shRNA. This ultrasound-dependent cytosolic RNA delivery method will serve as the basis for a new approach to nucleic acid therapeutics.
en-copyright=
kn-copyright=
en-aut-name=SumiNanako
en-aut-sei=Sumi
en-aut-mei=Nanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagahiroShota
en-aut-sei=Nagahiro
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Advanced Energy, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Ultrasound
kn-keyword=Ultrasound
en-keyword=Sonosensitizer
kn-keyword=Sonosensitizer
en-keyword=Rose Bengal
kn-keyword=Rose Bengal
en-keyword=RNAi
kn-keyword=RNAi
en-keyword=RNA delivery
kn-keyword=RNA delivery
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=22
article-no=
start-page=9257
end-page=9263
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Oxygen Vacancy in the Photocarrier Dynamics of WO3 Photocatalysts: The Case of Recombination Centers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Defects in powder photocatalysts determine the photocatalytic activity. The addition of defects sometimes enhances the activity, but sometimes decreases it. However, the factors determining the difference between these cases have not been fully elucidated yet. Herein, we investigated the effects of oxygen vacancies on photocarrier dynamics in WO3 powder using broadband transient absorption spectroscopy. It was found that the decay of deeply trapped electrons was accelerated when the number of oxygen vacancies was increased by H-2 reduction. This result suggests that oxygen vacancies in WO3 mainly act as recombination centers. This is in contrast to many other photocatalysts such as TiO2 and SrTiO3, where the carrier lifetime increases with increasing oxygen vacancy concentration. These differences can be attributed to the difference in the distance between oxygen vacancies. When defects are dispersed, trapped electrons need to travel over long distances by repeatedly hopping and tunneling between defects to combine with holes, resulting in decelerated recombination. In contrast, when the defects are connected or located close together, the trapped electrons can readily migrate among defects, leading to enhanced recombination. Control of the distance between defects is thus important for enhancing photocatalytic activity.
en-copyright=
kn-copyright=
en-aut-name=KatoKosaku
en-aut-sei=Kato
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UemuraYohei
en-aut-sei=Uemura
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraKiyotaka
en-aut-sei=Asakura
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Molecular Science
kn-affil=
affil-num=3
en-affil=Institute for Catalysis, Hokkaido University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=11
article-no=
start-page=5887
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220524
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin-yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin-yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
en-copyright=
kn-copyright=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cellular communication network factor
kn-keyword=cellular communication network factor
en-keyword=CCN2
kn-keyword=CCN2
en-keyword=CCN3
kn-keyword=CCN3
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=glycolysis
kn-keyword=glycolysis
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=884509
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with alpha-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.
en-copyright=
kn-copyright=
en-aut-name=HamasakiEriko
en-aut-sei=Hamasaki
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakitaNatsuki
en-aut-sei=Wakita
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagaokaHikaru
en-aut-sei=Nagaoka
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaMasayuki
en-aut-sei=Morita
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashimaEizo
en-aut-sei=Takashima
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchihashiTakayuki
en-aut-sei=Uchihashi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJi-Won
en-aut-sei=Lee
en-aut-mei=Ji-Won
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IimuraTadahiro
en-aut-sei=Iimura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SaleemMoin A.
en-aut-sei=Saleem
en-aut-mei=Moin A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgoNaohisa
en-aut-sei=Ogo
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AsaiAkira
en-aut-sei=Asai
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NaritaAkihiro
en-aut-sei=Narita
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=5
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=6
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=7
en-affil=Department of Physics, Nagoya University
kn-affil=
affil-num=8
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=11
en-affil=Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=12
en-affil=Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol
kn-affil=
affil-num=13
en-affil=Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=14
en-affil=Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=15
en-affil=Graduate School of Science, Nagoya University
kn-affil=
affil-num=16
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=dynamin
kn-keyword=dynamin
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=actin
kn-keyword=actin
en-keyword=bundle
kn-keyword=bundle
en-keyword=GTPase
kn-keyword=GTPase
en-keyword=CMT
kn-keyword=CMT
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=5
article-no=
start-page=684
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dual-energy computed tomography (DECT) is a promising technique for the assessment of the lung perfused blood volume (LPBV) in the lung parenchyma. This study was performed to compare the LPBV by DECT of patients with pulmonary hypertension (PH) and controls and to evaluate the association between the LPBV and the perfusion ratio derived by lung perfusion scintigraphy. This study involved 45 patients who underwent DECT (25 patients with PH and 20 controls). We measured the total LPBV and distribution of the LPBV in each lung. The total LPBV was significantly lower in the PH group than the control group (38 +/- 9 vs. 45 +/- 8 HU, p = 0.024). Significant differences were observed between the LPBV of the upper lung of the PH and control groups (34 +/- 10 vs. 47 +/- 10, p = 0.021 and 37 +/- 10 vs. 47 +/- 8, p < 0.001). A significant correlation was observed between the LPBV and the lung perfusion scintigraphy. A lower total LPBV and lower LPBV of the upper lung as detected by DECT might be specific findings of PH.
en-copyright=
kn-copyright=
en-aut-name=UgawaSatoko
en-aut-sei=Ugawa
en-aut-mei=Satoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=pulmonary vascular bed
kn-keyword=pulmonary vascular bed
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=lung perfusion scintigraphy
kn-keyword=lung perfusion scintigraphy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CoCl2存在下におけるがん幹細胞の赤芽球への分化に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KumonKazuki
en-aut-sei=Kumon
en-aut-mei=Kazuki
kn-aut-name=公文一輝
kn-aut-sei=公文
kn-aut-mei=一輝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=中小企業の組織行動とイノベーション―日本中小企業に関する実証研究―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MoriuchiYasushi
en-aut-sei=Moriuchi
en-aut-mei=Yasushi
kn-aut-name=森内泰
kn-aut-sei=森内
kn-aut-mei=泰
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=岡山大学大学院社会文化科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=高速液体クロマトグラフィーを用いた血中プロポフォール濃度の測定方法の確立と抗てんかん薬が全静脈麻酔からの覚醒に及ぼす影響について
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakanouMai
en-aut-sei=Nakanou
en-aut-mei=Mai
kn-aut-name=中納麻衣
kn-aut-sei=中納
kn-aut-mei=麻衣
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=マウス長管骨損傷モデルにおける間葉系幹細胞とマクロファージ の相互作用
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TagashiraRyuji
en-aut-sei=Tagashira
en-aut-mei=Ryuji
kn-aut-name=田頭龍二
kn-aut-sei=田頭
kn-aut-mei=龍二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HMGB1はマクロファージをM1タイプに極性化させて歯周炎の進行に影響を及ぼす
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiraiAnna
en-aut-sei=Hirai
en-aut-mei=Anna
kn-aut-name=平井杏奈
kn-aut-sei=平井
kn-aut-mei=杏奈
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウス肺虚血再灌流障害における抗HM G B1抗体の保護的効果
kn-title=Protective effects of anti-HMGB1 monoclonal antibody on lung ischemia reperfusion injury in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=中田憲太郎
kn-aut-sei=中田
kn-aut-mei=憲太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=乳幼児期の喫煙環境の曝露と問題行動
kn-title=Early childhood exposure to maternal smoking and behavioral development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AriyoshiMakiko
en-aut-sei=Ariyoshi
en-aut-mei=Makiko
kn-aut-name=有吉真季子
kn-aut-sei=有吉
kn-aut-mei=真季子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=骨軟部腫瘍患者における心理社会的苦痛の有病率と危険因子について
kn-title=Prevalence of Psychological Distress and Its Risk Factors in Patients with Primary Bone and Soft Tissue Tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IseMasato
en-aut-sei=Ise
en-aut-mei=Masato
kn-aut-name=伊勢真人
kn-aut-sei=伊勢
kn-aut-mei=真人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=7297
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=One-step nucleic acid amplification for intraoperative diagnosis of lymph node metastasis in lung cancer patients: a single-center prospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=One-step nucleic acid amplification (OSNA) is a rapid intraoperative molecular detection technique for sentinel node assessment via the quantitative measurement of target cytokeratin 19 (CK19) mRNA to determine the presence of metastasis. It has been validated in breast cancer but its application in lung cancer has not been adequately investigated. 214 LNs from 105 patients with 100 primary lung cancers, 2 occult primary lung tumors, and 3 metastatic lung tumors, who underwent surgical lung resection with LN dissection between February 2018 and January 2020, were assessed. Resected LNs were divided into two parts: one was snap-frozen for OSNA and the other underwent rapidly frozen histological examination. Intraoperatively collected LNs were evaluated by OSNA using loop-mediated isothermal amplification and compared with intraoperative pathological diagnosis as a control. Among 214 LNs, 14 were detected as positive by OSNA, and 11 were positive by both OSNA and intraoperative pathological diagnosis. The sensitivity and specificity of OSNA was 84.6% and 98.5%, respectively. The results of 5 of 214 LNs were discordant, and the remainder all matched (11 positive and 198 negative) with a concordance rate of 97.7%. Although the analysis of public mRNA expression data from cBioPortal showed that CK19 expression varies greatly depending on the cancer type and histological subtype, the results of the five cases, except for primary lung cancer, were consistent. OSNA provides sufficient diagnostic accuracy and speed and can be applied to the intraoperative diagnosis of LN metastasis for non-small cell lung cancer.
en-copyright=
kn-copyright=
en-aut-name=NambaKei
en-aut-sei=Namba
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiuraAkihiro
en-aut-sei=Miura
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyauchiShunsaku
en-aut-sei=Miyauchi
en-aut-mei=Shunsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiKota
en-aut-sei=Araki
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Pathology, Memorial Sloan Kettering Cancer Center
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=2
article-no=
start-page=179
end-page=186
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Capsaicin May Improve Swallowing Impairment in Patients with Amyotrophic Lateral Sclerosis: A Randomized Controlled Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Patients with neurodegenerative diseases are at an increased risk of dysphagia and aspiration pneumonia. In this study, we examined whether ingestion of capsaicin prior to swallowing changes the temporal dynamics of swallowing in such patients. In a crossover, randomized controlled trial, 29 patients with neurodegenerative diseases were given a soluble wafer containing 1.5 μg capsaicin or an identical placebo 20 min prior to testing. For evaluation with video fluoroscopy (VF), patients consumed a barium-containing liquid plus thickening material. The durations of the latency, elevating and recovery periods of the hyoid were assessed from VF. Overall, no significant differences were observed in the duration of each period between capsaicin and placebo treatments. However, reductions in the latency and elevating periods were positively correlated with baseline durations. In subgroup analyses, that correlation was observed in patents with amyotrophic lateral sclerosis (ALS) but not in patients with Parkinson’s disease. The consumption of wafer paper containing capsaicin before the intake of food may be effective in patients with dysphagia related with certain neurodegenerative diseases, particularly ALS patients. Further studies will be needed to validate this finding.
en-copyright=
kn-copyright=
en-aut-name=HigashiTomoko
en-aut-sei=Higashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataNaomichi
en-aut-sei=Murata
en-aut-mei=Naomichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujimotoMaki
en-aut-sei=Fujimoto
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EgusaMasahiko
en-aut-sei=Egusa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaShigeru
en-aut-sei=Maeda
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=The Center for Special Needs Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=The Center for Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=The Center for Special Needs Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=The Center for Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=The Center for Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=deglutition disorder
kn-keyword=deglutition disorder
en-keyword=fluoroscopy
kn-keyword=fluoroscopy
en-keyword=neurodegenerative diseases
kn-keyword=neurodegenerative diseases
en-keyword=amyotrophic lateral sclerosis
kn-keyword=amyotrophic lateral sclerosis
en-keyword=Parkinson disease
kn-keyword=Parkinson disease
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=2
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Grade of Subchondral Insufficiency Fracture of the Knee and the Presence of a Posterior Shiny-Corner Lesion are Correlated with Duration of Medial Meniscus Posterior Root Tear in Women
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone marrow edema (BME) after meniscus injury and risk factors for subchondral insufficiency fracture of the knee (SIFK) have been reported. However, their association with medial meniscus posterior root tear (MMPRT) remains unknown. We investigated the association of BME volume (BME-V), posterior shinycorner lesion (PSCL), and SIFK with MMPRT to examine the correlations between BME-V and medial meniscus extrusion (MME), PSCL and duration from injury to the time of magnetic resonance imaging (duration), and SIFK and duration. Twenty-nine patients who underwent surgery for MMPRT were included (mean age, 59.2; range, 39-84). The presence of PSCL, femoral BME-V (cm3), and SIFK grade (1-4) were evaluated. Preoperative factors, such as MME (mm) and duration (weeks), were investigated using multivariate linear/ logistic regression analyses. Multivariate linear regression analysis revealed duration as a significant factor for high-grade SIFK (p<0.01). Multivariate logistic regression analysis revealed duration as a significant factor for the presence of PSCL (odds ratio=0.94, p<0.05). A long duration of MMPRT leads to severe MME and highgrade SIFK (3 and 4), often resulting in knee arthroplasty. Early diagnosis of MMPRT and pullout repair can prevent severe MME and high-grade SIFK.
en-copyright=
kn-copyright=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamaneKentaro
en-aut-sei=Yamane
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=subchondral insufficiency fracture
kn-keyword=subchondral insufficiency fracture
en-keyword=bone marrow edema
kn-keyword=bone marrow edema
en-keyword=meniscus extrusion
kn-keyword=meniscus extrusion
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=2661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of Surface Antigens That Define Human Pluripotent Stem Cell-Derived PRRX1+Limb-Bud-like Mesenchymal Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Stem cell-based therapies and experimental methods rely on efficient induction of human pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form cartilage tissues in the appendicular skeleton. Previously, we generated PRRX1-tdTomato reporter hPSCs to establish the protocol for inducing the hPSC-derived PRRX1(+) LBM-like cells. However, surface antigens that assess the induction efficiency of hPSC-derived PRRX1(+) LBM-like cells from LPM have not been identified. Here, we used PRRX1-tdTomato reporter hPSCs and found that high pluripotent cell density suppressed the expression of PRRX1 mRNA and tdTomato after LBM-like induction. RNA sequencing and flow cytometry suggested that PRRX1-tdTomato(+) LBM-like cells are defined as CD44(high) CD140B(high) CD49f(-). Importantly, other hPSC lines, including four human induced pluripotent stem cell lines (414C2, 1383D2, HPS1042, HPS1043) and two human embryonic stem cell lines (SEES4, SEES7), showed the same results. Thus, an appropriate cell density of hPSCs before differentiation is a prerequisite for inducing the CD44(high) CD140B(high) CD49f(-) PRRX1(+) LBM-like cells.
en-copyright=
kn-copyright=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraMasahiro
en-aut-sei=Nakamura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoToki
en-aut-sei=Kitano
en-aut-mei=Toki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=human pluripotent stem cells
kn-keyword=human pluripotent stem cells
en-keyword=limb-bud mesenchyme
kn-keyword=limb-bud mesenchyme
en-keyword=PRRX1
kn-keyword=PRRX1
en-keyword=surface antigen
kn-keyword=surface antigen
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=1
end-page=7
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=COVID-19 mRNA Vaccine–Associated Uveitis Leading to Diagnosis of Sarcoidosis: Case Report and Review of Literature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A 34-year-old Japanese person with male gender identity who had been taking intramuscular injection of methyltestosterone depot for 11 years after bilateral mastectomy noticed blurred vision 5 days after the second vaccination for COVID-19 (Tozinameran; Pfizer-BioNTech) in the interval of 3 weeks following the first vaccination. The patient was diagnosed as granulomatous iritis with mutton-fat keratic precipitates and small iris nodules at the pupillary margin in the right eye and began to have 0.1% betamethasone eye drops with good response. The patient, however, continued to have fever and malaise and showed a high level of serum soluble interleukin-2 receptor (sIL-2R) even 4 weeks after the second vaccination. Computed tomographic scan disclosed mediastinal and bilateral hilar small lymphadenopathy together with limited granular lesion in the right lung. Gallium-67 scintigraphy demonstrated high uptake not only in mediastinal and hilar lymph nodes but also in bilateral parotid glands. Right parotid gland biopsy revealed noncaseating granulomas and proved pathological diagnosis of sarcoidosis. The systemic symptoms were relieved by oral prednisolone 20 mg daily. Even though the causal relationship remains undetermined, this case is unique at the point that vaccine-associated uveitis led to the detection of pulmonary lesions and lymphadenopathy, resulting in clinical and pathological diagnosis of sarcoidosis. In literature review, 3 patients showed sarcoidosis-like diseases after COVID-19 vaccination: 2 patients were diagnosed clinically as Lofgren syndrome with acute onset of erythema nodosum and ankle swelling, with or without mediastinal and hilar lymphadenopathy, whereas 1 patient with mediastinal lymphadenopathy but no uveitis was diagnosed pathologically by biopsy as sarcoidosis.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UraguchiKensuke
en-aut-sei=Uraguchi
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaharaMasaaki
en-aut-sei=Kawahara
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Hospital, Japan
kn-affil=
affil-num=3
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology, Head & Neck Surgery, Okayama University Hospital, Japan
kn-affil=
affil-num=5
en-affil=Kawahara Eye Clinic, Okayama, Japan
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Hospital, Japan
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=111
cd-vols=
no-issue=
article-no=
start-page=27
end-page=42
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The List of Published by Members of the Faculty From January to December 2021
kn-title=公表学術論文等リスト 2021
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=86
cd-vols=
no-issue=1
article-no=
start-page=112
end-page=126
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer extracellular vesicles, tumoroid models, and tumor microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth. Moreover, recent tumoroid models can be furnished with aspects of the tumor microenvironment, such as vasculature, hypoxia, and extracellular matrix. This review summarizes tumor tissue culture and engineering platforms compatible with EV research. For example, the combination experiments of 3D-tumoroids and EVs have revealed multifunctional proteins loaded in EVs, such as metalloproteinases and heat shock proteins. EVs or exosomes are able to transfer their cargo molecules to recipient cells, whose fates are often largely altered. In addition, the review summarizes approaches to EV labeling technology using fluorescence and luciferase, useful for studies on EV-mediated intercellular communication, biodistribution, and metastatic niche formation.
en-copyright=
kn-copyright=
en-aut-name=EguchiTakanori
en-aut-sei=Eguchi
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShetaMona
en-aut-sei=Sheta
en-aut-mei=Mona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiMasanori
en-aut-sei=Fujii
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CalderwoodStuart K.
en-aut-sei=Calderwood
en-aut-mei=Stuart K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
en-keyword=Extracellular vesicles
kn-keyword=Extracellular vesicles
en-keyword=Exosome
kn-keyword=Exosome
en-keyword=3D tumoroid models
kn-keyword=3D tumoroid models
en-keyword=Cancer stem cells
kn-keyword=Cancer stem cells
en-keyword=Tumor microenvironment
kn-keyword=Tumor microenvironment
en-keyword=Metastatic niche
kn-keyword=Metastatic niche
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=23
article-no=
start-page=12809
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=YES1 as a Therapeutic Target for HER2-Positive Breast Cancer after Trastuzumab and Trastuzumab-Emtansine (T-DM1) Resistance Development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trastuzumab-emtansine (T-DM1) is a therapeutic agent molecularly targeting human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC), and it is especially effective for MBC with resistance to trastuzumab. Although several reports have described T-DM1 resistance, few have examined the mechanism underlying T-DM1 resistance after the development of acquired resistance to trastuzumab. We previously reported that YES1, a member of the Src family, plays an important role in acquired resistance to trastuzumab in HER2-amplified breast cancer cells. We newly established a trastuzumab/T-DM1-dual-resistant cell line and analyzed the resistance mechanisms in this cell line. At first, the T-DM1 effectively inhibited the YES1-amplified trastuzumab-resistant cell line, but resistance to T-DM1 gradually developed. YES1 amplification was further enhanced after acquired resistance to T-DM1 became apparent, and the knockdown of the YES1 or the administration of the Src inhibitor dasatinib restored sensitivity to T-DM1. Our results indicate that YES1 is also strongly associated with T-DM1 resistance after the development of acquired resistance to trastuzumab, and the continuous inhibition of YES1 is important for overcoming resistance to T-DM1.
en-copyright=
kn-copyright=
en-aut-name=FujiharaMiwa
en-aut-sei=Fujihara
en-aut-mei=Miwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhuYidan
en-aut-sei=Zhu
en-aut-mei=Yidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MamoriTomoka
en-aut-sei=Mamori
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiokaRyo
en-aut-sei=Yoshioka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UnoMaya
en-aut-sei=Uno
en-aut-mei=Maya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzukiYoko
en-aut-sei=Suzuki
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AbeYuko
en-aut-sei=Abe
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HatonoMinami
en-aut-sei=Hatono
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TsukiokiTakahiro
en-aut-sei=Tsukioki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakahashiYuko
en-aut-sei=Takahashi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KochiMariko
en-aut-sei=Kochi
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IwamotoTakayuki
en-aut-sei=Iwamoto
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Departments of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=20
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=YES1
kn-keyword=YES1
en-keyword=T-DM1
kn-keyword=T-DM1
en-keyword=dasatinib
kn-keyword=dasatinib
en-keyword=drug resistance
kn-keyword=drug resistance
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=12
article-no=
start-page=1433
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bilateral Optic Disc Swelling as a Plausible Common Ocular Sign of Autoinflammatory Diseases: Report of Three Patients with Blau Syndrome or Cryopyrin-Associated Periodic Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study is to describe bilateral optic disc swelling in three consecutive patients with Blau syndrome or cryopyrin-associated periodic syndrome at a single institution. Case 1 was a 30-year-old woman receiving 25 mg etanercept twice weekly who had been diagnosed as early-onset sarcoidosis by biopsy of skin rashes at 5 months old and genetically diagnosed with Blau syndrome with CARD15/NOD2 mutation (N670K) at 13 years old. At 10 years old, she began to have uveitis with optic disc swelling in both eyes, resulting in macular degeneration and optic disc atrophy at 17 years old only when etanercept was introduced. Case 2 was a 21-year-old man receiving adalimumab every 2 weeks who had been diagnosed as early-onset sarcoidosis by biopsy of skin rashes at 1.5 years old and genetically diagnosed as Blau syndrome with CARD15/NOD2 mutation (C495Y) at 5 years old. At 8 years old, around the time of adalimumab introduction, he began to show bilateral optic disc swelling which continued until the age of 16 years when the dose of adalimumab was increased. Case 3 was a 20-year-old woman receiving canakinumab every 8 weeks for systemic symptoms such as fever, headache, vomiting, and abdominal pain and later for sensorineural hearing disturbance on both sides. She had been diagnosed genetically with cryopyrin-associated periodic syndrome with NLRP3 mutation (Y859C) at 7 years old. At 5 years old, she was found to have bilateral optic disc swelling, which continued until the age of 10 years when she began receiving canakinumab (IL-1β inhibitor). Bilateral optic disc swelling might be tentatively designated as a plausible common ocular feature, if it occurred, in autoinflammatory diseases to pay more attention to ophthalmic complications in rare diseases.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MankiAkira
en-aut-sei=Manki
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Melanoma Center, Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama City Hospital
kn-affil=
en-keyword=autoinflammatory diseases
kn-keyword=autoinflammatory diseases
en-keyword=Blau syndrome
kn-keyword=Blau syndrome
en-keyword=Muckle-Wells syndrome
kn-keyword=Muckle-Wells syndrome
en-keyword=CINCA/NOMID syndrome
kn-keyword=CINCA/NOMID syndrome
en-keyword=cryopyrin-associated periodic syndromes
kn-keyword=cryopyrin-associated periodic syndromes
en-keyword=optic disc swelling (optic papillitis)
kn-keyword=optic disc swelling (optic papillitis)
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=11
article-no=
start-page=1499
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211103
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors Affecting the Quality of Life of Patients with Painful Spinal Bone Metastases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study examined changes in the quality of life (QOL), as well as the factors affecting QOL, among patients with painful spinal bone metastases without paralysis for 1 month after radiotherapy. Methods: This study included 79 participants (40 male and 39 female; median age, 65 (42-88) years) who had undergone radiotherapy for painful spinal bone metastases without paralysis. Patients' age, sex, activities of daily living (Barthel index), pain, spinal instability (spinal instability neoplastic score [SINS]), and QOL (EORTC QLQ-C30) were investigated. Results: Having an unstable SINS score was a positive factor for global health status (p < 0.05). The improvement in activities of daily living and response to pain were positive factors for physical function (p < 0.05). A positive effect on emotional function was confirmed among female patients (p < 0.05). Conclusion: Engaging in rehabilitation along with radiotherapy leads to improvements in QOL for patients with spinal bone metastases.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaHaruki
en-aut-sei=Katayama
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=spinal bone metastases
kn-keyword=spinal bone metastases
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=activities of daily living
kn-keyword=activities of daily living
en-keyword=pain
kn-keyword=pain
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=幼児の生活習慣が分泌型免疫グロブリンAの日内変動に及ぼす影響
kn-title=Effects of Pre-Schooler Lifestyle on the Circadian Rhythm of Secretory Immunoglobulin A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MiyakeTakaaki
en-aut-sei=Miyake
en-aut-mei=Takaaki
kn-aut-name=三宅孝昭
kn-aut-sei=三宅
kn-aut-mei=孝昭
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=自己抗体バイオマーカー解析のための組換えがん精巣抗原の生物物理学的特性に関する研究)
kn-title=Study on the biophysical property of recombinant cancer-testis antigens for autoantibody biomarker analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AHMADIGHADYKOLAEI Hannaneh
en-aut-sei=AHMADIGHADYKOLAEI Hannaneh
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=日本人IgA腎症患者の唾液マイクロバイオームの特徴と慢性扁桃腺炎患者・潰瘍性大腸炎患者との比較
kn-title=Characterization of salivary microbiome of Japanese IgA nephropathy patients in comparison with chronic tonsillitis and ulcerative colitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KHASNOBISH Anushka
en-aut-sei=KHASNOBISH Anushka
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=寄生虫感染あるいはウイルスワクチン投与条件下におけるLactobacillus acidophilus L-55株摂取ニワトリの腸管の状態に関する研究
kn-title=Study on the intestinal conditions of chicken orally administrated with Lactobacillus acidophilus strain L-55 under the parasite infection or virus vaccination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PHAM HOANG SON HUNG
en-aut-sei=PHAM HOANG SON HUNG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=飢餓状態での軟骨細胞の生存を支える、転写因子RFX1を介した軟骨細胞でのCCN3 誘導システム
kn-title=RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MizukawaTomomi
en-aut-sei=Mizukawa
en-aut-mei=Tomomi
kn-aut-name=水川朋美
kn-aut-sei=水川
kn-aut-mei=朋美
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=アドレナリン作動性シグナル伝達は悪性末梢神経鞘腫のがん幹細胞様集団を拡張させる
kn-title=Adrenergic signaling promotes the expansion of cancer stem-like cells of malignant peripheral nerve sheath tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=パーキンソン病モデルに対する長時間持続脊髄刺激療法による神経保護効果
kn-title=Long Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Kuwahara Ken
en-aut-sei=Kuwahara
en-aut-mei=Ken
kn-aut-name=桑原研
kn-aut-sei=桑原
kn-aut-mei=研
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=滑膜肉腫由来細胞外小胞の膜表面に存在するMonocarboxylate Transporter 1をターゲットにした液体生検
kn-title=Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YokoSuguru
en-aut-sei=Yoko
en-aut-mei=Suguru
kn-aut-name=横尾賢
kn-aut-sei=横尾
kn-aut-mei=賢
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺移植において血中抗HLA-IgMは拒絶と長期予後悪化の予測因子となる可能性がある
kn-title=Circulating anti-human leukocyte antigen IgM antibodies as a potential early predictor of allograft rejection and a negative clinical outcome after lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MiyaharaKazuaki
en-aut-sei=Miyahara
en-aut-mei=Kazuaki
kn-aut-name=宮原一彰
kn-aut-sei=宮原
kn-aut-mei=一彰
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=170
cd-vols=
no-issue=3
article-no=
start-page=435
end-page=443
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unusual aggregation property of recombinantly expressed cancer-testis antigens in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell. This aggregative property was not observed in recombinant housekeeping proteins. No significant correlation was found between the aggregative and biophysical properties, such as hydrophobicity, contents of intrinsically disordered regions and expression levels, of CTAs. These results can be explained in terms of structural instability of CTAs, which are specifically expressed in the testis and aberrantly expressed in cancer cells and function as a hub in the protein–protein network using intrinsically disordered regions. Hence, we speculate that recombinantly expressed CTAs failed to form this protein complex. Thus, unfolded CTAs formed aggregated particles in the cell.
en-copyright=
kn-copyright=
en-aut-name=AhmadiHannaneh
en-aut-sei=Ahmadi
en-aut-mei=Hannaneh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShogenKohei
en-aut-sei=Shogen
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujitaKana
en-aut-sei=Fujita
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakimiKazuhiro
en-aut-sei=Kakimi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=759
end-page=762
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Enteric Adenocarcinoma Harboring a BRAF G469V Mutation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary enteric adenocarcinoma (PEAC) is a rare subtype of lung cancer that should be differentiated from colorectal cancer metastasis. Little is known about its genetic background. An 84-year-old male with adenocarcinoma of the lung underwent left upper lobectomy. The histology of the surgical specimen was suggestive of PEAC. Gastrointestinal and colorectal fiberscopy revealed no evidence of colorectal cancer. Next-generation sequencing of the tumor identified a G469V substitution in serine/threonine-protein kinase B-raf (BRAF). Based on the higher prevalence of the G469 substitution in BRAF-mutant lung adenocarcinoma than in BRAFmutant colorectal cancer, the tumor likely originated from the lung. Identification of mutational genotype may be of some help in distinguishing PEAC from the lung metastasis of colorectal cancer.
en-copyright=
kn-copyright=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiKohei
en-aut-sei=Taniguchi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NambaKei
en-aut-sei=Namba
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MesakiKumi
en-aut-sei=Mesaki
en-aut-mei=Kumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Diagnostic Pathology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=somatic mutations
kn-keyword=somatic mutations
en-keyword=pulmonary adenocarcinoma with enteric differentiation
kn-keyword=pulmonary adenocarcinoma with enteric differentiation
en-keyword=non-V600E BRAF mutation
kn-keyword=non-V600E BRAF mutation
en-keyword=next-generation sequencing
kn-keyword=next-generation sequencing
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=5
article-no=
start-page=647
end-page=652
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=O-arm Navigation-Guided Surgical Resection and Posterior Fixation for a Large Sacral Schwannoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sacral schwannoma is a rare tumor with relatively few symptoms; it thus tends to be large at diagnosis and is challenging to treat surgically. We present the case of a 12-year-old girl with a large sacral schwannoma that was successfully surgically resected using O-arm navigation in a two-stage operation. First, we performed tumor resection from the posterior aspect with assisted O-arm navigation. One week later, resection from the anterior aspect was conducted with posterior spinopelvic fixation and fibula graft. We performed partial resection of the tumor from the anterior and posterior aspects as much as possible. O-arm navigation contributed to precise
and safe tumor resection and implant insertion.
en-copyright=
kn-copyright=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiTaro
en-aut-sei=Yamauchi
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SanoKeisuke
en-aut-sei=Sano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SonobeHiroshi
en-aut-sei=Sonobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiwaraYoshihiro
en-aut-sei=Fujiwara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MastePraful Suresh
en-aut-sei=Maste
en-aut-mei=Praful Suresh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SonawaneSumeet
en-aut-sei=Sonawane
en-aut-mei=Sumeet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Ehime Rehabilitation Center for children
kn-affil=
affil-num=4
en-affil=Department of Pathology, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
en-keyword=sacral schwannoma
kn-keyword=sacral schwannoma
en-keyword=cellular schwannoma
kn-keyword=cellular schwannoma
en-keyword=spinal tumor
kn-keyword=spinal tumor
en-keyword=intradural extramedullary tumor
kn-keyword=intradural extramedullary tumor
en-keyword=O-arm navigation
kn-keyword=O-arm navigation
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=5
article-no=
start-page=641
end-page=645
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Use of Highly Accurate Devices for a First Lower Premolar Endodontic Treatment with Multiple Root Canals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This case report highlights the importance of using a dental operating microscope (DOM) and ultrasonic endodontic tips (UETs) to locate all root canals in the lower first premolar. A 53-year-old woman presented to our clinic with pain in the lower right first premolar. After a detailed search using a DOM and UETs, three root canals were found, prepared with rotary HyFlex endodontic files, and obturated using the lateral condensation technique. At the five-year follow-up after treatment, the tooth was completely restored and fulfilling its function, with no signs or symptoms of any post-treatment flare-up.
en-copyright=
kn-copyright=
en-aut-name=Zulema Rosalia Arias Martinez
en-aut-sei=Zulema Rosalia Arias Martinez
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Jorge Luis Lopez Videla Montaño
en-aut-sei=Jorge Luis Lopez Videla Montaño
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashiroKeisuke
en-aut-sei=Yamashiro
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Sistema de Radiografías Odontologicas (SIRO)
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=dental operating microscope
kn-keyword=dental operating microscope
en-keyword=lower first premolar
kn-keyword=lower first premolar
en-keyword=multiple canals
kn-keyword=multiple canals
en-keyword=ultrasonic endodontic tips
kn-keyword=ultrasonic endodontic tips
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=8
article-no=
start-page=1078
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors Affecting Participation in Leisure Activities in Patients after Breast Cancer Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The purpose of this study was to investigate the factors related to patient's participation in leisure activity in breast cancer patients with axillary lymph node dissection at 3 months after surgery. Methods: In total, 160 women who were employed before their surgery were evaluated. Age, body mass index (BMI), employment, level of lymph node dissection, marital status, children, coresident household members, preoperative chemotherapy, postoperative chemotherapy, postoperative hormonal therapy, postoperative radiotherapy, shoulder range of motion test, upper limb function, quality of life, and patient's participation in leisure activity were evaluated. Results: Patients who undertook leisure activities constituted the leisure activity group, and patients who did not constituted the non-leisure activity group. Global health status, emotional function, social function, and dyspnea were significantly different between the leisure activity group and the non-leisure activity group at 3 months after surgery (p < 0.05). Regarding factors that affected participation in leisure activities, logistic regression analysis showed that only participation in leisure activities before surgery was significantly associated with participation in leisure activities at 3 months after surgery (p < 0.05). Conclusion: Patients who did not participate in leisure activities prior to surgery were unlikely to participate 3 months after surgery and thus require intervention to encourage their involvement.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TominagaRitsuko
en-aut-sei=Tominaga
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurokawaHideaki
en-aut-sei=Kurokawa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoMasaki
en-aut-sei=Okamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMakiko
en-aut-sei=Hamada
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhsumiShozo
en-aut-sei=Ohsumi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation Medicine, Higashi Tokushima Medical Center
kn-affil=
affil-num=8
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=leisure
kn-keyword=leisure
en-keyword=surgery
kn-keyword=surgery
en-keyword=rehabilitation
kn-keyword=rehabilitation
en-keyword=factor
kn-keyword=factor
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=
article-no=
start-page=116001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary cilium is a protruding cellular organelle that has various physiological functions, especially in sensory reception. While an avalanche of reports on primary cilia have been published, the function of primary cilia in dental cells remains to be investigated. In this study, we focused on the function of primary cilia in dentin-producing odontoblasts. Odontoblasts, like most other cell types, possess primary cilia, which disappear upon the knockdown of intraflagellar transport-88. In cilia-depleted cells, the expression of dentin sialoprotein, an odontoblastic marker, was elevated, while the deposition of minerals was slowed. This was recapitulated by the activation of canonical Wnt pathway, also decreased the ratio of ciliated cells. In dental pulp cells, as they differentiated into odontoblasts, the ratio of ciliated cells was increased, whereas the canonical Wnt signaling activity was repressed. Our results collectively underscore the roles of primary cilia in regulating odontoblastic differentiation through canonical Wnt signaling. This study implies the existence of a feedback loop between primary cilia and the canonical Wnt pathway.
en-copyright=
kn-copyright=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaritaKeishi
en-aut-sei=Narita
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WashioAyako
en-aut-sei=Washio
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraChiaki
en-aut-sei=Kitamura
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiharaTatsuji
en-aut-sei=Nishihara
en-aut-mei=Tatsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakedaSen
en-aut-sei=Takeda
en-aut-mei=Sen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anatomy and Cell Biology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering
kn-affil=
affil-num=3
en-affil=Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University
kn-affil=
affil-num=4
en-affil=Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University
kn-affil=
affil-num=5
en-affil=Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University,
kn-affil=
affil-num=6
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Anatomy and Cell Biology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering
kn-affil=
en-keyword=Primary cilia
kn-keyword=Primary cilia
en-keyword=IFT88
kn-keyword=IFT88
en-keyword=Odontoblast
kn-keyword=Odontoblast
en-keyword=Odontoblast differentiation
kn-keyword=Odontoblast differentiation
en-keyword=Canonical Wnt/β-catenin signaling pathway
kn-keyword=Canonical Wnt/β-catenin signaling pathway
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=2284
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantification of patellar tendon reflex using portable mechanomyography and electromyography devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deep tendon reflexes are one of the main components of the clinical nervous system examinations. These assessments are inexpensive and quick. However, evaluation can be subjective and qualitative. This study aimed to objectively evaluate hyperreflexia of the patellar tendon reflex using portable mechanomyography (MMG) and electromyography (EMG) devices. This study included 10 preoperative patients (20 legs) who had a pathology that could cause bilateral patellar tendon hyperreflexia and 12 healthy volunteers (24 legs) with no prior history of neurological disorders. We attached MMG/EMG sensors onto the quadriceps and tapped the patellar tendon with maximal and constant force. Our results showed a significantly high amplitude of the root mean square (RMS) and low frequency of the mean power frequency (MPF) in the rectus femoris, vastus medialis, and vastus lateralis muscles in both EMG and MMG with both maximal and constant force. Especially in the patients with cervical and thoracic myelopathy, the receiver operating characteristic (ROC) curve for diagnosing hyperreflexia of the patellar tendon showed a moderate to very high area under the curve for all EMG-RMS, EMG-MPF, MMG-RMS, and MMG-MPF values. The use of EMG and MMG for objectively quantifying the patellar tendon reflex is simple and desirable for future clinical applications and could help diagnose neurological disorders.
en-copyright=
kn-copyright=
en-aut-name=TsujiHironori
en-aut-sei=Tsuji
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MisawaHaruo
en-aut-sei=Misawa
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakigawaTomoyuki
en-aut-sei=Takigawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaneKentaro
en-aut-sei=Yamane
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Kobe Red Cross Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CCN3は関節軟骨の加齢性変性を促進する
kn-title=CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=桑原実穂
kn-aut-sei=桑原
kn-aut-mei=実穂
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Porphyromonas gulaeのタンパク分解酵素は細菌の増殖、共凝集、赤血球凝集だけでなく、ヒトタンパクの維持にも影響をおよぼす
kn-title=Porphyromonas gulae proteases influence not only bacterial growth, coaggregation, and hemagglutination but also the maintenance of human protein
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AlamUrmi Saki
en-aut-sei=Alam
en-aut-mei=Urmi Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=多発性骨髄腫における新規薬剤の導入が日米の人口動態統計に与えた影響について
kn-title=Changing trend in mortality rate of multiple myeloma after introduction of novel agents: A population-based study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UsuiYoshiaki
en-aut-sei=Usui
en-aut-mei=Yoshiaki
kn-aut-name=碓井喜明
kn-aut-sei=碓井
kn-aut-mei=喜明
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=キシリトールのグルタチオン調節を介したがん選択的細胞死誘導機序の解明
kn-title=Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=友信奈保子
kn-aut-sei=友信
kn-aut-mei=奈保子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=汎RAF阻害剤であるLY3009120のBRAF変異肺癌細胞に対する抗腫瘍効果の検討
kn-title=Antitumor Effects of Pan-RAF Inhibitor LY3009120 Against Lung Cancer Cells Harboring Oncogenic BRAF Mutation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MiyauchiSyunsaku
en-aut-sei=Miyauchi
en-aut-mei=Syunsaku
kn-aut-name=宮内俊策
kn-aut-sei=宮内
kn-aut-mei=俊策
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=慢性疼痛患者におけるロコモティブシンドロームに関連する認知的因子:後ろ向き研究
kn-title=Cognitive factors associated with locomotive syndrome in chronic pain patients: A retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TsujiHironori
en-aut-sei=Tsuji
en-aut-mei=Hironori
kn-aut-name=辻寛謙
kn-aut-sei=辻
kn-aut-mei=寛謙
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=膵癌におけるEUSの血管浸潤診断能
kn-title=Diagnostic Ability of Convex-Arrayed Endoscopic Ultrasonography for Major Vascular Invasion in Pancreatic Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=藤井佑樹
kn-aut-sei=藤井
kn-aut-mei=佑樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=5
article-no=
start-page=566
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of Psychological Distress and Its Risk Factors in Patients with Primary Bone and Soft Tissue Tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Psychological distress is common in patients with soft tissue and bone tumors. We first investigated its frequency and the associated risk factors in patients with pre-operative bone and soft tissue tumors. Participants included 298 patients with bone and soft tissue tumors who underwent surgery in our institution between 2015 and 2020. Psychological distress was evaluated by the Distress and Impact Thermometer (DIT) that consists of two types of questions (questions about the severity of the patient's distress (DIT-D) and its impact (DIT-I)). We used a cut-off point of 4 on the DIT-D and 3 on the DIT-I for screening patients with psychological distress. We therefore investigated: (1) the prevalence of psychological distress as assessed with DIT or distress thermometer (DT), which can be decided by DIT-D >= 4, (2) what are the risk factors for the prevalence of psychological distress, and (3) what is the number of patients who consulted a psychiatrist for psychological distress in patients with pre-operative bone and soft tissue tumors. With DIT and DT, we identified 64 patients (21%) and 95 patients (32%), respectively, with psychological distress. Multivariate logistic regression revealed that older age, sex (female), malignancy (malignant or intermediate tumor), a lower Barthel Index, and higher numeric rating scale were risk factors for psychological distress. Two patients (3%) consulted a psychiatrist after surgery. In conclusion, careful attention to psychological distress is needed, especially for female patients, older patients, and those with malignant soft or bone tissue tumors who have more than moderate pain.
en-copyright=
kn-copyright=
en-aut-name=IseMasato
en-aut-sei=Ise
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakihiraShouta
en-aut-sei=Takihira
en-aut-mei=Shouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoKohei
en-aut-sei=Sato
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SendaMasuo
en-aut-sei=Senda
en-aut-mei=Masuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=11
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=psychological distress
kn-keyword=psychological distress
en-keyword=distress and impact thermometer
kn-keyword=distress and impact thermometer
en-keyword=bone and soft tissue tumor
kn-keyword=bone and soft tissue tumor
en-keyword=surgery
kn-keyword=surgery
END
start-ver=1.4
cd-journal=joma
no-vol=107
cd-vols=
no-issue=2
article-no=
start-page=102816
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intraarticular lengths of double-bundle grafts can change during knee flexion: Intraoperative measurements in anatomic anterior cruciate ligament reconstructions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The lengths of the anteromedial bundle (AMB) and posterolateral bundle (PLB) change during knee motion during double-bundle anterior cruciate ligament (ACL) reconstruction. However, the actual intraarticular graft length would be affected by the bone tunnel position and tunnel creation angle during ACL reconstruction. The aim of this study was to investigate the intraarticular length change of the AMB and PLB in patients who underwent anatomic double-bundle ACL reconstruction.
Hypothesis: We hypothesized that the PLB would show a more dynamic length change pattern than the AMB during knee flexion at ACL reconstruction.
Methods: Thirty-two patients (16 men and 16 women) who had isolated ACL injuries with intact menisci were investigated. Anatomic double-bundle ACL reconstructions were performed using semitendinosus tendon autografts at a mean age of 30.6 years. The graft and tunnel lengths were measured intraoperatively. Intraarticular graft lengths and length changes were calculated at 0˚ and 90˚ of knee flexion during ACL reconstruction. Intraoperative data were collected prospectively, and analyses were performed retrospectively.
Results: The intraarticular length of the AMB at 0˚ of knee flexion was 28.1 ± 5.5 mm. At 90˚ of knee flexion, the AMB intraarticular length decreased to 25.6 ± 4.8 mm. The intraarticular length of the PLB decreased to 17.7 ± 4.6 mm at 90˚ of knee flexion compared to 22.0 ± 4.2 mm at 0˚ of knee flexion. Changes in the intraarticular graft length during knee flexion were detected more in the PLB (4.1 mm) than in the AMB (2.0 mm, P = 0.01).
Discussion: This study demonstrated that the intraarticular length change of the PLB during knee motion was larger than that of the AMB in anatomic double-bundle ACL reconstructions with semitendinosus tendon autografts and suspensory femoral fixation devices.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamawakiTadashi
en-aut-sei=Yamawaki
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EndoHirosuke
en-aut-sei=Endo
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Anterior cruciate ligament
kn-keyword=Anterior cruciate ligament
en-keyword=Anatomic double-bundle reconstruction
kn-keyword=Anatomic double-bundle reconstruction
en-keyword=Intraarticular length
kn-keyword=Intraarticular length
en-keyword=Semitendinosus autograft
kn-keyword=Semitendinosus autograft
END
start-ver=1.4
cd-journal=joma
no-vol=557
cd-vols=
no-issue=
article-no=
start-page=199
end-page=205
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adrenergic signaling promotes the expansion of cancer stem-like cells of malignant peripheral nerve sheath tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Malignant peripheral nerve sheath tumor (MPNST), a highly malignant tumor that arises in peripheral nerve tissues, is known to be highly resistant to radiation and chemotherapy. Although there are several reports on genetic mutations and epigenetic changes that define the pathogenesis of MPNST, there is insufficient information regarding the microenvironment that contributes to the malignancy of MPNST. In the present study, we demonstrate that adrenaline increases the cancer stem cell population in MPNST. This effect is mediated by adrenaline stimulation of beta-2 adrenergic receptor (ADRB2), which activates the Hippo transducer, YAP/TAZ. Inhibition and RNAi experiments revealed that inhibition of ADRB2 attenuated the adrenaline-triggered activity of YAP/TAZ and subsequently attenuated MPNST cells stemness. Furthermore, ADRB2-YAP/TAZ axis was confirmed in the MPNST patients’ specimens. The prognosis of patients with high levels of ADRB2 was found to be significantly worse. These data show that adrenaline exacerbates MPNST prognosis and may aid the development of new treatment strategies for MPNST.
en-copyright=
kn-copyright=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshikawaSoichiro
en-aut-sei=Yoshikawa
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiyamaTakeshi
en-aut-sei=Hiyama
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamiyaAtsunori
en-aut-sei=Kamiya
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Genetics and Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=MPNST
kn-keyword=MPNST
en-keyword=Cancer stem-like cells
kn-keyword=Cancer stem-like cells
en-keyword=ADRB2
kn-keyword=ADRB2
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=143
cd-vols=
no-issue=2
article-no=
start-page=021502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=2020105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prediction of the Fracture Location by Tensile Tests of Gray Cast Iron Based on the Dimensional Changes of Graphite Flakes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gray cast iron has been used as a component in various mechanical parts, such as the blocks and heads of automobile and marine engines, cylinder liners for internal combustion engines, and machine tool bases. It is desirable because of its good castability and machinability, damping characteristics, and high performance-to-cost ratio. On the other hand, weak graphite flakes present in gray cast iron serve as stress concentrators and adversely affect the material strength. Therefore, it is crucial to examine the relationship between the distribution of graphite flakes and the strength or fracture of gray cast iron. In this study, tensile tests on gray cast iron were carried out using a plate specimen and observed by scanning electron microscopy, and the microscopic deformation was observed on the specimen surface. Particularly, the change in the size of graphite flakes during the tensile tests was examined, and the observed trend was discussed. The experimental results reveal that the dimensional changes in the graphite flakes vary in the observed area and that the final fracture occurs in an area where a large dimensional change is observed, suggesting that the fracture location or critical parts of gray cast iron can be predicted from the dimensional changes of the graphite flakes at an early stage of deformation.
en-copyright=
kn-copyright=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e13312
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202153
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of Porphyromonas gulae proteases in bacterial and host cell biology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Porphyromonas gulae, an animal-derived periodontal pathogen, expresses several virulence factors, including fimbria, lipopolysaccharide (LPS) and proteases. We previously reported that its invasive efficiency was dependent on fimbriae types. In addition, P. gulae LPS increased inflammatory responses via toll-like receptors. The present study was conducted to investigate the involvement of P. gulae proteases in bacterial and host cell biology. Porphyromonas gulae strains showed an ability to agglutinate mouse erythrocytes and also demonstrated co-aggregation with Actinomyces viscosus, while the protease inhibitors antipain, PMSF, TLCK and leupeptin diminished P. gulae proteolytic activity, resulting in inhibition of haemagglutination and co-aggregation with A. viscosus. In addition, specific proteinase inhibitors were found to reduce bacterial cell growth. Porphyromonas gulae inhibited Ca9-22 cell proliferation in a multiplicity of infection- and time-dependent manner. Additionally, P. gulae-induced decreases in cell contact and adhesion-related proteins were accompanied by a marked change in cell morphology from well spread to rounded. In contrast, inhibition of protease activity prevented degradation of proteins, such as E-cadherin, beta-catenin and focal adhesion kinase, and also blocked inhibition of cell proliferation. Together, these results indicate suppression of the amount of human proteins, such as gamma-globulin, fibrinogen and fibronectin, by P. gulae proteases, suggesting that a novel protease complex contributes to bacterial virulence.
en-copyright=
kn-copyright=
en-aut-name=UrmiAlam Saki
en-aut-sei=Urmi
en-aut-mei=Alam Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InabaHiroaki
en-aut-sei=Inaba
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaShoko
en-aut-sei=Yoshida
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsaiFumitoshi
en-aut-sei=Asai
en-aut-mei=Fumitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Matsumoto‐NakanoMichiyo
en-aut-sei=Matsumoto‐Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Veterinary Medicine Azabu University
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=coaggregation
kn-keyword=coaggregation
en-keyword=haemagglutination
kn-keyword=haemagglutination
en-keyword=P. gulae
kn-keyword=P. gulae
en-keyword=protease
kn-keyword=protease
en-keyword=protein degradation
kn-keyword=protein degradation
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=8
article-no=
start-page=1823
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Synovial sarcoma (SS) is associated with a high risk of recurrence and poor prognosis, and no biomarker useful in monitoring tumor burden exists. We identified monocarboxylate transporter 1 (MCT1) expressed in extracellular vesicles (EVs) derived from synovial sarcoma as a potential such marker. Circulating levels of MCT1(+)CD9(+) EVs were significantly correlated with tumor volume in a SS mouse model. Serum levels of MCT1(+)CD9(+) EVs reflected tumor burden and treatment response in SS patients. Patients with MCT1 expression on the plasma membrane have significantly worse overall survival than those with nuclear expression. Silencing of MCT1 reduced the malignant phenotype including cellular viability, migration, and invasion of SS cells. MCT1 may thus be a promising novel target for liquid biopsies and a novel therapeutic target. The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1(+)CD9(+) EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1(+)CD9(+) EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1(+)CD9(+) EVs and indicates the therapeutic potential of MCT1 in SS.
en-copyright=
kn-copyright=
en-aut-name=YokooSuguru
en-aut-sei=Yokoo
en-aut-mei=Suguru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaTakuya
en-aut-sei=Morita
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KiyonoMasahiro
en-aut-sei=Kiyono
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataShintaro
en-aut-sei=Iwata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YonemotoTsukasa
en-aut-sei=Yonemoto
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaKoji
en-aut-sei=Ueda
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Chiba Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Chiba Cancer Center
kn-affil=
affil-num=12
en-affil=Cancer Precision Medicine Center, Japanese Foundation for Cancer Research
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=liquid biopsy
kn-keyword=liquid biopsy
en-keyword=synovial sarcoma
kn-keyword=synovial sarcoma
en-keyword=monocarboxylate transporter 1
kn-keyword=monocarboxylate transporter 1
en-keyword=extracellular vesicles
kn-keyword=extracellular vesicles
en-keyword=non-invasive biomarker
kn-keyword=non-invasive biomarker
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=8
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210330
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Examination of mobile spinal cord stimulators on treating Parkinson disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
en-copyright=
kn-copyright=
en-aut-name=WangZhen-Jie
en-aut-sei=Wang
en-aut-mei=Zhen-Jie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=6 hydroxydopamine
kn-keyword=6 hydroxydopamine
en-keyword=electrical stimulation
kn-keyword=electrical stimulation
en-keyword=neuroinflammation
kn-keyword=neuroinflammation
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=Parkinson disease
kn-keyword=Parkinson disease
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=225
end-page=230
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histological Analysis of Repaired Tissue after Pullout Repair of a Medial Meniscus Posterior Root Tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 65-year-old man presented with a left medial meniscus (MM) posterior root tear (PRT). Unicompartmental knee arthroplasty was performed 12 months after transtibial pullout repair of the MMPRT. Repaired MM posterior root tissue was subjected to histological analysis. Immunostaining and picrosirius red staining showed sufficient deposition of type I collagen, and hematoxylin-eosin staining using a polarized microscope showed well-aligned fiber orientation in the repaired tissue. The repaired posterior root (post-transtibial pullout repair) showed mature and well-aligned ligament-like tissue. Preserving the MM posterior root remnant to mimic the original posterior root tissue might be useful when performing pullout repair.
en-copyright=
kn-copyright=
en-aut-name=XueHaowei
en-aut-sei=Xue
en-aut-mei=Haowei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhangXiming
en-aut-sei=Zhang
en-aut-mei=Ximing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=unicompartmental knee arthroplasty
kn-keyword=unicompartmental knee arthroplasty
en-keyword=histological analysis
kn-keyword=histological analysis
en-keyword=case report
kn-keyword=case report
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=147
end-page=152
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Knee Flexion-induced Translation of Pullout Sutures Used in the Repair of Medial Meniscus Posterior Root Tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Medial meniscus posterior root tears (MMPRTs) have recently attracted considerable interest in orthopedics. To date, no in vivo human study has investigated suture translation changes in repaired MMPRTs with different degrees of knee flexion. This study examined suture translation at various degrees of knee flexion in 30 patients undergoing medial meniscus posterior root repair using the modified Mason-Allen suture technique between August 2016 and September 2017. Intraoperatively, sutures were provisionally fixed to an isometric positioner at the tibial site of the desired meniscal attachment, and the suture translation was measured at 0°, 30°, 60°, and 90° of knee flexion. The results showed significant increases in mean suture translation at the knee flexion positions from 0° to 30°, 30° to 60°, and 60° to 90° (p<0.01 for all). Our findings indicate that surgeons should carefully assess the degree of knee flexion at the moment when the meniscus is refixed by surgical sutures.
en-copyright=
kn-copyright=
en-aut-name=XueHaowei
en-aut-sei=Xue
en-aut-mei=Haowei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiMasataka
en-aut-sei=Fujii
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXiming
en-aut-sei=Zhang
en-aut-mei=Ximing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=suture translation
kn-keyword=suture translation
en-keyword=knee flexion
kn-keyword=knee flexion
en-keyword=arthroscopic repair
kn-keyword=arthroscopic repair
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210303
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RFX1‐mediated CCN3 induction that may support chondrocyte survival under starved conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X‐box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti‐CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
en-copyright=
kn-copyright=
en-aut-name=MizukawaTomomi
en-aut-sei=Mizukawa
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkashiSho
en-aut-sei=Akashi
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KikuchiSumire
en-aut-sei=Kikuchi
en-aut-mei=Sumire
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawakiHarumi
en-aut-sei=Kawaki
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
kn-affil=
affil-num=5
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
kn-affil=
affil-num=6
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
kn-affil=
affil-num=7
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=5
article-no=
start-page=1086
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210303
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Tumor-Associated Macrophages in Sarcomas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Recent studies have shown the pro-tumoral role of tumor-associated macrophages (TAMs) not only in major types of carcinomas but also in sarcomas. Several types of TAM-targeted drugs have been investigated under clinical trials, which may represent a novel therapeutic approach for bone and soft-tissue sarcomas. Sarcomas are complex tissues in which sarcoma cells maintain intricate interactions with their tumor microenvironment. Tumor-associated macrophages (TAMs) are a major component of tumor-infiltrating immune cells in the tumor microenvironment and have a dominant role as orchestrators of tumor-related inflammation. TAMs promote tumor growth and metastasis, stimulate angiogenesis, mediate immune suppression, and limit the antitumor activity of conventional chemotherapy and radiotherapy. Evidence suggests that the increased infiltration of TAMs and elevated expression of macrophage-related genes are associated with poor prognoses in most solid tumors, whereas evidence of this in sarcomas is limited. Based on these findings, TAM-targeted therapeutic strategies, such as inhibition of CSF-1/CSF-1R, CCL2/CCR2, and CD47/SIRP alpha, have been developed and are currently being evaluated in clinical trials. While most of the therapeutic challenges that target sarcoma cells have been unsuccessful and the prognosis of sarcomas has plateaued since the 1990s, several clinical trials of these strategies have yielded promising results and warrant further investigation to determine their translational benefit in sarcoma patients. This review summarizes the roles of TAMs in sarcomas and provides a rationale and update of TAM-targeted therapy as a novel treatment approach for sarcomas.
en-copyright=
kn-copyright=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HealeyJohn
en-aut-sei=Healey
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OguraKoichi
en-aut-sei=Ogura
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center
kn-affil=
affil-num=3
en-affil=Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesDepartment of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=sarcoma
kn-keyword=sarcoma
en-keyword=tumor-associated macrophage
kn-keyword=tumor-associated macrophage
en-keyword=prognosis
kn-keyword=prognosis
en-keyword=clinical trial
kn-keyword=clinical trial
en-keyword=immunotherapy
kn-keyword=immunotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=1
article-no=
start-page=181
end-page=189
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Medial meniscus posterior root repairs: A comparison among three surgical techniques in short-term clinical outcomes and arthroscopic meniscal healing scores
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Medial meniscus (MM) posterior root repairs lead to favorable clinical outcomes in patients with MM posterior root tears (MMPRTs). However, there are few comparative studies in evaluating the superiority among several pullout repair techniques such as modified Mason–Allen suture, simple stitch, and concomitant posteromedial pullout repair. We hypothesized that an additional pullout suture at the MM posteromedial part would have clinical advantages in transtibial pullout repairs of the MMPRTs. The aim of this study was to compare the clinical usefulness among several types of pullout repair techniques in patients with MMPRTs.
Methods
Eighty-three patients who underwent arthroscopic pullout repairs of the MMPRTs were investigated. Patients were divided into three groups using different pullout repair techniques: a modified Mason–Allen suture using FasT-Fix all-inside meniscal repair device (F-MMA, n = 28), two simple stitches (TSS, n = 30), and TSS concomitant with posteromedial pullout repair using all-inside meniscal repair device (TSS-PM, n = 25). Postoperative clinical outcomes and semi-quantitative arthroscopic meniscal healing scores (0–10 points) were evaluated at second-look arthroscopies.
Results
No significant differences among the three groups were observed in patient demographics and preoperative clinical scores, except for preoperative Lysholm scores. At second-look arthroscopies, there were no significant differences among the three techniques in postoperative clinical outcomes and meniscal healing scores.
Conclusions
This study demonstrated that the TSS-PM pullout repair technique did not show better scores in postoperative clinical outcomes and meniscal healings compared with the F-MMA and TSS techniques. Our results suggest that the concomitant posteromedial pullout suture may have no clinical advantage in the conventional pullout repairs for the patients with MMPRTs.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KintakaKeisuke
en-aut-sei=Kintaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=107
cd-vols=
no-issue=1
article-no=
start-page=124
end-page=125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reply to the letter by Haitao Chen and Liaobin Chen
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=107
cd-vols=
no-issue=2
article-no=
start-page=244
end-page=245
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Les longueurs intra-articulaires des greffons à double faisceau peuvent changer pendant la flexion du genou : mesures peropératoires lors de reconstructions anatomiques du ligament croisé antérieur
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The lengths of the anteromedial bundle (AMB) and posterolateral bundle (PLB) change during knee motion during double-bundle anterior cruciate ligament (ACL) reconstruction. However, the actual intra-articular graft length would be affected by the bone tunnel position and tunnel creation angle during ACL reconstruction. The aim of this study was to investigate the intra-articular length change of the AMB and PLB in patients who underwent anatomic double-bundle ACL reconstruction.
Hypothesis
We hypothesized that the PLB would show a more dynamic length change pattern than the AMB during knee flexion at ACL reconstruction.
Methods
Thirty-two patients (16 men and 16 women) who had isolated ACL injuries with intact menisci were investigated. Anatomic double-bundle ACL reconstructions were performed using semitendinosus tendon autografts at a mean age of 30.6 years. The graft and tunnel lengths were measured intraoperatively. Intra-articular graft lengths and length changes were calculated at 0° and 90° of knee flexion during ACL reconstruction. Intraoperative data were collected prospectively, and analyses were performed retrospectively.
Results
The intra-articular length of the AMB at 0° of knee flexion was 28.1±5.5mm. At 90° of knee flexion, the AMB intra-articular length decreased to 25.6±4.8mm. The intra-articular length of the PLB decreased to 17.7±4.6mm at 90° of knee flexion compared to 22.0±4.2mm at 0° of knee flexion. Changes in the intra-articular graft length during knee flexion were detected more in the PLB (4.1mm) than in the AMB (2.0mm, p=0.01).
Discussion
This study demonstrated that the intra-articular length change of the PLB during knee motion was larger than that of the AMB in anatomic double-bundle ACL reconstructions with semitendinosus tendon autografts and suspensory femoral fixation devices. Level of evidenceIV ; retrospective cohort study.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamawakiTadashi
en-aut-sei=Yamawaki
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EndoHirosuke
en-aut-sei=Endo
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of surgery in a novel multimodal therapeutic approach to complete cure of advanced lung cancer: current and future perspectives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Non-small cell lung cancer (NSCLC) is considered potentially curable by multimodal therapy in a subset of patients, including those with locally advanced (LA) disease or nodal spread, who would otherwise have a poor prognosis. Guidelines recommend perioperative chemotherapy with platinum-based regimens, with or without radiotherapy, as the standard treatment modality for high-risk resectable LA-NSCLC. Although the classical regimens of adjuvant chemotherapy have been platinum-based doublet or oral agents such as tegafur/uracil, some molecular targeted therapeutic agents and immune checkpoint inhibitors have been developed recently with an expected favorable effect. Recent trials of perioperative therapy using these agents have demonstrated favourable anticancer efficacy for LA-NSCLC with an acceptable adverse events profile. The ideal timing of perioperative therapy administration, before or after surgery, is still controversial. Because some speculation and concepts have arisen from basic research, several trials are ongoing to clarify the efficacy of newly developed agents in the adjuvant or neoadjuvant setting. This review discusses the role of surgery in the new era and analyzes when and which optimal perioperative multimodal therapy, including chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy, should be administered for resectable or potentially resectable NSCLC to provide possible complete cure.
en-copyright=
kn-copyright=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Perioperative therapy
kn-keyword=Perioperative therapy
en-keyword=Surgery
kn-keyword=Surgery
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=2
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210218
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): “Lactosome” Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
en-copyright=
kn-copyright=
en-aut-name=LimMelissa Siaw Han
en-aut-sei=Lim
en-aut-mei=Melissa Siaw Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakenakaFumiaki
en-aut-sei=Takenaka
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiKazuko
en-aut-sei=Kobayashi
en-aut-mei=Kazuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UjiHirotaka
en-aut-sei=Uji
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KobuchiHirotsugu
en-aut-sei=Kobuchi
en-aut-mei=Hirotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzekiEiichi
en-aut-sei=Ozeki
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Material Chemistry, Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=10
en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=theranostics
kn-keyword=theranostics
en-keyword=single chain variable fragment of IgG (scFv)
kn-keyword=single chain variable fragment of IgG (scFv)
en-keyword=drug delivery system (DDS)
kn-keyword=drug delivery system (DDS)
en-keyword=photodynamic therapy (PDT)
kn-keyword=photodynamic therapy (PDT)
en-keyword=PET imaging
kn-keyword=PET imaging
en-keyword=accelerated blood clearance (ABC)
kn-keyword=accelerated blood clearance (ABC)
en-keyword=cell penetrating peptide (CPP)
kn-keyword=cell penetrating peptide (CPP)
en-keyword=siRNA
kn-keyword=siRNA
en-keyword=ATP-binding cassette subfamily G member 2 (ABCG2)
kn-keyword=ATP-binding cassette subfamily G member 2 (ABCG2)
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=1709
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1.
en-copyright=
kn-copyright=
en-aut-name=IshiiHiroko
en-aut-sei=Ishii
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZahraMaram H.
en-aut-sei=Zahra
en-aut-mei=Maram H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakayanagiAtushi
en-aut-sei=Takayanagi
en-aut-mei=Atushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SenoMasaharu
en-aut-sei=Seno
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=GSP Enterprise, Inc.
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=GSP Enterprise, Inc.
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=phage display library
kn-keyword=phage display library
en-keyword=artificial humanized antibody
kn-keyword=artificial humanized antibody
en-keyword=Cripto-1
kn-keyword=Cripto-1
en-keyword=anti-Cripto-1 antibody
kn-keyword=anti-Cripto-1 antibody
en-keyword=tissue-micro array
kn-keyword=tissue-micro array
en-keyword=cell growth inhibition
kn-keyword=cell growth inhibition
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=2
article-no=
start-page=136
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Short-Term Impact of Video-Assisted Thoracoscopic Surgery on Lung Function, Physical Function, and Quality of Life
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Video-assisted thoracoscopic surgery (VATS) has been increasingly used as an approach for lung lobectomy. However, the recovery of respiratory and physical function may be insufficient at discharge because the average length of hospital stay is decreasing after surgery. In this study, we investigated the changes in physical function, lung function, and quality of life (QOL) of lung cancer patients after VATS, and factors for QOL were also evaluated. Methods: The subjects of this study were 41 consecutive patients who underwent video-assisted lung lobectomy for lung cancer. Rehabilitation was performed both before and after surgery. Lung function testing, physical function testing (timed up and go test (TUG) and the 30-s chair-stand test (CS-30)), and QOL (EORTC QLQ-C30) were measured before and 1 week after surgery. Results: Postoperative VC recovered to 76.3% +/- 15.6% 1 week after surgery. TUG, CS-30, and QOL were significantly worse after surgery (p < 0.05). Lung function and physical function were found to affect QOL. Postoperative complications included pneumonia in 1 patient. There were no patients who discontinued rehabilitation. Conclusion: Our rehabilitation program was safe and useful for patients after VATS.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaRitsuko
en-aut-sei=Tominaga
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataOrie
en-aut-sei=Iwata
en-aut-mei=Orie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawakamiJuichi
en-aut-sei=Kawakami
en-aut-mei=Juichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsujiTetsuya
en-aut-sei=Tsuji
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UenoTsuyoshi
en-aut-sei=Ueno
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Tokushima Hospital
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, Shiga Prefectural Rehabilitation Center
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, Keio University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=surgery
kn-keyword=surgery
en-keyword=physical function
kn-keyword=physical function
en-keyword=lung function
kn-keyword=lung function
en-keyword=quality of life
kn-keyword=quality of life
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=2
article-no=
start-page=213
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation of Factors Affecting Early Quality of Life of Patients after Breast Cancer Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The purpose of this study was to investigate factors related to early quality of life (QOL) three months after surgery in breast cancer patients with axillary lymph node dissection. Methods: The subjects of this study were 195 consecutive patients who underwent axillary lymph node dissection for breast cancer. Age, body mass index, level of lymph node dissection, marriage, children, co-resident household members, neoadjuvant chemotherapy, postoperative chemotherapy, postoperative hormonal therapy, postoperative radiotherapy, upper limb function (disabilities of the arm, shoulder, and hand (DASH)), and QOL (European Organization for the Treatment and Research of Cancer Quality of Life Questionnaire (EORTC QLQ-C30)) were evaluated. For each item of the EORTC QLQ-C30, compared with preoperative status and three months after surgery, those who improved or remained unchanged in the three months after surgery were classified as the maintenance and improved groups, and those with worsening status were classified as the worsened group. Results: Age, level of lymph node dissection, DASH, neoadjuvant chemotherapy, postoperative chemotherapy, and postoperative radiotherapy were significantly associated with QOL (p < 0.05). Conclusions: The early QOL of postoperative patients with breast cancer is affected by multiple factors, such as upper limb function and postoperative chemotherapy, and thus comprehensive intervention is required.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TominagaRitsuko
en-aut-sei=Tominaga
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurokawaHideaki
en-aut-sei=Kurokawa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoMasaki
en-aut-sei=Okamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMakiko
en-aut-sei=Hamada
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhsumiShozo
en-aut-sei=Ohsumi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=neoadjuvant chemotherapy
kn-keyword=neoadjuvant chemotherapy
en-keyword=postoperative chemotherapy
kn-keyword=postoperative chemotherapy
en-keyword=postoperative radiotherapy
kn-keyword=postoperative radiotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=1
article-no=
start-page=39
end-page=44
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Influence of and Risk Factors for Axillary Web Syndrome Following Surgery for Breast Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we examined whether axillary web syndrome (AWS) in patients with breast cancer following axil-lary lymph node dissection affects range of motion (ROM), upper extremity function, and quality of life (QOL). The risk factors for AWS were also evaluated in a total of 238 consecutive breast cancer patients follow-ing axillary lymph node dissection. At 1, 2, and 3 months after surgery, there were no significant differences between the AWS group and the non-AWS group in upper-limb function or QOL. At 2 months after surgery, shoulder flexion and abduction ROM were significantly higher in the AWS group than in the non-AWS group (p < 0.05). Self-training time at home was not significantly different between the groups at 1, 2, or 3 months. Only age was a significant predictor of AWS at 1 month after surgery (p < 0.05). The AWS group in the present study did not have worse results for shoulder joint ROM, upper-limb function, and QOL than the non-AWS group. Younger age should be useful for predicting the development of AWS in the early postoperative period.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TominagaRitsuko
en-aut-sei=Tominaga
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurokawaHideaki
en-aut-sei=Kurokawa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamadaMakiko
en-aut-sei=Hamada
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhsumiShozo
en-aut-sei=Ohsumi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Breast Oncology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=axillary web syndrome
kn-keyword=axillary web syndrome
en-keyword=age
kn-keyword=age
en-keyword=upper limb function
kn-keyword=upper limb function
en-keyword=quality of life
kn-keyword=quality of life
END
start-ver=1.4
cd-journal=joma
no-vol=280
cd-vols=
no-issue=5
article-no=
start-page=3166
end-page=3177
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=20050204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Regulation of Chicken ccn2 Gene by Interaction between RNA cis-Element and Putative trans-Factor during Differentiation of Chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=CCN2/CTGF is a multifunctional growth factor. Our previous studies have revealed that CCN2 plays important roles in both growth and differentiation of chondrocytes and that the 3′-untranslated region (3′-UTR) of ccn2 mRNA contains a cis-repressive element of gene expression. In the present study, we found that the stability of chicken ccn2 mRNA is regulated in a differentiation stage-dependent manner in chondrocytes. We also found that stimulation by bone morphogenetic protein 2, platelet-derived growth factor, and CCN2 stabilized ccn2 mRNA in proliferating chondrocytes but that it destabilized the mRNA in prehypertrophic-hypertrophic chondrocytes. The results of a reporter gene assay revealed that the minimal repressive cis-element of the 3′-UTR of chicken ccn2 mRNA was located within the area between 100 and 150 bases from the polyadenylation tail. Moreover, the stability of ccn2 mRNA was correlated with the interaction between this cis-element and a putative 40-kDa trans-factor in nuclei and cytoplasm. In fact, the binding between them was prominent in proliferating chondrocytes and attenuated in (pre)hypertrophic chondrocytes. Stimulation by the growth factors repressed the binding in proliferating chondrocytes; however, it enhanced it in (pre)hypertrophic chondrocytes. Therefore, gene expression of ccn2 mRNA during endochondral ossification is properly regulated, at least in part, by changing the stability of the mRNA, which arises from the interaction between the RNA cis-element and putative trans-factor.
en-copyright=
kn-copyright=
en-aut-name=MukudaiYoshiki
en-aut-sei=Mukudai
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Biodental Research Center, Okayama University Dental School
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=21578
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiographic and clinical assessment of unidirectional porous hydroxyapatite to treat benign bone tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unidirectional porous hydroxyapatite (UDPHAp) was developed as an excellent scaffold with unidirectional pores oriented in the horizontal direction with interpore connections. The purpose of this study was to assess radiographic changes and clinical outcomes and complications following UDPHAp implantation to treat benign bone tumors. We retrospectively analyzed 44 patients treated with intralesional resection and UDPHAp implantation for benign bone tumors between 2010 and 2015. Clinical and radiographic findings were evaluated postoperatively at regular follow-up visits. The mean follow-up was 49 months. Radiographic changes were classified into five stages based on bone formation in the implanted UDPHAp according to Tamai's classification. All patients showed excellent bone formation inside and around implanted UDPHAp. Absorption of UDPHAp and bone marrow cavity remodeling was identified in 20 patients at a mean of 17 months postoperatively, and was significantly more common in young patients. Preoperative cortical thinning was completely regenerated in 26 of 31 patients on average 10 months after surgery. There were no cases of delayed wound healing, postoperative infection, or allergic reaction related to implanted UDPHAp. UDPHAp is a useful bone-filling substitute for treating benign bone tumor, and the use of this material has a low complication rate.
en-copyright=
kn-copyright=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokooSuguru
en-aut-sei=Yokoo
en-aut-mei=Suguru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201223
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application.
en-copyright=
kn-copyright=
en-aut-name=SoeTet Htut
en-aut-sei=Soe
en-aut-mei=Tet Htut
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biotechnology, Mandalay Technological University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=photochemical internalization
kn-keyword=photochemical internalization
en-keyword=photosensitizer
kn-keyword=photosensitizer
en-keyword=cell-penetrating peptide
kn-keyword=cell-penetrating peptide
en-keyword=endosome
kn-keyword=endosome
en-keyword=membrane
kn-keyword=membrane
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=100960
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PRRX1 promotes malignant properties in human osteosarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Paired related homeobox 1 (PRRX1) is a marker of limb bud mesenchymal cells, and deficiency of p53 or Rb in Prrx1-positive cells induces osteosarcoma in several mouse models. However, the regulatory roles of PRRX1 in human osteosarcoma have not been defined. In this study, we performed PRRX1 immunostaining on 35 human osteosarcoma specimens to assess the correlation between PRRX1 level and overall survival. In patients with osteosarcoma, the expression level of PRRX1 positively correlated with poor prognosis or the ratio of lung metastasis. Additionally, we found PRRX1 expression on in 143B cells, a human osteosarcoma line with a high metastatic capacity. Downregulation of PRRX1 not only suppressed proliferation and invasion but also increased the sensitivity to cisplatin and doxorubicin. When 143B cells were subcutaneously transplanted into nude mice, PRRX1 knockdown decreased tumor sizes and rates of lung metastasis. Interestingly, forskolin, a chemical compound identified by Connectivity Map analysis using RNA expression signatures during PRRX1 knockdown, decreased tumor proliferation and cell migration to the same degree as PRRX1 knockdown. These results demonstrate that PRRX1 promotes tumor malignancy in human osteosarcoma.
en-copyright=
kn-copyright=
en-aut-name=JokoRyoji
en-aut-sei=Joko
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraMasahiro
en-aut-sei=Nakamura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LuMing
en-aut-sei=Lu
en-aut-mei=Ming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatoKohei
en-aut-sei=Sato
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItoTatsuo
en-aut-sei=Ito
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=PRRX1
kn-keyword=PRRX1
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Tumor malignancy
kn-keyword=Tumor malignancy
en-keyword=Invasion
kn-keyword=Invasion
en-keyword=Drug resistance
kn-keyword=Drug resistance
en-keyword=Connectivity map analysis
kn-keyword=Connectivity map analysis
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=16
article-no=
start-page=2023
end-page=2028
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Secondary Pulmonary Alveolar Proteinosis Associated with Primary Myelofibrosis and Ruxolitinib Treatment: An Autopsy Case
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary alveolar proteinosis (PAP) is an uncommon lung disorder characterized by the excessive accumulation of surfactant-derived lipoproteins in the pulmonary alveoli and terminal bronchiole. Secondary PAP associated with primary myelofibrosis (PMF) is extremely rare, and to our knowledge, no autopsy case has been reported. We herein report an autopsy case of secondary PAP occurring in a patient with PMF who was treated with the Janus kinase 1/2 inhibitor ruxolitinib. We confirmed a diagnosis of PAP with complications based on the pathological findings at the autopsy. Notably, this case might suggest an association between ruxolitinib treatment and PAP occurrence.
en-copyright=
kn-copyright=
en-aut-name=SugiuraHiroyuki
en-aut-sei=Sugiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TojiTomohiro
en-aut-sei=Toji
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataKoh
en-aut-sei=Nakata
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Bioscience Medical Research Center, Niigata University Medical & Dental Hospital
kn-affil=
affil-num=9
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=pulmonary alveolar proteinosis
kn-keyword=pulmonary alveolar proteinosis
en-keyword=primary myelofibrosis
kn-keyword=primary myelofibrosis
en-keyword=autopsy
kn-keyword=autopsy
en-keyword=ruxolitinib
kn-keyword=ruxolitinib
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=4
article-no=
start-page=3137
end-page=3144
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Multidisciplinary treatment system for bone metastases for early diagnosis, treatment and prevention of malignant spinal cord compression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Malignant spinal cord compression (MSCC) is a serious complication of cancers. The present study aimed to establish a multidisciplinary treatment system for urgent magnetic resonance imaging (MRI) and referral to orthopedists in order to prevent neurological deficits caused by MSCC. In the present study, the extent to which this system achieved early diagnosis and treatment and prevented MSCC‑caused neurological deficits was examined. The records from patients with neurological deficits caused by MSCC before (between April 2007 and March 2012; group A) and after (between April 2012 and March 2017; group B) the establishment of the multidisciplinary system at the Shikoku Cancer Center (Ehime, Japan) were retrospectively evaluated. The numbers of patients with neurological deficits were 38 and 7 in groups A and B, respectively. All patients received radiotherapy. The incidence of neurological deficits was 13.2 and 3.4% in groups A and B, respectively (P<0.001). The proportion of patients with improvement in the severity of neurological deficits was 5.3 and 28.6% in groups A and B, respectively (P<0.001). The interval between physicians' recognition of a neurological deficit and MRI and the start of treatment, the number of cases, and the severity of neurological deficits were evaluated in groups A and B. The median interval between recognition of a neurological deficit by physicians and MRI was 3 and 0 days in groups A and B, respectively (P<0.001). The median interval between physicians' recognition of a neurological deficit and the start of treatment was 3 and 0 days in groups A and B, respectively (P<0.001). By using a multidisciplinary treatment system, the incidence and severity of neurological deficits following treatment were significantly improved. Therefore, the multidisciplinary treatment system used in the present study may be useful for early diagnosis, treatment and prevention of MSCC in patients with bone metastases.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugawaraYoshifumi
en-aut-sei=Sugawara
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Shikoku Cancer Center
kn-affil=
affil-num=3
en-affil=Department of Radiology, Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital,
kn-affil=
en-keyword=bone metastasis
kn-keyword=bone metastasis
en-keyword=multidisciplinary treatment
kn-keyword=multidisciplinary treatment
en-keyword=skeletal-related event
kn-keyword=skeletal-related event
en-keyword=malignant spinal cord compression
kn-keyword=malignant spinal cord compression
en-keyword=neurological deficit
kn-keyword=neurological deficit
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=12
article-no=
start-page=2650
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High Mobility Group Box-1 and Blood-Brain Barrier Disruption
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.
en-copyright=
kn-copyright=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangDengli
en-aut-sei=Wang
en-aut-mei=Dengli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=high mobility group box-1
kn-keyword=high mobility group box-1
en-keyword=blood-brain barrier
kn-keyword=blood-brain barrier
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=stroke
kn-keyword=stroke
en-keyword=trauma
kn-keyword=trauma
en-keyword=vascular endothelial cell
kn-keyword=vascular endothelial cell
en-keyword=pericyte
kn-keyword=pericyte
en-keyword=monoclonal antibody
kn-keyword=monoclonal antibody
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム中央部および南部から収集した在来メロンの形態的および分子遺伝学的解析
kn-title=Morphological and molecular characterization of melon landraces (Cucumis melo L.) from central and southern Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Duong Thanh Thuy
en-aut-sei=Duong Thanh Thuy
en-aut-mei=
kn-aut-name=DUONG THANH THUY
kn-aut-sei=DUONG THANH THUY
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=食道癌術後急性期の筋肉量減少は予後予測因子となり得る
kn-title=Skeletal muscle loss in the postoperative acute phase after esophageal cancer surgery as a new prognostic factor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=前田直見
kn-aut-sei=前田
kn-aut-mei=直見
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=20
article-no=
start-page=7556
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201013
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-beta gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.
en-copyright=
kn-copyright=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadoyaKoichi
en-aut-sei=Kadoya
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoSei
en-aut-sei=Kondo
en-aut-mei=Sei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FuShanqi
en-aut-sei=Fu
en-aut-mei=Shanqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeYoshiko
en-aut-sei=Miyake
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OgoAyako
en-aut-sei=Ogo
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SasakiTakako
en-aut-sei=Sasaki
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MinagiShogo
en-aut-sei=Minagi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Biochemistry, Faculty of Medicine, Oita University
kn-affil=
affil-num=11
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cellular communication network factor 3
kn-keyword=cellular communication network factor 3
en-keyword=CCN3
kn-keyword=CCN3
en-keyword=NOV
kn-keyword=NOV
en-keyword=primary chondrocytes
kn-keyword=primary chondrocytes
en-keyword=aging
kn-keyword=aging
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=senescence
kn-keyword=senescence
en-keyword=p21
kn-keyword=p21
en-keyword=p53
kn-keyword=p53
en-keyword=SASP
kn-keyword=SASP
END
start-ver=1.4
cd-journal=joma
no-vol=2021
cd-vols=
no-issue=14
article-no=
start-page=640
end-page=643
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201027
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracorporeal semi‐hand‐sewn Billroth I reconstruction in total laparoscopic distal gastrectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction
Intracorporeal Billroth I (B‐I) reconstruction using an endoscopic linear stapler (ELS) is widely performed in total laparoscopic distal gastrectomy. However, conventional procedures require many ELSs for anastomosis. Here, we introduce the novel intracorporeal semi‐hand‐sewn (SHS) B‐I reconstruction.
Materials and surgical technique
After the transection of stomach and duodenum using ELS following adequate lymph node dissection, small entry holes were made on the anterior wall in the greater curvature of the stomach and the duodenal stump. The posterior walls of both the remnant stomach and the duodenum were attached with the ELS and fired to create the posterior wall of the B‐I anastomosis. All the transection line of the duodenum and one‐third of the transection line of the stomach were dissected; finally the anterior wall suturing at the anastomotic site was performed by the laparoscopic hand‐sewn technique.
Discussion
SHS procedure was performed for 17 gastric cancer patients. There were no intraoperative complications or conversions to open surgery. One intra‐abdominal abscess was observed although there was no anastomotic leakage. The median reconstruction time was 48 minutes (32‐63). The SHS procedure was safe, feasible, and economical, although it requires sufficient laparoscopic suturing and ligation skill.
en-copyright=
kn-copyright=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishizakiMasahiko
en-aut-sei=Nishizaki
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwadaKazuya
en-aut-sei=Kuwada
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakataNobuo
en-aut-sei=Takata
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Kakiuchi Yoshihiko
en-aut-sei=Kakiuchi
en-aut-mei= Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YanoShuya
en-aut-sei=Yano
en-aut-mei=Shuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Noma Kazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Billroth I reconstruction
kn-keyword=Billroth I reconstruction
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=laparoscopic distal gastrectomy
kn-keyword=laparoscopic distal gastrectomy
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=12
article-no=
start-page=16449
end-page=16463
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, alpha-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated alpha-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated alpha-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca(2+)and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.
en-copyright=
kn-copyright=
en-aut-name=LaThe Mon
en-aut-sei=La
en-aut-mei=The Mon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TachibanaHiromi
en-aut-sei=Tachibana
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiShun-Ai
en-aut-sei=Li
en-aut-mei=Shun-Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SeirikiSayaka
en-aut-sei=Seiriki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaHikaru
en-aut-sei=Nagaoka
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakashimaEizo
en-aut-sei=Takashima
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MakinoShin-Ichi
en-aut-sei=Makino
en-aut-mei=Shin-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaKatsuhiko
en-aut-sei=Asanuma
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TianXuefei
en-aut-sei=Tian
en-aut-mei=Xuefei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IshibeShuta
en-aut-sei=Ishibe
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakaneAyuko
en-aut-sei=Sakane
en-aut-mei=Ayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiTakuya
en-aut-sei=Sasaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=7
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=8
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Biochemistry, Tokushima University Graduate School of Medical Sciences
kn-affil=
affil-num=16
en-affil=Department of Biochemistry, Tokushima University Graduate School of Medical Sciences
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=dynamin
kn-keyword=dynamin
en-keyword=microtubules
kn-keyword=microtubules
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=primary process
kn-keyword=primary process
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=11
article-no=
start-page=3416
end-page=3425
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transtibial fixation for medial meniscus posterior root tear reduces posterior extrusion and physiological translation of the medial meniscus in middle-aged and elderly patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose
To investigate changes in meniscal extrusion during knee flexion before and after pullout fixation for medial meniscus posterior root tear (MMPRT) and determine whether these changes correlate with articular cartilage degeneration and short-term clinical outcomes.
Methods
Twenty-two patients (mean age 58.4 ± 8.2 years) diagnosed with type II MMPRT underwent open magnetic resonance imaging preoperatively, 3 months after transtibial fixation and at 12 months after surgery, when second-look arthroscopy was also performed. The medial meniscus medial extrusion (MMME) and the medial meniscus posterior extrusion (MMPE) were measured at knee 10° and 90° flexion at which medial meniscus (MM) posterior translation was also calculated. Articular cartilage degeneration was assessed using International Cartilage Research Society grade at primary surgery and second-look arthroscopy. Clinical evaluations included Knee Injury and Osteoarthritis Outcome Score, International Knee Documentation Committee subjective knee evaluation form, Lysholm score, Tegner activity level scale, and pain visual analogue scale.
Results
MMPE at 10° knee flexion was higher 12 months postoperatively than preoperatively (4.8 ± 1.5 vs. 3.5 ± 1.2, p = 0.01). MMPE at 90° knee flexion and MM posterior translation were smaller 12 months postoperatively than preoperatively (3.5 ± 1.1 vs. 4.6 ± 1.3, 7.2 ± 1.7 vs. 8.9 ± 2.0, p < 0.01). Articular cartilage degeneration of medial femoral condyle correlated with MMME in knee extension (r = 0.5, p = 0.04). All clinical scores significantly improved 12 months postoperatively. However, correlations of all clinical scores against decreased MMPE and increased MMME were not detected.
Conclusions
MMPRT transtibial fixation suppressed the progression of MMPE and cartilage degeneration and progressed MMME minimally in knee flexion position at 1 year. However, in the knee extension position, MMME progressed and correlated with cartilage degeneration of medial femoral condyle. MMPRT transtibial fixation contributes to the dynamic stability of the MM in the knee flexion position.
en-copyright=
kn-copyright=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasudaShin
en-aut-sei=Masuda
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYoshiki
en-aut-sei=Okazaki
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyazawaShinichi
en-aut-sei=Miyazawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasumitsuMasaharu
en-aut-sei=Yasumitsu
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Iwakuni Clinical Center
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Transtibial fixation
kn-keyword=Transtibial fixation
en-keyword=Meniscus extrusion
kn-keyword=Meniscus extrusion
en-keyword=Open magnetic resonance imaging
kn-keyword=Open magnetic resonance imaging
END
start-ver=1.4
cd-journal=joma
no-vol=2020
cd-vols=
no-issue=4
article-no=
start-page=043D02
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200413
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: Gd-155 and Gd-157. We measured the gamma-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched Gd-155 (in Gd2O3 powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analyzed data of the Gd-155(n,gamma) reaction are used to improve our previously developed model (ANNRI-Gd model) for the Gd-157(n,gamma) reaction [K. Hagiwara et al. [ANNRI-Gd Collaboration], Prog. Theor. Exp. Phys. 2019, 023D01 (2019)], and its performance confirmed with the independent data from the Gd-nat(n,gamma) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyze particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments.
en-copyright=
kn-copyright=
en-aut-name=TanakaTomoyuki
en-aut-sei=Tanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiwaraKaito
en-aut-sei=Hagiwara
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GazzolaEnrico
en-aut-sei=Gazzola
en-aut-mei=Enrico
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AliAjmi
en-aut-sei=Ali
en-aut-mei=Ajmi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OuIwa
en-aut-sei=Ou
en-aut-mei=Iwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudoTakashi
en-aut-sei=Sudo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DasPretam Kumar
en-aut-sei=Das
en-aut-mei=Pretam Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ReenMandeep Singh
en-aut-sei=Reen
en-aut-mei=Mandeep Singh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DhirRohit
en-aut-sei=Dhir
en-aut-mei=Rohit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoshioYusuke
en-aut-sei=Koshio
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakudaMakoto
en-aut-sei=Sakuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KimuraAtsushi
en-aut-sei=Kimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakamuraShoji
en-aut-sei=Nakamura
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwamotoNobuyuki
en-aut-sei=Iwamoto
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HaradaHideo
en-aut-sei=Harada
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=CollazuolGianmaria
en-aut-sei=Collazuol
en-aut-mei=Gianmaria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=LorenzSebastian
en-aut-sei=Lorenz
en-aut-mei=Sebastian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WurmMichael
en-aut-sei=Wurm
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FocillonWilliam
en-aut-sei=Focillon
en-aut-mei=William
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GoninMichel
en-aut-sei=Gonin
en-aut-mei=Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YanoTakatomi
en-aut-sei=Yano
en-aut-mei=Takatomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=3
en-affil=Universitá di Padova and INFN, Dipartimento di Fisica
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=12
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=13
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=14
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=15
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=16
en-affil=Universitá di Padova and INFN, Dipartimento di Fisica
kn-affil=
affil-num=17
en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz
kn-affil=
affil-num=18
en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz
kn-affil=
affil-num=19
en-affil=Département de Physique, École Polytechnique
kn-affil=
affil-num=20
en-affil=Département de Physique, École Polytechnique
kn-affil=
affil-num=21
en-affil=Kamioka Observatory, ICRR, University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=
article-no=
start-page=342
end-page=346
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary resection for metachronous metastatic gastric cancer diagnosed using multi-detector computed tomography: Report of five cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction
As pulmonary resection for metastatic gastric cancer has been rarely reported on, the role of metastasectomy remains unclear in such settings. We reviewed the clinicopathological characteristics and surgical outcomes of patients with metachronous pulmonary metastasis from gastric cancer (MPMGC) diagnosed using multi-detector computed tomography (MDCT) who underwent pulmonary resection.
Presentation of case
From September 2002 to May 2018, five patients underwent pulmonary resection for MPMGC at Shizuoka Cancer Center. All patients received curative resection for initial gastric cancer. Three patients received adjuvant chemotherapy. The median age at pulmonary resection was 70 years. The median disease-free interval between initial gastrectomy and MPMGC diagnosis was 41 months. The first site of recurrence was the lung in all patients. All patients were diagnosed as having primary lung cancer using MDCT before pulmonary resection and fit the surgical indication for primary lung cancer. Lobectomy was performed in three patients, while wedge resection was performed in two. The median overall survival following pulmonary resection was 79 (range, 18–89) months. Two patients experienced recurrence. While one showed recurrence in the mediastinal lymph node, in the other it was observed in the remnant lung; the latter underwent repeated pulmonary resection followed by systemic chemotherapy. Four patients survived for longer than 4 years after pulmonary resection.
Conclusions
Of the five patients with MPMGC diagnosed using MDCT who underwent pulmonary resection, long-term survival was achieved after pulmonary resection in four. Thus, pulmonary resection may be considered for those diagnosed with lung nodules after surgery for gastric cancer, and who fit the surgical indication for primary lung cancer.
en-copyright=
kn-copyright=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KojimaHideaki
en-aut-sei=Kojima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsakaMitsuhiro
en-aut-sei=Isaka
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BandoEtsuro
en-aut-sei=Bando
en-aut-mei=Etsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TerashimaMasanori
en-aut-sei=Terashima
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhdeYasuhisa
en-aut-sei=Ohde
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Thoracic Surgery, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Thoracic Surgery, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Gastric Surgery, Shizuoka Cancer Center
kn-affil=
affil-num=5
en-affil=Division of Gastric Surgery, Shizuoka Cancer Center
kn-affil=
affil-num=6
en-affil=Division of Thoracic Surgery, Shizuoka Cancer Center
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=Pulmonary metastasis
kn-keyword=Pulmonary metastasis
en-keyword=Pulmonary resection
kn-keyword=Pulmonary resection
END
start-ver=1.4
cd-journal=joma
no-vol=529
cd-vols=
no-issue=3
article-no=
start-page=760
end-page=765
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors.
Materials and methods
A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed.
Results
TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor.
Conclusion
Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance.
en-copyright=
kn-copyright=
en-aut-name=OchiKosuke
en-aut-sei=Ochi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakanoJui
en-aut-sei=Takano
en-aut-mei=Jui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyauchiShunsaku
en-aut-sei=Miyauchi
en-aut-mei=Shunsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiuraAkihiro
en-aut-sei=Miura
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiKota
en-aut-sei=Araki
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AzumaKazuo
en-aut-sei=Azuma
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OkamotoYoshiharu
en-aut-sei=Okamoto
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University
kn-affil=
affil-num=17
en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University
kn-affil=
affil-num=18
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Monensin
kn-keyword=Monensin
en-keyword=Epithelial-mesenchymal transition
kn-keyword=Epithelial-mesenchymal transition
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Drug repositioning
kn-keyword=Drug repositioning
en-keyword=Drug resistance
kn-keyword=Drug resistance
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=4
article-no=
start-page=345
end-page=350
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202008
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tibial Tunnel Positioning Using the Posterolateral (PL) Divergence Guide in Anterior Cruciate Ligament Reconstruction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study was to evaluate tunnel coalition and inter-tunnel distance by comparing the tibial tunnel position in double-bundle anterior cruciate ligament (ACL) reconstruction performed with a conventional guide versus a posterolateral (PL) divergence (PLD) guide. Subjects were 43 patients (ACL tip aimer: 20 knees; PLD guide: 23 knees) who underwent double-bundle ACL reconstruction between September 2014 and December 2017. In all cases, the tibial tunnel position, tunnel edge distance and tunnel angles were evaluated based on CT images. Clinical outcome was evaluated using the Lachman test, pivot-shift test, and Lysholm score. Tibial tunnel positions were similar between the conventional and PLD guide groups, while tibial tunnel edge distance was significantly less in the conventional group. Tunnel coalition was observed in 5 knees in the conventional and no knees in the PLD guide group. Distance between two tibial tunnel centers was 9.1 mm for the tip aimer, and 10.5 mm for the PLD guide. Creation of the PL tunnel tended to involve insertion from a more medial aspect for the PLD guide group than the conventional guide group. No differences in clinical outcomes were noted. The PLD guide can be used to create anatomically-positioned PL tunnels, and reduce the probability of occurrence of tunnel coalition.
en-copyright=
kn-copyright=
en-aut-name=TanakaTakaaki
en-aut-sei=Tanaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasudaaKenji
en-aut-sei=Masudaa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SenoaNoritaka
en-aut-sei=Senoa
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Sumitomobesshi Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Sumitomobesshi Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=anterior cruciate ligament reconstruction
kn-keyword=anterior cruciate ligament reconstruction
en-keyword=tibial tunnel position
kn-keyword=tibial tunnel position
en-keyword=PL divergence guide
kn-keyword=PL divergence guide
en-keyword=tunnel coalition
kn-keyword=tunnel coalition
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=3
article-no=
start-page=83
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200421
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Early Decline of alpha-Fetoprotein and Des-gamma-Carboxy Prothrombin Predicts the Response of Hepatic Arterial Infusion Chemotherapy in Hepatocellular Carcinoma Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Molecular targeting drugs are recommended as second-line treatment for intrahepatic advanced hepatocellular carcinoma (HCC). However, in Asia, hepatic arterial infusion chemotherapy (HAIC) is also considered as a second-line treatment because it improves the survival of responders. The aim of this study was to predict responders and non-responders to HAIC with low-dose cisplatin plus 5-fluorouracil (LFP) using tumor markers.
Objective and Methods: The data of 47 patients who received LFP for the first time in our hospital were analyzed retrospectively. We evaluated the association between treatment response by Response Evaluation Criteria in Solid Tumors and the changing ratio of the serum concentration of alpha-fetoprotein (AFP),Lens culinarisagglutinin-reactive fraction of AFP (AFP-L3), and des-gamma-carboxy prothrombin (DCP) 2 weeks after LFP initiation.
Results: The number of patients showing a complete response (CR), a partial response (PR), stable disease (SD), and progressive disease (PD) was 0 (0%), 20 (43%), 18 (38%), and 9 (19%), respectively. The AFP ratio showed significant positive correlations for PR vs. SD (p= 0.004) and PR vs. PD (p= 0.003). The DCP ratio correlated significantly for PR vs. SD (p= 0.02). The optimal cutoff values for responders were 0.79 for the AFP ratio and 0.53 for the DCP ratio. Prediction using both or either cutoff value showed 93% sensitivity, 53% specificity, a 94% negative predictive value, and a 57% positive predictive value.
Conclusion: Optimal cutoff values for AFP and DCP ratios enable prediction of nonresponders to HAIC with LFP. This simple and early assessment method allows the use of HAIC and molecular targeting drugs for HCC treatment.
en-copyright=
kn-copyright=
en-aut-name=YamamotoShumpei
en-aut-sei=Yamamoto
en-aut-mei=Shumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiHideki
en-aut-sei=Onishi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OyamaAtsushi
en-aut-sei=Oyama
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AdachiTakuya
en-aut-sei=Adachi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaNozomu
en-aut-sei=Wada
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakataMasahiro
en-aut-sei=Sakata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasunakaTetsuya
en-aut-sei=Yasunaka
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Hepatocellular carcinoma
kn-keyword=Hepatocellular carcinoma
en-keyword=Hepatic arterial infusion chemotherapy
kn-keyword=Hepatic arterial infusion chemotherapy
en-keyword=Low-dose cisplatin plus 5-fluorouracil
kn-keyword=Low-dose cisplatin plus 5-fluorouracil
en-keyword=alpha-Fetoprotein
kn-keyword=alpha-Fetoprotein
en-keyword=Des-gamma-carboxy prothrombin
kn-keyword=Des-gamma-carboxy prothrombin
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=164
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson’s disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients.
Objective: Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats.
Methods: We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis.
Results: The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group.
Conclusions: This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
en-copyright=
kn-copyright=
en-aut-name=KuwaharaKen
en-aut-sei=Kuwahara
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SasakiTatsuya
en-aut-sei=Sasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KamedaMasahiro
en-aut-sei=Kameda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkazakiYosuke
en-aut-sei=Okazaki
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HosomotoKakeru
en-aut-sei=Hosomoto
en-aut-mei=Kakeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinIttetsu
en-aut-sei=Kin
en-aut-mei=Ittetsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiMihoko
en-aut-sei=Okazaki
en-aut-mei=Mihoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YabunoSatoru
en-aut-sei=Yabuno
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawauchiSatoshi
en-aut-sei=Kawauchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TomitaYousuke
en-aut-sei=Tomita
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UmakoshiMichiari
en-aut-sei=Umakoshi
en-aut-mei=Michiari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MorimotoJun
en-aut-sei=Morimoto
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LeeJea-Young
en-aut-sei=Lee
en-aut-mei=Jea-Young
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TajiriNaoki
en-aut-sei=Tajiri
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BorlonganCesar V.
en-aut-sei=Borlongan
en-aut-mei=Cesar V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida
kn-affil=
affil-num=16
en-affil=Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=17
en-affil=Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida
kn-affil=
affil-num=18
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=electrical stimulation
kn-keyword=electrical stimulation
en-keyword=neuroinflammation
kn-keyword=neuroinflammation
en-keyword=neuromodulation
kn-keyword=neuromodulation
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=6-hydroxydopamine
kn-keyword=6-hydroxydopamine
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=143
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Skeletal muscle loss in the postoperative acute phase after esophageal cancer surgery as a new prognostic factor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The postoperative survival rate of patients with esophageal squamous cell carcinoma (ESCC) remains poor compared with other gastrointestinal cancers. We hypothesized that skeletal muscle loss in the postoperative acute phase might be a new predictor for long-term prognosis after highly invasive surgery such as ESCC surgery.
Methods
The following items were retrospectively investigated. First, whether skeletal muscle loss occurred in the postoperative acute phase of ESCC was verified. Second, the preoperative and intraoperative factors involved in skeletal muscle loss in the postoperative acute phase of ESCC were investigated. Then, whether skeletal muscle loss in the postoperative acute phase affected long-term prognosis was examined. The medical records of consecutive patients who underwent radical esophagectomy for ESCC between January 2010 and February 2015 were retrospectively reviewed; 72 cases were eligible for this study. The total psoas major muscle mass index (TPI) at the level of the third lumbar vertebra (L3) was measured using computed tomography (CT) before surgery and 3 days after surgery. The long-term prognosis was estimated by the Kaplan-Meier method and the multivariate logistic regression model.
Results
There was already a significant reduction of TPI in the acute phase up to POD 3 after ESCC surgery in comparison with the preoperative baseline TPI (P < 0.001). The TPI reduction rate was significantly milder in cases with less blood loss during surgery and in cases that underwent thoracoscopic esophagectomy than in cases that underwent open esophagectomy. The 3-year overall survival rate was significantly different between the TPI reduction rate severe group and the TPI reduction rate mild group.
Conclusion
Skeletal muscle loss occurred even in the postoperative acute phase. Furthermore, it is very significant that skeletal muscle loss in the postoperative acute phase of ESCC surgery is involved in the long-term prognosis.
en-copyright=
kn-copyright=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShirakawaYasuhiro
en-aut-sei=Shirakawa
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakuramaKazufumi
en-aut-sei=Sakurama
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=
article-no=
start-page=355
end-page=367
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=20181117
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Desmoplasia is a hallmark of pancreatic cancer and consists of fibrotic cells and secreted extracellular matrix (ECM) components. Various in vitro three-dimensional (3D) models of desmoplasia have been reported, but little is known about the relevant thickness of the engineered fibrotic tissue. We thus measured the thickness of fibrotic tissue in human pancreatic cancer, as defined by the distance from the blood vessel wall to tumor cells. We then generated a 3D fibrosis model with a thickness reaching the clinically observed range using pancreatic stellate cells (PSCs), the main cellular constituent of pancreatic cancer desmoplasia. Using this model, we found that Collagen fiber deposition was increased and Fibronectin fibril orientation drastically remodeled by PSCs, but not normal fibroblasts, in a manner dependent on Transforming Growth Factor (TGF)-β/Rho-Associated Kinase (ROCK) signaling and Matrix Metalloproteinase (MMP) activity. Finally, by targeting Secreted Protein, Acidic and Rich in Cysteine (SPARC) by siRNA, we found that SPARC expression in PSCs was necessary for ECM remodeling. Taken together, we developed a 3D fibrosis model of pancreatic cancer with a clinically relevant thickness and observed aberrant SPARC-dependent ECM remodeling in cancer-derived PSCs.
en-copyright=
kn-copyright=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitaharaKentaro
en-aut-sei=Kitahara
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiNaoki
en-aut-sei=Sasaki
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaoNatsumi
en-aut-sei=Nakao
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKae
en-aut-sei=Sato
en-aut-mei=Kae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaritaHirokazu
en-aut-sei=Narita
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimodaHiroshi
en-aut-sei=Shimoda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsusakiMichiya
en-aut-sei=Matsusaki
en-aut-mei=Michiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishiharaHiroshi
en-aut-sei=Nishihara
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MasamuneAtsushi
en-aut-sei=Masamune
en-aut-mei=Atsushi
kn-aut-name=Atsushi Masamune
kn-aut-sei=Atsushi Masamune
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KanoMitsunobu R.
en-aut-sei=Kano
en-aut-mei=Mitsunobu R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemical and Biological Sciences, Japan Women's University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemical and Biological Sciences, Japan Women's University
kn-affil=
affil-num=6
en-affil=Department of Anatomical Science, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Anatomical Science, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Frontier Biosciences, Osaka University Graduate School of Frontier Biosciences
kn-affil=
affil-num=9
en-affil=Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Institute of Integrated Medical Research
kn-affil=
affil-num=10
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Fibrosis
kn-keyword=Fibrosis
en-keyword=Extracellular matrix remodeling
kn-keyword=Extracellular matrix remodeling
en-keyword=3D culture
kn-keyword=3D culture
en-keyword=Pancreatic stellate cell
kn-keyword=Pancreatic stellate cell
en-keyword=SPARC
kn-keyword=SPARC
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reference values for the locomotive syndrome risk test quantifying mobility of 8681 adults aged 20–89 years: A cross-sectional nationwide study in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The locomotive syndrome risk test was developed to quantify the decrease in mobility among adults, which could eventually lead to disability. The purpose of this study was to establish reference values for the locomotive syndrome risk test for adults and investigate the influence of age and sex.
Methods
We analyzed 8681 independent community dwellers (3607 men, 5074 women). Data pertaining to locomotive syndrome risk test (the two-step test, the stand-up test, and the 25-question geriatric locomotive function scale [GLFS-25]) scores were collected from seven administrative areas of Japan.
Results
The reference values of the three test scores were generated and all three test scores gradually decreased among young-to-middle-aged individuals and rapidly decreased in individuals aged over 60 years. The stand-up test score began decreasing significantly from the age of 30 years. The trajectories of decrease in the two-step test score with age was slightly different between men and women especially among the middle-aged individuals. The two physical test scores were more sensitive to aging than the self-reported test score.
Conclusion
The reference values generated in this study could be employed to determine whether an individual has mobility comparable to independent community dwellers of the same age and sex.
en-copyright=
kn-copyright=
en-aut-name=YamadaKeiko
en-aut-sei=Yamada
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoYoichi M.
en-aut-sei=Ito
en-aut-mei=Yoichi M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiMasao
en-aut-sei=Akagi
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChosaEtsuo
en-aut-sei=Chosa
en-aut-mei=Etsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiTakeshi
en-aut-sei=Fuji
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiranoKenichi
en-aut-sei=Hirano
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaShinichi
en-aut-sei=Ikeda
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshibashiHideaki
en-aut-sei=Ishibashi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshibashiYasuyuki
en-aut-sei=Ishibashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshijimaMuneaki
en-aut-sei=Ishijima
en-aut-mei=Muneaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ItoiEiji
en-aut-sei=Itoi
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwasakiNorimasa
en-aut-sei=Iwasaki
en-aut-mei=Norimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IzumidaRyoichi
en-aut-sei=Izumida
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KadoyaKen
en-aut-sei=Kadoya
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KamimuraMasayuki
en-aut-sei=Kamimura
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KanajiArihiko
en-aut-sei=Kanaji
en-aut-mei=Arihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KatoHiroyuki
en-aut-sei=Kato
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KishidaShunji
en-aut-sei=Kishida
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MashimaNaohiko
en-aut-sei=Mashima
en-aut-mei=Naohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MatsudaShuichi
en-aut-sei=Matsuda
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MatsuiYasumoto
en-aut-sei=Matsui
en-aut-mei=Yasumoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MatsunagaToshiki
en-aut-sei=Matsunaga
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MiyakoshiNaohisa
en-aut-sei=Miyakoshi
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MizutaHiroshi
en-aut-sei=Mizuta
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NakamuraYutaka
en-aut-sei=Nakamura
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=NakataKen
en-aut-sei=Nakata
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=OmoriGo
en-aut-sei=Omori
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=OsukaKoji
en-aut-sei=Osuka
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=UchioYuji
en-aut-sei=Uchio
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=RyuKazuteru
en-aut-sei=Ryu
en-aut-mei=Kazuteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=SasakiNobuyuki
en-aut-sei=Sasaki
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SatoKimihito
en-aut-sei=Sato
en-aut-mei=Kimihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=SendaMasuo
en-aut-sei=Senda
en-aut-mei=Masuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=SudoAkihiro
en-aut-sei=Sudo
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TakahiraNaonobu
en-aut-sei=Takahira
en-aut-mei=Naonobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=TsumuraHiroshi
en-aut-sei=Tsumura
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=YamaguchiSatoshi
en-aut-sei=Yamaguchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=YamamotoNoriaki
en-aut-sei=Yamamoto
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=NakamuraKozo
en-aut-sei=Nakamura
en-aut-mei=Kozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=Takashi Ohe
en-aut-sei=Takashi
en-aut-mei= Ohe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
affil-num=1
en-affil=Departments of Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Statistical Data Science, The Institute of Statistical Mathematics
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Kindai University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, University of Miyazaki
kn-affil=
affil-num=5
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=6
en-affil=Hirano Orthopaedics Clinic
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Oita University,
kn-affil=
affil-num=8
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=13
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=14
en-affil=Department of Advanced Medicine for Locomotor System, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Shinshu University School of Medicine
kn-affil=
affil-num=18
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=19
en-affil=Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology
kn-affil=
affil-num=22
en-affil=Department of Rehabilitation Medicine, Akita University Hospital
kn-affil=
affil-num=23
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University
kn-affil=
affil-num=25
en-affil=Saiseikai Shonan Hiratsuka Hospital
kn-affil=
affil-num=26
en-affil=Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Sports and Health, Faculty of Health and Science, Niigata University of Health and Welfare
kn-affil=
affil-num=28
en-affil=Osuka Clinic
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Shimane University
kn-affil=
affil-num=30
en-affil=Kanai Hospital
kn-affil=
affil-num=31
en-affil=Sasaki Orthopedic and Anesthesiology Clinic
kn-affil=
affil-num=32
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=33
en-affil=Okayama University Hospital, Division of Physical Medicine and Rehabilitation
kn-affil=
affil-num=34
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=Department of Rehabilitation, Kitasato University School of Allied Health Sciences
kn-affil=
affil-num=36
en-affil=Department of Orthopaedic Surgery
kn-affil=
affil-num=37
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=38
en-affil=Nigata Rehabilitation Hospital
kn-affil=
affil-num=39
en-affil=“Locomo Challenge!” Promotion Council
kn-affil=
affil-num=40
en-affil=“Locomo Challenge!” Promotion Council, T
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=2
article-no=
start-page=237
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An MRI-based suspension bridge sign can predict an arthroscopically favorable meniscal healing following the medial meniscus posterior root repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Medial meniscus (MM) posterior root repairs show favorable clinical outcomes in patients with MM posterior root tears (MMPRTs). However, there is no useful magnetic resonance imaging (MRI) finding to determine a functionally good meniscal healing following MM posterior root repairs. We hypothesized that a characteristic postoperative MRI finding can predict a good meniscal healing following pullout repairs. The aim of this study was to investigate a clinical usefulness of several MRI findings for estimating an actual meniscal healing following MMPRT repairs.
Methods
Fifty eight patients who had a posteromedial painful popping of the injured knee and underwent an arthroscopic pullout repair for the MMPRT were included. Arthroscopic meniscal healing was assessed according to the Furumatsu scoring system at 1 year postoperatively. We evaluated postoperative MRI-based meniscal healing using signal intensity, continuity, suspension bridge-like sign of the MM posterior root, and MM medial extrusion on coronal images. Postoperative clinical outcome evaluations were performed at second-look arthroscopy.
Results
Twenty three patients showed good arthroscopic healing scores (≥7 points). Thirty five patients had moderate/poor arthroscopic healing scores (<7 points). At 1-year follow-up period, clinical outcome scores were significantly higher in the good healing group than in the moderate/poor healing group. A characteristic meniscal shape, termed “suspension bridge sign”, was highly observed in the good meniscal healing group (83%) compared with in the moderate/poor healing group (26%, P < 0.001). High signal intensity and continuity of the MM posterior root and MM medial extrusion showed no differences between both groups.
Conclusions
Our study demonstrated that the MRI-based suspension bridge sign can predict an arthroscopically favorable meniscal healing following the MM posterior root repair. The suspension bridge-like MRI finding of the MM would be a useful indicator to evaluate the actual meniscal healing in patients who underwent pullout repairs for MMPRTs.
en-copyright=
kn-copyright=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranakaTakaaki
en-aut-sei=Hiranaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KodamaYuya
en-aut-sei=Kodama
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkazakiYoshiki
en-aut-sei=Okazaki
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXiming
en-aut-sei=Zhang
en-aut-mei=Ximing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=324
cd-vols=
no-issue=
article-no=
start-page=109085
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Herbal medicines and their bioactive compounds are increasingly being recognized as useful drugs for cancer treatments. The parasitic fungus Cordyceps militaris is an attractive anticancer herbal since it shows very powerful anticancer activity due to its phytocompound cordycepin. We previously discovered and reported that a high amount of xylitol is present in Cordyceps militaris extract, and that xylitol unexpectedly showed anticancer activity in a cancer-selective manner. We thus hypothesized that xylitol could become a useful supplement to help prevent various cancers, if we can clarify the specific machinery by which xylitol induces cancer cell death. It is also unclear whether xylitol acts on cancer suppression in vivo as well as in vitro. Here we show for the first time that induction of the glutathione-degrading enzyme CHAC1 is the main cause of xylitol-induced apoptotic cell death in cancer cells. The induction of CHAC1 is required for the endoplasmic reticulum (ER) stress that is triggered by xylitol in cancer cells, and is linked to a second induction of oxidative stress in the treated cells, and eventually leads to apoptotic cell death. Our in vivo approach also demonstrated that an intravenous injection of xylitol had a tumor-suppressing effect in mice, to which the xylitol-triggered ER stress also greatly contributed. We also observed that xylitol efficiently sensitized cancer cells to chemotherapeutic drugs. Based on our findings, a chemotherapeutic strategy combined with xylitol might improve the outcomes of patients facing cancer.
en-copyright=
kn-copyright=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Xylitol
kn-keyword=Xylitol
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Glutathione
kn-keyword=Glutathione
en-keyword=ER stress
kn-keyword=ER stress
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=845
end-page=848
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of Saccharin Time in Nursing Home Residents With and Without Pneumonia: A Preliminary Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=ackground/Aim: Although mucociliary clearance is important for preventing pneumonia, its association with the onset of pneumonia is unclear. The aim of this study is to examine the association between saccharin test results as a potential measure of mucociliary clearance and history of pneumonia in nursing home residents. Patients and Methods: Ninety elderly nursing home residents (elderly group) were selected, 35 of whom had a history of pneumonia. Twenty-five healthy adults (adult group) were also investigated to provide baseline values for this study. We conducted the saccharin test to evaluate mucociliary clearance and compared the saccharin time (ST) between those with and without history of pneumonia. Results: Mean ST in the adult group was 12±6 min. The ST in the pneumonia group was significantly longer than that in the non-pneumonia group (32±23 min vs. 17±13 min) (p<0.05). Conclusion: Impaired mucociliary clearance is a factor in the development of pneumonia among nursing home residents.
en-copyright=
kn-copyright=
en-aut-name=UchidaYurika
en-aut-sei=Uchida
en-aut-mei=Yurika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoharaKanji
en-aut-sei=Nohara
en-aut-mei=Kanji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaNobukazu
en-aut-sei=Tanaka
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiNami
en-aut-sei=Fujii
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukatsuHikari
en-aut-sei=Fukatsu
en-aut-mei=Hikari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanekoNobuko
en-aut-sei=Kaneko
en-aut-mei=Nobuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuyamaMakoto
en-aut-sei=Mitsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaiTakayoshi
en-aut-sei=Sakai
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=3
en-affil=Division of Oral-Facial Disorders, Osaka University Dental Hospital
kn-affil=
affil-num=4
en-affil=Division of Oral-Facial Disorders, Osaka University Dental Hospital
kn-affil=
affil-num=5
en-affil=Division of Oral-Facial Disorders, Osaka University Dental Hospital
kn-affil=
affil-num=6
en-affil=Naniwa College of Dental Hygiene
kn-affil=
affil-num=7
en-affil=Medical Corporation Keieikai
kn-affil=
affil-num=8
en-affil=Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry
kn-affil=
en-keyword=Aged
kn-keyword=Aged
en-keyword=deglutition disorders
kn-keyword=deglutition disorders
en-keyword=mucociliary clearance
kn-keyword=mucociliary clearance
en-keyword=nursing home
kn-keyword=nursing home
en-keyword=pneumonia
kn-keyword=pneumonia
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=2
article-no=
start-page=184
end-page=191
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190618
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of the clinical characteristics of TAFRO syndrome and idiopathic multicentric Castleman disease in general internal medicine: a 6‐year retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Although thrombocytopenia, anasarca, fever, reticulin fibrosis and organomegaly (TAFRO) syndrome was first described as a variant of idiopathic multicentric Castleman disease (CD), patients with TAFRO syndrome demonstrate more aggressive clinical features. Because these patients may present with fever of unknown origin, general physicians need to recognise its characteristic laboratory data and clinical features during hospitalisation.
Aims
to describe the features, symptoms and characteristics of TAFRO syndrome and to compare them to those of idiopathic CD.
Methods
This was a retrospective study of patients with histopathologically confirmed TAFRO syndrome and idiopathic multicentric CD who were diagnosed and managed between April 2012 and June 2018 in a Japanese university hospital's General Medicine Department.
Results
We found that the hospitalisations were significantly longer among patients with TAFRO syndrome compared to those with idiopathic CD (median: 87 days; range: 34–236 days vs median: 30 days; range: 13–59 days; P < 0.01). Patients with TAFRO syndrome were more likely to present with fever, abdominal pain and elevated inflammatory markers and be misdiagnosed with an infectious disease during the first hospital visit. Approximately 40% of patients with TAFRO syndrome had no radiographically enlarged lymph nodes.
Conclusions
TAFRO syndrome may present as an infectious disease with an aggressive clinical course. Our study highlights the importance of giving significance to chief complaints and laboratory data. Physicians need to recognise the clinical and laboratory features of this disease to avoid missing this potentially fatal disorder.
en-copyright=
kn-copyright=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hanayama Yoshihisa
en-aut-sei=Hanayama
en-aut-mei= Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoEisei
en-aut-sei=Kondo
en-aut-mei=Eisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Hematology, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=TAFRO syndrome
kn-keyword=TAFRO syndrome
en-keyword=Castleman disease
kn-keyword=Castleman disease
en-keyword=chief complaint
kn-keyword=chief complaint
en-keyword=procalcitonin
kn-keyword=procalcitonin
en-keyword=immunoglobulin
kn-keyword=immunoglobulin
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=5
article-no=
start-page=402
end-page=407
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202005
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vitamin B6 in acute encephalopathy with biphasic seizures and late reduced diffusion
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The initial presentation of acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is indistinguishable from that of complex febrile seizures (FS), which poses a great diagnostic challenge for clinicians. Excitotoxicity is speculated to be the pathogenesis of AESD. Vitamin B6 (VB6) is essential for the biosynthesis of gamma-aminobutyric acid, an inhibitory neurotransmitter. The aim of this study is to investigate our hypothesis that VB6 deficiency in the brain may play a role in AESD.
Methods
We obtained cerebrospinal fluid (CSF) samples from pediatric patients with AESD after early seizures and those with FS. We measured pyridoxal 5′-phosphate (PLP) and pyridoxal (PL) concentrations in the CSF samples using high-performance liquid chromatography with fluorescence detection.
Results
The subjects were 5 patients with AESD and 17 patients with FS. Age did not differ significantly between AESD and FS. In AESD, CSF PLP concentration was marginally lower (p = 0.0999) and the PLP-to-PL ratio was significantly (p = 0.0417) reduced compared to those in FS.
Conclusions
Although it is impossible to conclude that low PLP concentration and PLP-to-PL ratio are causative of AESD, this may be a risk factor for developing AESD. When combined with other markers, this finding may be useful in distinguishing AESD from FS upon initial presentation.
en-copyright=
kn-copyright=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TodaSoichiro
en-aut-sei=Toda
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraNobusuke
en-aut-sei=Kimura
en-aut-mei=Nobusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MogamiYukiko
en-aut-sei=Mogami
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TokorodaniChiho
en-aut-sei=Tokorodani
en-aut-mei=Chiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoTomoshiro
en-aut-sei=Ito
en-aut-mei=Tomoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyaharaHiroyuki
en-aut-sei=Miyahara
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HyodoYuki
en-aut-sei=Hyodo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiKatsuhiro
en-aut-sei=Kobayashi
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kochi Health Sciences Center
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Sapporo City General Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Kurashiki Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Child Neurology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Child Neurology, Okayama University Hospital
kn-affil=
en-keyword=AESD
kn-keyword=AESD
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Febrile seizure
kn-keyword=Febrile seizure
en-keyword=Pyridoxal 5′-phosphate
kn-keyword=Pyridoxal 5′-phosphate
en-keyword=Pyridoxal kinase
kn-keyword=Pyridoxal kinase
en-keyword=Risk factor
kn-keyword=Risk factor
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=特許、技術標準と企業のグローバルソーシャルネットワーク
kn-title=Patents Technical Standards and Firms' Global Social Network
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=JiangJiaming
en-aut-sei=Jiang
en-aut-mei=Jiaming
kn-aut-name=姜佳明
kn-aut-sei=姜
kn-aut-mei=佳明
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=岡山大学大学院社会文化科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=低分子RNAの蛍光検出と生体分子の光依存的細胞内導入のための新手法開発
kn-title=Novel methods for detection of small RNAs and photo-dependent intercellular delivery of biomolecules
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MiyoshiYuichi
en-aut-sei=Miyoshi
en-aut-mei=Yuichi
kn-aut-name=三好祐一
kn-aut-sei=三好
kn-aut-mei=祐一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスにおける生後Runx2欠損は骨量減少および骨髄脂肪細胞の増加を引き起こす
kn-title=Postnatal Runx2 deletion leads to low bone mass and adipocyte accumulation in mice bone tissues
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TosaIkue
en-aut-sei=Tosa
en-aut-mei=Ikue
kn-aut-name=土佐郁恵
kn-aut-sei=土佐
kn-aut-mei=郁恵
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=総合診療の臨床における骨密度低下に対する危険因子の検討
kn-title= Risk Factors for Low Bone Mineral Density Determined in Patients in a General Practice Setting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AndoAkemi
en-aut-sei=Ando
en-aut-mei=Akemi
kn-aut-name=安藤明美
kn-aut-sei=安藤
kn-aut-mei=明美
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END