start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=20056 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials. en-copyright= kn-copyright= en-aut-name=OshimaRisa en-aut-sei=Oshima en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanishiKo en-aut-sei=Nakanishi en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkasakaTsukasa en-aut-sei=Akasaka en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimojiShinji en-aut-sei=Shimoji en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTeppei en-aut-sei=Nakamura en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMariko en-aut-sei=Nakamura en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TamadaIkkei en-aut-sei=Tamada en-aut-mei=Ikkei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugayaTsutomu en-aut-sei=Sugaya en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=5 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center kn-affil= affil-num=11 en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven kn-affil= affil-num=12 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=13 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= en-keyword=Phosphopullulan kn-keyword=Phosphopullulan en-keyword=Polysaccharide kn-keyword=Polysaccharide en-keyword=ADME kn-keyword=ADME en-keyword=Animal study kn-keyword=Animal study en-keyword=Endodontic sealer kn-keyword=Endodontic sealer END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=5 article-no= start-page=257 end-page=267 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Catalytic Residues and Catalytic Mechanism of the RNase T1 Family en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ribonuclease T1 family, including RNase Po1 secreted by Pleurotus ostreatus, exhibits antitumor activity. Here, we resolved the Po1/guanosine-3′-monophosphate complex (3′GMP) structure at 1.75 ?. Structure comparison and fragment molecular orbital (FMO) calculation between the apo form and the Po1/3′GMP complex identified Phe38, Phe40, and Glu42 as the key binding residues. Two types of the RNase/3′GMP complex in RNasePo1 and RNase T1 were homologous to Po1, and FMO calculations elucidated that the biprotonated histidine on the β3 sheet (His36) on the β3 sheet and deprotonated Glu54 on the β4 sheet were advantageous to RNase activity. Moreover, tyrosine (Tyr34) on the β3 sheet was elucidated as a crucial catalytic residues. Mutation of Tyr34 with phenylalanine decreased RNase activity and diminished antitumor efficacy compared to that in the wild type. This suggests the importance of RNase activity in antitumor mechanisms. en-copyright= kn-copyright= en-aut-name=TakebeKatsuki en-aut-sei=Takebe en-aut-mei=Katsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraYumiko en-aut-sei=Hara en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsutaniTakuya en-aut-sei=Katsutani en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoyoshiNaomi en-aut-sei=Motoyoshi en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItagakiTadashi en-aut-sei=Itagaki en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyakawaShuhei en-aut-sei=Miyakawa en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FukuzawaKaori en-aut-sei=Fukuzawa en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KobayashiHiroko en-aut-sei=Kobayashi en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=3 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=4 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=5 en-affil=School of Pharmacy, Nihon University kn-affil= affil-num=6 en-affil=School of Pharmacy, Nihon University kn-affil= affil-num=7 en-affil=Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=8 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=10 en-affil=School of Pharmacy, Nihon University kn-affil= en-keyword=RNase kn-keyword=RNase en-keyword=crystal structure kn-keyword=crystal structure en-keyword=fragment molecular orbital method kn-keyword=fragment molecular orbital method en-keyword=interfragment interaction energy kn-keyword=interfragment interaction energy en-keyword=antitumor activity kn-keyword=antitumor activity en-keyword=RNase activity kn-keyword=RNase activity END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=ycaf092 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Methanol chemoreceptor MtpA- and flagellin protein FliC-dependent methylotaxis contributes to the spatial colonization of PPFM in the phyllosphere en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pink-pigmented facultative methylotrophs (PPFMs) capable of growth on methanol are dominant and versatile phyllosphere bacteria that provide positive effects on plant growth through symbiosis. However, the spatial behavior of PPFMs on plant surfaces and its molecular basis are unknown. Here, we show that Methylobacterium sp. strain OR01 inoculated onto red perilla seeds colonized across the entire plant surface in the phyllosphere concomitant with the plant growth. During its transmission, strain OR01 was found to be present on the entire leaf surface with a preference to sites around the periphery, vein, trichome, and stomata. We found that methanol-sensing chemoreceptor MtpA-dependent chemotaxis (methylotaxis; chemotaxis toward methanol) and flagellin protein FliC-dependent motility facilitated the bacterial entry into the stomatal cavity and their colonization in the phyllosphere. en-copyright= kn-copyright= en-aut-name=KatayamaShiori en-aut-sei=Katayama en-aut-mei=Shiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiraishiKosuke en-aut-sei=Shiraishi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KajiKanae en-aut-sei=Kaji en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawabataKazuya en-aut-sei=Kawabata en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraNaoki en-aut-sei=Tamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YurimotoHiroya en-aut-sei=Yurimoto en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakaiYasuyoshi en-aut-sei=Sakai en-aut-mei=Yasuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Department of Anatomy and Histology, School of Medicine, Fukushima Medical University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= en-keyword=PPFM kn-keyword=PPFM en-keyword=methylotaxis kn-keyword=methylotaxis en-keyword=phyllosphere kn-keyword=phyllosphere en-keyword=fluorescenceimaging kn-keyword=fluorescenceimaging en-keyword=bacterialbehavior kn-keyword=bacterialbehavior en-keyword=plant-microbeinteraction kn-keyword=plant-microbeinteraction END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Applicability of Effective Atomic Number (Z eff) Image Analysis of Coronary Plaques Measured With Photon- Counting Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Coronary computed tomography (CT) allows the assessment of cardiovascular risk by imaging calcified plaques in coronary arteries. Because photon-counting CT (PC-CT) can analyze the effective atomic number (Zeff) of the subject, it is expected to be applied to the analysis of plaque components. The purpose of this study was to investigate the applicability of plaque analysis based on Zeff images with continuous gradation.
Methods: Zeff images were generated from virtual monoenergetic images (VMIs) obtained by PC-CT. Zeff values were derived from the difference between linear attenuation coefficients (μ) at low and high energies using an in-house program. Coronary CT images of 64 plaques in 10 patients were analyzed. The Zeff score, calculated as the sum of Zeff values within the plaque region, was calculated and compared with the conventional Agatston score and mean coronary artery calcium (CAC) score.
Results: The systematic uncertainty of Zeff images was estimated to be ±0.08. The Zeff score of actual patient data showed strong positive correlations with the conventional Agatston and mean CAC scores. The Zeff score uses all voxel data in the plaque area, whereas conventional scores consider only data from voxels with a CT value >130. We found that the conventional scores excluded 39% of the plaque area, and the Zeff score permitted the analysis of low- and high-density plaques.
Conclusions: Zeff imaging was shown to be applicable to plaque analysis that reflects the entire plaque volume. This study demonstrated its technical feasibility as a compositional analysis method using the Zeff image. en-copyright= kn-copyright= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitaniMana en-aut-sei=Mitani en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=6 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=10 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=effective atomic number image kn-keyword=effective atomic number image en-keyword=photon-counting computed tomography kn-keyword=photon-counting computed tomography en-keyword=virtual monoenergetic images kn-keyword=virtual monoenergetic images en-keyword=coronary CT kn-keyword=coronary CT en-keyword=coronary plaques kn-keyword=coronary plaques en-keyword=Agatston score kn-keyword=Agatston score END start-ver=1.4 cd-journal=joma no-vol=142 cd-vols= no-issue= article-no= start-page=104967 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu en-subtitle= kn-subtitle= en-abstract= kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria. en-copyright= kn-copyright= en-aut-name=GhadimiDarab en-aut-sei=Ghadimi en-aut-mei=Darab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=F?lster-HolstRegina en-aut-sei=F?lster-Holst en-aut-mei=Regina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Bl?merSophia en-aut-sei=Bl?mer en-aut-mei=Sophia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EbsenMichael en-aut-sei=Ebsen en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=R?ckenChristoph en-aut-sei=R?cken en-aut-mei=Christoph kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BockelmannWilhelm en-aut-sei=Bockelmann en-aut-mei=Wilhelm kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut kn-affil= affil-num=2 en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein kn-affil= affil-num=3 en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein kn-affil= affil-num=4 en-affil=St?dtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology kn-affil= affil-num=5 en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= affil-num=8 en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut kn-affil= en-keyword=Bacterial sialidase kn-keyword=Bacterial sialidase en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Cytokines kn-keyword=Cytokines en-keyword=Infection kn-keyword=Infection en-keyword=Bifidobacteria kn-keyword=Bifidobacteria en-keyword=Phages kn-keyword=Phages END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=9 article-no= start-page=e93012 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250923 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of a Peer-Led International Training Program on Work Motivation Among Early-Career Psychiatrists: A Mixed-Methods Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The Japan Young Psychiatrists Organization (JYPO) has conducted a Course for Academic Development of Psychiatrists (CADP), a peer-led residential international training program, since 2002 to promote the professional development of early-career psychiatrists. This study aimed to evaluate the impact of CADP on participants' work motivation using a psychometric scale and to identify the factors contributing to these changes.
Methods
We conducted a mixed-method study with 23 Japanese participants of the 21st CADP from March 8 to 10, 2024, in Himeji, Japan. Work motivation was assessed using the abbreviated version of the Measure of Multifaceted Work Motivations (MWM-12) at two time points: two weeks before and three months after the course. The total and subitem scores of the MWM-12 were analyzed using the Wilcoxon signed-rank test. Furthermore, free-text responses collected before and after the course were subjected to qualitative analyses.
Results
Significant improvements were observed in the MWM-12 total score from pre-course to post-course. Significant increases were also identified in specific sub-items: M1 (directionality of achievement-oriented motivation), M4 (directionality of competition-oriented motivation), M6 (sustainability of competition-oriented motivation), and M9 (sustainability of cooperation-oriented motivation). Qualitative analysis revealed changes in key categories, including growth as a psychiatrist, personal networking, personal growth, and increased motivation. The integration of quantitative and qualitative findings suggested that enhanced career perspectives (M1), professional growth and peer interaction (M4), and increased self-confidence and support networks (M6 and M9) contributed to improved motivation.
Conclusion
This study demonstrated that a three-day, two-night peer-led training program positively influenced work motivation among early-career psychiatrists. en-copyright= kn-copyright= en-aut-name=ShimizuToshihiro en-aut-sei=Shimizu en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaokaJunko en-aut-sei=Kitaoka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzutaniKen en-aut-sei=Suzutani en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatakeYuto en-aut-sei=Satake en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KodaMasahide en-aut-sei=Koda en-aut-mei=Masahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuramochiIzumi en-aut-sei=Kuramochi en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SartoriusNorman en-aut-sei=Sartorius en-aut-mei=Norman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Psychiatry, Saitama Prefectural Psychiatric Hospital kn-affil= affil-num=2 en-affil=Department of Psychiatry, Fukkoukai Tarumi Hospital kn-affil= affil-num=3 en-affil=Department of Psychiatry, Aizu Medical Center kn-affil= affil-num=4 en-affil=Department of Psychiatry, The University of Osaka kn-affil= affil-num=5 en-affil=Co-learning Community Healthcare Re-innovation Office, Graduate School of Medicine, Okayama University kn-affil= affil-num=6 en-affil=Department of Epileptology and Psychiatry, National Center of Neurology and Psychiatry kn-affil= affil-num=7 en-affil=Psychiatry, Association for the Improvement of Mental Health Programs (AIMHP) kn-affil= en-keyword=cadp kn-keyword=cadp en-keyword=early-career psychiatrists kn-keyword=early-career psychiatrists en-keyword=jypo kn-keyword=jypo en-keyword=peer-led training kn-keyword=peer-led training en-keyword=peer networking kn-keyword=peer networking en-keyword=professional development kn-keyword=professional development en-keyword=professional identity kn-keyword=professional identity en-keyword=work motivation kn-keyword=work motivation END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Disruption of the Enterococcus faecalis?Induced Biofilm on the Intraocular Lens Using Bacteriophages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis?induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis?induced biofilms. en-copyright= kn-copyright= en-aut-name=KishimotoTatsuma en-aut-sei=Kishimoto en-aut-mei=Tatsuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaKen en-aut-sei=Fukuda en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshidaWaka en-aut-sei=Ishida en-aut-mei=Waka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuwanaAozora en-aut-sei=Kuwana en-aut-mei=Aozora kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodokoroDaisuke en-aut-sei=Todokoro en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashiroKenji en-aut-sei=Yamashiro en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=2 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=3 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=4 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= affil-num=8 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= en-keyword=biofilm kn-keyword=biofilm en-keyword=bacteriophage kn-keyword=bacteriophage en-keyword=intraocular lens kn-keyword=intraocular lens en-keyword=endophthalmitis kn-keyword=endophthalmitis en-keyword=cataract kn-keyword=cataract en-keyword=enterococcus faecalis kn-keyword=enterococcus faecalis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2500368 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Integration of Cholesterol Oxidase‐Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1?mM to 1.2?mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061?mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring. en-copyright= kn-copyright= en-aut-name=CuiYang en-aut-sei=Cui en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuoLin en-aut-sei=Zhuo en-aut-mei=Lin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= en-keyword=cholesterol kn-keyword=cholesterol en-keyword=magnetic resonance coupling kn-keyword=magnetic resonance coupling en-keyword=parity-time symmetry kn-keyword=parity-time symmetry en-keyword=smart contact lens kn-keyword=smart contact lens END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=17 article-no= start-page=6049 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photon-Counting CT Enhances Diagnostic Accuracy in Stable Coronary Artery Disease: A Comparative Study with Conventional CT en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and improved tissue characterization. Methods: In this retrospective, propensity score?matched study, we compared CCTA findings from 820 patients (410 per group) who underwent either EID-CT or PCD-CT for suspected stable CAD. Primary outcomes included stenosis severity, high-risk plaque features, and downstream invasive coronary angiography (ICA) referral and yield. Results: The matched cohorts were balanced in demographics and cardiovascular risk factors (mean age 67 years, 63% male). PCD-CT showed a favorable shift in stenosis severity distribution (p = 0.03). High-risk plaques were detected less frequently with PCD-CT (22.7% vs. 30.5%, p = 0.01). Median coronary calcium scores did not differ (p = 0.60). Among patients referred for ICA, those initially evaluated with PCD-CT were more likely to undergo revascularization (62.5% vs. 44.1%), and fewer underwent potentially unnecessary ICA without revascularization (3.7% vs. 8.0%, p = 0.001). The specificity in diagnosing significant stenosis requiring revascularization was 0.74 with EID-CT and 0.81 with PCD-CT (p = 0.04). Conclusions: PCD-CT improved diagnostic specificity for CAD, reducing unnecessary ICA referrals while maintaining detection of clinically significant disease. This advanced CT technology holds promise for more accurate, efficient, and patient-centered CAD evaluation. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraShohei en-aut-sei=Hara en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyagiRyosuke en-aut-sei=Miyagi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=photon-counting CT kn-keyword=photon-counting CT en-keyword=coronary CT angiography kn-keyword=coronary CT angiography en-keyword=diagnostic accuracy kn-keyword=diagnostic accuracy en-keyword=invasive coronary angiography kn-keyword=invasive coronary angiography END start-ver=1.4 cd-journal=joma no-vol=1869 cd-vols= no-issue=12 article-no= start-page=130860 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The F54L mutation of Thioredoxin shows protein instability and increased fluctuations of the catalytic center en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thioredoxin is a ubiquitous redox protein that acts as an electron donor via its conserved dithiol motif (C32GPC35), catalyzing dithiol?disulfide exchange to regulate the redox state of target proteins. It supports antioxidant defense via peroxiredoxins, facilitates DNA synthesis by donating electrons to ribonucleotide reductase, and regulates redox-sensitive signaling pathways, including those controlling transcription and apoptosis. Neuronal degeneration and chronic kidney disease have been observed in Txn-F54L mutant rats; however, the details of why the Txn mutation causes these phenomena remain unknown. The present study aimed to elucidate the functional and structural changes caused by the F54L mutation. The Thioredoxin-F54L showed less insulin-reducing activity and more thermosensitivity to denaturation in the body temperature range compared to the wild type. The crystal structure revealed that F54 forms hydrophobic interactions with the surrounding hydrophobic amino acids. In addition, molecular dynamics simulation predicts increased fluctuations around the F54L mutation and a tendency for the distance between residues C32 and C35 at the catalytic center to be widened. The increased distance between residues C32 and C35 of the catalytic center may affect the reducing activity of the enzyme on the substrate. The finding that Thioredoxin-F54L is prone to denaturation at normal body temperature may reduce the normally functioning Thioredoxin. These molecular characteristics of Thioredoxin-F54L may be related to brain and kidney disease development in the Txn-F54L rats. en-copyright= kn-copyright= en-aut-name=BabaTakumi en-aut-sei=Baba en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UenoGo en-aut-sei=Ueno en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OheChika en-aut-sei=Ohe en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SajiShuku en-aut-sei=Saji en-aut-mei=Shuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoSachiko en-aut-sei=Yamamoto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaHiroshi en-aut-sei=Nakagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiNobuo en-aut-sei=Okazaki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OuchidaMamoru en-aut-sei=Ouchida en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Kawasaki-OhmoriIori en-aut-sei=Kawasaki-Ohmori en-aut-mei=Iori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshitaKohei en-aut-sei=Takeshita en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=2 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=3 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute kn-affil= affil-num=5 en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute kn-affil= affil-num=6 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=7 en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency kn-affil= affil-num=8 en-affil=Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) kn-affil= affil-num=9 en-affil=Department of Molecular Oncology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University kn-affil= affil-num=11 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= en-keyword=Txn kn-keyword=Txn en-keyword=Thioredoxin kn-keyword=Thioredoxin en-keyword=Protein instability kn-keyword=Protein instability en-keyword=Thermosensitivity kn-keyword=Thermosensitivity en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Molecular dynamics simulation kn-keyword=Molecular dynamics simulation END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=9 article-no= start-page=1135 end-page=1151 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC?CXCL1?CXCR2 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1?CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC?CXCL1?CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. en-copyright= kn-copyright= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsukiToshiomi en-aut-sei=Katsuki en-aut-mei=Toshiomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KusumotoDai en-aut-sei=Kusumoto en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoToshiyuki en-aut-sei=Ko en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoMasamichi en-aut-sei=Ito en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriMikako en-aut-sei=Katagiri en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaMasayuki en-aut-sei=Kubota en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaShintaro en-aut-sei=Yamada en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraTakahiro en-aut-sei=Nakamura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AkibaYohei en-aut-sei=Akiba en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoukaThukaa en-aut-sei=Kouka en-aut-mei=Thukaa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KomuroKaoruko en-aut-sei=Komuro en-aut-mei=Kaoruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraMai en-aut-sei=Kimura en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ItoShogo en-aut-sei=Ito en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KomuroIssei en-aut-sei=Komuro en-aut-mei=Issei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaKeiichi en-aut-sei=Fukuda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IedaMasaki en-aut-sei=Ieda en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=5 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=wrae175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax?=?570 nm), whereas GCyR-II absorbed green light (λmax?=?550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria. en-copyright= kn-copyright= en-aut-name=Hasegawa-TakanoMasumi en-aut-sei=Hasegawa-Takano en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosakaToshiaki en-aut-sei=Hosaka en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakajimaYu en-aut-sei=Nakajima en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Ishizuka-KatsuraYoshiko en-aut-sei=Ishizuka-Katsura en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Kimura-SomeyaTomomi en-aut-sei=Kimura-Someya en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShirouzuMikako en-aut-sei=Shirouzu en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=2 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=7 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=8 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=9 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=10 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= en-keyword=cyanobacteria kn-keyword=cyanobacteria en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=ecology kn-keyword=ecology en-keyword=evolution kn-keyword=evolution END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=17 article-no= start-page=8643 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-HMGB1 Antibody Therapy Ameliorates Spinal Cord Ischemia?Reperfusion Injury in Rabbits en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spinal cord ischemia?reperfusion (SCI/R) injury remains a major clinical challenge with limited therapeutic options. High-mobility group box 1 (HMGB1), a proinflammatory mediator released during cellular stress, has been implicated in the pathogenesis of ischemia?reperfusion-induced neural damage. In this study, we investigated the neuroprotective potential of the anti-HMGB1 monoclonal antibody (mAb) in a rabbit model of SCI/R injury. Male New Zealand White rabbits were anesthetized and subjected to 11 min of abdominal aortic occlusion using a micro-bulldog clamp following heparinization. Anti-HMGB1 mAb or control IgG was administered intravenously immediately after reperfusion and again at 6 h post-reperfusion. Neurological function was assessed at 6, 24, and 48 h after reperfusion using the modified Tarlov scoring system. The rabbits were euthanized 48 h after reperfusion for spinal cord and blood sampling. Treatment with anti-HMGB1 mAb significantly improved neurological outcomes, reduced the extent of spinal cord infarction, preserved motor neuron viability, and decreased the presence of activated microglia and infiltrating neutrophils. Furthermore, it attenuated apoptosis, oxidative stress, and inflammatory responses in the spinal cord, and helped maintain the integrity of the blood?spinal cord barrier. These findings suggest that anti-HMGB1 mAb may serve as a promising therapeutic agent for SCI/R injury. en-copyright= kn-copyright= en-aut-name=MuraokaGenya en-aut-sei=Muraoka en-aut-mei=Genya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiYasuhiro en-aut-sei=Fujii en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QiaoHandong en-aut-sei=Qiao en-aut-mei=Handong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OozawaSusumu en-aut-sei=Oozawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Translational Research, Center for Innovative Clinical Medicine, Medical Development Field, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Medical Technology, Faculty of Science, Okayama University of Science kn-affil= affil-num=7 en-affil=Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=thoracoabdominal aortic aneurysm kn-keyword=thoracoabdominal aortic aneurysm en-keyword=spinal cord ischemia?reperfusion injury kn-keyword=spinal cord ischemia?reperfusion injury en-keyword=high mobility group box 1 kn-keyword=high mobility group box 1 en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=blood?spinal cord barrier kn-keyword=blood?spinal cord barrier en-keyword=aortic surgery kn-keyword=aortic surgery END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=6 article-no= start-page=103174 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of a method to predict positioning errors in orthopantomography using cephalography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Various radiographic examinations are used to diagnose diseases and determine treatment plans, and the quality of radiographic images affects diagnostic accuracy. This study assessed the relationship between orthopantomography and cephalometric analysis in predicting positioning errors before orthopantomography.
Methods: This study evaluated four human head phantom types and included 300 patients aged ?18 years who underwent orthopantomography. The correlation between the Frankfort horizontal plane and occlusal plane angles in the orthopantomogram was analyzed. The occlusal plane angle at a Frankfort horizontal plane of 0° was estimated using a linear approximation formula. Frankfort horizontal plane and occlusal plane angles were measured on the cephalograms, and their differences were analyzed for correlation with the occlusal plane angle at a Frankfort horizontal plane of 0° in the corresponding orthopantomograms. The cephalogram’s condylar plane?corpus line angle was also compared with orthopantomogram measurements.
Results: Frankfort horizontal and occlusal plane angles demonstrated a strong negative correlation (r < ?0.9) in phantom studies and moderate negative correlation (r < ?0.4) in clinical orthopantomograms. In the phantoms, the occlusal plane at a Frankfort horizontal of 0° in the orthopantomogram strongly correlated with the difference between the Frankfort horizontal and condylar plane?corpus line angles in the cephalogram.
Conclusion: Adjusting patient positioning based on individual skeletal differences and angles may reduce positioning errors and improve image quality. Cephalogram analysis could help determine an appropriate Frankfort plane angle for each patient when acquiring orthopantomograms.
Implications for practice: Integrating cephalometric analysis into positioning protocols enhances radiographic accuracy, reduces retakes, and improves diagnostic reliability in clinical positioning. This research could improve image quality by identifying reference indicators for orthopantomography by incorporating data from images other than cephalograms, such as computed tomography and magnetic resonance imaging. en-copyright= kn-copyright= en-aut-name=ImajoS. en-aut-sei=Imajo en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaM. en-aut-sei=Honda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanabeY. en-aut-sei=Tanabe en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Cephalogram kn-keyword=Cephalogram en-keyword=Orthopantomogram kn-keyword=Orthopantomogram en-keyword=Panoramic radiography kn-keyword=Panoramic radiography en-keyword=Frankfort horizontal plane kn-keyword=Frankfort horizontal plane en-keyword=Occlusal plane angle kn-keyword=Occlusal plane angle en-keyword=Patient positioning kn-keyword=Patient positioning END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=5 article-no= start-page=2810 end-page=2817 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Geriatric Nutritional Risk Index: A Key Indicator of Perioperative Outcome in Oldest-old Patients With Colorectal Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Colorectal cancer (CRC) presents a significant challenge in oldest-old patients (?85 years), where surgical intervention carries substantial perioperative risks. Nutritional status is a crucial determinant of outcomes, and the Geriatric Nutritional Risk Index (GNRI) has shown promise. This prospective study aimed to validate the GNRI as a key indicator of perioperative outcomes in oldest-old patients undergoing CRC surgery, and to establish its utility in preoperative risk stratification.
Patients and Methods: This prospective study enrolled patients aged ?85 years undergoing elective surgery for CRC. Preoperative GNRI was calculated using the formula: GNRI=14.89×serum albumin (g/dl)+41.7×[actual body weight/ideal body weight (corresponding to body mass index 22)]. Patients were stratified into two groups: GNRI >98 and GNRI ?98. Baseline demographics, clinical characteristics, geriatric assessments (including Geriatric-8 and EuroQol 5 dimension), and postoperative complication rates were analyzed.
Results: Twenty-four patients (median age 88 years, interquartile range=86-91) were included: 11 in the GNRI >98 group and 13 in the GNRI ?98 group. The patients with GNRI >98 demonstrated significantly better G8 scores (median 12 vs. 11, p<0.01) and EQ-5D index values (median 88 vs. 75.0, p<0.01). The postoperative complication rate was significantly higher in the GNRI ?98 group (p=0.02).
Conclusion: Preoperative GNRI effectively identifies oldest-old patients with CRC at increased risk for postoperative complications. A GNRI ?98 correlates with poorer nutritional status and impaired geriatric functional parameters. These findings highlight GNRI’s utility as a simple, valuable tool for preoperative risk stratification, potentially guiding interventions to optimize outcomes in this vulnerable population. en-copyright= kn-copyright= en-aut-name=TERAISHIFUMINORI en-aut-sei=TERAISHI en-aut-mei=FUMINORI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UTSUMIMASASHI en-aut-sei=UTSUMI en-aut-mei=MASASHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YOSHIDAYUSUKE en-aut-sei=YOSHIDA en-aut-mei=YUSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SHOJIRYOHEI en-aut-sei=SHOJI en-aut-mei=RYOHEI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KANAYANOBUHIKO en-aut-sei=KANAYA en-aut-mei=NOBUHIKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MATSUMIYUKI en-aut-sei=MATSUMI en-aut-mei=YUKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SHIGEYASUKUNITOSHI en-aut-sei=SHIGEYASU en-aut-mei=KUNITOSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KONDOYOSHITAKA en-aut-sei=KONDO en-aut-mei=YOSHITAKA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ITAGAKISHIORI en-aut-sei=ITAGAKI en-aut-mei=SHIORI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TAMURARIE en-aut-sei=TAMURA en-aut-mei=RIE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MATSUOKAYOSHIKAZU en-aut-sei=MATSUOKA en-aut-mei=YOSHIKAZU kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FUJIWARATOSHIYOSHI en-aut-sei=FUJIWARA en-aut-mei=TOSHIYOSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=INAGAKIMASARU en-aut-sei=INAGAKI en-aut-mei=MASARU kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Surgery, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=9 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=10 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=11 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Surgery, National Hospital Organization Fukuyama Medical Center kn-affil= en-keyword=Geriatric nutritional risk index kn-keyword=Geriatric nutritional risk index en-keyword=oldest?old kn-keyword=oldest?old en-keyword=colorectal cancer kn-keyword=colorectal cancer en-keyword=short?term outcome kn-keyword=short?term outcome END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=9 article-no= start-page=396 end-page=406 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world Experience of Embolization for Intracranial Tumors in Japan: Analysis of 2,756 Cases from Japanese Registry of NeuroEndovascular Therapy 4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Embolization of intracranial tumors is predominantly performed in Japan, primarily before neurosurgical resection. The Japanese Registry of NeuroEndovascular Therapy (JR-NET) Study Group, established in 2005, aims to clarify the factors influencing the outcomes of neuroendovascular treatment. Japanese Registry of NeuroEndovascular Therapy 4 is a nationwide, multicenter retrospective observational study that evaluates real-world data on intracranial tumor embolization in Japan. Japanese Registry of NeuroEndovascular Therapy 4 is based on data collected from 166 neurosurgical centers in Japan between January 2015 and December 2019. Of 63,230 patients, 2,664 (4.2%) with intracranial tumors underwent embolization. The primary endpoint was the proportion of patients with a modified Rankin scale (mRS) score of 0-2 at 30 days post-procedure. Secondary endpoints included procedure-related complications. Among the 2,664 patients, 61 records lacked sufficient data, leaving 2,603 patients (1,612 females, median age: 61 years [interquartile range 51-71]). The proportion of patients with mRS scores ?2 at 30 days after the procedure was 86.9%. The overall incidence of procedure-related complications was 4.8%, with 1.8% hemorrhagic, 2.0% ischemic, and 1.0% classified as other complications. In the multivariate analysis, general anesthesia and embolization of vessels other than the external carotid artery were identified as risk factors for the development of complications. Meningioma cases had a complication rate of 4.3%, with major complications occurring in 3.5%. Hemangioblastoma cases had a 14.9% complication rate, with major complications at 9.9%. Japanese Registry of NeuroEndovascular Therapy 4 provides comprehensive real-world data on intracranial tumor embolization in Japan, identifying risk factors to inform and improve the safe practice of intracranial tumor embolization in neuroendovascular therapy. en-copyright= kn-copyright= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SOUTOMEYuta en-aut-sei=SOUTOME en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KIMURARyu en-aut-sei=KIMURA en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EDAKIHisanori en-aut-sei=EDAKI en-aut-mei=Hisanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KAWAKAMIMasato en-aut-sei=KAWAKAMI en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TANAKAShota en-aut-sei=TANAKA en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SATOWTetsu en-aut-sei=SATOW en-aut-mei=Tetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IIHARAKoji en-aut-sei=IIHARA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IMAMURAHirotoshi en-aut-sei=IMAMURA en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ISHIIAkira en-aut-sei=ISHII en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MATSUMARUYuji en-aut-sei=MATSUMARU en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SAKAIChiaki en-aut-sei=SAKAI en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YOSHIMURAShinichi en-aut-sei=YOSHIMURA en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SAKAINobuyuki en-aut-sei=SAKAI en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators en-aut-sei=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurosurgery, Kindai University kn-affil= affil-num=13 en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center kn-affil= affil-num=14 en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center kn-affil= affil-num=15 en-affil=Department of Neurosurgery, Juntendo University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Neurosurgery, Institute of Medicine, University of Tsukuba kn-affil= affil-num=17 en-affil=Department of Neurosurgery, Kyoto University kn-affil= affil-num=18 en-affil=Department of Neurosurgery, Hyogo Medical University kn-affil= affil-num=19 en-affil=Department of Neurological Surgery, Shimizu Hospital kn-affil= affil-num=20 en-affil= kn-affil= en-keyword=complication kn-keyword=complication en-keyword=intracranial tumor kn-keyword=intracranial tumor en-keyword=embolization kn-keyword=embolization en-keyword=Japanese registry kn-keyword=Japanese registry END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-blind randomized noninferiority study of the effect of pharyngeal lidocaine anesthesia on EUS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objectives: EUS is typically performed under sedation, often with concomitant analgesics to reduce pain. Traditionally used pharyngeal anesthesia, commonly with lidocaine, may cause pharyngeal discomfort and allergic reactions. This study investigated whether lidocaine-based pharyngeal anesthesia is necessary for EUS under sedation with analgesics.
Methods: A double-blind, randomized, noninferiority study was conducted on EUS cases that met the selection criteria. Patients were randomly assigned to receive either 5 sprays of 8% lidocaine (lidocaine group: LG) or saline spray (placebo group: PG) as endoscopy pretreatment. The primary outcome was EUS tolerability, analyzed separately for endoscopists and patients, with a noninferiority margin set at 15%. Secondary outcomes included endoscopist and patient satisfaction, midazolam/pethidine doses, number of gag events, number of esophageal insertion attempts, use of sedative/analgesic antagonists, interruptions due to body movements, throat symptoms after endoscopy, and sedation-related adverse events.
Results: Favorable tolerance was 85% in LG and 88% for PG among endoscopists (percent difference: 3.0 [95% confidence interval, ?6.6 to 12.6]) and 90% in LG and 91% in PG among patients (percent difference, 0.94 [95% confidence interval, ?7.5 to 9.4]). Both groups exceeded the noninferiority margin (P = 0.0002 for endoscopists and patients). Patient satisfaction was significantly higher in PG (P = 0.0080), but no intergroup differences were found in other secondary outcomes.
Conclusions: PG was noninferior to LG for pharyngeal anesthesia during EUS with sedation and analgesics. These results suggest that pharyngeal anesthesia with lidocaine can be omitted when performing EUS under sedation with concomitant analgesics. Omitting pharyngeal anesthesia with lidocaine may prevent discomfort and complications caused by pharyngeal anesthesia, shorten examination times, and reduce medical costs. en-copyright= kn-copyright= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaKei en-aut-sei=Harada en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HattoriNao en-aut-sei=Hattori en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoRyosuke en-aut-sei=Sato en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObataTaisuke en-aut-sei=Obata en-aut-mei=Taisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=EUS kn-keyword=EUS en-keyword=Lidocaine kn-keyword=Lidocaine en-keyword=Tolerance kn-keyword=Tolerance END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation en-subtitle= kn-subtitle= en-abstract= kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9?MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9?MCAM?ERK?c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK?c-Jun pathway. The S100A8/A9?signaling axis may represent a novel therapeutic target in GC. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PanBo en-aut-sei=Pan en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WuFangping en-aut-sei=Wu en-aut-mei=Fangping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangXu en-aut-sei=Zhang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SagayamaKazumi en-aut-sei=Sagayama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunBei en-aut-sei=Sun en-aut-mei=Bei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=2 en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University kn-affil= affil-num=7 en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=8 en-affil=Faculties of Educational and Research Management Field, Okayama University kn-affil= affil-num=9 en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=S100 protein kn-keyword=S100 protein en-keyword=MCAM kn-keyword=MCAM en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Metastasis kn-keyword=Metastasis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=412 end-page=437 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biophysical regulation of extracellular matrix in systemic lupus erythematosus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by immune dysregulation and multi-organ damage. Recent advances have underscored the critical involvement of extracellular matrix (ECM) biophysical properties in shaping immune cell behavior and metabolic states that contribute to disease progression. This review systematically delineates the pathological remodeling of ECM biophysics in SLE, with a focus on their roles in mechanotransduction, immune-metabolic interplay, and organ-specific tissue injury. By integrating current evidence, we highlight how ECM-derived mechanical cues orchestrate aberrant immune responses and propose new perspectives for targeting ECM-immune crosstalk in the development of organ-specific, mechanism-based therapies for SLE. en-copyright= kn-copyright= en-aut-name=LiQiwei en-aut-sei=Li en-aut-mei=Qiwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiQiang en-aut-sei=Li en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XiaoZhaoyang en-aut-sei=Xiao en-aut-mei=Zhaoyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NARUSEKeiji en-aut-sei=NARUSE en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=systemic lupus erythematosus (SLE) kn-keyword=systemic lupus erythematosus (SLE) en-keyword=extracellular matrix (ECM) kn-keyword=extracellular matrix (ECM) en-keyword=mechanotransduction kn-keyword=mechanotransduction en-keyword=mechanism kn-keyword=mechanism en-keyword=immune regulation kn-keyword=immune regulation en-keyword=fibrosis kn-keyword=fibrosis en-keyword=organ-specific damage kn-keyword=organ-specific damage END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=16 article-no= start-page=2634 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Impact of Gastrointestinal Immune-Related Adverse Events Depends on Nutritional Status in Cancer Patients Treated with Immune Checkpoint Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Gastrointestinal immune-related adverse events (GI-irAEs) are recognized complications of immune checkpoint inhibitors (ICIs), but their prognostic relevance and associated risk factors remain unclear. This study aimed to assess whether baseline nutritional status, measured using the prognostic nutritional index (PNI), modifies the prognostic impact of GI-irAEs, and to identify clinical factors associated with their occurrence. Methods: We retrospectively analyzed 1104 cancer patients treated with ICIs at a single institution. GI-irAEs were defined as gastrointestinal symptoms requiring clinical intervention. Patients were stratified by irAE type and PNI (?40 vs. <40), and differences in survival and treatment response were evaluated. Potential risk factors for developing GI-irAEs were also examined. Results: GI-irAEs occurred in 2.7% of patients and were associated with prolonged overall survival (median: 28.7 vs. 14.0 months) among those with PNI ? 40. This survival advantage was not observed in patients with PNI < 40. The PNI-dependent prognostic pattern was specific to GI-irAEs and not observed for non-GI irAEs. Similar trends were confirmed in 4- and 8-week landmark analyses. Differences in objective response rate and disease control rate by PNI status were most pronounced in patients with GI-irAEs. The use of anti-CTLA-4 antibodies was significantly associated with GI-irAE development (odds ratio 4.24; 95% confidence interval 1.73?10.39). Conclusions: GI-irAEs appear to confer a survival benefit primarily in patients with preserved nutritional status. PNI may serve as a useful tool to contextualize the clinical relevance of GI-irAEs and help identify patients most likely to benefit from immune activation during ICI therapy. en-copyright= kn-copyright= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaEmi en-aut-sei=Tanaka en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SueMasahiko en-aut-sei=Sue en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshikawaTomoki en-aut-sei=Yoshikawa en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MakiYoshie en-aut-sei=Maki en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamioTomohiro en-aut-sei=Kamio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KametakaDaisuke en-aut-sei=Kametaka en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuedaKatsunori en-aut-sei=Matsueda en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakaguchiChihiro en-aut-sei=Sakaguchi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=gastrointestinal immune-related adverse events kn-keyword=gastrointestinal immune-related adverse events en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors en-keyword=prognostic nutrition index kn-keyword=prognostic nutrition index END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250903 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vendor‐Agnostic Vision Transformer‐Based Artificial Intelligence for Peroral Cholangioscopy: Diagnostic Performance in Biliary Strictures Compared With Convolutional Neural Networks and Endoscopists en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Accurate diagnosis of biliary strictures remains challenging. This study aimed to develop an artificial intelligence (AI) system for peroral cholangioscopy (POCS) using a Vision Transformer (ViT) architecture and to evaluate its performance compared to different vendor devices, conventional convolutional neural networks (CNNs), and endoscopists.
Methods: We retrospectively analyzed 125 patients with indeterminate biliary strictures who underwent POCS between 2012 and 2024. AI models including the ViT architecture and two established CNN architectures were developed using images from CHF-B260 or B290 (CHF group; Olympus Medical) and SpyScope DS or DS II (Spy group; Boston Scientific) systems via a patient-level, 3-fold cross-validation. For a direct comparison against endoscopists, a balanced 440-image test set, containing an equal number of images from each vendor, was used for a blinded evaluation.
Results: The 3-fold cross-validation on the entire 2062-image dataset yielded a robust accuracy of 83.9% (95% confidence interval (CI), 80.9?86.7) for the ViT model. The model's accuracy was consistent between CHF (82.7%) and Spy (86.8%, p?=?0.198) groups, and its performance was comparable to the evaluated conventional CNNs. On the 440-image test set, the ViT's accuracy of 78.4% (95% CI, 72.5?83.8) was comparable to that of expert endoscopists (82.0%, p?=?0.148) and non-experts (73.0%, p?=?0.066), with no statistically significant differences observed.
Conclusions: The novel ViT-based AI model demonstrated high vendor-agnostic diagnostic accuracy across multiple POCS systems, achieving performance comparable to conventional CNNs and endoscopists evaluated in this study. en-copyright= kn-copyright= en-aut-name=SatoRyosuke en-aut-sei=Sato en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomiyaMasahiro en-aut-sei=Tomiya en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimotoTakayoshi en-aut-sei=Tanimoto en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtoAkimitsu en-aut-sei=Ohto en-aut-mei=Akimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkiKentaro en-aut-sei=Oki en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KajitaniSatoshi en-aut-sei=Kajitani en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KikuchiTatsuya en-aut-sei=Kikuchi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd kn-affil= affil-num=4 en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd kn-affil= affil-num=5 en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=bile duct neoplasms kn-keyword=bile duct neoplasms en-keyword=cholangioscopy kn-keyword=cholangioscopy en-keyword=computer-assisted diagnosis kn-keyword=computer-assisted diagnosis en-keyword=vision transformer kn-keyword=vision transformer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Alternative Approach Based on Skin Electrical Impedance to Determine Transepidermal Water Loss for Skin Barrier Function Assessments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The transepidermal water loss (TEWL) has long been measured as an indicator to assess the skin barrier function in dermatological research and clinical practice. However, practical limitations such as time requirement, environmental sensitivity, and measurement complexity hinder the widespread uptake of conventional TEWL measurements in clinical settings and routine monitoring. Consequently, there is a growing need for rapid, robust, and clinically applicable alternatives to conventional TEWL measurements. Here, we present a simple, non-invasive, and time-efficient method based on the skin electrical impedance for skin barrier function assessments.
Methods: The skin electrical impedance, TEWL, stratum corneum (SC) thickness, and SC surface water content of 25 healthy adult participants with no history of dermatological diseases were measured at two adjacent forearm sites: intact site with a normal skin barrier and tape-stripped site with an impaired skin barrier. The measured impedance was used to calculate the SC thickness and surface water content, from which the TEWL was estimated and then compared against the TEWL measured using a Tewameter. The estimation accuracy was evaluated by determining the correlation coefficient (R) and root mean square error (RMSE) between estimated and measured TEWL.
Results: A strong correlation (R?=?0.891) was observed between estimated and measured TEWL, with an RMSE of 6.05 g/m?/h, indicating high accuracy of the proposed method.
Conclusion: This impedance-based method provides accurate estimations of the TEWL, indicating its potential as a practical alternative to conventional TEWL measurements for skin barrier function assessments, particularly in clinical or high-throughput settings. en-copyright= kn-copyright= en-aut-name=UeharaOsamu en-aut-sei=Uehara en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakao en-aut-sei=Nakamura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Transepidermal water loss kn-keyword=Transepidermal water loss en-keyword=Electrical impedance kn-keyword=Electrical impedance en-keyword=Stratum corneum kn-keyword=Stratum corneum en-keyword=Skin barrier kn-keyword=Skin barrier END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=8 article-no= start-page=e70325 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cardiotoxicity Assessment of EGFR Tyrosine Kinase Inhibitors Using Human iPS Cell‐Derived Cardiomyocytes and FDA Adverse Events Reporting System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advances in the development of anti-cancer drugs have contributed to prolonged survival of cancer patients. In contrast, drug-induced cardiotoxicity, particularly cardiac contractile dysfunction, is of growing concern in cancer treatment. Therefore, it is important to understand the risks of anti-cancer drug-induced cardiac contractile dysfunction in drug development. We have previously developed image-based motion analysis using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to assess the effect of drugs on contractility. However, the utility and predictive potential of image-based motion analysis using hiPSC-CMs for anti-cancer drug-induced cardiac contractile dysfunction have not been well understood. Here we focused on epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and investigated the correlation between the hiPSC-CMs data and clinical signals of adverse events related to cardiac contractile dysfunction. We examined the effects of the four EGFR-TKIs, osimertinib, gefitinib, afatinib, and erlotinib, on the contractility of hiPSC-CMs using image-based motion analysis. We found that osimertinib decreased contraction velocity and deformation distance in a dose- and time-dependent manner, whereas gefitinib, afatinib, and erlotinib had little effect on these parameters. Next, we examined the real-world data of the EGFR-TKIs using FDA Adverse Event Reporting System (FAERS; JAPIC AERS). Only osimertinib showed significant clinical signals of adverse events related to cardiac contractile dysfunction. These data suggest that hiPSC-CM data correlate with clinical signals in FAERS analysis for four EGFR-TKIs. Thus, image-based motion analysis using hiPSC-CMs can be a useful platform for predicting the risk of anti-cancer drug-induced cardiac contractile dysfunction in patients. en-copyright= kn-copyright= en-aut-name=YanagidaShota en-aut-sei=Yanagida en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawagishiHiroyuki en-aut-sei=Kawagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoMitsuo en-aut-sei=Saito en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaYasunari en-aut-sei=Kanda en-aut-mei=Yasunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= affil-num=2 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= affil-num=3 en-affil=Japan Pharmaceutical Information Center (JAPIC) kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= en-keyword=cardiomyocytes kn-keyword=cardiomyocytes en-keyword=cardiotoxicity kn-keyword=cardiotoxicity en-keyword=contractility kn-keyword=contractility en-keyword=EGFR-tyrosine kinase inhibitor kn-keyword=EGFR-tyrosine kinase inhibitor en-keyword=FAERS kn-keyword=FAERS en-keyword=human iPS cell kn-keyword=human iPS cell END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=40 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time dependent predictors of cardiac inflammatory adverse events in cancer patients receiving immune checkpoint inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Cardio-inflammatory immune related adverse events (irAEs) while receiving immune checkpoint inhibitor (ICI) therapy are particularly consequential due to their associations with poorer treatment outcomes. Evaluation of predictive factors of these serious irAEs with a time dependent approach allows better understanding of patients most at risk.
Objective: To identify different elements of patient data that are significant predictors of early and late-onset or delayed cardio-inflammatory irAEs through various predictive modeling strategies.
Methods: A cohort of patients receiving ICI therapy from January 1, 2010 to May 1, 2022 was identified from TriNetX meeting inclusion/exclusion criteria. Patient data collected included occurrence of early and later cardio-inflammatory irAEs, patient survival time, patient demographic information, ICI therapies, comorbidities, and medication histories. Predictive and statistical modeling approaches identified unique risk factors for early and later developing cardio-inflammatory irAEs.
Results: A cohort of 66,068 patients on ICI therapy were identified in the TriNetX platform; 193 (0.30%) experienced early cardio-inflammatory irAEs and 175 (0.26%) experienced later cardio-inflammatory irAEs. Significant predictors for early irAEs included: anti-PD-1 therapy at index, combination ICI therapy at index, and history of peripheral vascular disease. Significant predictors for later irAEs included: a history of myocarditis and/or pericarditis, cerebrovascular disease, and history of non-steroidal anti-inflammatory medication use.
Conclusions: Cardio-inflammatory irAEs can be divided into clinically meaningful categories of early and late based on time since initiation of ICI therapy. Considering distinct risk factors for early-onset and late-onset events may allow for more effective patient monitoring and risk assessment. en-copyright= kn-copyright= en-aut-name=SayerMichael en-aut-sei=Sayer en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagasakaMisako en-aut-sei=Nagasaka en-aut-mei=Misako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeeBenjamin J. en-aut-sei=Lee en-aut-mei=Benjamin J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohJean en-aut-sei=Doh en-aut-mei=Jean kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PatelPranav M. en-aut-sei=Patel en-aut-mei=Pranav M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiAya F. en-aut-sei=Ozaki en-aut-mei=Aya F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Hematology and Oncology, University of California kn-affil= affil-num=4 en-affil=Department of Pharmacy, University of California Irvine Health kn-affil= affil-num=5 en-affil=Department of Pharmacy, University of California Irvine Health kn-affil= affil-num=6 en-affil=Division of Cardiology, Department of Medicine, University of California kn-affil= affil-num=7 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=8 en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California kn-affil= en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors en-keyword=Immune-Related adverse events kn-keyword=Immune-Related adverse events en-keyword=Myocarditis kn-keyword=Myocarditis en-keyword=Pericarditis kn-keyword=Pericarditis en-keyword=Predictive modeling kn-keyword=Predictive modeling en-keyword=TriNetx kn-keyword=TriNetx END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113260 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Helical X-ray tube trajectory estimation via image noise analysis for enhanced CT dosimetry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Information on the helical trajectory of the X-ray tube is necessary for accurate dose evaluation during computed tomography (CT). We aimed to propose a methodology for analyzing the trajectory of the X-ray tube. The novelty of this paper is that the incident direction of X-rays is estimated from the standard deviation (SD) distribution. The X-ray incident direction for each slice was analyzed using a distribution function of SD values, in which the analysis regions were placed in the air region. Then, the helical trajectory of the CT scan was estimated by fitting a three-dimensional helical function to the analyzed data. The robustness of our algorithm was verified through phantom studies: the analyzed X-ray incident directions were compared with instrumental log data, in which cylindrical polyoxymethylene resin phantoms and a whole-body phantom were scanned. Chest CT scanning was mimicked, in which the field of view (FOV) was set at the lung region. The procedure for analyzing the X-ray incident direction was applicable to cylindrical phantoms regardless of the phantom size. In contrast, in the case of the whole-body phantom, although it was possible to apply our procedure to the chest and abdomen regions, the shoulder slices were inappropriate to analyze. Therefore, the helical trajectory was determined based on chest and abdominal CT images. The accuracy in X-ray incident direction analysis was evaluated to be 7.5°. In conclusion, we have developed an algorithm to estimate a three-dimensional helical trajectory that can be used for dose measurements and simulations. en-copyright= kn-copyright= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaKazuta en-aut-sei=Yamashita en-aut-mei=Kazuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HigashinoKosaku en-aut-sei=Higashino en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorimotoShinichi en-aut-sei=Morimoto en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KonishiTakeshi en-aut-sei=Konishi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MakiMotochika en-aut-sei=Maki en-aut-mei=Motochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=7 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=8 en-affil=Department of Orthopedics, School of Medicine, Tokushima University kn-affil= affil-num=9 en-affil=Shikoku Medical Center for Children and Adults kn-affil= affil-num=10 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=11 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=12 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=13 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=X-ray medical diagnosis kn-keyword=X-ray medical diagnosis en-keyword=Helical CT scan kn-keyword=Helical CT scan en-keyword=CT image kn-keyword=CT image en-keyword=X-ray incident direction kn-keyword=X-ray incident direction en-keyword=Helical trajectory kn-keyword=Helical trajectory en-keyword=Radiation dose measurement kn-keyword=Radiation dose measurement END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=24040 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p? Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (??4) and lower NLR ( Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n?=?61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p? Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy. en-copyright= kn-copyright= en-aut-name=HoriTomoki en-aut-sei=Hori en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoKazuhiro en-aut-sei=Yamamoto en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoTakefumi en-aut-sei=Ito en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkushimaShigeki en-aut-sei=Ikushima en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OmuraTomohiro en-aut-sei=Omura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YanoIkuko en-aut-sei=Yano en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=2 en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center kn-affil= affil-num=4 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=5 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=6 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor en-keyword=Neutrophil-to-lymphocyte ratio kn-keyword=Neutrophil-to-lymphocyte ratio en-keyword=Non-small-cell lung cancer kn-keyword=Non-small-cell lung cancer en-keyword=Proton pump inhibitor kn-keyword=Proton pump inhibitor END start-ver=1.4 cd-journal=joma no-vol=149 cd-vols= no-issue=1 article-no= start-page=36 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250426 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cerebral Braak stage and amygdala granular fuzzy astrocyte status have independent effects on neuronal 3R-tau and 4R-tau accumulations in the olfactory bulb, respectively, in cases with low to intermediate AD neuropathologic change en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MikiTomoko en-aut-sei=Miki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Nakashima-YasudaHanae en-aut-sei=Nakashima-Yasuda en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshizuHideki en-aut-sei=Ishizu en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiTakashi en-aut-sei=Haraguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyashitaAkinori en-aut-sei=Miyashita en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkeuchiTakeshi en-aut-sei=Ikeuchi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaMasato en-aut-sei=Hasegawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishikawaNaoto en-aut-sei=Nishikawa en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakenoshitaShintaro en-aut-sei=Takenoshita en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Medical School kn-affil= affil-num=4 en-affil=Okayama University Medical School kn-affil= affil-num=5 en-affil=Department of Neurology, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=7 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=8 en-affil=Dementia Research Project, Tokyo Metropolitan Institute of Medical Science kn-affil= affil-num=9 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Asymptomatic intracranial vascular lesions and cognitive function in a general population of Japanese men: Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Intracranial subclinical vessel diseases are considered important indicators of cognitive impairment. However, a comprehensive assessment of various types of vessel disease, particularly in Asian populations, is lacking. We aimed to compare multiple types of intracranial vessel disease in association with cognitive function among a community-based Japanese male population. Methods: The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) randomly recruited and examined a community-based cohort of Japanese men from Shiga, Japan. We analyzed those who underwent the Cognitive Abilities Screening Instrument (CASI) assessment and cranial magnetic resonance imaging/angiogram (MRI/MRA) in 2010?2015. Using MRI/MRA, we assessed lacunar infarction, microbleeds, periventricular hyperintensity (PVH), deep subcortical white matter hyperintensity (DSWMH), and intracranial artery stenosis (ICAS). We divided these subclinical cerebrovascular diseases (SCDs) into three categories according to severity. Using linear regression, we calculated the CASI score according to the grade of each vessel disease, adjusted for age and years of education. Results: In the adjusted models, CASI scores were significantly associated with both PVH and DSWMH. Specifically, multivariable-adjusted CASI scores declined across increasing severity categories of DSWMH (91.7, 91.2, and 90.4; p for trend = 0.011) and PVH (91.5, 90.4, and 89.7; p for trend = 0.006). Other SCDs did not show significant associations. In stratified analyses based on the presence or absence of each SCD, both DSWMH and PVH demonstrated significant inverse trends with CASI scores in the absence of lacunar infarcts and microbleeds and in the presence of ICAS. Additionally, among participants with PVH (+), ?moderate ICAS was significantly associated with lower CASI scores. Conclusion: PVH and DSWMH showed significant dose-response relationships with cognitive function among community-based Japanese men. These findings suggest that white matter lesions may be an important indicator of early cognitive impairment, and severe ICAS may also play a role in those with PVH. en-copyright= kn-copyright= en-aut-name=ItoTakahiro en-aut-sei=Ito en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiyoshiAkira en-aut-sei=Fujiyoshi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakayoshi en-aut-sei=Ohkubo en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShiinoAkihiko en-aut-sei=Shiino en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShitaraSatoshi en-aut-sei=Shitara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyagawaNaoko en-aut-sei=Miyagawa en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToriiSayuki en-aut-sei=Torii en-aut-mei=Sayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SegawaHiroyoshi en-aut-sei=Segawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KondoKeiko en-aut-sei=Kondo en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KadotaAya en-aut-sei=Kadota en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TooyamaIkuo en-aut-sei=Tooyama en-aut-mei=Ikuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeYoshiyuki en-aut-sei=Watanabe en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YoshidaKazumichi en-aut-sei=Yoshida en-aut-mei=Kazumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NozakiKazuhiko en-aut-sei=Nozaki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiuraKatsuyuki en-aut-sei=Miura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=The SESSA Research Group en-aut-sei=The SESSA Research Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=2 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=3 en-affil=Department of Hygiene and Public Health, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science kn-affil= affil-num=5 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=6 en-affil=Department of Preventive Medicine and Public Health, Keio University School of Medicine kn-affil= affil-num=7 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=8 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=10 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=11 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=12 en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science kn-affil= affil-num=13 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=14 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=15 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=16 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=17 en-affil= kn-affil= en-keyword=Cognitive impairment kn-keyword=Cognitive impairment en-keyword=Cerebrovascular disease kn-keyword=Cerebrovascular disease en-keyword=Brain magnetic resonance imaging kn-keyword=Brain magnetic resonance imaging en-keyword=White matter lesion kn-keyword=White matter lesion en-keyword=Community-based population study kn-keyword=Community-based population study END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=1 article-no= start-page=e70104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adequacy evaluation of 22‐gauge needle endoscopic ultrasound‐guided tissue acquisition samples and glass slides preparation for successful comprehensive genomic profiling testing: A single institute experience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: This study aimed to evaluate the successful sequencing rate of Foundation One CDx (F1CDx) using small tissue samples obtained with a 22-gauge needle (22G) through endoscopic ultrasound-guided fine needle acquisition (EUS-TA) and to propose guidelines for tissue quantity evaluation criteria and proper slide preparation in clinical practice.
Methods: Between June 2019 and April 2024, 119 samples of 22G EUS-TA collected for F1CDx testing at Himeji Red Cross Hospital were retrospectively reviewed. Tissue adequacy was only assessed based on tumor cell percentage (?20%). The procedure stopped when white tissue fragments reached 20 mm during macroscopic on-site evaluation. The specimens were prepared using both ‘tissue preserving sectioning’ to retain tissue within formalin-fixed paraffin-embedded blocks and the ‘thin sectioning matched needle gauge and tissue length’ method with calculation to ensure minimal unstained slides for the 1 mm3 sample volume criterion. Tissue area from HE slides and sample volume were measured, and F1CDx reports were analyzed.
Results: Of 119 samples, 108 (90.8%) were suitable for F1CDx. Excluding the cases not submitted for testing, in the 45 cases where F1CDx was done using 22G EUS-TA samples, eight (17.8%) had a sum of tissue area tissue of 25 mm2 or greater in the HE-stained sample. However, all cases met the F1CDx 1 mm3 volume criterion by submitting > 30 unstained slides per sample. As a result, 43 of 45 cases (95.6%) were successfully analyzable.
Conclusions: The 22G EUS-TA needle is an effective tool for providing the sufficient tissue volume required for F1CDx. en-copyright= kn-copyright= en-aut-name=NagataniTami en-aut-sei=Nagatani en-aut-mei=Tami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WaniYoji en-aut-sei=Wani en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakataniMasahiro en-aut-sei=Takatani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FushimiSoichiro en-aut-sei=Fushimi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HoriShinichiro en-aut-sei=Hori en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KaiKyohei en-aut-sei=Kai en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkazakiTetsuya en-aut-sei=Okazaki en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TaniokaMaki en-aut-sei=Tanioka en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=5 en-affil=Division of Medical Support, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=7 en-affil=Department of Genetic Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=8 en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital kn-affil= affil-num=12 en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=biliary tract cancer kn-keyword=biliary tract cancer en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=endoscopic ultrasound-guided fine needle aspiration kn-keyword=endoscopic ultrasound-guided fine needle aspiration en-keyword=endoscopic ultrasound-guided fine needle biopsy kn-keyword=endoscopic ultrasound-guided fine needle biopsy en-keyword=pancreatic cancer kn-keyword=pancreatic cancer END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=10 article-no= start-page=2373 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor?stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME. en-copyright= kn-copyright= en-aut-name=AizawaYuka en-aut-sei=Aizawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagaKenta en-aut-sei=Haga en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshibaNagako en-aut-sei=Yoshiba en-aut-mei=Nagako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YortchanWitsanu en-aut-sei=Yortchan en-aut-mei=Witsanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakadaSho en-aut-sei=Takada en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaRintaro en-aut-sei=Tanaka en-aut-mei=Rintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaitoEriko en-aut-sei=Naito en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Ab?Tatsuya en-aut-sei=Ab? en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaruyamaSatoshi en-aut-sei=Maruyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamazakiManabu en-aut-sei=Yamazaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanumaJun-ichi en-aut-sei=Tanuma en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TomiharaKei en-aut-sei=Tomihara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TogoShinsaku en-aut-sei=Togo en-aut-mei=Shinsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IzumiKenji en-aut-sei=Izumi en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=2 en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=3 en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=4 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=5 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=6 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=7 en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=8 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=9 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=10 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=11 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=13 en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University kn-affil= affil-num=15 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= en-keyword=oral cancer kn-keyword=oral cancer en-keyword=cancer-associated fibroblasts kn-keyword=cancer-associated fibroblasts en-keyword=oral mucosa kn-keyword=oral mucosa en-keyword=patient-derived kn-keyword=patient-derived en-keyword=organotypic culture kn-keyword=organotypic culture en-keyword=3D in vitro model kn-keyword=3D in vitro model en-keyword=polarity kn-keyword=polarity END start-ver=1.4 cd-journal=joma no-vol=156 cd-vols= no-issue=2 article-no= start-page=473 end-page=479.e1 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus?like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth?not only in neonates with type I interferonopathy but also in other IEIs, including CGD. en-copyright= kn-copyright= en-aut-name=NihiraHiroshi en-aut-sei=Nihira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaDaisuke en-aut-sei=Nakajima en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IzawaKazushi en-aut-sei=Izawa en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawashimaYusuke en-aut-sei=Kawashima en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShibataHirofumi en-aut-sei=Shibata en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonnoRyo en-aut-sei=Konno en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigashiguchiMotoko en-aut-sei=Higashiguchi en-aut-mei=Motoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoTakayuki en-aut-sei=Miyamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Nishitani-IsaMasahiko en-aut-sei=Nishitani-Isa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiejimaEitaro en-aut-sei=Hiejima en-aut-mei=Eitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HondaYoshitaka en-aut-sei=Honda en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsubayashiTadashi en-aut-sei=Matsubayashi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiharaTakashi en-aut-sei=Ishihara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IwataNaomi en-aut-sei=Iwata en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OhwadaYoko en-aut-sei=Ohwada en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TomotakiSeiichi en-aut-sei=Tomotaki en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawaiMasahiko en-aut-sei=Kawai en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MurakamiKosaku en-aut-sei=Murakami en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhnishiHidenori en-aut-sei=Ohnishi en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IshimuraMasataka en-aut-sei=Ishimura en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=OkadaSatoshi en-aut-sei=Okada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YamashitaMotoi en-aut-sei=Yamashita en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MorioTomohiro en-aut-sei=Morio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=HoshinoAkihiro en-aut-sei=Hoshino en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KaneganeHirokazu en-aut-sei=Kanegane en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=ImaiKohsuke en-aut-sei=Imai en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=NakamuraYasuko en-aut-sei=Nakamura en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=NonoyamaShigeaki en-aut-sei=Nonoyama en-aut-mei=Shigeaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=UchiyamaToru en-aut-sei=Uchiyama en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=OnoderaMasafumi en-aut-sei=Onodera en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=IshikawaTakashi en-aut-sei=Ishikawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KawaiToshinao en-aut-sei=Kawai en-aut-mei=Toshinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=TakitaJunko en-aut-sei=Takita en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NishikomoriRyuta en-aut-sei=Nishikomori en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=OharaOsamu en-aut-sei=Ohara en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=YasumiTakahiro en-aut-sei=Yasumi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= affil-num=1 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=3 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=5 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=7 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Nara Medical University kn-affil= affil-num=14 en-affil=Department of Pediatrics, Okayama University kn-affil= affil-num=15 en-affil=Department of Infection and Immunology, Aichi Children’s Health and Medical Center kn-affil= affil-num=16 en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine kn-affil= affil-num=17 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=22 en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences kn-affil= affil-num=23 en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=24 en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=25 en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=26 en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=27 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=28 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=29 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=30 en-affil=Department of Human Genetics, National Center for Child Health and Development kn-affil= affil-num=31 en-affil=Department of Human Genetics, National Center for Child Health and Development kn-affil= affil-num=32 en-affil=Division of Immunology, National Center for Child Health and Development kn-affil= affil-num=33 en-affil=Division of Immunology, National Center for Child Health and Development kn-affil= affil-num=34 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=35 en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine kn-affil= affil-num=36 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=37 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= en-keyword=Inborn errors of immunity kn-keyword=Inborn errors of immunity en-keyword=interferonopathy kn-keyword=interferonopathy en-keyword=signature kn-keyword=signature en-keyword=proteome kn-keyword=proteome en-keyword=dried blood spot kn-keyword=dried blood spot en-keyword=CGD kn-keyword=CGD en-keyword=WAS kn-keyword=WAS en-keyword=newborn kn-keyword=newborn en-keyword=neonate kn-keyword=neonate END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=roaf042 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis ? secondary publication en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making. en-copyright= kn-copyright= en-aut-name=MiyamaeTakako en-aut-sei=Miyamae en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoNami en-aut-sei=Okamoto en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueYuzaburo en-aut-sei=Inoue en-aut-mei=Yuzaburo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaTomohiro en-aut-sei=Kubota en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EbatoTakasuke en-aut-sei=Ebato en-aut-mei=Takasuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IrabuHitoshi en-aut-sei=Irabu en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamedaHideto en-aut-sei=Kameda en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekoYuko en-aut-sei=Kaneko en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuboHiroshi en-aut-sei=Kubo en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MitsunagaKanako en-aut-sei=Mitsunaga en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriMasaaki en-aut-sei=Mori en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakajimaAyako en-aut-sei=Nakajima en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NishimuraKenichi en-aut-sei=Nishimura en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OhkuboNaoaki en-aut-sei=Ohkubo en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SatoTomomi en-aut-sei=Sato en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SugitaYuko en-aut-sei=Sugita en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakanashiSatoshi en-aut-sei=Takanashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaTakayuki en-aut-sei=Tanaka en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmebayashiHiroaki en-aut-sei=Umebayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamanishiShingo en-aut-sei=Yamanishi en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FusamaMie en-aut-sei=Fusama en-aut-mei=Mie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HirataShintaro en-aut-sei=Hirata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KishimotoMitsumasa en-aut-sei=Kishimoto en-aut-mei=Mitsumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KohnoMasataka en-aut-sei=Kohno en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KojimaMasayo en-aut-sei=Kojima en-aut-mei=Masayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KojimaToshihisa en-aut-sei=Kojima en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MorinobuAkio en-aut-sei=Morinobu en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SugiharaTakahiko en-aut-sei=Sugihara en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=TanakaEiichi en-aut-sei=Tanaka en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YanaiRyo en-aut-sei=Yanai en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KawahitoYutaka en-aut-sei=Kawahito en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=HarigaiMasayoshi en-aut-sei=Harigai en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= affil-num=1 en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety kn-affil= affil-num=3 en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University kn-affil= affil-num=4 en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital kn-affil= affil-num=5 en-affil=Department of Pediatrics, Kitasato University kn-affil= affil-num=6 en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=7 en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University kn-affil= affil-num=8 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=10 en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital kn-affil= affil-num=11 en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University kn-affil= affil-num=12 en-affil=Center for Rheumatic Diseases, Mie University Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Iizuka Hospital kn-affil= affil-num=15 en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science kn-affil= affil-num=16 en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University kn-affil= affil-num=17 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=18 en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital kn-affil= affil-num=19 en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Children’s Hospital kn-affil= affil-num=20 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Pediatrics, Nippon Medical School kn-affil= affil-num=22 en-affil=Health Sciences Department of Nursing, Kansai University of International Studies kn-affil= affil-num=23 en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital kn-affil= affil-num=24 en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine kn-affil= affil-num=25 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=26 en-affil=Graduate School of Medical Sciences, Nagoya City University kn-affil= affil-num=27 en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center kn-affil= affil-num=28 en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=29 en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine kn-affil= affil-num=30 en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University kn-affil= affil-num=31 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=32 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=33 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=34 en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University kn-affil= en-keyword=Clinical practice guidelines kn-keyword=Clinical practice guidelines en-keyword=baricitinib kn-keyword=baricitinib en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) en-keyword=juvenile idiopathic arthritis kn-keyword=juvenile idiopathic arthritis en-keyword=systematic review kn-keyword=systematic review END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page=244 end-page=256 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=Ageing kn-keyword=Ageing en-keyword=Brain function kn-keyword=Brain function en-keyword=Neuroplasticity kn-keyword=Neuroplasticity en-keyword=Neuroprotection kn-keyword=Neuroprotection en-keyword=Cognitive decline kn-keyword=Cognitive decline END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Age-related behavioural abnormalities in C57BL/6.KOR?Apoe shl mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer’s disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyazakiTetsuji en-aut-sei=Miyazaki en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=age kn-keyword=age en-keyword=apolipoprotein kn-keyword=apolipoprotein en-keyword=behavioural test kn-keyword=behavioural test en-keyword=central nervous system kn-keyword=central nervous system en-keyword=mouse kn-keyword=mouse END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rearing in an envy-like environment increases anxiety-like behaviour in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Interest in the societal and psychological harm caused by widespread envy and social comparison is increasing. Envy is associated with anxiety and depression, though the mechanism by which envy affects neuropsychiatric disorders, such as depression, remains unclear. Clarifying the neurobiological basis of envy’s effects on behaviour and emotion regulation in experimental mice is essential for developing disease-prevention and treatment strategies. As mice recognize other mice in neighbouring cages, this study investigated whether they recognize neighbouring cages housed in environmentally enriched cages and suffer psychological stress due to envy. After being raised in an envy-like environment for 3 weeks, we revealed changes in the behaviour of the mice through a series of behavioural experiments. Mice raised in an envious environment showed increased body weight and anxiety-like behaviour but decreased social behaviour and serum corticosterone levels compared to control mice. Thus, mice recognize their neighbouring cages and experience psychological stress due to envy. This study revealed a part of the scientific basis for why envy increased anxiety. Using this novel experimental breeding environment, it may be possible to create an experimental animal model of anxiety disorders. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=behaviour kn-keyword=behaviour en-keyword=anxiety kn-keyword=anxiety en-keyword=mouse kn-keyword=mouse en-keyword=envy kn-keyword=envy en-keyword=rodent kn-keyword=rodent END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue= article-no= start-page=9215607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mice Recognise Mice in Neighbouring Rearing Cages and Change Their Social Behaviour en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mice are social animals that change their behaviour primarily in response to visual, olfactory, and auditory information from conspecifics. Rearing conditions such as cage size and colour are important factors influencing mouse behaviour. In recent years, transparent plastic cages have become standard breeding cages. The advantage of using a transparent cage is that the experimenter can observe the mouse from outside the cage without touching the cage. However, mice may recognise the environment outside the cage and change their behaviour. We speculated that mice housed in transparent cages might recognise mice in neighbouring cages. We used only male mice in this experiment. C57BL/6 mice were kept in transparent rearing cages with open lids, and the cage positions were maintained for 3 weeks. Subsequently, we examined how mice behaved toward cagemate mice, mice from neighbouring cages, and mice from distant cages. We compared the level of interest in mice using a social preference test. Similar to previous reports, subject mice showed a high degree of interest in unfamiliar mice from distant cages. By contrast, subject mice reacted to mice from neighbouring cages as familiar mice, similar to cagemate mice. This suggests that mice housed in transparent cages with open lids perceive the external environment and identify mice in neighbouring cages. Researchers should pay attention to the environment outside the mouse cage, especially for the social preference test. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=1399 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ?50 Years: A Cohort Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ?50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399?2.351), age (ORs = 0.969; 95% CIs: 0.948?0.991), body mass index (?25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467?2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002?1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087?1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD. en-copyright= kn-copyright= en-aut-name=IwaiKomei en-aut-sei=Iwai en-aut-mei=Komei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AzumaTetsuji en-aut-sei=Azuma en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YonenagaTakatoshi en-aut-sei=Yonenaga en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TabataKoichiro en-aut-sei=Tabata en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=4 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=5 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= en-keyword=oral health kn-keyword=oral health en-keyword=liver diseases kn-keyword=liver diseases en-keyword=longitudinal studies kn-keyword=longitudinal studies en-keyword=mastication kn-keyword=mastication en-keyword=physical examination kn-keyword=physical examination en-keyword=surveys and questionnaires kn-keyword=surveys and questionnaires END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=cr.25-0141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Obese Patient with Gastric Diverticulum Undergoing Laparoscopic Sleeve Gastrectomy Guided by Preoperative Endoscopic Measurement: A Case Report and Literature Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=INTRODUCTION: Gastric diverticulum is a rare condition, often asymptomatic and incidentally detected. Laparoscopic sleeve gastrectomy (LSG) is a widely performed bariatric procedure, but a gastric diverticulum complicates surgical planning. In this case, careful preoperative assessment allowed safe execution of LSG despite the diverticulum’s proximity to the esophagogastric junction.
CASE PRESENTATION: A 45-year-old woman (BMI: 46.8 kg/m2) with hypertension, dyslipidemia, and glucose intolerance was referred for bariatric surgery after unsuccessful weight loss with conservative management. Preoperative endoscopy revealed an 18 × 14 mm gastric diverticulum on the posterior wall of the gastric fundus, 40 mm from the esophagogastric junction. LSG was performed using a surgical stapler, ensuring complete diverticulum resection while preserving gastric tube integrity. The surgery was uneventful, with minimal blood loss and a duration of 2 hours and 52 minutes. The patient had an uneventful postoperative course and was discharged on day 9. Her BMI decreased to 39.3 kg/m2 at the 1-year follow-up, with improved metabolic parameters.
CONCLUSIONS: This case highlights the importance of thorough preoperative evaluation when performing LSG in patients with gastric diverticulum. Accurate endoscopic measurement of the diverticulum’s location aids in determining the optimal resection line, ensuring surgical safety and efficacy. Surgeons should remain vigilant when encountering such anatomical variations to optimize outcomes in bariatric surgery. en-copyright= kn-copyright= en-aut-name=HirosunaKensuke en-aut-sei=Hirosuna en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Center for Graduate Medical Education, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=obese patient kn-keyword=obese patient en-keyword=gastric diverticulum kn-keyword=gastric diverticulum en-keyword=sleeve gastrectomy kn-keyword=sleeve gastrectomy en-keyword=metabolic surgery kn-keyword=metabolic surgery en-keyword=bariatric surgery kn-keyword=bariatric surgery en-keyword=endoscopic measurement kn-keyword=endoscopic measurement END start-ver=1.4 cd-journal=joma no-vol=2892 cd-vols= no-issue= article-no= start-page=012002 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal Grain Rotation during Tensile Test of Polycrystalline Pure Titanium Thin Sheet Based on Surface Height and Crystal Orientation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thin sheets and wires of polycrystalline pure titanium are important materials for various devices used in electrical, mechanical, dental, and medical fields. Since pure titanium shows strong anisotropy in elastic and plastic deformation, and the individual grains comprising a polycrystalline body have different orientations and geometries, inhomogeneous deformation always occurs on the microscopic scale. This inhomogeneity is more significant in thin films than in bulk materials. It is therefore important to investigate the inhomogeneous deformation of pure titanium thin sheets to ensure the reliability of various titanium devices. In this study, thin-sheet specimens made of polycrystalline pure titanium were subjected to tensile testing. Inhomogeneous deformation was evaluated on the basis of two kinds of crystal grain rotations based on surface height and crystal orientation. The results under elastic and plastic tensile conditions were compared. en-copyright= kn-copyright= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiHiroaki en-aut-sei=Ohashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activated Clotting Time Requires Adaptation Across Altered Measurement Devices: Determination of Appropriate Range During Atrial Fibrillation Ablation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Methods for measuring activated clotting time (ACT) are not yet standardized.
Objectives: To adjust and compare values between two measurement systems and to optimize ACT during atrial fibrillation (AF) ablation.
Methods: Two systems were compared: electromagnetic detection using a rotating tube (EM system; Hemochron Response) and photo-optical detection using a cartridge immersed in blood (PO system; ACT CA-300TM).
Results: ACT was measured simultaneously in 124 instances in 53 patients before and during AF ablations using both methods. A linear regression analysis showed ACT (EM system)?=?1.19?×?ACT (PO system)?+?9.03 (p? Conclusions: ACT target ranges should be system-specific, and direct extrapolation between devices is not recommended. Adjustment is clinically necessary when switching systems. en-copyright= kn-copyright= en-aut-name=SakanoueHaruna en-aut-sei=Sakanoue en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiHirosuke en-aut-sei=Yamaji en-aut-mei=Hirosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoSayaka en-aut-sei=Okamoto en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkanoKumi en-aut-sei=Okano en-aut-mei=Kumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujitaYuka en-aut-sei=Fujita en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigashiyaShunichi en-aut-sei=Higashiya en-aut-mei=Shunichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KusachiShozo en-aut-sei=Kusachi en-aut-mei=Shozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=2 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=3 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=4 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=5 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=6 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=7 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=8 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=9 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=anticoagulation kn-keyword=anticoagulation en-keyword=heparin kn-keyword=heparin en-keyword=catheter kn-keyword=catheter en-keyword=supraventricular arrhythmia kn-keyword=supraventricular arrhythmia en-keyword=point-of-care testing kn-keyword=point-of-care testing END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=1561628 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250321 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein inhibits TNF-α?induced tube formation in human vascular endothelial cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=10 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=tumor necrosis factor-α kn-keyword=tumor necrosis factor-α en-keyword=integrin kn-keyword=integrin en-keyword=tube formation kn-keyword=tube formation en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=factor erythroid 2-related factor 2 kn-keyword=factor erythroid 2-related factor 2 END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=8 article-no= start-page=1261 end-page=1268 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overview of task shifting guidelines in Japan: from radiologists to radiological technologists en-subtitle= kn-subtitle= en-abstract= kn-abstract=As one of the key pillars of work style reform for physicians, task shifting and sharing from radiologists to radiological technologists has been considered. In May 2021, the Radiological Technologists Act was amended, allowing for the expansion of several duties. Alongside these legal and regulatory changes, a notice from Ministry of Health, Labour and Welfare was issued, highlighting tasks to be particularly promoted under the current system prior to the amendment of the Radiological Technologists Act. These amendments authorize radiological technologists to perform advanced and specialized tasks, such as securing venous access for contrast agent administration, which require significantly higher skill levels than their traditional roles. However, the amended legislation did not include specific guidelines, rules, or considerations for the practical implementation of these new duties in daily medical practice, especially from the perspectives of patient safety and quality of care. To address this, the Japan Radiological Society, the Japanese College of Radiology, and the Japan Association of Radiological Technologists collaborated with other related societies to develop guidelines on five key topics:-Guidelines for Safe Conduct of CT/MRI Contrast-Enhanced Examinations: Considering the expanded scope of practice for radiological technologists. -Guidelines for Safe Conduct of Nuclear Medicine Examinations: Aligned with the expanded responsibilities of radiological technologists. -Guidelines for Clinical application of Image-Guided Radiation Therapy (IGRT). -Guidelines for Safe Conduct of Angiography and Interventional Radiology (IR): Adapted for the expanded roles of radiological technologists. -Guidelines for Reporting Findings of STAT Imaging: Addressing urgent conditions with potential impact on life prognosis. en-copyright= kn-copyright= en-aut-name=KidoAki en-aut-sei=Kido en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhnoKazuko en-aut-sei=Ohno en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaKei en-aut-sei=Yamada en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakadoKoichiro en-aut-sei=Yamakado en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MizowakiTakashi en-aut-sei=Mizowaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AidaNoriko en-aut-sei=Aida en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Oyama-ManabeNoriko en-aut-sei=Oyama-Manabe en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KodamaNaoki en-aut-sei=Kodama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UedaKatsuhiko en-aut-sei=Ueda en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AokiShigeki en-aut-sei=Aoki en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TomiyamaNoriyuki en-aut-sei=Tomiyama en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiology, Toyama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Kyoto University of Medial Science kn-affil= affil-num=3 en-affil=Department of Radiology, Kyoto Prefectural University of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, The Hospital of Hyogo College of Medicine kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University kn-affil= affil-num=7 en-affil=Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Radiology, Jichi Medical University Saitama Medical Center kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare kn-affil= affil-num=10 en-affil=Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare kn-affil= affil-num=11 en-affil=Health Data Science, Department of Radiology/Data Science, Graduate School of Medicine, Juntendo University kn-affil= affil-num=12 en-affil=Department of Radiology, Osaka University Graduate School of Medicine kn-affil= en-keyword=Task shifting and sharing kn-keyword=Task shifting and sharing en-keyword=Radiological technologists kn-keyword=Radiological technologists en-keyword=Guideline kn-keyword=Guideline en-keyword=IGRT kn-keyword=IGRT en-keyword=STAT kn-keyword=STAT END start-ver=1.4 cd-journal=joma no-vol=1863 cd-vols= no-issue= article-no= start-page=149752 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD. en-copyright= kn-copyright= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=National Center Hospital, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimer's disease kn-keyword=Alzheimer's disease en-keyword=Amyloid-beta kn-keyword=Amyloid-beta en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Neumentix kn-keyword=Neumentix en-keyword=Phagocytosis kn-keyword=Phagocytosis en-keyword=Survival rate kn-keyword=Survival rate END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=1 article-no= start-page=144 end-page=156 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lymphadenectomy and chemotherapy are effective treatments for patients with 2023 international federation of gynecology and obstetrics stage IIC-high risk endometrial cancer in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background In early-stage endometrial cancer (EC), the treatment of aggressive histological subtypes (endometrioid carcinoma grade 3, serous carcinoma, clear-cell carcinoma, undifferentiated carcinoma, mixed carcinoma, and carcinosarcoma) is controversial. We aimed to investigate the treatment of patients with International Federation of Gynecology and Obstetrics (FIGO) stage IC and stage IIC EC according to the 2023 classification.
Methods We retrospectively identified patients with FIGO 2023 stage IC, IIC-intermediate risk (IIC-I), and IIC-high risk (IIC-H) EC who underwent adjuvant therapy or observation after surgery at eight medical institutions from 2004 to 2023. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan?Meier estimates and univariate and multivariate analyses.
Results The PFS and OS were significantly worse in patients with FIGO 2023 stage IIC-H EC than in those with FIGO 2023 stage IIC-I EC (PFS: p?=?0.008 and OS: p?=?0.006). According to the FIGO 2023 stage IIC-H classification, lymphadenectomy and chemotherapy resulted in better prognoses regarding both PFS and OS (p? Conclusion Lymphadenectomy and chemotherapy resulted in better prognoses regarding both recurrence and survival in patients with FIGO 2023 stage IIC high-risk EC. en-copyright= kn-copyright= en-aut-name=TaniYoshinori en-aut-sei=Tani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YorimitsuMasae en-aut-sei=Yorimitsu en-aut-mei=Masae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekiNoriko en-aut-sei=Seki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanishiMie en-aut-sei=Nakanishi en-aut-mei=Mie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItouHironori en-aut-sei=Itou en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuMiyuki en-aut-sei=Shimizu en-aut-mei=Miyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoDan en-aut-sei=Yamamoto en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaEtsuko en-aut-sei=Takahara en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Kagawa Rosai Hospital kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, National Organization Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Fukuyama City Hospital kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Endometrial cancer kn-keyword=Endometrial cancer en-keyword=FIGO 2023 kn-keyword=FIGO 2023 en-keyword=Stage IIC high risk kn-keyword=Stage IIC high risk en-keyword=Lymphadenectomy kn-keyword=Lymphadenectomy en-keyword=Chemotherapy kn-keyword=Chemotherapy END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=43 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaHirosato en-aut-sei=Yokoya en-aut-mei=Hirosato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaMasanori en-aut-sei=Hamada en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShiomiShun en-aut-sei=Shiomi en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UeharaTakenori en-aut-sei=Uehara en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fan-shaped pneumatic soft actuator kn-keyword=fan-shaped pneumatic soft actuator en-keyword=ankle-joint rehabilitation device kn-keyword=ankle-joint rehabilitation device en-keyword=hysteresis kn-keyword=hysteresis en-keyword=range of motion kn-keyword=range of motion END start-ver=1.4 cd-journal=joma no-vol=329 cd-vols= no-issue=1 article-no= start-page=L183 end-page=L196 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension. en-copyright= kn-copyright= en-aut-name=ImakiireSatomi en-aut-sei=Imakiire en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuroKeiji en-aut-sei=Kimuro en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaKeimei en-aut-sei=Yoshida en-aut-mei=Keimei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasakiKohei en-aut-sei=Masaki en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IzumiRyo en-aut-sei=Izumi en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImabayashiMisaki en-aut-sei=Imabayashi en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeTakanori en-aut-sei=Watanabe en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshikawaTomohito en-aut-sei=Ishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HosokawaKazuya en-aut-sei=Hosokawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushimaShouji en-aut-sei=Matsushima en-aut-mei=Shouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HashimotoToru en-aut-sei=Hashimoto en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShinoharaKeisuke en-aut-sei=Shinohara en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatsukiShunsuke en-aut-sei=Katsuki en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatobaTetsuya en-aut-sei=Matoba en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HiranoKatsuya en-aut-sei=Hirano en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsutsuiHiroyuki en-aut-sei=Tsutsui en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AbeKohtaro en-aut-sei=Abe en-aut-mei=Kohtaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Okayama University kn-affil= affil-num=16 en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= en-keyword=factor Xa kn-keyword=factor Xa en-keyword=IL-6 kn-keyword=IL-6 en-keyword=proteinase-activated receptor kn-keyword=proteinase-activated receptor en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=pulmonary hypertension kn-keyword=pulmonary hypertension END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=e70090 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in body mass index during early childhood on school‐age asthma prevalence classified by phenotypes and sex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Few studies have explored the relationship between changes in body mass index(BMI) during early childhood and asthma prevalence divided by phenotypes and sex, and the limited results are conflicting. This study assessed the impact of BMI changes during early childhood on school-age asthma, classified by phenotypes and sex, using a nationwide longitudinal survey in Japan.
Methods: From children born in 2001 (n =?47,015), we divided participants into BMI quartiles (Q1, Q2, Q3, and Q4) and the following BMI categories: Q1Q1 (i.e., Q1 at birth and Q1 at age 7), Q1Q4, Q4Q1, Q4Q4, and others. Asthma history from ages 7 to 8 was analyzed, with bronchial asthma (BA) further categorized as allergic asthma (AA) or nonallergic asthma (NA) based on the presence of other allergic diseases. Using logistic regression, we estimated the asthma odds ratio (OR) and 95% confidence intervals (CIs) for each BMI category.
Results: Q1Q4 showed significantly higher risks of BA, AA, and NA. In boys, BA and NA risks were significantly higher in Q1Q4 (adjusted OR: 1.47 [95% CI: 1.17?1.85], at 1.56 [95% CI: 1.16?2.1]), with no significant difference in AA risk. In girls, no increased asthma risk was observed in Q1Q4, but AA risk was significantly higher in Q4Q4 (adjusted OR: 1.78 [95% CI: 1.21?2.6]).
Conclusion: Our results demonstrated that BMI changes during early childhood impact asthma risks, particularly that the risk of NA in boys increases with BMI changes during early childhood, and the risk of AA in girls increases with consistently high BMI. en-copyright= kn-copyright= en-aut-name=YabuuchiToshihiko en-aut-sei=Yabuuchi en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=asthma kn-keyword=asthma en-keyword=body mass index kn-keyword=body mass index en-keyword=child kn-keyword=child en-keyword=phenotypes kn-keyword=phenotypes en-keyword=sex kn-keyword=sex END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=2 article-no= start-page=282 end-page=289 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240917 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port? MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period ( Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6?±?13.1 years; range, 18?85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2?±?10.9 min (range 15?112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n?=?8) and subcutaneous bleeding (n?=?1), Grade II arrhythmia (n?=?1), and Grade IIIa pneumothorax (n?=?1). Furthermore, 496 patients were followed up for???30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n?=?4), catheter occlusion (n?=?1), and skin necrosis due to subcutaneous leakage of trabectedin (n?=?1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath. en-copyright= kn-copyright= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamotoSoichiro en-aut-sei=Okamoto en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MunetomoKazuaki en-aut-sei=Munetomo en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Central venous catheters kn-keyword=Central venous catheters en-keyword=Vascular access device kn-keyword=Vascular access device en-keyword=Treatment outcome kn-keyword=Treatment outcome en-keyword=Safety kn-keyword=Safety END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=7661 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design. en-copyright= kn-copyright= en-aut-name=ImDohyun en-aut-sei=Im en-aut-mei=Dohyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JormakkaMika en-aut-sei=Jormakka en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JugeNarinobu en-aut-sei=Juge en-aut-mei=Narinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KishikawaJun-ichi en-aut-sei=Kishikawa en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTakayuki en-aut-sei=Kato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugitaYukihiko en-aut-sei=Sugita en-aut-mei=Yukihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NodaTakeshi en-aut-sei=Noda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UemuraTomoko en-aut-sei=Uemura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShiimuraYuki en-aut-sei=Shiimura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaHidetsugu en-aut-sei=Asada en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=2 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=3 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Biology, Kyoto Institute of Technology kn-affil= affil-num=5 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=6 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=7 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=9 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=10 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=11 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=12 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=5 article-no= start-page=567 end-page=579 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ChatGPT Responses to Clinical Questions in the Japan Atherosclerosis Society Guidelines for Prevention of Atherosclerotic Cardiovascular Disease 2022 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: Artificial intelligence is increasingly used in the medical field. We assessed the accuracy and reproducibility of responses by ChatGPT to clinical questions (CQs) in the Japan Atherosclerosis Society Guidelines for Prevention Atherosclerotic Cardiovascular Diseases 2022 (JAS Guidelines 2022).
Methods: In June 2024, we assessed responses by ChatGPT (version 3.5) to CQs, including background questions (BQs) and foreground questions (FQs). Accuracy was assessed independently by three researchers using six-point Likert scales ranging from 1 (“completely incorrect”) to 6 (“completely correct”) by evaluating responses to CQs in Japanese or translated into English. For reproducibility assessment, responses to each CQ asked five times separately in a new chat were scored using six-point Likert scales, and Fleiss kappa coefficients were calculated.
Results: The median (25th?75th percentile) score for ChatGPT’s responses to BQs and FQs was 4 (3?5) and 5 (5?6) for Japanese CQs and 5 (3?6) and 6 (5?6) for English CQs, respectively. Response scores were higher for FQs than those for BQs (P values <0.001 for Japanese and English). Similar response accuracy levels were observed between Japanese and English CQs (P value 0.139 for BQs and 0.586 for FQs). Kappa coefficients for reproducibility were 0.76 for BQs and 0.90 for FQs.
Conclusions: ChatGPT showed high accuracy and reproducibility in responding to JAS Guidelines 2022 CQs, especially FQs. While ChatGPT primarily reflects existing guidelines, its strength could lie in rapidly organizing and presenting relevant information, thus supporting instant and more efficient guideline interpretation and aiding in medical decision-making. en-copyright= kn-copyright= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Autonomic intelligence kn-keyword=Autonomic intelligence en-keyword=ChatGPT kn-keyword=ChatGPT en-keyword=Accuracy kn-keyword=Accuracy en-keyword=Reproducibility kn-keyword=Reproducibility en-keyword=Guidelines kn-keyword=Guidelines END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N?=?205) or arm B (N?=?202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69?1.07, one-sided p?=?0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33?0.53, p? Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151). en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AogiKenjiro en-aut-sei=Aogi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanagidaYasuhiro en-aut-sei=Yanagida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuneizumiMichiko en-aut-sei=Tsuneizumi en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoNaohito en-aut-sei=Yamamoto en-aut-mei=Naohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoHiroshi en-aut-sei=Matsumoto en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SutoAkihiko en-aut-sei=Suto en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WatanabeKenichi en-aut-sei=Watanabe en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraoMichiko en-aut-sei=Harao en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KanbayashiChizuko en-aut-sei=Kanbayashi en-aut-mei=Chizuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ItohMitsuya en-aut-sei=Itoh en-aut-mei=Mitsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KadoyaTakayuki en-aut-sei=Kadoya en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AnanKeisei en-aut-sei=Anan en-aut-mei=Keisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaShigeto en-aut-sei=Maeda en-aut-mei=Shigeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SasakiKeita en-aut-sei=Sasaki en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OgawaGakuto en-aut-sei=Ogawa en-aut-mei=Gakuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SajiShigehira en-aut-sei=Saji en-aut-mei=Shigehira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaHaruhiko en-aut-sei=Fukuda en-aut-mei=Haruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Okayama University Hospital kn-affil= affil-num=2 en-affil=Cancer Institute Hospital kn-affil= affil-num=3 en-affil=National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Shizuoka General Hospital kn-affil= affil-num=5 en-affil=Gunma Prefectural Cancer Center kn-affil= affil-num=6 en-affil=Chiba Prefectural Cancer Center kn-affil= affil-num=7 en-affil=Saitama Prefectural Cancer Center kn-affil= affil-num=8 en-affil=National Cancer Center Hospital kn-affil= affil-num=9 en-affil=Hokkaido Cancer Center kn-affil= affil-num=10 en-affil=Jichi Medical University Hospital kn-affil= affil-num=11 en-affil=Niigata Prefectural Cancer Center kn-affil= affil-num=12 en-affil=Hiroshima City Hiroshima Citizen’s Hospital kn-affil= affil-num=13 en-affil=Hiroshima University Hospital kn-affil= affil-num=14 en-affil=Kitakyushu Municipal Medical Center kn-affil= affil-num=15 en-affil=Nagasaki Municipal Medical Center kn-affil= affil-num=16 en-affil=National Cancer Center Hospital kn-affil= affil-num=17 en-affil=National Cancer Center Hospital kn-affil= affil-num=18 en-affil=Fukushima Medical University kn-affil= affil-num=19 en-affil=National Cancer Center Hospital kn-affil= affil-num=20 en-affil=Aichi Cancer Center Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=4 article-no= start-page=630 end-page=637 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immediate breast reconstruction surgery for breast cancer: current status and future directions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Immediate breast reconstruction (IBR) has become increasingly recognized in Japan as an important component of breast cancer care, improving patients’ quality of life after mastectomy. While the adoption of IBR is growing, the reconstruction rate in Japan remains lower than in Western countries. To clarify the current practice and challenges, the Japanese Breast Cancer Society (JBCS) conducted a nationwide survey.
Methods We conducted a comprehensive web-based questionnaire survey among all JBCS-certified institutions between December 2020 and February 2021. The survey assessed institutional capabilities, surgical techniques, decision-making criteria for BR, and the integration of adjuvant therapy.
Results A total of 429 institutions responded, with 72.5% offering BR and 61.7% capable of providing immediate reconstruction. Nipple-sparing mastectomy (NSM) was performed at 73.7% of institutions offering reconstruction. Multidisciplinary conferences with plastic surgeons were held at 70.5% of institutions. Approximately 30% of institutions discontinued IBR if sentinel lymph node metastases were detected intraoperatively, and 62.8% avoided recommending IBR for patients likely to require postoperative radiation therapy. In 94% of institutions, BR did not cause delays in the administration of adjuvant chemotherapy. However, 15% of institutions modified their radiation therapy approach in reconstructed patients. Additionally, 27% of physicians still believed that BR could negatively affect prognosis.
Conclusions The survey confirmed that IBR is widely performed and feasible in Japan. However, institutional differences, limited access to plastic surgeons, and persistent misconceptions remain significant barriers. Strengthening multidisciplinary collaboration and establishing standardized guidelines will help improve BR rates and patient outcomes in Japan. en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NogiHiroko en-aut-sei=Nogi en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgiyaAkiko en-aut-sei=Ogiya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshitobiMakoto en-aut-sei=Ishitobi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamauchiChikako en-aut-sei=Yamauchi en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimoAyaka en-aut-sei=Shimo en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaruiKazutaka en-aut-sei=Narui en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaguraNaomi en-aut-sei=Nagura en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SekiHirohito en-aut-sei=Seki en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TerataKaori en-aut-sei=Terata en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaigaMiho en-aut-sei=Saiga en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UchidaTatsuya en-aut-sei=Uchida en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SasadaShinsuke en-aut-sei=Sasada en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakuraiTeruhisa en-aut-sei=Sakurai en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NiikuraNaoki en-aut-sei=Niikura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MoriHiroki en-aut-sei=Mori en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Breast and Endocrine Surgery, The Jikei University School of Medicine kn-affil= affil-num=3 en-affil=Department of Breast Surgery, Japanese Red Cross Medical Center kn-affil= affil-num=4 en-affil=Department of Breast Surgery, Mie University School of Medicine kn-affil= affil-num=5 en-affil=Department of Radiation Oncology, Shiga General Hospital kn-affil= affil-num=6 en-affil=Department of Breast and Endocrine Surgery, St. Marianna University School of Medicine kn-affil= affil-num=7 en-affil=Department of Breast and Thyroid Surgery, Medical Center, Yokohama City University kn-affil= affil-num=8 en-affil=Department of Breast Surgical Oncology, St Luke’s International Hospital kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Kyorin University School of Medicine kn-affil= affil-num=10 en-affil=Department of Breast and Endocrine Surgery, Akita University Hospital kn-affil= affil-num=11 en-affil=Department of Plastic Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Plastic Surgery, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= affil-num=14 en-affil=Sakurai Breast Clinic kn-affil= affil-num=15 en-affil=Department of Breast Oncology, Tokai University School of Medicine kn-affil= affil-num=16 en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Immediate reconstruction surgery kn-keyword=Immediate reconstruction surgery en-keyword=Prognosis kn-keyword=Prognosis en-keyword=Complications kn-keyword=Complications END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=2 article-no= start-page=53 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE?2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE?2H2O (1?100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE?2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE?2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE?2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER. en-copyright= kn-copyright= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiyamaChiharu en-aut-sei=Nishiyama en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagoshiTakeru en-aut-sei=Nagoshi en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakoAkane en-aut-sei=Miyako en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoSuzuka en-aut-sei=Ono en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MisawaIchika en-aut-sei=Misawa en-aut-mei=Ichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IsseAika en-aut-sei=Isse en-aut-mei=Aika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TomimotoKana en-aut-sei=Tomimoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZenshoKazumasa en-aut-sei=Zensho en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=6 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=7 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=BADGE kn-keyword=BADGE en-keyword=neurite outgrowth kn-keyword=neurite outgrowth en-keyword=estrogen receptor kn-keyword=estrogen receptor en-keyword=GPER kn-keyword=GPER en-keyword=Hes1 kn-keyword=Hes1 en-keyword=neurogenin-3 kn-keyword=neurogenin-3 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=e003250 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM?defined as LVEF of ?45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ?14/mm?, including ?4 monocytes/mm?, with CD3+ T lymphocytes of?7/mm?. Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan?Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm? (low); 13 of 13.1?23.9/mm? (moderate); and T lymphocytes of ?24?/mm? (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ?5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM. en-copyright= kn-copyright= en-aut-name=NakayamaTakafumi en-aut-sei=Nakayama en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgoKeiko Ohta en-aut-sei=Ogo en-aut-mei=Keiko Ohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuganoYasuo en-aut-sei=Sugano en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokokawaTetsuro en-aut-sei=Yokokawa en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanamoriHiromitsu en-aut-sei=Kanamori en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaYoshihiko en-aut-sei=Ikeda en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiroeMichiaki en-aut-sei=Hiroe en-aut-mei=Michiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HatakeyamaKinta en-aut-sei=Hatakeyama en-aut-mei=Kinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Ishibashi-UedaHatsue en-aut-sei=Ishibashi-Ueda en-aut-mei=Hatsue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DohiKaoru en-aut-sei=Dohi en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AnzaiToshihisa en-aut-sei=Anzai en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SeoYoshihiro en-aut-sei=Seo en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Imanaka-YoshidaKyoko en-aut-sei=Imanaka-Yoshida en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=3 en-affil=Department of Cardiology, Keiyu Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Fukushima Medical University kn-affil= affil-num=5 en-affil=Department of Cardiology, Gifu University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=7 en-affil=Department of Cardiology, National Center for Global Health and Medicine kn-affil= affil-num=8 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=9 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=10 en-affil=Center for Advanced Heart Failure, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=14 en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=64 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating a discretized data acquisition method for couch modeling to streamline the commissioning process of radiological instruments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The commissioning of radiotherapy treatment planning system (RTPS) involves many time-consuming tests to maintain consistency between actual and planned dose. As the number of new technologies and peripheral devices increases year by year, there is a need for time-efficient and accurate commissioning of radiation therapy equipment. Couch modeling is one type of commissioning, and there are no recommended values for CT due to differences in equipment calibration between facilities. This study evaluated the optimal electron density (ED) for the couch using discretized gantry angles.
Results All discrete-angle groups showed a high correlation between the surface ED and dose difference between the actual and planned doses (|r|>?0.9). AcurosXB did not demonstrate a significant correlation between dose differences and each energy. For a small number of discretized gantry groups, the optimal couch modeling results revealed several combinations of surface and interior ED with the same score. Upon adding all couch thickness scores, all energy scores, and both algorithm scores, the optimal surface and interior EDs with the highest score across all couch thicknesses were 0.4 and 0.07, respectively.
Conclusions The optimal couch surface ED dose difference trend was identified, and the effectiveness indicated using the dose difference score from discrete-angle couch modeling. Using this method, couch modeling can be evaluated in a highly precise and quick manner, which helps in the commissioning of complicated linear accelerator and radiological treatment plans. en-copyright= kn-copyright= en-aut-name=TomimotoSyouta en-aut-sei=Tomimoto en-aut-mei=Syouta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiYusuke en-aut-sei=Saeki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotodaOkihiro en-aut-sei=Motoda en-aut-mei=Okihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsumotoSyouki en-aut-sei=Tsumoto en-aut-mei=Syouki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaHana en-aut-sei=Nishikawa en-aut-mei=Hana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyashimaYuki en-aut-sei=Miyashima en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiguchiMakiko en-aut-sei=Higuchi en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniTadashi en-aut-sei=Tani en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, Kawasaki Medical School kn-affil= affil-num=11 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Couch modeling kn-keyword=Couch modeling en-keyword=Commissioning kn-keyword=Commissioning en-keyword=Attenuation of couch kn-keyword=Attenuation of couch en-keyword=Linear accelerator kn-keyword=Linear accelerator en-keyword=Radiotherapy planning system kn-keyword=Radiotherapy planning system END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=606 end-page=617 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions. en-copyright= kn-copyright= en-aut-name=KawagoeSoichiro en-aut-sei=Kawagoe en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiMotonori en-aut-sei=Matsusaki en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MabuchiTakuya en-aut-sei=Mabuchi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgasawaraYuto en-aut-sei=Ogasawara en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshimoriKoichiro en-aut-sei=Ishimori en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaioTomohide en-aut-sei=Saio en-aut-mei=Tomohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=2 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Chemistry, Faculty of Science, Hokkaido University kn-affil= affil-num=7 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= en-keyword=heat shock factor 1 kn-keyword=heat shock factor 1 en-keyword=oxidative hyper-oligomerization kn-keyword=oxidative hyper-oligomerization en-keyword=biological phase transition kn-keyword=biological phase transition en-keyword=stress response kn-keyword=stress response en-keyword=biophysics kn-keyword=biophysics END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=15 article-no= start-page=2290 end-page=2294 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas. en-copyright= kn-copyright= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HinoRimi en-aut-sei=Hino en-aut-mei=Rimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujinoGo en-aut-sei=Fujino en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaiYuto en-aut-sei=Sakai en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=K. IwataNobue en-aut-sei=K. Iwata en-aut-mei=Nobue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital kn-affil= affil-num=6 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital kn-affil= affil-num=9 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=cerebellar ataxia kn-keyword=cerebellar ataxia en-keyword=spastic paraparesis kn-keyword=spastic paraparesis en-keyword=whole-exome sequence analysis kn-keyword=whole-exome sequence analysis en-keyword=SPG7 kn-keyword=SPG7 END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=10 article-no= start-page=1151 end-page=1159 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers. en-copyright= kn-copyright= en-aut-name=Furuya-IkudeChiemi en-aut-sei=Furuya-Ikude en-aut-mei=Chiemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KittaAkane en-aut-sei=Kitta en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNaoko en-aut-sei=Tomonobu en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawasakiYoshihiro en-aut-sei=Kawasaki en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=2 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= en-keyword=NCF-1 (p47phox) kn-keyword=NCF-1 (p47phox) en-keyword=ROS kn-keyword=ROS en-keyword=Cancer kn-keyword=Cancer en-keyword=Tumor growth kn-keyword=Tumor growth en-keyword=Apoptosis kn-keyword=Apoptosis END start-ver=1.4 cd-journal=joma no-vol=472 cd-vols= no-issue= article-no= start-page=123486 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs. en-copyright= kn-copyright= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChoTakusei en-aut-sei=Cho en-aut-mei=Takusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakiyamaYoshio en-aut-sei=Sakiyama en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumiKensho en-aut-sei=Sumi en-aut-mei=Kensho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchioNaohiro en-aut-sei=Uchio en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatakeAkane en-aut-sei=Satake en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakiyamaYoshihisa en-aut-sei=Takiyama en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsushitaTakuya en-aut-sei=Matsushita en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OmaeYosuke en-aut-sei=Omae en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KawaiYosuke en-aut-sei=Kawai en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TokunagaKatsushi en-aut-sei=Tokunaga en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University kn-affil= affil-num=7 en-affil=Department of Neurology, Mitsui Memorial Hospital kn-affil= affil-num=8 en-affil=Department of Neurology, Mitsui Memorial Hospital kn-affil= affil-num=9 en-affil=Department of Neurology, Fuefuki Central Hospital kn-affil= affil-num=10 en-affil=Department of Neurology, Fuefuki Central Hospital kn-affil= affil-num=11 en-affil=Department of Neurology, Kochi Medical School, Kochi University kn-affil= affil-num=12 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=13 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=14 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=15 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=17 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=Leukodystrophy kn-keyword=Leukodystrophy en-keyword=CC2L kn-keyword=CC2L en-keyword=CLCN2 kn-keyword=CLCN2 en-keyword=MCP sign kn-keyword=MCP sign END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=e261 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization en-subtitle= kn-subtitle= en-abstract= kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC. en-copyright= kn-copyright= en-aut-name=KatadaChikatoshi en-aut-sei=Katada en-aut-mei=Chikatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyamaTetsuji en-aut-sei=Yokoyama en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanoTomonori en-aut-sei=Yano en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHaruhisa en-aut-sei=Suzuki en-aut-mei=Haruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FurueYasuaki en-aut-sei=Furue en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKeiko en-aut-sei=Yamamoto en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoyamaHisashi en-aut-sei=Doyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoikeTomoyuki en-aut-sei=Koike en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaokiMasashi en-aut-sei=Tamaoki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawataNoboru en-aut-sei=Kawata en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HiraoMotohiro en-aut-sei=Hirao en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OgataTakashi en-aut-sei=Ogata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatagiriAtsushi en-aut-sei=Katagiri en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamanouchiTakenori en-aut-sei=Yamanouchi en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KiyokawaHirofumi en-aut-sei=Kiyokawa en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KawakuboHirofumi en-aut-sei=Kawakubo en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KonnoMaki en-aut-sei=Konno en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YokoyamaAkira en-aut-sei=Yokoyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhashiShinya en-aut-sei=Ohashi en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=KondoYuki en-aut-sei=Kondo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KishimotoYo en-aut-sei=Kishimoto en-aut-mei=Yo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KanoKoichi en-aut-sei=Kano en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MureKanae en-aut-sei=Mure en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=HayashiRyuichi en-aut-sei=Hayashi en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IshikawaHideki en-aut-sei=Ishikawa en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=YokoyamaAkira en-aut-sei=Yokoyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MutoManabu en-aut-sei=Muto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=2 en-affil=Department of Health and Promotion, National Institute of Public Health kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East kn-affil= affil-num=4 en-affil=Endoscopy Division, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=6 en-affil=Division of Endoscopy, Hokkaido University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=10 en-affil=Division of Endoscopy, Shizuoka Cancer Center kn-affil= affil-num=11 en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology, Kanagawa Cancer Center kn-affil= affil-num=14 en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center kn-affil= affil-num=16 en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine kn-affil= affil-num=17 en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital kn-affil= affil-num=18 en-affil=Department of Gastroenterology, Tochigi Cancer Center kn-affil= affil-num=19 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=20 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=21 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=22 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital kn-affil= affil-num=23 en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine kn-affil= affil-num=24 en-affil=Department of Public Health, Wakayama Medical University School of Medicine kn-affil= affil-num=25 en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East kn-affil= affil-num=26 en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine kn-affil= affil-num=27 en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center kn-affil= affil-num=28 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= en-keyword=alcohol kn-keyword=alcohol en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=field cancerization kn-keyword=field cancerization en-keyword=head and neck cancer kn-keyword=head and neck cancer en-keyword=JEC study kn-keyword=JEC study END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=8 article-no= start-page=e18026 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Commissioning of respiratory‐gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%?50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0?10.0 mm (10.0?20.0 mm target motions) and periods of 3?6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a ± 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 ± 0.2% and 98.2 ± 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of ±10% and both spill and gate time delays of ±0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within ±5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps. en-copyright= kn-copyright= en-aut-name=TominagaYuki en-aut-sei=Tominaga en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakisakaYushi en-aut-sei=Wakisaka en-aut-mei=Yushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoTakahiro en-aut-sei=Kato en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiharaMasaya en-aut-sei=Ichihara en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasuiKeisuke en-aut-sei=Yasui en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiMotoharu en-aut-sei=Sasaki en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishioTeiji en-aut-sei=Nishio en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic kn-affil= affil-num=2 en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic kn-affil= affil-num=3 en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University kn-affil= affil-num=4 en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka kn-affil= affil-num=5 en-affil=School of Medical Sciences, Fujita Health University kn-affil= affil-num=6 en-affil=Graduate School of Biomedical Sciences, Tokushima University kn-affil= affil-num=7 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka kn-affil= en-keyword=4D dynamic dose kn-keyword=4D dynamic dose en-keyword=interplay effect kn-keyword=interplay effect en-keyword=pencil beam scanning kn-keyword=pencil beam scanning en-keyword=proton therapy kn-keyword=proton therapy en-keyword=respiratory gating kn-keyword=respiratory gating END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=113243 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays ? An application of an energy-resolving photon-counting detector (ERPCD) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30?40 keV) and high (40?60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5?20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5?20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast. en-copyright= kn-copyright= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabaTomonobu en-aut-sei=Haba en-aut-mei=Tomonobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University kn-affil= affil-num=8 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Medical X-ray diagnosis kn-keyword=Medical X-ray diagnosis en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=High contrast image kn-keyword=High contrast image en-keyword=Virtual monochromatic image kn-keyword=Virtual monochromatic image en-keyword=Effective atomic number kn-keyword=Effective atomic number en-keyword=Ultra-low energy image kn-keyword=Ultra-low energy image END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects. en-copyright= kn-copyright= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsumataAkitoshi en-aut-sei=Katsumata en-aut-mei=Akitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=2 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=3 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Health Science, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=8 en-affil=Oral Radiology and Artificial Intelligence, Asahi University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=Pulse pile-up kn-keyword=Pulse pile-up en-keyword=Dead time kn-keyword=Dead time en-keyword=Counting-loss correction kn-keyword=Counting-loss correction en-keyword=Charge-sharing effect kn-keyword=Charge-sharing effect en-keyword=Effective atomic number kn-keyword=Effective atomic number END start-ver=1.4 cd-journal=joma no-vol=54 cd-vols= no-issue=8 article-no= start-page=afaf224 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oestrogen replacement combined with resistance exercise in older women with knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Interventions targeting physical function decline in older women with knee osteoarthritis (KOA) are vital for healthy ageing. The additive benefits of combining oestrogen replacement therapy (ERT) with resistance exercise remain unclear.
Objective: To evaluate the additive effect of low-dose ERT on physical performance when combined with a muscle resistance exercise programme (MREP) in older women with KOA.
Design: This is a placebo-controlled, double-blind, randomised clinical trial.
Subjects: The subjects were community-dwelling women aged ?65 years with chronic knee pain and KOA diagnosis.
Methods: Participants completed a 3-month MREP and were randomised to receive daily low-dose transdermal ERT (oestradiol 0.54 mg/day) or placebo. Outcomes were assessed at baseline, postintervention and 12 months later. The primary outcome was change in 30-second chair stand test (CS-30) score. Secondary outcomes included muscle mass, knee extension strength, walking performance, metabolic indicators, knee pain scale and 12-item short-form health survey (SF-12). Between-group differences in CS-30 changes were analysed using a linear regression model based on the intention-to-treat principle.
Results: Among 168 individuals screened, 75 participants (mean age 73.8 years, SD 5.8) were enrolled and randomised into an ERT group (n?=?37) or a placebo group (n?=?38). Baseline CS-30 scores were 14.81 (SD 3.95) in the ERT group and 15.58 (SD 3.48) in the placebo group. At 3 months, mean changes were 2.59 (SD 2.58) and 1.79 (SD 2.28) repetitions, respectively. The primary analysis showed no statistically significant between-group difference [regression coefficient: 0.81 (95% CI: ?0.31, 1.92); P?=?.16]. Post hoc subgroup and sensitivity analyses suggested that benefits may exist among early-stage KOA participants. SF-12 mental health scores also improved significantly in the ERT group. No serious adverse events occurred.
Conclusions: ERT did not confer significant additive benefits to resistance exercise overall but may improve outcomes in early-stage KOA and mental health domains. These exploratory findings warrant further investigation. en-copyright= kn-copyright= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiKasumi en-aut-sei=Takahashi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTsunemasa en-aut-sei=Kondo en-aut-mei=Tsunemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaTomohiro en-aut-sei=Ikeda en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoYoko en-aut-sei=Sakamoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=2 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=3 en-affil=Obstetrics and Gynecology, Ochiai Hospital kn-affil= affil-num=4 en-affil=Obstetrics and Gynecology, Ochiai Hospital kn-affil= affil-num=5 en-affil=Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=7 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=8 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= en-keyword=oestrogen replacement therapy kn-keyword=oestrogen replacement therapy en-keyword=muscle resistance exercise kn-keyword=muscle resistance exercise en-keyword=knee osteoarthritis kn-keyword=knee osteoarthritis en-keyword=physical performance kn-keyword=physical performance en-keyword=randomised controlled trial kn-keyword=randomised controlled trial en-keyword=older people kn-keyword=older people END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=77 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of amyloid and tau positivity on longitudinal brain atrophy in cognitively normal individuals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Individuals on the preclinical Alzheimer's continuum, particularly those with both amyloid and tau positivity (A?+?T?+), display a rapid cognitive decline and elevated disease progression risk. However, limited studies exist on brain atrophy trajectories within this continuum over extended periods.
Methods This study involved 367 ADNI participants grouped based on combinations of amyloid and tau statuses determined through cerebrospinal fluid tests. Using longitudinal MRI scans, brain atrophy was determined according to the whole brain, lateral ventricle, and hippocampal volumes and cortical thickness in AD-signature regions. Cognitive performance was evaluated with the Preclinical Alzheimer's Cognitive Composite (PACC). A generalized linear mixed-effects model was used to examine group?×?time interactions for these measures. In addition, progression risks to mild cognitive impairment (MCI) or dementia were compared among the groups using Cox proportional hazards models.
Results A total of 367 participants (48 A?+?T?+?, 86 A?+?T???, 63 A???T?+?, and 170 A???T???; mean age 73.8 years, mean follow-up 5.1 years, and 47.4% men) were included. For the lateral ventricle and PACC score, the A?+?T???and A?+?T?+?groups demonstrated statistically significantly greater volume expansion and cognitive decline over time than the A???T???group (lateral ventricle: β?=?0.757 cm3/year [95% confidence interval 0.463 to 1.050], P? Conclusions In cognitively normal individuals, A?+?T?+?compounds brain atrophy and cognitive deterioration, amplifying the likelihood of disease progression. Therapeutic interventions targeting A?+?T?+?individuals could be pivotal in curbing brain atrophy, cognitive decline, and disease progression. en-copyright= kn-copyright= en-aut-name=FujishimaMotonobu en-aut-sei=Fujishima en-aut-mei=Motonobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawasakiYohei en-aut-sei=Kawasaki en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsudaHiroshi en-aut-sei=Matsuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Radiology, Kumagaya General Hospital kn-affil= affil-num=2 en-affil=Department of Biostatistics, Graduate School of Medicine, Saitama Medical University kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Biofunctional Imaging, Fukushima Medical University kn-affil= en-keyword=Preclinical kn-keyword=Preclinical en-keyword=Alzheimer’s disease kn-keyword=Alzheimer’s disease en-keyword=Longitudinal MRI kn-keyword=Longitudinal MRI en-keyword=Tau kn-keyword=Tau en-keyword=Amyloid-β kn-keyword=Amyloid-β END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=1094 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A cross-sectional interventional study on the effects of periodontal treatment on periodontal inflamed surface area and masticatory efficiency values according to the 2018 periodontal status classification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Periodontal inflamed surface area (PISA) and masticatory efficiency have been used to evaluate the relationship between systemic diseases and oral diseases. However, clear standards for PISA values and masticatory efficiency in relation to the severity of periodontitis are lacking. This study aims to evaluate PISA values and masticatory efficiency based on the 2018 periodontal status classification system.
Methods In total, 153 healthy participants diagnosed with periodontitis were included in the study. The diagnosis was based on the 2018 periodontal status classification. PISA values and masticatory efficiency were measured at baseline and after initial periodontal therapy.
Results PISA demonstrated a higher area under the curve for Stage III (0.815) and Grade B (0.85). At baseline, PISA was showed significant negative correlation with masticatory efficiency (B coefficient [95% CI]: -0.02 [-0.03, -0.006], p? Conclusion Periodontal therapy improved PISA and masticatory efficiency values. However, the extent of improvement was less pronounced in patients with higher stages and grades of periodontitis. It is essential to consider the interplay between increased PISA and decreased masticatory efficiency when treating patients with severe periodontitis. en-copyright= kn-copyright= en-aut-name=MatsudaShinji en-aut-sei=Matsuda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YumotoHiromichi en-aut-sei=Yumoto en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KomatsuYasutaka en-aut-sei=Komatsu en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DewakeNanae en-aut-sei=Dewake en-aut-mei=Nanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwataTakanori en-aut-sei=Iwata en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaganoTakatoshi en-aut-sei=Nagano en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorozumiToshiya en-aut-sei=Morozumi en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GotoRyoma en-aut-sei=Goto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatoSatsuki en-aut-sei=Kato en-aut-mei=Satsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamashitaMotozo en-aut-sei=Yamashita en-aut-mei=Motozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiJoichiro en-aut-sei=Hayashi en-aut-mei=Joichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SekinoSatoshi en-aut-sei=Sekino en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaAkiko en-aut-sei=Yamashita en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamashitaKeiko en-aut-sei=Yamashita en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YoshimuraAtsutoshi en-aut-sei=Yoshimura en-aut-mei=Atsutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SugayaTsutomu en-aut-sei=Sugaya en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TaguchiYoichiro en-aut-sei=Taguchi en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NemotoEiji en-aut-sei=Nemoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ShintaniTomoaki en-aut-sei=Shintani en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MiyagawaTsuyoshi en-aut-sei=Miyagawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=NishiHiromi en-aut-sei=Nishi en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MizunoNoriyoshi en-aut-sei=Mizuno en-aut-mei=Noriyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NumabeYukihiro en-aut-sei=Numabe en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KawaguchiHiroyuki en-aut-sei=Kawaguchi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=2 en-affil=Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=3 en-affil=Periodontal Clinic, Medical and Dental Hospital, Niigata University kn-affil= affil-num=4 en-affil=Department of Operative Dentistry, Endodontology and Periodontology, School of Dentistry, Matsumoto Dental University kn-affil= affil-num=5 en-affil=Department of Periodontology, Tokyo Medical and Dental University kn-affil= affil-num=6 en-affil=Department of Periodontology, Tsurumi University School of Dental Medicine kn-affil= affil-num=7 en-affil=Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University kn-affil= affil-num=8 en-affil=Department of Periodontology, School of Dentistry, Aichi Gakuin University kn-affil= affil-num=9 en-affil=School of Dentistry, Division of Periodontology and Endodontology, Department of Oral Rehabilitation, Health Sciences University of Hokkaido kn-affil= affil-num=10 en-affil=Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry kn-affil= affil-num=11 en-affil=Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Meikai University School of Dentistry kn-affil= affil-num=12 en-affil=School of Life Dentistry Department of Periodontology, The Nippon Dental University kn-affil= affil-num=13 en-affil=Section of Periodontology, Division of Oral Rehabilitation Faculty of Dental Science, Kyushu University kn-affil= affil-num=14 en-affil=Department of Periodontology, Tokyo Dental College kn-affil= affil-num=15 en-affil=Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=16 en-affil=Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=17 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Faculty of Dentistry, Department of Periodontology, Osaka Dental University kn-affil= affil-num=19 en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry kn-affil= affil-num=20 en-affil=Center of Oral Clinical Examination, Hiroshima University Hospital kn-affil= affil-num=21 en-affil=Clinical Research Center in Hiroshima, Hiroshima University Hospital kn-affil= affil-num=22 en-affil=Department of General Dentistry, Hiroshima University Hospital, kn-affil= affil-num=23 en-affil=Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=24 en-affil=Department of Periodontology, Tokyo Dental College kn-affil= affil-num=25 en-affil=Department of General Dentistry, Hiroshima University Hospital, kn-affil= en-keyword=Periodontal diseases kn-keyword=Periodontal diseases en-keyword=Masticatory system kn-keyword=Masticatory system en-keyword=Nonsurgical periodontal debridement kn-keyword=Nonsurgical periodontal debridement END start-ver=1.4 cd-journal=joma no-vol=207 cd-vols= no-issue= article-no= start-page=108683 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intracranial activity of sotorasib vs docetaxel in pretreated KRAS G12C-mutated advanced non-small cell lung cancer from a global, phase 3, randomized controlled trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: To assess the efficacy and safety of sotorasib in patients with brain metastases using data from the phase 3 CodeBreaK 200 study, which evaluated sotorasib in adults with pretreated advanced or metastatic KRAS G12C-mutated non-small cell lung cancer (NSCLC).
Materials and methods: Patients with KRAS G12C-mutated NSCLC who progressed after platinum-based chemotherapy and checkpoint inhibitor therapy were randomized 1:1 to sotorasib or docetaxel. An exploratory post-hoc analysis evaluated central nervous system (CNS) progression-free survival (PFS) and time to CNS progression in patients with treated and stable brain metastases at baseline. Measures were assessed by blinded independent central review per study-modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
Results: Of the patients randomly assigned to receive sotorasib (n=171) or docetaxel (n=174), baseline CNS metastases were present in 40 (23%) and 29 (17%) patients, respectively. With a median follow-up of 20.0 months for this patient subgroup, median CNS PFS was longer with sotorasib compared with docetaxel (9.6 vs 4.5 months; hazard ratio, 0.43 [95% CI, 0.20?0.92]; P=0.02). Among patients with baseline treated CNS lesions of ?10 mm, the percentage of patients who achieved CNS tumor shrinkage of ?30% was two-fold higher with sotorasib than docetaxel (33.3% vs 15.4%). Treatment-related adverse events among patients with CNS lesions at baseline were consistent with those of the overall study population.
Conclusions: These results suggest intracranial activity with sotorasib complements the overall PFS benefit observed with sotorasib vs docetaxel, with safety outcomes similar to those in the general CodeBreaK 200 population.
Clinical trials registration number: NCT04303780. en-copyright= kn-copyright= en-aut-name=DingemansAnne-Marie C. en-aut-sei=Dingemans en-aut-mei=Anne-Marie C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SyrigosKonstantinos en-aut-sei=Syrigos en-aut-mei=Konstantinos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiviLorenzo en-aut-sei=Livi en-aut-mei=Lorenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PaulusAstrid en-aut-sei=Paulus en-aut-mei=Astrid kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimSang-We en-aut-sei=Kim en-aut-mei=Sang-We kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChenYuanbin en-aut-sei=Chen en-aut-mei=Yuanbin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FelipEnriqueta en-aut-sei=Felip en-aut-mei=Enriqueta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GriesingerFrank en-aut-sei=Griesinger en-aut-mei=Frank kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZalcmanGerard en-aut-sei=Zalcman en-aut-mei=Gerard kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HughesBrett G.M. en-aut-sei=Hughes en-aut-mei=Brett G.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=S?rensenJens Benn en-aut-sei=S?rensen en-aut-mei=Jens Benn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BlaisNormand en-aut-sei=Blais en-aut-mei=Normand kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FerreiraCarlos G.M. en-aut-sei=Ferreira en-aut-mei=Carlos G.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=LindsayColin R. en-aut-sei=Lindsay en-aut-mei=Colin R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DziadziuszkoRafal en-aut-sei=Dziadziuszko en-aut-mei=Rafal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WardPatrick J. en-aut-sei=Ward en-aut-mei=Patrick J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ObiozorCynthia Chinedu en-aut-sei=Obiozor en-aut-mei=Cynthia Chinedu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=WangYang en-aut-sei=Wang en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=PetersSolange en-aut-sei=Peters en-aut-mei=Solange kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Erasmus MC Cancer Institute, University Medical Center kn-affil= affil-num=2 en-affil=Sotiria General Hospital kn-affil= affil-num=3 en-affil=Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence kn-affil= affil-num=4 en-affil=Centre Hospitalier Universitaire de Li?ge kn-affil= affil-num=5 en-affil=Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine kn-affil= affil-num=6 en-affil=The Cancer & Hematology Centers of Western Michigan kn-affil= affil-num=7 en-affil=Medical Oncology Department, Vall d’Hebron University Hospital kn-affil= affil-num=8 en-affil=Pius-Hospital Oldenburg kn-affil= affil-num=9 en-affil=Okayama University Hospital kn-affil= affil-num=10 en-affil=Hospital Bichat-Claude Bernard kn-affil= affil-num=11 en-affil=The Prince Charles Hospital, University of Queensland kn-affil= affil-num=12 en-affil=Rigshospitalet kn-affil= affil-num=13 en-affil=Department of Medicine, Centre Hospitalier de l’Universit? de Montr?al kn-affil= affil-num=14 en-affil=Oncoclinicas kn-affil= affil-num=15 en-affil=Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust kn-affil= affil-num=16 en-affil=University Clinical Centre, Medical University of Gdansk kn-affil= affil-num=17 en-affil=SCRI at OHC kn-affil= affil-num=18 en-affil=Amgen Inc. kn-affil= affil-num=19 en-affil=Amgen Inc. kn-affil= affil-num=20 en-affil=Lausanne University Hospital kn-affil= en-keyword=Brain metastases kn-keyword=Brain metastases en-keyword=KRAS G12C-mutated kn-keyword=KRAS G12C-mutated en-keyword=Non-small cell lung cancer kn-keyword=Non-small cell lung cancer en-keyword=NSCLC kn-keyword=NSCLC en-keyword=Randomized controlled trial kn-keyword=Randomized controlled trial en-keyword=Sotorasib kn-keyword=Sotorasib en-keyword=Survival kn-keyword=Survival END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250714 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-na?ve and 156 biologic-non-na?ve) were included. Significantly more biologic-na?ve than biologic-non-na?ve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05?1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30?4.48; P=0.0052; biologic-na?ve patients: OR, 2.40; 95% CI, 1.10?5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363) en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FernandezJovelle L en-aut-sei=Fernandez en-aut-mei=Jovelle L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Colitis, ulcerative kn-keyword=Colitis, ulcerative en-keyword=Inflammatory bowel diseases kn-keyword=Inflammatory bowel diseases en-keyword=Japan kn-keyword=Japan en-keyword=Vedolizumab kn-keyword=Vedolizumab END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The duration of prior anti-tumor necrosis factor agents is associated with the effectiveness of vedolizumab in patients with ulcerative colitis: a real-world multicenter retrospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Previous literature suggests that the response of patients with ulcerative colitis to vedolizumab may be affected by previous biologic therapy exposure. This real-world study evaluated vedolizumab treatment effectiveness in biologicnon-na?ve patients.
Methods This was a multicenter, retrospective, observational chart review of records from 16 hospitals in Japan (December 1, 2018, to February 29, 2020). Included patients who had ulcerative colitis, were aged ? 20 years, and received at least 1 dose of vedolizumab. Outcomes included clinical remission rates from weeks 2 to 54 according to prior biologic exposure status and factors associated with clinical remission up to week 54.
Results A total of 370 eligible patients were included. Clinical remission rates were significantly higher in biologic-na?ve (n=197) than in biologic-non-na?ve (n=173) patients for weeks 2 to 54 of vedolizumab treatment. Higher clinical remission rates up to week 54 were significantly associated with lower disease severity (partial Mayo score ? 4, P= 0.001; albumin ? 3.0, P= 0.019) and the duration of prior anti-tumor necrosis factor α (anti-TNFα) therapy (P= 0.026). Patients with anti-TNFα therapy durations of < 3 months, 3 to < 12 months, and ? 12 months had clinical remission rates of 28.1%, 32.7%, and 60.0%, respectively (P= 0.001 across groups).
Conclusions The effectiveness of vedolizumab in biologic-non-na?ve patients was significantly influenced by duration of prior anti-TNFα therapy. (Japanese Registry of Clinical Trials: jRCT-1080225363) en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FernandezJovelle L en-aut-sei=Fernandez en-aut-mei=Jovelle L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Tumor necrosis factor-alpha kn-keyword=Tumor necrosis factor-alpha en-keyword=Real-world evidence kn-keyword=Real-world evidence en-keyword=Colitis kn-keyword=Colitis en-keyword=ulcerative kn-keyword=ulcerative en-keyword=Vedolizumab kn-keyword=Vedolizumab en-keyword=Sequencing kn-keyword=Sequencing END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=6 article-no= start-page=1435 end-page=1445 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250515 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-World Effectiveness and Safety of Vedolizumab in Patients ??70 Versus Methods: This post hoc analysis of a multicenter, retrospective, observational chart review, enrolling 370 patients with UC receiving VDZ between December 2018 and February 2020, compared effectiveness and safety of VDZ among patients ??70 (n?=?40) versus Results: There were no differences between patients ??70 and Conclusions: VDZ effectiveness and safety were similar in patients ??70 and Trial Registration: Japanese Registry of Clinical Trials registration number: jRCT-1080225363 en-copyright= kn-copyright= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FernandezJovelle?L. en-aut-sei=Fernandez en-aut-mei=Jovelle?L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HiroseLisa en-aut-sei=Hirose en-aut-mei=Lisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=2 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=8 en-affil= kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=22 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=elderly kn-keyword=elderly en-keyword=inflammatory bowel diseases kn-keyword=inflammatory bowel diseases en-keyword=onset age kn-keyword=onset age en-keyword=vedolizumab kn-keyword=vedolizumab END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ? 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00?7.62; P= 0.050) and shorter disease duration (OR for median duration ? 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13?0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence. en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FernandezJovelle L. en-aut-sei=Fernandez en-aut-mei=Jovelle L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=DeguchiHisato en-aut-sei=Deguchi en-aut-mei=Hisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=22 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Colitis, ulcerative kn-keyword=Colitis, ulcerative en-keyword=Inflammatory bowel diseases kn-keyword=Inflammatory bowel diseases en-keyword=Japan kn-keyword=Japan en-keyword=Vedolizumab kn-keyword=Vedolizumab en-keyword=Medication persistence kn-keyword=Medication persistence END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ? 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ? 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ? 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ? 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes. en-copyright= kn-copyright= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangZhezhou en-aut-sei=Huang en-aut-mei=Zhezhou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QinFei en-aut-sei=Qin en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Nathan ArokianathanFatima Megala en-aut-sei=Nathan Arokianathan en-aut-mei=Fatima Megala kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Dav?Kiran en-aut-sei=Dav? en-aut-mei=Kiran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShahShweta en-aut-sei=Shah en-aut-mei=Shweta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimHyunchung en-aut-sei=Kim en-aut-mei=Hyunchung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Gastroenterology, Okayama University kn-affil= affil-num=2 en-affil=Cerner Enviza kn-affil= affil-num=3 en-affil=Cerner Enviza kn-affil= affil-num=4 en-affil=Oracle Life Sciences kn-affil= affil-num=5 en-affil=Bristol Myers Squibb kn-affil= affil-num=6 en-affil=Bristol Myers Squibb kn-affil= affil-num=7 en-affil=Bristol Myers Squibb kn-affil= en-keyword=Quality of life kn-keyword=Quality of life en-keyword=Presenteeism kn-keyword=Presenteeism en-keyword=Absenteeism kn-keyword=Absenteeism en-keyword=Ulcerative colitis kn-keyword=Ulcerative colitis en-keyword=Japan kn-keyword=Japan END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=7 article-no= start-page=920 end-page=927 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The association of fasting triglyceride variability with renal dysfunction and proteinuria in medical checkup participants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The association between the variability of triglyceride (TG) and chronic kidney disease (CKD) progression remains unclear. We examined whether intraindividual variability in fasting TG was associated with the exacerbation of CKD.
Methods We conducted a retrospective and observational study. 18,339 participants, who went through medical checkups and had checked their estimated glomerular filtration rate (eGFR) and semi-quantitative proteinuria by urine dipstick every year since 2017 for 4 years were registered. Variability in fasting TG was determined using the standard deviation (SD), and maximum minus minimum difference (MMD) between 2017 and 2021. The primary end point for the analysis of eGFR decline was eGFR? Results The renal survival was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p? Conclusion Fasting TG variability was associated with CKD progression in participants who went through medical checkups. en-copyright= kn-copyright= en-aut-name=Matsuoka-UchiyamaNatsumi en-aut-sei=Matsuoka-Uchiyama en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakawaTomohiko en-aut-sei=Asakawa en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakurabuYoshimasa en-aut-sei=Sakurabu en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaKatsuyoshi en-aut-sei=Katayama en-aut-mei=Katsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoShugo en-aut-sei=Okamoto en-aut-mei=Shugo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaKeiko en-aut-sei=Tanaka en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakeuchiHidemi en-aut-sei=Takeuchi en-aut-mei=Hidemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakemotoRika en-aut-sei=Takemoto en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UmebayashiRyoko en-aut-sei=Umebayashi en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=eGFR decline kn-keyword=eGFR decline en-keyword=Proteinuria kn-keyword=Proteinuria en-keyword=Renal dysfunction kn-keyword=Renal dysfunction en-keyword=Triglyceride variability kn-keyword=Triglyceride variability en-keyword=Fasting triglyceride kn-keyword=Fasting triglyceride END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=e70276 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Occupational motions such as kneeling and squatting are associated with the increased development of medial meniscus posterior root tears, regardless of the medial posterior tibial slope angle en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The relationship between occupational motions and the medial posterior tibial slope (MPTS) with the development of medial meniscus posterior root tears (MMPRTs) has not been investigated. The development of non-traumatic degenerative MMPRTs may be influenced by repetitive occupational motions and bone morphological characteristics. Herein, we examined the association between occupational motions and MPTS in patients with MMPRT development.
Methods: During the first medical examination, MPTS was measured using lateral knee radiographic images, and occupational motions were investigated in 559 patients (591 knees). Occupational motions were classified as kneeling and squatting, standing and walking, sitting, lifting heavy weights, and housework. Mann?Whitney U test was used to compare patient characteristics between male and female patients and MPTS relative to occupational motion.
Results: The most frequent occupational motion was housework (160/559 patients, 28.6%), followed by kneeling and squatting (140/559, 25.0%), standing and walking (128/559, 22.9%), sitting (82/559, 14.7%), and lifting heavy weights (49/559, 8.8%). Furthermore, housework (10.0?±?2.6°) involved significantly greater MPTS than kneeling and squatting (9.3?±?2.7°; p?=?0.012). However, the MPTS associated with other occupational motions was not significantly different from that associated with housework.
Conclusion: The most frequent occupational motion among patients with MMPRTs was housework, followed by kneeling and squatting. Patients who performed housework tended to have a higher MPTS. Occupational motions such as kneeling and squatting potentially increase the development of MMPRTs, even without a high MPTS.
Level of Evidence: Level IV. en-copyright= kn-copyright= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=kneeling kn-keyword=kneeling en-keyword=meniscus kn-keyword=meniscus en-keyword=occupational motion kn-keyword=occupational motion en-keyword=posterior root tear kn-keyword=posterior root tear en-keyword=posterior tibial slope kn-keyword=posterior tibial slope END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=317 end-page=320 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Surgical Treatment for a Large Pulmonary Artery Aneurysm with a Quadricuspid Pulmonary Valve en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 65-year-old man was referred to our hospital for the annual assessment of the diameter and dilation of a pulmonary artery (PA) aneurysm. He had a small ventricular septal defect (VSD) that had closed naturally. Echocardiography revealed a dilated main PA, mild pulmonary regurgitation and no VSD. Computed tomography confirmed the dilation of the main PA (66.7×47.8 mm), right PA (37.1×32.9 mm), and left PA (36.7×34.0 mm). The patient underwent pulmonary artery replacement using a prosthetic vascular graft. A quadricuspid pulmonary valve was identified intraoperatively. Early surgical intervention could help to prevent rupture and dissection of PA aneurysms. en-copyright= kn-copyright= en-aut-name=MoriokaKei en-aut-sei=Morioka en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurokoYosuke en-aut-sei=Kuroko en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiSachiko en-aut-sei=Kadowaki en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiJunko en-aut-sei=Kobayashi en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= en-keyword=pulmonary artery aneurysm kn-keyword=pulmonary artery aneurysm en-keyword=quadricuspid pulmonary valve kn-keyword=quadricuspid pulmonary valve en-keyword=pulmonary valve regurgitation and stenosis kn-keyword=pulmonary valve regurgitation and stenosis en-keyword=congenital heart disease kn-keyword=congenital heart disease en-keyword=pulmonary artery graft replacement kn-keyword=pulmonary artery graft replacement END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=311 end-page=315 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mimicking Contralateral Pneumothorax during Thoracoscopic Bullectomy Associated with Intraoperative Hyperinflation of a Large Bulla in an Obese Patient en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 55-year-old obese Japanese male with left pneumothorax presented to our hospital. Bilateral pulmonary emphysema was confirmed. Persistent air leakage was observed, and a thoracoscopic bullectomy was performed. Although the thoracoscopic bullectomy was completed uneventfully, pre-extubation chest X-ray imaging indicated hyper-lucency occupying the right upper part of the thoracic cavity, suggesting right-sided pneumothorax. CT imaging indicated a right-upper-lobe expanded bulla. Extubation was performed, and the hyperinflated bulla gradually deflated. Careful management of bulla expansion and respiratory status may be necessary for patients with obesity and large bullae, especially in one-lung ventilation cases. en-copyright= kn-copyright= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiranoYutaka en-aut-sei=Hirano en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=giant bulla kn-keyword=giant bulla en-keyword=pneumothorax kn-keyword=pneumothorax en-keyword=obesity kn-keyword=obesity en-keyword=positive pressure ventilation kn-keyword=positive pressure ventilation en-keyword=one lung ventilation kn-keyword=one lung ventilation END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=305 end-page=309 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Rare Presentation of Pneumonic-Type Adenocarcinoma Hidden behind Empyema en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pneumonic-type adenocarcinoma (P-ADC) can closely mimic pneumonia. We report a P-ADC initially diagnosed as pneumonia which developed into a pulmonary abscess and empyema. A 50-year-old Japanese male diagnosed with pneumonia, pulmonary abscess, and empyema was administered antibiotics and a chest tube for drainage, which improved his symptoms and blood test results. However, chest computed tomography showed an enlarged infiltrative shadow. The patient underwent bronchoscopy and was diagnosed with an adenocarcinoma. This case highlights the importance of considering P-ADC in differential diagnoses when a pneumonia-like shadow enlarges post-empyema treatment. Diagnostic and clinical tests, e.g., bronchoscopy, should be performed in such cases. en-copyright= kn-copyright= en-aut-name=SenooSatoru en-aut-sei=Senoo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NimanEito en-aut-sei=Niman en-aut-mei=Eito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsujiRyoko en-aut-sei=Tsuji en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakataKohei en-aut-sei=Takata en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumoriShunsuke en-aut-sei=Matsumori en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuranoFumika en-aut-sei=Murano en-aut-mei=Fumika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugisakiYuka en-aut-sei=Sugisaki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoriHiroki en-aut-sei=Omori en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmoteRika en-aut-sei=Omote en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiKenji en-aut-sei=Takahashi en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaToshiaki en-aut-sei=Okada en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=10 en-affil=Department of Diagnostic Pathology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center kn-affil= en-keyword=pneumonic type adenocarcinoma kn-keyword=pneumonic type adenocarcinoma en-keyword=empyema kn-keyword=empyema en-keyword=bronchoscopy kn-keyword=bronchoscopy en-keyword=lung cancer diagnosis kn-keyword=lung cancer diagnosis en-keyword=cavity formation kn-keyword=cavity formation END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=299 end-page=303 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pulmonary Calcium Phosphate Cement Embolism After Percutaneous Vertebroplasty for Thoracic Vertebrae Fractures en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary cement embolism (PCE) is a rare but severe complication following percutaneous vertebroplasty (PVP). Calcium phosphate cement (CPC) has emerged as an alternative to traditional materials for vertebral augmentation. There appear to be no established guidelines for managing symptomatic PCE, and there is scarce literature on CPC embolisms. This is a first report of a case of pulmonary CPC embolism following PVP. The patient, a 63-year-old Chinese female, was administered anticoagulant treatment and achieved a satisfactory outcome. Her case highlights the severe potential morbidity associated with CPC leakage and emphasizes the efficacy of anticoagulant treatment for managing pulmonary CPC embolisms. en-copyright= kn-copyright= en-aut-name=FengRuibin en-aut-sei=Feng en-aut-mei=Ruibin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuBikang en-aut-sei=Zhu en-aut-mei=Bikang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WeiDanyun en-aut-sei=Wei en-aut-mei=Danyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuDingjiao en-aut-sei=Zhu en-aut-mei=Dingjiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChenCairu en-aut-sei=Chen en-aut-mei=Cairu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=2 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=3 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=4 en-affil=Department of Radiology, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=5 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= en-keyword=percutaneous vertebroplasty kn-keyword=percutaneous vertebroplasty en-keyword=thoracic vertebrae fracture kn-keyword=thoracic vertebrae fracture en-keyword=calcium phosphate cement kn-keyword=calcium phosphate cement en-keyword=pulmonary embolism kn-keyword=pulmonary embolism END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=293 end-page=297 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of Pallidal Stimulation for Dystonic Storm and Subsequent Ssevere Posterior Reversible Encephalopathy Syndrome in a Patient with GNAO1 Variant en-subtitle= kn-subtitle= en-abstract= kn-abstract=GNAO1 variant affects primarily the brain and neurodevelopment, leading to a range of motor disorders including seizures beginning in infancy and involuntary movements such as dyskinesia and dystonia. Our patient, a 15-year-old Japanese female, began exhibiting involuntary movements at age 4. A de novo missense mutation (NM_020988.3: c.228C>G, NP_066268.1: p.(Asn76Lys)) in the GNAO1 gene was identified when the patient was 15, and during the same year she developed influenza pneumonia, accompanied by dystonic storm. She required intensive care with mechanical ventilation and underwent a tracheostomy. She also developed posterior reversible encephalopathy syndrome. Globus pallidal stimulation was administered, leading to an improvement in the dystonic storm. Early consideration of globus pallidal stimulation is recommended when treating difficult-to-manage dystonic storms. en-copyright= kn-copyright= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaijoTomoya en-aut-sei=Saijo en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraideTakuya en-aut-sei=Hiraide en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitsuHirotomo en-aut-sei=Saitsu en-aut-mei=Hirotomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biochemistry, Hamamatsu University School of Medicine kn-affil= affil-num=8 en-affil=Department of Biochemistry, Hamamatsu University School of Medicine kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=GNAO1 variant kn-keyword=GNAO1 variant en-keyword=dystonic storm kn-keyword=dystonic storm en-keyword=globus pallidal stimulation kn-keyword=globus pallidal stimulation en-keyword=posterior reversible encephalopathy syndrome kn-keyword=posterior reversible encephalopathy syndrome END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=287 end-page=292 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Parieto-Occipital Disconnection for Drug-Resistant Parieto-Occipital Lobe Epilepsy: A Case Report and Surgical Technique en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a case of drug-resistant parieto-occipital lobe epilepsy successfully treated with parieto-occipital disconnection (POD). An 18-year-old left-handed female, who had undergone surgery for an acute subdural hematoma at 10 months of age, developed drug-resistant epilepsy at age 15. Despite antiepileptic drug treatment, her seizures remained uncontrolled, and at age 18 she was referred to our hospital for evaluation. Magnetic resonance imaging (MRI) revealed atrophy in the left occipital and parietal lobes. Ictal electroencephalography (EEG) confirmed occipital onset of seizures without temporal lobe involvement. She had pre-existing homonymous hemianopsia. POD surgery was performed, carefully preserving the temporal lobe structures. Postoperatively, she experienced transient right-sided paresis, which fully resolved, and achieved complete seizure control at 3 years without memory loss. This case demonstrates that POD, a rare surgical approach, is a viable option for parieto-occipital lobe epilepsy, effectively controlling seizures while minimizing functional impairment in the absence of temporal lobe involvement. en-copyright= kn-copyright= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaijoTomoya en-aut-sei=Saijo en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=parieto-occipital lobe epilepsy kn-keyword=parieto-occipital lobe epilepsy en-keyword=parieto-occipital disconnection (POD) kn-keyword=parieto-occipital disconnection (POD) END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=283 end-page=286 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC. en-copyright= kn-copyright= en-aut-name=ImamuraYuta en-aut-sei=Imamura en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiodeYusuke en-aut-sei=Shiode en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraShuhei en-aut-sei=Kimura en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosokawaMio en-aut-sei=Hosokawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatobaRyo en-aut-sei=Matoba en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanzakiYuki en-aut-sei=Kanzaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KindoHiroya en-aut-sei=Kindo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaTetsuro en-aut-sei=Morita en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MuraiAya en-aut-sei=Murai en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anterior uveitis kn-keyword=anterior uveitis en-keyword=hypopyon kn-keyword=hypopyon en-keyword=maxillary sinus kn-keyword=maxillary sinus en-keyword=postoperative maxillary cyst kn-keyword=postoperative maxillary cyst END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=279 end-page=282 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy en-subtitle= kn-subtitle= en-abstract= kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy. en-copyright= kn-copyright= en-aut-name=YoshikawaMao en-aut-sei=Yoshikawa en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaoHiroyuki en-aut-sei=Tao en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= en-keyword=gallbladder metastasis kn-keyword=gallbladder metastasis en-keyword=lung cancer kn-keyword=lung cancer en-keyword=oligometastatic disease kn-keyword=oligometastatic disease END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=269 end-page=278 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Femoral and Global Femoral Offset, but not Anteroposterior Offset, to Improve Postoperative Outcomes Following Total Hip Arthroplasty: Considerations Independent of the Contralateral Side en-subtitle= kn-subtitle= en-abstract= kn-abstract=The global femoral offset (the sum of the acetabular and femoral offsets) influences outcomes after total hip arthroplasty (THA). The optimal offset using plain radiographs has been reported, but internal and external rotations of the hip affect the offset value, producing unclear results when the nonsurgical side is not intact. We investigated the relationship between a functional hip score, i.e., the Harris Hip Score (HHS) and its effect on the post-THA anteroposterior and lateral offsets, and we sought to identify the optimal offset value. The cases of 158 patients with hemilateral hip osteoarthritis who underwent THA at a single center were retrospectively analyzed in this cross-sectional study. Three-dimensional pelvic and femoral models generated from computed tomography were used to examine several parameters, and the results revealed a significant binomial correlation among the modified HHS and femoral and global femoral offsets, with maximum values of 21.3 mm and 40 mm/100 cm body height, respectively. Pelvic and femoral parameters were measured and evaluated via alignment with a specific coordinate system. Our findings indicate that preoperative planning using these parameters may improve postoperative hip function, even when the nonoperative side is unsuitable for use as a reference, as in bilateral hip osteoarthritis cases. en-copyright= kn-copyright= en-aut-name=ImaiNorio en-aut-sei=Imai en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiranoYuki en-aut-sei=Hirano en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HommaDaisuke en-aut-sei=Homma en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EndoYuki en-aut-sei=Endo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorigomeYoji en-aut-sei=Horigome en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiHayato en-aut-sei=Suzuki en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaHiroyuki en-aut-sei=Kawashima en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=2 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=3 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=4 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=5 en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=6 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=7 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= en-keyword=total hip arthroplasty kn-keyword=total hip arthroplasty en-keyword=global femoral offset kn-keyword=global femoral offset en-keyword=postoperative outcome kn-keyword=postoperative outcome en-keyword=three-dimensional analysis kn-keyword=three-dimensional analysis en-keyword=anteroposterior offset kn-keyword=anteroposterior offset END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=261 end-page=267 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outcome of Decompression Surgery Following Rapid Neurological Deterioration in Patients with Spinal Cord Injury Without Radiographic Evidence of Trauma (SCIWORET) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cervical spondylotic myelopathy (CSM) and ossification of the posterior longitudinal ligament (OPLL) increase the likelihood of spinal cord injury without radiographic evidence of trauma (SCIWORET). Opinions regarding the optimal timing for surgery in such cases vary, however. We retrospectively investigated the demographics and outcomes of patients with SCIWORET who underwent surgery shortly after experiencing rapid neurological deterioration, and we matched patients who underwent standby surgery for CSM or OPLL. Although the optimal timing of surgery for SCIWORET remains unclear, our findings suggest that early stage surgery for SCIWORET may yield favorable neurological improvements. en-copyright= kn-copyright= en-aut-name=HirataYuichi en-aut-sei=Hirata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakeHayato en-aut-sei=Miyake en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=spinal trauma kn-keyword=spinal trauma en-keyword=SCIWORET kn-keyword=SCIWORET en-keyword=timing of surgery kn-keyword=timing of surgery en-keyword=cervical spondylotic myelopathy kn-keyword=cervical spondylotic myelopathy en-keyword=ossification of the posterior longitudinal ligament kn-keyword=ossification of the posterior longitudinal ligament END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=253 end-page=259 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Study of Periprosthetic Femoral Stem Fractures in Hip Arthroplasty for Femoral Neck Fracture en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the risk factors for bone fragility and perioperative periprosthetic femoral stem fractures in patients undergoing hip arthroplasty for femoral neck fractures. The records of 215 patients (42 male, 173 female; mean age, 84.4 years) were analyzed to assess correlations among periprosthetic fracture rates and sex, age, body mass index (BMI), Dorr classification, femoral stem fixation type (cemented/cementless), and bone mineral density (BMD) of the contralateral proximal femur. The overall prevalence of perioperative periprosthetic fractures was 4.7%. All patients with periprosthetic fractures were female, and all but one were ? 80 years of age. Fracture rates were higher in patients with lower BMI, although this difference was not significant. The fracture rates were 0%, 4.7%, and 7.9% for Dorr types A, B, and C, respectively, and 0% and 5.3% for patients who received cemented and cementless stems, respectively. The findings indicated that female patients, those of advanced age, those with lower BMI, and those with Dorr type C had lower BMDs. Although BMD was significantly lower in patients who received cemented stems compared to those who received cementless stems, no fractures were observed in the former group, suggesting that the use of cemented stems is safe for this high-risk population. en-copyright= kn-copyright= en-aut-name=MiyakeYoshiaki en-aut-sei=Miyake en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakagiToru en-aut-sei=Takagi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonishiikeTaizo en-aut-sei=Konishiike en-aut-mei=Taizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= en-keyword=bone mineral density kn-keyword=bone mineral density en-keyword=cemented stem kn-keyword=cemented stem en-keyword=Dorr classification kn-keyword=Dorr classification en-keyword=femoral neck fracture kn-keyword=femoral neck fracture en-keyword=periprosthetic femoral stem fracture kn-keyword=periprosthetic femoral stem fracture END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=243 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Work Productivity of Cancer-survivor and Non-cancer-survivor Workers en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the work productivity levels of employed cancer survivors and non-cancer-survivor workers by conducting a cross-sectional study in Japan between February and March 2019, using an online survey. A total of 561 employed individuals aged 20-64 years were analyzed. Work productivity was assessed using the Work Productivity and Activity Impairment-General Health questionnaire which evaluates absenteeism, presenteeism, and overall work productivity loss. The questionnaire responses demonstrated that the cancer survivors within 1 year of diagnosis had significantly higher absenteeism compared to the non-cancer workers (p=0.048). Although presenteeism and overall work productivity loss were also higher in the non-cancer-survivor group, the differences were not significant. Cancer survivors within 1 year of diagnosis exhibited higher absenteeism, but their work productivity appeared to recover to levels comparable to those of the non-cancer workers over time. These findings may contribute to workplace policies supporting cancer survivors’ return to work. en-copyright= kn-copyright= en-aut-name=KamanoMika en-aut-sei=Kamano en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KandaKanae en-aut-sei=Kanda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NgatuNlandu Roger en-aut-sei=Ngatu en-aut-mei=Nlandu Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiAkitsu en-aut-sei=Murakami en-aut-mei=Akitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadoriYusuke en-aut-sei=Yamadori en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraoTomohiro en-aut-sei=Hirao en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=2 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=3 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=4 en-affil=Cancer Center, Kagawa University Hospital kn-affil= affil-num=5 en-affil=Department of Anesthesiology, Faculty of Medicine, Kagawa University kn-affil= affil-num=6 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= en-keyword=cancer survivor kn-keyword=cancer survivor en-keyword=work productivity kn-keyword=work productivity en-keyword=absenteeism kn-keyword=absenteeism en-keyword=presenteeism kn-keyword=presenteeism END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=231 end-page=242 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ? 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ? 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ? 2 nm/ml. en-copyright= kn-copyright= en-aut-name=KardanM Enes en-aut-sei=Kardan en-aut-mei=M Enes kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ErdemIlknur en-aut-sei=Erdem en-aut-mei=Ilknur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YildizEmre en-aut-sei=Yildiz en-aut-mei=Emre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KirazNuri en-aut-sei=Kiraz en-aut-mei=Nuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=?elikkolAliye en-aut-sei=?elikkol en-aut-mei=Aliye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=2 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=3 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=4 en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=5 en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University kn-affil= en-keyword=geriatrics kn-keyword=geriatrics en-keyword=gram-negative bacteria kn-keyword=gram-negative bacteria en-keyword=epidemiology kn-keyword=epidemiology en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=mortality kn-keyword=mortality END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=221 end-page=229 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation: Clinical and Ethical Perspectives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Extracorporeal cardiopulmonary resuscitation (ECPR) has evolved into a life-saving therapy for select cardiac arrest patients, yet a growing body of evidence suggests it also holds promise as a bridge to organ donation in non-survivors. This review explores the clinical outcomes, ethical complexities, and evolving policies surrounding organ donation after ECPR. We summarize recent international and Japanese data demonstrating favorable graft function from ECPR donors, with the exception of lung transplantation. The ethical challenges ? particularly those involving brain death determination on extracorporeal membrane oxygenation and adherence to the dead donor rule ? are discussed in the context of Japan’s recent regulatory reforms. Additionally, we highlight the importance of structured end-of-life communication through multidisciplinary team meetings in facilitating ethically sound transitions from rescue efforts to donation pathways. Moving forward, improvements in donor management, standardized legal frameworks, and public and professional education are essential to optimizing the life-saving and life-giving potential of ECPR. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KosakiYoshinori en-aut-sei=Kosaki en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=brain death kn-keyword=brain death en-keyword=end-of-life care kn-keyword=end-of-life care en-keyword=ethical dilemmas kn-keyword=ethical dilemmas en-keyword=extracorporeal cardiopulmonary resuscitation kn-keyword=extracorporeal cardiopulmonary resuscitation END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=1 article-no= start-page=e70005 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lyme neuroborreliosis in Japan: Borrelia burgdorferi sensu lato as a cause of meningitis of previously undetermined etiology in hospitalized patients outside of the island of Hokkaido, 2010?2021 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available. We sought to determine if LNB could be a cause of previously undiagnosed encephalitis or meningitis in Japan.
Methods: Investigators at 15 hospitals in 10 prefectures throughout Japan retrieved serum and/or cerebrospinal fluid (CSF) samples collected in 2010?2021 from 517 patients hospitalized with encephalitis or meningitis which had an etiology that had not been determined. Samples were tested for Bbsl-specific antibodies using ELISA and Western blot tests. In alignment with the European Union LNB case definition, a confirmed LNB case had CSF pleocytosis and intrathecal production of Bbsl-specific antibodies and a probable LNB case had a CSF sample with pleocytosis and Bbsl-specific antibodies.
Results: LNB was identified in three hospitalized patients with meningitis of previously undetermined etiology: a male resident of Aomori Prefecture was a confirmed LNB case, and two female residents of Oita Prefecture were probable LNB cases. None of the patients with confirmed or probable LNB had traveled in the month prior to symptom onset and none had samples previously tested for LB.
Conclusion: The identification of previously undiagnosed LNB cases indicates a need for enhanced disease awareness in Japan, particularly beyond Hokkaido Island, and more readily available LB diagnostic testing. en-copyright= kn-copyright= en-aut-name=OhiraMasayuki en-aut-sei=Ohira en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakanoAi en-aut-sei=Takano en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiKentaro en-aut-sei=Yoshi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AraiAkira en-aut-sei=Arai en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsoYashuhiro en-aut-sei=Aso en-aut-mei=Yashuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FurutaniRikiya en-aut-sei=Furutani en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamanoTadanori en-aut-sei=Hamano en-aut-mei=Tadanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Takahashi‐IwataIkuko en-aut-sei=Takahashi‐Iwata en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanekoChikako en-aut-sei=Kaneko en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuuraTohru en-aut-sei=Matsuura en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaNorihisa en-aut-sei=Maeda en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakajimaHideto en-aut-sei=Nakajima en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShindoKatsuro en-aut-sei=Shindo en-aut-mei=Katsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SuenagaToshihiko en-aut-sei=Suenaga en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugieKazuma en-aut-sei=Sugie en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SuzukiYasuhiro en-aut-sei=Suzuki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AnguloFrederick J. en-aut-sei=Angulo en-aut-mei=Frederick J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=EdwardsJuanita en-aut-sei=Edwards en-aut-mei=Juanita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=BenderCody Matthew en-aut-sei=Bender en-aut-mei=Cody Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HarperLisa R. en-aut-sei=Harper en-aut-mei=Lisa R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=NakayamaYoshikazu en-aut-sei=Nakayama en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=ItoShuhei en-aut-sei=Ito en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=PilzAndreas en-aut-sei=Pilz en-aut-mei=Andreas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=StarkJames H. en-aut-sei=Stark en-aut-mei=James H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=Mo?siJennifer C. en-aut-sei=Mo?si en-aut-mei=Jennifer C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=MizusawaHidehiro en-aut-sei=Mizusawa en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=TakaoMasaki en-aut-sei=Takao en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry kn-affil= affil-num=2 en-affil=Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University kn-affil= affil-num=3 en-affil=National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University kn-affil= affil-num=4 en-affil=Department of Neurology, Aomori Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Oita Prefectural Hospital kn-affil= affil-num=6 en-affil=Department of Neurology, National Hospital Organization, Shinshu Ueda General Hospital kn-affil= affil-num=7 en-affil=Department of Neurology, University of Fukui Hospital kn-affil= affil-num=8 en-affil=Department of Neurology, Hokkaido University Hospital kn-affil= affil-num=9 en-affil=Department of Neurology, Southern Tohoku General Hospital kn-affil= affil-num=10 en-affil=Division of Neurology, Jichi Medical University kn-affil= affil-num=11 en-affil=Department of Neurology, National Hospital Organization Beppu Medical Center kn-affil= affil-num=12 en-affil=Department of Neurology, Nihon University Itabashi Hospital kn-affil= affil-num=13 en-affil=Department of Neurology, Kurashiki Central Hospital kn-affil= affil-num=14 en-affil=Department of Neurology, Tenri Hospital kn-affil= affil-num=15 en-affil=Department of Neurology, Nara Medical University Hospital kn-affil= affil-num=16 en-affil=Department of Neurology, National Hospital Organization Asahikawa Medical Center kn-affil= affil-num=17 en-affil=Department of Neurology, Okayama University Hospital kn-affil= affil-num=18 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=19 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=20 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=21 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=22 en-affil=Vaccines Medical Affairs, Pfizer Japan Inc kn-affil= affil-num=23 en-affil=Vaccines Medical Affairs, Pfizer Japan Inc kn-affil= affil-num=24 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=25 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=26 en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines kn-affil= affil-num=27 en-affil=Department of Neurology, National Center of Neurology and Psychiatry kn-affil= affil-num=28 en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry kn-affil= en-keyword=epidemiology kn-keyword=epidemiology en-keyword=disease burden kn-keyword=disease burden en-keyword=Lyme neuroborreliosis kn-keyword=Lyme neuroborreliosis en-keyword=meningitis kn-keyword=meningitis en-keyword=tick-borne disease kn-keyword=tick-borne disease END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=1 article-no= start-page=104318 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hypotheses of pathophysiological mechanisms in epileptic encephalopathies: A review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE.
Review: Current hypotheses are as follows: 1) neuronal dysfunction based on genetic abnormalities that may affect neurocognitive functions and epilepsy separately; 2) impairment of synaptic homeostasis during sleep that may be responsible for DEE/EE with spike-and-wave activation in sleep; 3) abnormal subcortical regulation of the cerebral cortex; 4) abnormal cortical metabolism and hemodynamics with impairment of the neural network including default mode network; 5) neurotransmitter imbalance and disordered neural excitability; 6) the effects of neuroinflammation that may be caused by epileptic seizures and in turn aggravate epileptogenesis; 7) the interaction between physiological and pathological high-frequency EEG activity; etc. The causal relationship between epileptiform EEG activity and neurocognitive dysfunctions is small in DEE based on genetic abnormalities and it is largely unestablished in the other hypothetical mechanisms.
Conclusion: We have not yet found answers to the question of whether the single-central or multiple derangements are present and what seizures and intense epileptiform EEG abnormalities mean in EE. We need to continue our best efforts in both aspects to elucidate the pathophysiological mechanisms of DEE/EE and further develop epilepsy treatment and precision medicine. en-copyright= kn-copyright= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaHiroki en-aut-sei=Tsuchiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkiyamaMari en-aut-sei=Akiyama en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Pediatrics, Asahigawaso Rehabilitation and Medical Center kn-affil= affil-num=2 en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Behavior kn-keyword=Behavior en-keyword=Childhood epilepsy kn-keyword=Childhood epilepsy en-keyword=Cognitive function kn-keyword=Cognitive function en-keyword=Developmental and epileptic encephalopathy kn-keyword=Developmental and epileptic encephalopathy en-keyword=Regression kn-keyword=Regression END start-ver=1.4 cd-journal=joma no-vol=272 cd-vols= no-issue=1 article-no= start-page=36 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1. en-copyright= kn-copyright= en-aut-name=OkuboSo en-aut-sei=Okubo en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudoAtsushi en-aut-sei=Sudo en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EsakiKayoko en-aut-sei=Esaki en-aut-mei=Kayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatakeWataru en-aut-sei=Satake en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GreimelPeter en-aut-sei=Greimel en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShingaiNanoka en-aut-sei=Shingai en-aut-mei=Nanoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OyaYasushi en-aut-sei=Oya en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshikawaTakeo en-aut-sei=Yoshikawa en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences kn-affil= affil-num=10 en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University kn-affil= affil-num=11 en-affil=Department of Neurology, National Center of Neurology and Psychiatry kn-affil= affil-num=12 en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=Juvenile amyotrophic lateral sclerosis kn-keyword=Juvenile amyotrophic lateral sclerosis en-keyword=SPTLC1 kn-keyword=SPTLC1 en-keyword=Sphingolipids kn-keyword=Sphingolipids en-keyword=Mosaicism kn-keyword=Mosaicism END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=12 article-no= start-page=1900 end-page=1905 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Subacute Upper Motor Neuron Dysfunction Possibly Associated with the Anti-GM1 Autoantibody en-subtitle= kn-subtitle= en-abstract= kn-abstract=Anti-GM1 antibodies are associated with Guillain-Barr? syndrome (GBS), primarily peripheral neuropathy. However, there are cases of anti-GM1 IgG antibody-positive GBS with upper motor neuron (UMN) signs. We herein report a case of gastrointestinal infection followed by subacute gait disturbance with predominant signs of UMN on a neurological examination. The serum and cerebrospinal fluid tests were positive for anti-GM1 and anti-asialo-GM1 IgG antibodies. An electrophysiological evaluation revealed normal nerve conduction and prolonged central motor conduction times. No magnetic resonance imaging abnormalities were observed. The symptoms improved with treatment, which was accompanied by decreased antibody titers. This case highlights the fact that anti-GM1 IgG-associated disorders may present with predominant UMN involvement. en-copyright= kn-copyright= en-aut-name=OkuboSo en-aut-sei=Okubo en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMeiko en-aut-sei=Maeda en-aut-mei=Meiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuseKazuto en-aut-sei=Katsuse en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShirotaYuichiro en-aut-sei=Shirota en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamadaMasashi en-aut-sei=Hamada en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatakeWataru en-aut-sei=Satake en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=anti-GM1 antibody kn-keyword=anti-GM1 antibody en-keyword=anti-GA1 antibody kn-keyword=anti-GA1 antibody en-keyword=upper motor neuron kn-keyword=upper motor neuron en-keyword=motor-evoked potentials kn-keyword=motor-evoked potentials en-keyword=central motor conduction time kn-keyword=central motor conduction time en-keyword=Guillain-Barr? syndrome kn-keyword=Guillain-Barr? syndrome END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=15 article-no= start-page=e71098 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real‐World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA?RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA?RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA?RNA panel identified more histology-specific fusion genes than DNA panels (p?=?0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p?=?0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA?RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis. en-copyright= kn-copyright= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsoneTatsunori en-aut-sei=Osone en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IdaNaoyuki en-aut-sei=Ida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FutagawaMashu en-aut-sei=Futagawa en-aut-mei=Mashu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimoiTatsunori en-aut-sei=Shimoi en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Medical Oncology, National Cancer Center Hospital kn-affil= affil-num=13 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=genotype-matched therapy kn-keyword=genotype-matched therapy en-keyword=multiplex gene panel test kn-keyword=multiplex gene panel test en-keyword=sarcoma kn-keyword=sarcoma END start-ver=1.4 cd-journal=joma no-vol=638 cd-vols= no-issue=8049 article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsuya en-aut-sei=Nishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenagaKeizo en-aut-sei=Takenaga en-aut-mei=Keizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiSho en-aut-sei=Aki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiShinichiro en-aut-sei=Suzuki en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoshimaHideki en-aut-sei=Makinoshima en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraYuki en-aut-sei=Nakamura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TatsumiYasutoshi en-aut-sei=Tatsumi en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuenagaYusuke en-aut-sei=Suenaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=IkedaJun-ichiro en-aut-sei=Ikeda en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=OsawaTsuyoshi en-aut-sei=Osawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center kn-affil= affil-num=15 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=16 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute kn-affil= affil-num=19 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=20 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=21 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=22 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=23 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=24 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=25 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=26 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=28 en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University kn-affil= affil-num=29 en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=31 en-affil=Division of Cellular Signalling, National Cancer Center Research Institute kn-affil= affil-num=32 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=33 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=34 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=35 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue= article-no= start-page=1477 end-page=1486 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Predictive Value of Tumor ERCC1 Expression for Treatment Outcomes After Adjuvant Chemotherapy in Patients with Completely Resected Non-Small Cell Lung Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: To evaluate the predictive value of tumor expression of the excision repair cross-complementation group 1 gene (ERCC1) for the treatment outcomes after platinum-based adjuvant chemotherapy in patients with completely resected non-small cell lung cancer (NSCLC).
Methods: In this study, we conducted immunohistochemical analysis using a mouse monoclonal anti-ERCC1 antibody (clone 8F1) of operative specimens obtained from 238 patients enrolled in the SLCG0401 study which compared paclitaxel plus carboplatin (CBDCA+PTX) with uracil-tegafur (UFT) as adjuvant chemotherapy for stage IB-IIIA NSCLC. The overall survival (OS) of the patients was compared according to the ERCC1 expression status and adjuvant chemotherapy employed.
Results: Of the 238 specimens, 102 (42.9%) showed a positive result for ERCC1 expression. There were no significant differences in the patient characteristics or OS between the tumor ERCC1-positive and -negative patient groups. Among the patients with ERCC1-negative tumors, there was no significant difference in the survival between patient groups treated with CBDCA+PTX and UFT (HR=0.932, 95% CI: 0.52? 1.67, p=0.814). However, among the patients with ERCC1-positive tumors, CBDCA+PTX treatment tended to yield an inferior outcome, in terms of the OS, as compared with UFT treatment (HR=1.852, 95% CI: 0.92? 3.73, p=0.080). Multivariate analysis showed that ERCC1 expression was not an independent predictor of the OS following CBDCA+PTX treatment in completely resected NSCLC patients.
Conclusion: In completely resected NSCLC patients with positive tumor ERCC1 expression, adjuvant CBDCA+PTX treatment tended to yield an inferior outcome as compared with UFT treatment in terms of the OS. However, immunohistochemical analysis with the 8F1 antibody cannot be used for clinical decision making at this point. en-copyright= kn-copyright= en-aut-name=NakataMasao en-aut-sei=Nakata en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaishoShinsuke en-aut-sei=Saisho en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkumuraNorihito en-aut-sei=Okumura en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraHiroshige en-aut-sei=Nakamura en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaMotohiro en-aut-sei=Yamashita en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DateHiroshi en-aut-sei=Date en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital kn-affil= affil-num=5 en-affil=Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Thoracic Surgery, Kyoto University Graduate School of Medicine kn-affil= en-keyword=non-small cell lung cancer kn-keyword=non-small cell lung cancer en-keyword=postoperative adjuvant chemotherapy kn-keyword=postoperative adjuvant chemotherapy en-keyword=platinum-based chemotherapy kn-keyword=platinum-based chemotherapy en-keyword=excision repair crosscomplementation group 1 gene kn-keyword=excision repair crosscomplementation group 1 gene en-keyword=survival kn-keyword=survival END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=6 article-no= start-page=1008 end-page=1016 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High risk of multiple gastric cancers in Japanese individuals with Lynch syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.
Methods: Data on Japanese individuals with LS were retrospectively collected from a single institution. The clinical features of GC, including the cumulative risk of multiple GCs, were analyzed.
Results: Among 96 individuals with LS (MLH1/MSH2/MSH6, 75:20:1), 32 GC lesions were detected in 15 individuals with LS (male/female, 11:4). The median age at initial GC diagnosis was 52.7?y (range: 28?71). Histological examination revealed a predominance of intestinal type (19/24: 87.5%). Moreover, the majority of the GC lesions (82%) were determined to have high-frequency of microsatellite instability. The cumulative risk of individuals with LS developing GC at 70?y was 31.3% (MLH1 36.1%, MSH2 18.0%). Notably, the cumulative risk of individuals with LS developing metachronous and/or synchronous GCs at 0, 10 and 20?y after initial diagnosis of GC was 26.7%, 40.7%, and 59.4%, respectively.
Conclusion: Due to a higher risk of developing multiple GCs, intensive surveillance might be especially recommended for Japanese individuals with LS associated initial GC. en-copyright= kn-copyright= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=van SchaikThijs A. en-aut-sei=van Schaik en-aut-mei=Thijs A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokiHideki en-aut-sei=Aoki en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoYumiko en-aut-sei=Sato en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniguchiFumitaka en-aut-sei=Taniguchi en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuganoKokichi en-aut-sei=Sugano en-aut-mei=Kokichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiKiwamu en-aut-sei=Akagi en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHideyuki en-aut-sei=Ishida en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakayaKohji en-aut-sei=Tanakaya en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School kn-affil= affil-num=3 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=5 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Genetic Medicine, Kyoundo Hospital, SSasaki Foundation kn-affil= affil-num=8 en-affil=Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center kn-affil= affil-num=9 en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=10 en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= en-keyword=cumulative risk kn-keyword=cumulative risk en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=Japanese individuals kn-keyword=Japanese individuals en-keyword=Lynch syndrome kn-keyword=Lynch syndrome en-keyword=multiple gastric cancers kn-keyword=multiple gastric cancers END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=271 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12?months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6?months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2?years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5?years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches. en-copyright= kn-copyright= en-aut-name=ChikadaAyaka en-aut-sei=Chikada en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizusawaHidehiro en-aut-sei=Mizusawa en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiYuji en-aut-sei=Takahashi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsunoMasahisa en-aut-sei=Katsuno en-aut-mei=Masahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraKazuhiro en-aut-sei=Hara en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoderaOsamu en-aut-sei=Onodera en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshiharaTomohiko en-aut-sei=Ishihara en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TadaMasayoshi en-aut-sei=Tada en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KuwabaraSatoshi en-aut-sei=Kuwabara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugiyamaAtsuhiko en-aut-sei=Sugiyama en-aut-mei=Atsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamanakaYoshitaka en-aut-sei=Yamanaka en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakahashiRyosuke en-aut-sei=Takahashi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SawamotoNobukatsu en-aut-sei=Sawamoto en-aut-mei=Nobukatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SakatoYusuke en-aut-sei=Sakato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IshimotoTomoyuki en-aut-sei=Ishimoto en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HanajimaRitsuko en-aut-sei=Hanajima en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeYasuhiro en-aut-sei=Watanabe en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TakigawaHiroshi en-aut-sei=Takigawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AdachiTadashi en-aut-sei=Adachi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TakashimaHiroshi en-aut-sei=Takashima en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HigashiKeiko en-aut-sei=Higashi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KiraJunichi en-aut-sei=Kira en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YabeIchiro en-aut-sei=Yabe en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=MatsushimaMasaaki en-aut-sei=Matsushima en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=OgataKatsuhisa en-aut-sei=Ogata en-aut-mei=Katsuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=IshikawaKinya en-aut-sei=Ishikawa en-aut-mei=Kinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=NishidaYoichiro en-aut-sei=Nishida en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=IshiguroTaro en-aut-sei=Ishiguro en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=OzakiKokoro en-aut-sei=Ozaki en-aut-mei=Kokoro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NagataTetsuya en-aut-sei=Nagata en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=12 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=13 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=15 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=16 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=17 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=22 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=23 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=24 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=25 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=26 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=27 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=28 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=29 en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=30 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=31 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=32 en-affil=Department of Neurology, Higashi-Saitama National Hospital kn-affil= affil-num=33 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=34 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=35 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=36 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=37 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=38 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=multicenter cohort study kn-keyword=multicenter cohort study en-keyword=multiple system atrophy kn-keyword=multiple system atrophy en-keyword=natural history kn-keyword=natural history en-keyword=patient registry kn-keyword=patient registry END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=159 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A novel de novo disease-causing variant in ATL1 in a pediatric patient with spastic paraplegia en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakamuraAyumi en-aut-sei=Nakamura en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwakoshiMie en-aut-sei=Iwakoshi en-aut-mei=Mie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Nursing, Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=12 article-no= start-page=613 end-page=621 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome- en-subtitle= kn-subtitle= en-abstract= kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P?p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 ? 7.76, p = 0.0400). en-copyright= kn-copyright= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasaki en-aut-sei=Tanaka en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomotoJunko en-aut-sei=Nomoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OmaeYosuke en-aut-sei=Omae en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawaiYosuke en-aut-sei=Kawai en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TokunagaKatsushi en-aut-sei=Tokunaga en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NCBN Controls WGS Consortium en-aut-sei=NCBN Controls WGS Consortium en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=5 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=8 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=9 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=10 en-affil= kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=3 article-no= start-page=525 end-page=526 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Severe traumatic tricuspid regurgitation detected 8?years after chest trauma en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=3 article-no= start-page=79 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results. en-copyright= kn-copyright= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkumuraNorihito en-aut-sei=Okumura en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHiroyuki en-aut-sei=Suzuki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakataMasao en-aut-sei=Nakata en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GembaKenicehi en-aut-sei=Gemba en-aut-mei=Kenicehi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SanoIsao en-aut-sei=Sano en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujinagaTakuji en-aut-sei=Fujinaga en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KataokaMasafumi en-aut-sei=Kataoka en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TerasakiYasuhiro en-aut-sei=Terasaki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KataokaKazuhiko en-aut-sei=Kataoka en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KosakaShinji en-aut-sei=Kosaka en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamashitaMotohiro en-aut-sei=Yamashita en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InokawaHidetoshi en-aut-sei=Inokawa en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraHiroshige en-aut-sei=Nakamura en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YamashitaYoshinori en-aut-sei=Yamashita en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiYuta en-aut-sei=Takahashi en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TorigoeHidejiro en-aut-sei=Torigoe en-aut-mei=Hidejiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshiokaHiroshige en-aut-sei=Yoshioka en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=MoritaSatoshi en-aut-sei=Morita en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=MatsuoKeitaro en-aut-sei=Matsuo en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=SakamotoJunichi en-aut-sei=Sakamoto en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=DateHiroshi en-aut-sei=Date en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Chest Surgery, Fukushima Medical University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center kn-affil= affil-num=10 en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan kn-affil= affil-num=12 en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=14 en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital kn-affil= affil-num=15 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center kn-affil= affil-num=17 en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital kn-affil= affil-num=18 en-affil=Division of General Thoracic Surgery, Tottori University Hospital kn-affil= affil-num=19 en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=20 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=23 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=24 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital kn-affil= affil-num=26 en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine kn-affil= affil-num=27 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=28 en-affil=Tokai Central Hospital kn-affil= affil-num=29 en-affil=Department of Thoracic Surgery, Kyoto University Hospital kn-affil= affil-num=30 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= en-keyword=non?small cell lung cancer kn-keyword=non?small cell lung cancer en-keyword=elderly patients kn-keyword=elderly patients en-keyword=adjuvant chemotherapy kn-keyword=adjuvant chemotherapy en-keyword=S?1 kn-keyword=S?1 en-keyword=EGFR kn-keyword=EGFR en-keyword=TP kn-keyword=TP en-keyword=TS kn-keyword=TS en-keyword=OPRT kn-keyword=OPRT en-keyword=ERCC1 kn-keyword=ERCC1 en-keyword=DPD kn-keyword=DPD END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=10 article-no= start-page=1215 end-page=1227 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy. en-copyright= kn-copyright= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiTetta en-aut-sei=Takahashi en-aut-mei=Tetta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SagayamaKazumi en-aut-sei=Sagayama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Microbiology, Tokushima Bunri University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=15 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=16 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=17 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=18 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=19 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=20 en-affil=Organization for Research and Innovation Strategy, Okayama University kn-affil= affil-num=21 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=22 en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University kn-affil= affil-num=23 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= en-keyword=Plasmid kn-keyword=Plasmid en-keyword=Gene engineering kn-keyword=Gene engineering en-keyword=Cancer kn-keyword=Cancer en-keyword=Cell culture kn-keyword=Cell culture END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue= article-no= start-page=103389 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Global trends in mortality related to pulmonary embolism: an epidemiological analysis of data from the World Health Organization mortality database from 2001 to 2023 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKo en-aut-sei=Harada en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMaki en-aut-sei=Yamamoto en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraSayoko en-aut-sei=Nishimura en-aut-mei=Sayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMichio en-aut-sei=Yamamoto en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NiimuraTakahiro en-aut-sei=Niimura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakiYuka en-aut-sei=Osaki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=VuQuynh Thi en-aut-sei=Vu en-aut-mei=Quynh Thi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiMariko en-aut-sei=Fujii en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakoNanami en-aut-sei=Sako en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=2 en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai kn-affil= affil-num=3 en-affil=Division of Hematology and Oncology, Mayo Clinic kn-affil= affil-num=4 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Human Sciences, Osaka University kn-affil= affil-num=7 en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=8 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Center for Education in Medicine and Health Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Pharmacy, Medical Development Field, Okayama University kn-affil= affil-num=14 en-affil=Department of Pharmacy, Medical Development Field, Okayama University kn-affil= affil-num=15 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Pulmonary embolism kn-keyword=Pulmonary embolism en-keyword=Mortality kn-keyword=Mortality en-keyword=WHO kn-keyword=WHO en-keyword=Global trends kn-keyword=Global trends END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=1 article-no= start-page=19 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology. en-copyright= kn-copyright= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiTakashi en-aut-sei=Haraguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuokaChika en-aut-sei=Matsuoka en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawanoTomohito en-aut-sei=Kawano en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Nakashima-YasudaHanae en-aut-sei=Nakashima-Yasuda en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HasegawaMasato en-aut-sei=Hasegawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HosonoYasuyuki en-aut-sei=Hosono en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Psychiatry, Zikei Hospital kn-affil= affil-num=10 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science kn-affil= affil-num=14 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Amyotrophic lateral sclerosis kn-keyword=Amyotrophic lateral sclerosis en-keyword=Heat shock protein kn-keyword=Heat shock protein en-keyword=DNAJC7 kn-keyword=DNAJC7 en-keyword=TDP-43 kn-keyword=TDP-43 en-keyword=Live-cell imaging kn-keyword=Live-cell imaging en-keyword=Zebrafish disease model kn-keyword=Zebrafish disease model END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=27502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression???50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p?=?0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy. en-copyright= kn-copyright= en-aut-name=MoriTakeru en-aut-sei=Mori en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaMio en-aut-sei=Kitagawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaTomokazu en-aut-sei=Hasegawa en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SomeyaMasanori en-aut-sei=Someya en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuchiyaTakaaki en-aut-sei=Tsuchiya en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GochoToshio en-aut-sei=Gocho en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DateMirei en-aut-sei=Date en-aut-mei=Mirei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriiMariko en-aut-sei=Morii en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=3 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=5 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=6 en-affil=Department of Radiology, Sapporo Medical University School of Medicine kn-affil= affil-num=7 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Autoantibodies kn-keyword=Autoantibodies en-keyword=PACIFIC regimen kn-keyword=PACIFIC regimen en-keyword=ICIs kn-keyword=ICIs en-keyword=Immune monitoring kn-keyword=Immune monitoring END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=6 article-no= start-page=e00110-25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)?1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection. en-copyright= kn-copyright= en-aut-name=TakiiTakemasa en-aut-sei=Takii en-aut-mei=Takemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaHiroyuki en-aut-sei=Yamada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotozonoChihiro en-aut-sei=Motozono en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamasakiSho en-aut-sei=Yamasaki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TorrellesJordi B. en-aut-sei=Torrelles en-aut-mei=Jordi B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TurnerJoanne en-aut-sei=Turner en-aut-mei=Joanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimishimaAoi en-aut-sei=Kimishima en-aut-mei=Aoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsamiYukihiro en-aut-sei=Asami en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OharaNaoya en-aut-sei=Ohara en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HidaShigeaki en-aut-sei=Hida en-aut-mei=Shigeaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OnozakiKikuo en-aut-sei=Onozaki en-aut-mei=Kikuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association kn-affil= affil-num=2 en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association kn-affil= affil-num=3 en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka kn-affil= affil-num=4 en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka kn-affil= affil-num=5 en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE) kn-affil= affil-num=6 en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE) kn-affil= affil-num=7 en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=8 en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=9 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= affil-num=11 en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= affil-num=12 en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University kn-affil= en-keyword=Mycobacterium tuberculosis kn-keyword=Mycobacterium tuberculosis en-keyword=pyroptosis kn-keyword=pyroptosis en-keyword=caspase kn-keyword=caspase en-keyword=RNA-Seq kn-keyword=RNA-Seq en-keyword=cytokine kn-keyword=cytokine en-keyword=fibroblasts kn-keyword=fibroblasts END start-ver=1.4 cd-journal=joma no-vol=154 cd-vols= no-issue= article-no= start-page=107863 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Secondary pneumothorax due to Aspergillus welwitschiae in a lung transplant recipient en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BanSayaka en-aut-sei=Ban en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YaguchiTakashi en-aut-sei=Yaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeAkira en-aut-sei=Watanabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=3 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=4 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=5 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital kn-affil= en-keyword=Aspergillus section Nigri kn-keyword=Aspergillus section Nigri en-keyword=Aspergillus tracheobronchitis kn-keyword=Aspergillus tracheobronchitis en-keyword=Invasive pulmonary aspergillosis kn-keyword=Invasive pulmonary aspergillosis en-keyword=Pneumothorax kn-keyword=Pneumothorax END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=4 article-no= start-page=715 end-page=721 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Telemedicine as an alternative to in-person care in the field of rheumatic diseases: A systematic scoping review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The COVID-19 pandemic prompted the widespread adoption of telemedicine as an alternative to in-person care. This systematic scoping review evaluated the effectiveness, cost-efficiency, and challenges of telemedicine for patients with rheumatic diseases.
Methods: A comprehensive search of the MEDLINE database was conducted using specific terms related to rheumatoid or juvenile arthritis, and telemedicine. The literature search included studies published up to March, 2024. In this review, we only considered studies assessing telemedicine as an alternative to in-person care.
Results: The search, conducted on 15 March 2024, generated 258 references. Eight reports from three randomized controlled trials and three observational studies were included. Randomized controlled trials have shown that the outcomes of telemedicine intervention are comparable to those of in-person care in terms of disease activity, functional status, and quality of life, while enabling fewer outpatient visits and cost-effectiveness. However, the high dropout rates highlight the importance of patient preferences and comprehensive education. Observational studies revealed similar findings but were limited by a high confounding bias.
Conclusion: Telemedicine offers economic advantages and maintains clinical outcomes comparable to those of in-person care. Its success depends on structured patient education and alignment with patient preferences. Further research is required, particularly in the context of healthcare in Japan. en-copyright= kn-copyright= en-aut-name=SadaKen-ei en-aut-sei=Sada en-aut-mei=Ken-ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataShigeru en-aut-sei=Iwata en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueYuzaburo en-aut-sei=Inoue en-aut-mei=Yuzaburo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaEiichi en-aut-sei=Tanaka en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawahitoYutaka en-aut-sei=Kawahito en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeAsami en-aut-sei=Abe en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawakamiAtsushi en-aut-sei=Kawakami en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyamaeTakako en-aut-sei=Miyamae en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Clinical Epidemiology, Kochi Medical School kn-affil= affil-num=2 en-affil=Department of Rheumatology and Clinical Immunology, Wakayama Medical University kn-affil= affil-num=3 en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University kn-affil= affil-num=4 en-affil=Department of Rheumatology, Tokyo Women’s Medical University School of Medicine kn-affil= affil-num=5 en-affil=Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=6 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=7 en-affil=Department of Rheumatology, Niigata Rheumatic Center kn-affil= affil-num=8 en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University kn-affil= en-keyword=Digital health kn-keyword=Digital health en-keyword=telemedicine kn-keyword=telemedicine en-keyword=remote care kn-keyword=remote care en-keyword=rheumatic disease kn-keyword=rheumatic disease en-keyword=scoping review kn-keyword=scoping review END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue= article-no= start-page=31 end-page=42 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Incidence, Management, and Prevention of Gynecomastia and Breast Pain in Patients with Prostate Cancer Undergoing Antiandrogen Therapy: A Systematic Review and Meta-analysis of Randomized Controlled Trials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objective: In patients with prostate cancer treated with antiandrogen monotherapy, gynecomastia and breast pain are relatively common. In the setting of androgen receptor pathway inhibitors (ARPIs), the incidence of these adverse events (AEs) remains unclear. In addition, the effect of prophylactic treatment on gynecomastia remains uncertain. We aimed to evaluate the incidence of gynecomastia and breast pain in prostate cancer patients treated with ARPIs compared with androgen deprivation therapy (ADT) and the effect of prophylactic treatment for these AEs due to antiandrogen therapy.
Methods: In June 2024, we queried four databases?PubMed, Scopus, Web of Science, and Embase?for randomized controlled trials (RCTs) investigating prostate cancer treatments involving antiandrogen therapy. The endpoints of interest were the incidence of these AEs due to ARPIs and the effect of prophylactic treatment for these.
Key findings and limitations: Eighteen RCTs, comprising 5036 patients, were included in the systematic review and meta-analysis. ARPIs included enzalutamide, darolutamide, and apalutamide. The results indicated that patients who received ARPI monotherapy had a significantly higher incidence of gynecomastia than those who received ADT monotherapy (risk ratio [RR]: 5.19, 95% confidence interval [CI]: 3.58?7.51, p < 0.001). There was no significant difference in the incidence of gynecomastia between ARPI plus ADT therapy and ADT monotherapy (RR: 1.27, 95% CI: 0.84?1.93, p = 0.2). Prophylactic tamoxifen or radiotherapy reduced significantly the incidence of gynecomastia and breast pain caused by bicalutamide monotherapy.
Conclusions and clinical implications: We found that ARPI monotherapy increases the incidence of these AEs significantly compared with ADT. In contrast, ARPI plus ADT therapy did not result in a higher incidence of AEs. The use of either tamoxifen or radiotherapy was effective in reducing the incidence of these AEs due to bicalutamide monotherapy. These prophylactic treatments could reduce the incidence of AEs due to ARPI monotherapy. However, further studies are needed to clarify their efficacy.
Patient summary: Although androgen deprivation therapy (ADT) improves overall survival in patients with prostate cancer, it is associated with several complications. Androgen receptor pathway inhibitor (ARPI) monotherapy has emerged as a promising strategy for improving oncological outcomes in these patients. However, ARPI monotherapy increases gynecomastia and breast pain in prostate cancer patients compared with ADT, while ARPI plus ADT did not result in a higher incidence of adverse events. en-copyright= kn-copyright= en-aut-name=TsuboiIchiro en-aut-sei=Tsuboi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SchulzRobert J. en-aut-sei=Schulz en-aut-mei=Robert J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LaukhtinaEkaterina en-aut-sei=Laukhtina en-aut-mei=Ekaterina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KarakiewiczPierre I. en-aut-sei=Karakiewicz en-aut-mei=Pierre I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=3 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=4 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=5 en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=Antiandrogen therapy kn-keyword=Antiandrogen therapy en-keyword=Androgen deprivation therapy kn-keyword=Androgen deprivation therapy en-keyword=Androgen receptor pathway inhibitors kn-keyword=Androgen receptor pathway inhibitors en-keyword=Breast pain kn-keyword=Breast pain en-keyword=Gynecomastia kn-keyword=Gynecomastia END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=3332 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Experience of High Tibial Osteotomy for Patients with Rheumatoid Arthritis Treated with Recent Medication: A Case Series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: High tibial osteotomy (HTO) was generally not indicated in patients with rheumatoid arthritis (RA) because synovial inflammation may exacerbate joint damage postoperatively. Recently, joint destruction in RA has dramatically changed with the introduction of methotrexate (MTX) and biological disease-modifying antirheumatic drugs (bDMARDs). This study aimed to investigate the clinical outcomes of HTO for patients with RA treated with recent medication. Methods: In this study, patients with RA who underwent HTO between 2016 and 2020 were retrospectively reviewed. Patients whose follow-up period was <2 years and those whose onset of RA occurred after HTO were excluded. Clinical outcomes were investigated using the Japanese orthopedic Association (JOA) and visual analog scale (VAS) scores. Results: Seven patients (two males and five females, mean age 72.0 ± 6.2 years, mean body mass index 24.0 ± 2.9 kg/m2) were included in this study. The mean follow-up period was 62.1 ± 21.4 months. Open-wedge and hybrid closed-wedge HTO were performed in two and five cases, respectively. MTX was used for all cases. The bDMARDs were used in six cases (golimumab and tocilizumab in four and two cases, respectively). JOA scores significantly improved from 63.6 ± 10.7 preoperatively to 90.7 ± 5.3 postoperatively (p = 0.0167 Wilcoxon rank test). VAS scores significantly decreased from 48.6 ± 12.2 preoperatively to 11.4 ± 6.9 postoperatively (p = 0.017 Wilcoxon rank test). None of the patients underwent total knee arthroplasty. Conclusions: This study showed seven RA patients who underwent HTO treated with recent medication. The prognosis of RA, including joint destruction, has dramatically improved with induction of MTX and bDMARDs. HTO may be one of effective joint preservation surgeries even for patients with RA. To achieve the favorable outcomes, surgeons should pay attention to timing and indication of surgery. en-copyright= kn-copyright= en-aut-name=TakaharaYasuhiro en-aut-sei=Takahara en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakashimaHirotaka en-aut-sei=Nakashima en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UchidaYoichiro en-aut-sei=Uchida en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoHisayoshi en-aut-sei=Kato en-aut-mei=Hisayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItaniSatoru en-aut-sei=Itani en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwasakiYuichi en-aut-sei=Iwasaki en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital kn-affil= en-keyword=high tibial osteotomy kn-keyword=high tibial osteotomy en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis en-keyword=methotrexate kn-keyword=methotrexate en-keyword=biologic diseasemodifying antirheumatic drugs kn-keyword=biologic diseasemodifying antirheumatic drugs en-keyword=knee surgery kn-keyword=knee surgery en-keyword=joint preservation kn-keyword=joint preservation END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=3 article-no= start-page=99 end-page=117 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP en-subtitle= kn-subtitle= en-abstract= kn-abstract=Golli?myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli?myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli?myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli?myelin basic protein knockout through the generation of conditional knockout mice (Golli?myelin basic proteinsfl/fl; E3CreN), in which Golli?myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli?myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli?myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli?myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli?myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli?myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system. en-copyright= kn-copyright= en-aut-name=MiyazakiHaruko en-aut-sei=Miyazaki en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiokaSaki en-aut-sei=Nishioka en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaTomoyuki en-aut-sei=Yamanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeManabu en-aut-sei=Abe en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ImamuraYukio en-aut-sei=Imamura en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyasakaTomohiro en-aut-sei=Miyasaka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KakudaNobuto en-aut-sei=Kakuda en-aut-mei=Nobuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShimogoriTomomi en-aut-sei=Shimogori en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamakawaKazuhiro en-aut-sei=Yamakawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IkawaMasahito en-aut-sei=Ikawa en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NukinaNobuyuki en-aut-sei=Nukina en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=3 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= affil-num=4 en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University kn-affil= affil-num=5 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= affil-num=6 en-affil=Faculty of Life and Medical Sciences, Doshisha University kn-affil= affil-num=7 en-affil=Faculty of Life and Medical Sciences, Doshisha University kn-affil= affil-num=8 en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science kn-affil= affil-num=10 en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science kn-affil= affil-num=11 en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University kn-affil= affil-num=12 en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University kn-affil= en-keyword=Golli-MBP kn-keyword=Golli-MBP en-keyword=Cerebellar granule neuron kn-keyword=Cerebellar granule neuron en-keyword=CRISPR/Cas9 kn-keyword=CRISPR/Cas9 en-keyword=Conditional knockout kn-keyword=Conditional knockout END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=24 article-no= start-page=3299 end-page=3306 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Preliminary Survey of Rheumatologists on the Management of Late-onset Rheumatoid Arthritis in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective We investigated the current perspectives regarding the management of late-onset rheumatoid arthritis (LORA) among rheumatologists in clinical practice.
Methods This study was performed in October 2021, and included 65 rheumatologists certified by the Japan College of Rheumatology, who were administered questionnaires (including multiple choice and descriptive formulae) regarding the management of LORA. We aggregated and analyzed the responses.
Results All 65 rheumatologists responded to the survey; 47 (72%) answered that >50% of newly diagnosed patients were aged ?65 years, 42 (65%) answered that achievement of remission or low disease activity was the treatment goal, and 40 (62%) considered patient safety to be the highest priority. Most rheumatologists are concerned about the management of conditions other than RA, such as comorbidities, financial constraints, and life circumstances that interfere with standard or recommended treatment implementation.
Conclusion This preliminary survey highlighted various rheumatologists' perspectives regarding the management of LORA. en-copyright= kn-copyright= en-aut-name=TakanashiSatoshi en-aut-sei=Takanashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanekoYuko en-aut-sei=Kaneko en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawahitoYutaka en-aut-sei=Kawahito en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KidaTakashi en-aut-sei=Kida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiharaTakahiko en-aut-sei=Sugihara en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KojimaToshihisa en-aut-sei=Kojima en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaradaRyozo en-aut-sei=Harada en-aut-mei=Ryozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshitokuMichinori en-aut-sei=Ishitoku en-aut-mei=Michinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirataShintaro en-aut-sei=Hirata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HashimotoMotomu en-aut-sei=Hashimoto en-aut-mei=Motomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HidakaToshihiko en-aut-sei=Hidaka en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AbeAsami en-aut-sei=Abe en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshikawaHajime en-aut-sei=Ishikawa en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ItoHiromu en-aut-sei=Ito en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KishimotoMitsumasa en-aut-sei=Kishimoto en-aut-mei=Mitsumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MatsuiKazuo en-aut-sei=Matsui en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MatsuiToshihiro en-aut-sei=Matsui en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MatsushitaIsao en-aut-sei=Matsushita en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OnishiAkira en-aut-sei=Onishi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MorinobuAkio en-aut-sei=Morinobu en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AsaiShuji en-aut-sei=Asai en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TanakaEiichi en-aut-sei=Tanaka en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=HarigaiMasayoshi en-aut-sei=Harigai en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KojimaMasayo en-aut-sei=Kojima en-aut-mei=Masayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=4 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=5 en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine kn-affil= affil-num=6 en-affil=National Hospital Organization Nagoya Medical Center, Orthopaedic Surgery and Rheumatology kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Kurashiki Sweet Hospital kn-affil= affil-num=8 en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital kn-affil= affil-num=10 en-affil=Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Miyazaki-Zenjinkai Hospital kn-affil= affil-num=12 en-affil=Department of Rheumatology, Niigata Rheumatic Center kn-affil= affil-num=13 en-affil=Department of Rheumatology, Niigata Rheumatic Center kn-affil= affil-num=14 en-affil=Kurashiki Central Hospital kn-affil= affil-num=15 en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine kn-affil= affil-num=16 en-affil=Department of Rheumatology, Teine Keijinkai Hospital kn-affil= affil-num=17 en-affil=Department of Rheumatology Research, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital kn-affil= affil-num=18 en-affil=Department of Rehabilitation Medicine, Kanazawa Medical University kn-affil= affil-num=19 en-affil=Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University kn-affil= affil-num=20 en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=21 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=22 en-affil=Department of Orthopaedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine kn-affil= affil-num=23 en-affil=Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine kn-affil= affil-num=24 en-affil=Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine kn-affil= affil-num=25 en-affil=Department of Public Health, Nagoya City University Graduate School of Medical Sciences kn-affil= en-keyword=late-onset rheumatoid arthritis kn-keyword=late-onset rheumatoid arthritis en-keyword=ageing society kn-keyword=ageing society en-keyword=questionnaire kn-keyword=questionnaire END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=9 article-no= start-page=e70105 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrahigh‐Field MR‐Compatible Mechanical Tactile Stimulator for Investigating Somatosensory Processing in Small‐Bodied Animals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Common marmosets (Callithrix jacchus), small-bodied New World primates that share similar sensory processing pathways with human beings, have gained great interests. Their small body size allows imaging of brain activity with high spatial resolution and on a whole-brain scale using ultrahigh-field (UHF) magnetic resonance imaging (MRI) scanners. However, the strong magnetic field and the small size of the hand and forearm pose challenges in delivering tactile stimulation during fMRI experiments. In the present study, we developed an MR-compatible tactile dual-point stimulator to provide high-precision mechanical stimulation for exploring somatosensory processing in small-bodied animals. The study population consisted of a water phantom and three male common marmosets. Cerebral blood volume (CBV) weighted fMRI data were obtained with a gradient echo (GE), echo-planar imaging (EPI) sequence at 7T scanner. The output performance of the device was tested by a pressure sensor. The MR compatibility of the device was verified by measuring the temporal signal-to-noise ratio (tSNR) of a water phantom. To test the effectiveness of tactile stimulation, we conducted block designed tactile stimulation experiments on marmosets. A one-way repeated measures ANOVA was conducted for comparing the tSNR results. We performed one-sample t-tests to investigate the negative response of the forearm and hand stimulation with a threshold of t > 1.96 (p < 0.05). Performance tests revealed that mechanical stimulation (averaged force: 31.69?g) was applied with a delay of 12?ms. Phantom experiments confirmed that there was no significant difference in the tSNR among three (10?Hz, 1?Hz, and no-stimulus) conditions (F (2, 798) = 0.71, p = 0.49). The CBV activity results showed that the stimulator successfully elicited hand and forearm somatosensory activations in primary somatosensory areas. These results indicated that the device is well suited for small-bodied animal somatosensory studies. en-copyright= kn-copyright= en-aut-name=WangChenyu en-aut-sei=Wang en-aut-mei=Chenyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImaiHirohiko en-aut-sei=Imai en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukunagaMasaki en-aut-sei=Fukunaga en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoHiroki en-aut-sei=Yamamoto en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekiKazuhiko en-aut-sei=Seki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanakawaTakashi en-aut-sei=Hanakawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmedaTatsuya en-aut-sei=Umeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Innovation Research Center for Quantum Medicine, Gifu University School of Medicine kn-affil= affil-num=3 en-affil=Section of Brain Function Information, National Institute for Physiological Sciences kn-affil= affil-num=4 en-affil=Graduate School of Human and Environmental Studies, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurophysiology, National Center of Neurology and Psychiatry kn-affil= affil-num=7 en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=primary somatosensory cortex kn-keyword=primary somatosensory cortex en-keyword=small-bodied animals kn-keyword=small-bodied animals en-keyword=tactile stimulation device kn-keyword=tactile stimulation device en-keyword=ultrahigh-field magnetic resonance imaging kn-keyword=ultrahigh-field magnetic resonance imaging END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=kwaf146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immortal time bias from selection: a principal stratification perspective en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immortal time bias due to post-treatment definition of eligibility criteria can affect experimental and observational studies, and yet, in contrast to the extensive literature on the classical form of immortal time bias, it has seldom been the focus of methodological discussions. Here, we propose an account of eligibility-related immortal time bias that uses the principal stratification framework to explain the noncomparability of treatment arms (or exposure groups) conditional on selection. In particular, we show that the statistical estimand that conditions on observed eligibility after time zero of follow-up can be interpreted using partially overlapping principal strata. Furthermore, we show that, under this perspective, as the timing of eligibility approaches time zero of follow-up, the probabilities of the outcome for eligible individuals monotonically approach the corresponding unconditional (in absence of selection) expected potential outcomes under different treatment levels. Our study provides a potential outcomes-based explanation of eligibility-related immortal time bias, and indicates that, in addition to the target trial emulation framework, principal effects might, for some studies, be useful causal estimands. en-copyright= kn-copyright= en-aut-name=Gon?alvesBronner P en-aut-sei=Gon?alves en-aut-mei=Bronner P kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Health and Medical Sciences, University of Surrey kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=immortal time bias kn-keyword=immortal time bias en-keyword=principal stratification kn-keyword=principal stratification en-keyword=potential outcomes kn-keyword=potential outcomes en-keyword=causal inference kn-keyword=causal inference END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=e60943 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Usefulness of Interventions Using a Smartphone Cognitive Behavior Therapy Application for Children With Mental Health Disorders: Prospective, Single-Arm, Uncontrolled Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The prevalence of mental health disorders among children in Japan has increased rapidly, and these children often show depressive symptoms and reduced quality of life (QOL). We previously developed a smartphone-based self-monitoring app to deliver cognitive behavioral therapy (CBT), implemented it in healthy children, and reported its effectiveness for health promotion.
Objective: This study aims to examine the usefulness of the CBT app for improvement in depressive symptoms and QOL in children with mental health disorders.
Methods: The participants were 115 children with mental health disorders (eg, school refusal, orthostatic hypotension, eating disorders, developmental disorders, among others) and aged 12‐18 years. The CBT app?based program comprised 1 week of psychoeducation followed by 1 week of self-monitoring. After reading story-like scenarios, participants created a self-monitoring sheet with 5 panels: events, thoughts, feelings, body responses, and actions. All participants received regular mental health care from physicians in addition to the app-based program. To evaluate the participants’ depressive symptoms and QOL, Patient Health Questionnaire for Adolescents (PHQ-9A), Depression Self-Rating Scale for Children (DSRS-C), and Pediatric Quality of Life Inventory (PedsQL) were measured at the beginning of the intervention, and at 2 and 6 months thereafter. Questionnaire for Triage and Assessment with 30 items (QTA30), and Rosenberg Self-Esteem Scale (RSES) were also used to measure their health and self-esteem. Participants were divided into 4 groups on the basis of the PHQ-9A score (above or below the cutoff; PHQ-9A?5 or PHQ-9A<5) and completion or noncompletion of the CBT app?based program (app [+] or app [-]). The primary outcome was improvement in the DSRS-C score, and secondary outcomes were improvement in other psychometric scales including PedsQL, QTA30, and RSE. A paired-samples t test was used for statistical analysis. The Medical Ethics Committee of Fukuoka University Faculty of Medicine (approval U22-05-002) approved the study design.
Results: There were 48, 18, 18, and 7 participants in the PHQ-9A?5 app (+), PHQ-9A?5 app (-), PHQ-9A<5 app (+), and PHQ-9A<5 app (-) groups, respectively. A total of 24 participants dropped out. No improvement in the DSRS-C score was observed in all groups. However, PedsQL scores improved significantly at 2 and 6 months in the PHQ-9A<5 app (+) group (t17=6.62; P<.001 and t17=6.11; P<.001, respectively). There was a significant positive correlation between the PHQ-9A scores and the number of self-monitoring sheets completed.
Conclusions: The CBT app was useful for improving PedsQL scores of children with mental health disorders. However, a higher-intensity CBT program is necessary for more severely depressed children.
Trial Registration: University Hospital Medical Information Network Clinical Trials Registry UMIN000046775; center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053360 en-copyright= kn-copyright= en-aut-name=NagamitsuShinichiro en-aut-sei=Nagamitsu en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaAyumi en-aut-sei=Okada en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakutaRyoichi en-aut-sei=Sakuta en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiiRyuta en-aut-sei=Ishii en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KoyanagiKenshi en-aut-sei=Koyanagi en-aut-mei=Kenshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HabukawaChizu en-aut-sei=Habukawa en-aut-mei=Chizu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatayamaTakashi en-aut-sei=Katayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoMasaya en-aut-sei=Ito en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanieAyako en-aut-sei=Kanie en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtaniRyoko en-aut-sei=Otani en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InoueTakeshi en-aut-sei=Inoue en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KitajimaTasuku en-aut-sei=Kitajima en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsubaraNaoki en-aut-sei=Matsubara en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TanakaChie en-aut-sei=Tanaka en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShigeyasuYoshie en-aut-sei=Shigeyasu en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MatsuokaMichiko en-aut-sei=Matsuoka en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KakumaTatsuyuki en-aut-sei=Kakuma en-aut-mei=Tatsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HorikoshiMasaru en-aut-sei=Horikoshi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Pediatrics, Faculty of Medicine, Fukuoka University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=4 en-affil=Department of Pediatrics & Child Health, Kurume University, School of Medicine kn-affil= affil-num=5 en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children kn-affil= affil-num=6 en-affil=Department of Pediatric Allergy, Minami Wakayama Medical Center kn-affil= affil-num=7 en-affil=L2B Inc kn-affil= affil-num=8 en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry kn-affil= affil-num=10 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=11 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=12 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=13 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=14 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Neuropsychiatry, Kurume University School of Medicine kn-affil= affil-num=18 en-affil=Biostatistics Center, Kurume University kn-affil= affil-num=19 en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry kn-affil= en-keyword=smartphone kn-keyword=smartphone en-keyword=cognitive behavioral therapy kn-keyword=cognitive behavioral therapy en-keyword=application kn-keyword=application en-keyword=adolescent kn-keyword=adolescent en-keyword=youth kn-keyword=youth en-keyword=teen kn-keyword=teen en-keyword=pediatric kn-keyword=pediatric en-keyword=mental health kn-keyword=mental health en-keyword=psychoeducation kn-keyword=psychoeducation en-keyword=self-monitoring kn-keyword=self-monitoring en-keyword=questionnaire kn-keyword=questionnaire en-keyword=depressive symptoms kn-keyword=depressive symptoms en-keyword=effectiveness kn-keyword=effectiveness en-keyword=Japan kn-keyword=Japan en-keyword=statistical analysis kn-keyword=statistical analysis en-keyword=single-arm uncontrolled study kn-keyword=single-arm uncontrolled study en-keyword=mobile phone kn-keyword=mobile phone END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=11 article-no= start-page=6155 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia?resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric?differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SpirrettFiona en-aut-sei=Spirrett en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KiriharaSoshu en-aut-sei=Kirihara en-aut-mei=Soshu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=3 en-affil=Joining and Welding Research Institute, Osaka University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuven kn-affil= affil-num=7 en-affil=Joining and Welding Research Institute, Osaka University kn-affil= en-keyword=additive manufacturing kn-keyword=additive manufacturing en-keyword=subtractive manufacturing kn-keyword=subtractive manufacturing en-keyword=dental prosthesis kn-keyword=dental prosthesis en-keyword=ceramic prosthesis kn-keyword=ceramic prosthesis en-keyword=zirconia laminates kn-keyword=zirconia laminates en-keyword=stereolithography kn-keyword=stereolithography en-keyword=thermogravimetry?differential thermal analysis kn-keyword=thermogravimetry?differential thermal analysis en-keyword=X-ray diffraction kn-keyword=X-ray diffraction en-keyword=scanning electron microscopy kn-keyword=scanning electron microscopy END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=1 article-no= start-page=e70146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Gastric Atypical Lipomatous Tumor/Well‐Differentiated Liposarcoma With Endoscopic Morphological Changes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Atypical lipomatous tumor/well-differentiated liposarcoma is a locally aggressive mesenchymal neoplasm composed of adipocytes and stromal cells. Gastric cases are exceedingly rare, and their malignant potential remains unclear. We report a case of a woman in her 60s who was found to have multiple submucosal tumor-like lesions of the stomach. Over time, the tumors increased in size, requiring a laparoscopic partial gastrectomy. Histological examination revealed a tumor composed of both fatty tissue and fibrous stroma with nuclear atypia. Immunohistochemistry showed positivity for CDK4 and MDM2, and fluorescence in situ hybridization confirmed MDM2 amplification, leading to a diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma. This case presented an unusual gastric manifestation, with multiple submucosal tumor-like lesions on endoscopy and exhibiting progressive morphological changes over several years. en-copyright= kn-copyright= en-aut-name=OmoteRika en-aut-sei=Omote en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoteShizuma en-aut-sei=Omote en-aut-mei=Shizuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SonobeHiroshi en-aut-sei=Sonobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamanoRyosuke en-aut-sei=Hamano en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaShinya en-aut-sei=Otsuka en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=InagakiMasaru en-aut-sei=Inagaki en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Fukuyama Minami Hospital kn-affil= affil-num=3 en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Surgery, NHO Fukuyama Medical Center kn-affil= affil-num=5 en-affil=Department of Gastroenterology, NHO Fukuyama Medical Center kn-affil= affil-num=6 en-affil=Department of Surgery, NHO Fukuyama Medical Center kn-affil= affil-num=7 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Surgery, NHO Fukuyama Medical Center kn-affil= affil-num=10 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=atypical lipomatous tumor kn-keyword=atypical lipomatous tumor en-keyword=CDK4 kn-keyword=CDK4 en-keyword=MDM2 kn-keyword=MDM2 en-keyword=stomach kn-keyword=stomach en-keyword=well-differentiated liposarcoma kn-keyword=well-differentiated liposarcoma END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs. en-copyright= kn-copyright= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuemoriKanto en-aut-sei=Suemori en-aut-mei=Kanto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaNaohiro en-aut-sei=Okada en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KajiwaraYoshinori en-aut-sei=Kajiwara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InoueHiroaki en-aut-sei=Inoue en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HashimotoNaoyuki en-aut-sei=Hashimoto en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Neutron Therapy Research Center, Okayama University Hospital kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=199 cd-vols= no-issue= article-no= start-page=108027 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan?Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy?61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group?42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group?37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era. en-copyright= kn-copyright= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiHaruyasu en-aut-sei=Murakami en-aut-mei=Haruyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaHideyuki en-aut-sei=Harada en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SobueTomotaka en-aut-sei=Sobue en-aut-mei=Tomotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTomohiro en-aut-sei=Kato en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AtagiShinji en-aut-sei=Atagi en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokitoTakaaki en-aut-sei=Tokito en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OizumiSatoshi en-aut-sei=Oizumi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SeikeMasahiro en-aut-sei=Seike en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MioTadashi en-aut-sei=Mio en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SoneTakashi en-aut-sei=Sone en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwaoChikako en-aut-sei=Iwao en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IwaneTakeshi en-aut-sei=Iwane en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KotoRyo en-aut-sei=Koto en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsuboiMasahiro en-aut-sei=Tsuboi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center kn-affil= affil-num=3 en-affil=Division of Radiation Therapy, Shizuoka Cancer Center kn-affil= affil-num=4 en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center kn-affil= affil-num=7 en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center kn-affil= affil-num=10 en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, Kanazawa University Hospital kn-affil= affil-num=14 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=15 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=16 en-affil=Department of Medical, AstraZeneca K.K. kn-affil= affil-num=17 en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East kn-affil= en-keyword=Non-small cell lung cancer kn-keyword=Non-small cell lung cancer en-keyword=Surgery kn-keyword=Surgery en-keyword=Adjuvant therapy kn-keyword=Adjuvant therapy en-keyword=Neoadjuvant therapy kn-keyword=Neoadjuvant therapy en-keyword=Chemoradiotherapy kn-keyword=Chemoradiotherapy en-keyword=Observational study kn-keyword=Observational study en-keyword=Retrospective study kn-keyword=Retrospective study END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=40 article-no= start-page=3355- end-page=3364 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plain language summary: tarlatamab for patients with previously treated small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AhnMyung-Ju en-aut-sei=Ahn en-aut-mei=Myung-Ju kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChoByoung Chul en-aut-sei=Cho en-aut-mei=Byoung Chul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FelipEnriqueta en-aut-sei=Felip en-aut-mei=Enriqueta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KorantzisIppokratis en-aut-sei=Korantzis en-aut-mei=Ippokratis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MajemMargarita en-aut-sei=Majem en-aut-mei=Margarita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Juan-VidalOscar en-aut-sei=Juan-Vidal en-aut-mei=Oscar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HandzhievSabin en-aut-sei=Handzhiev en-aut-mei=Sabin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IzumiHiroki en-aut-sei=Izumi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeeJong-Seok en-aut-sei=Lee en-aut-mei=Jong-Seok kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DziadziuszkoRafal en-aut-sei=Dziadziuszko en-aut-mei=Rafal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WolfJ?rgen en-aut-sei=Wolf en-aut-mei=J?rgen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BlackhallFiona en-aut-sei=Blackhall en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ReckMartin en-aut-sei=Reck en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AlvarezJean Bustamante en-aut-sei=Alvarez en-aut-mei=Jean Bustamante kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HummelHorst-Dieter en-aut-sei=Hummel en-aut-mei=Horst-Dieter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DingemansAnne-Marie C. en-aut-sei=Dingemans en-aut-mei=Anne-Marie C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SandsJacob en-aut-sei=Sands en-aut-mei=Jacob kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=AkamatsuHiroaki en-aut-sei=Akamatsu en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OwonikokoTaofeek K. en-aut-sei=Owonikoko en-aut-mei=Taofeek K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=RamalingamSuresh S. en-aut-sei=Ramalingam en-aut-mei=Suresh S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=BorghaeiHossein en-aut-sei=Borghaei en-aut-mei=Hossein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohnsonMelissa L. en-aut-sei=Johnson en-aut-mei=Melissa L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=HuangShuang en-aut-sei=Huang en-aut-mei=Shuang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=MukherjeeSujoy en-aut-sei=Mukherjee en-aut-mei=Sujoy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=MinochaMukul en-aut-sei=Minocha en-aut-mei=Mukul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=JiangTony en-aut-sei=Jiang en-aut-mei=Tony kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MartinezPablo en-aut-sei=Martinez en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=AndersonErik S. en-aut-sei=Anderson en-aut-mei=Erik S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=Paz-AresLuis en-aut-sei=Paz-Ares en-aut-mei=Luis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine kn-affil= affil-num=2 en-affil=Yonsei Cancer Center, Yonsei University College of Medicine kn-affil= affil-num=3 en-affil=Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology kn-affil= affil-num=4 en-affil=Department of Medical Oncology, Saint Loukas Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Hospital de la Santa Creu i Sant Pau kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Klinische Abteilung f?r Pneumologie, Universit?tsklinikum Krems kn-affil= affil-num=9 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East kn-affil= affil-num=10 en-affil=Seoul National University Bundang Hospital kn-affil= affil-num=11 en-affil=Department of Oncology and Radiotherapy and Early Phase Clinical Trials Center, Medical University of Gdansk kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne kn-affil= affil-num=13 en-affil=Christie NHS Foundation Trust and University of Manchester kn-affil= affil-num=14 en-affil=Lungen Clinic, Airway Research Center North, German Center for Lung Research kn-affil= affil-num=15 en-affil=West Virginia University Health Sciences Center kn-affil= affil-num=16 en-affil=Translational Oncology?Early Clinical Trial Unit, Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center, Universit?tsklinikum W?rzburg kn-affil= affil-num=17 en-affil=Department of Pulmonary Medicine, Erasmus MC Cancer Institute kn-affil= affil-num=18 en-affil=Dana?Farber Cancer Institute, Harvard Medical School kn-affil= affil-num=19 en-affil=Wakayama Medical University Hospital kn-affil= affil-num=20 en-affil=Division of Hematology?Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center kn-affil= affil-num=21 en-affil=Winship Cancer Institute of Emory University kn-affil= affil-num=22 en-affil=Fox Chase Cancer Center kn-affil= affil-num=23 en-affil=Sarah Cannon Research Institute at Tennessee Oncology kn-affil= affil-num=24 en-affil=Amgen kn-affil= affil-num=25 en-affil=Amgen kn-affil= affil-num=26 en-affil=Amgen kn-affil= affil-num=27 en-affil=Amgen kn-affil= affil-num=28 en-affil=Amgen kn-affil= affil-num=29 en-affil=Amgen kn-affil= affil-num=30 en-affil=Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc kn-affil= en-keyword=Clinical trials kn-keyword=Clinical trials en-keyword=DeLLphi-301 kn-keyword=DeLLphi-301 en-keyword=DLL3 kn-keyword=DLL3 en-keyword=Immunotherapy kn-keyword=Immunotherapy en-keyword=SCLC kn-keyword=SCLC en-keyword=Small cell lung cancer kn-keyword=Small cell lung cancer en-keyword=T cell kn-keyword=T cell en-keyword=Tarlatamab kn-keyword=Tarlatamab END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=24117 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250706 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Survival days of patients with metastatic spinal tumors of lung cancer requiring surgery: a prospective multicenter study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Surgery for metastatic spinal tumors has improved postoperative activities of daily living. A few studies reported on prognostic factors assessed in large multicenter prospective studies for metastatic spinal tumors of lung cancer origin. This study aimed to determine preoperative prognostic factors in patients undergoing surgery for metastatic spinal tumors associated with lung cancer. This prospective registry study included 74 patients diagnosed and operated with metastatic spine tumors derived from lung cancer in 39 high-volume cancer centers. We examined the postoperative survival period and the preoperative factors related to postoperative survival time. We conducted univariate and multivariate Cox regression analyses to determine preoperative prognostic factors. The mean postoperative survival period was 343 days. Multivariate Cox regression analysis revealed a higher feeding score of vitality index, indications for molecularly targeted therapy, and a higher mobility score of Barthel index as independent factors associated with postoperative survival time in metastatic spinal tumors derived from lung cancer. Patients with indications for molecular-targeted therapy and good vitality exhibited longer survival. These results may help in surgical selection for patients with metastatic spinal tumors derived from lung cancer. en-copyright= kn-copyright= en-aut-name=TakahashiTakuya en-aut-sei=Takahashi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiTakashi en-aut-sei=Hirai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirataniYuki en-aut-sei=Shiratani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiAkinobu en-aut-sei=Suzuki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KakutaniKenichiro en-aut-sei=Kakutani en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoSatoshi en-aut-sei=Kato en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TominagaHiroyuki en-aut-sei=Tominaga en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InoueHirokazu en-aut-sei=Inoue en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SawadaHirokatsu en-aut-sei=Sawada en-aut-mei=Hirokatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakegamiNorihiko en-aut-sei=Takegami en-aut-mei=Norihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanishiKazuo en-aut-sei=Nakanishi en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakajimaHideaki en-aut-sei=Nakajima en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiharaMasayuki en-aut-sei=Ishihara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OshigiriTsutomu en-aut-sei=Oshigiri en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FunayamaToru en-aut-sei=Funayama en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IimuraTakuya en-aut-sei=Iimura en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TanishimaShinji en-aut-sei=Tanishima en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakashimaHiroaki en-aut-sei=Nakashima en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YamabeDaisuke en-aut-sei=Yamabe en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HashimotoKo en-aut-sei=Hashimoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FunabaMasahiro en-aut-sei=Funaba en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=NagoshiNarihito en-aut-sei=Nagoshi en-aut-mei=Narihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KobayakawaKazu en-aut-sei=Kobayakawa en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshiiToshitaka en-aut-sei=Yoshii en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WatanabeKazuyuki en-aut-sei=Watanabe en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=NakamaeToshio en-aut-sei=Nakamae en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KaitoTakashi en-aut-sei=Kaito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=InoueGen en-aut-sei=Inoue en-aut-mei=Gen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ImagamaShiro en-aut-sei=Imagama en-aut-mei=Shiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=WatanabeKota en-aut-sei=Watanabe en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=FuruyaTakeo en-aut-sei=Furuya en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=8 en-affil=Rehabilitation Center, Jichi Medical University Hospital kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School kn-affil= affil-num=12 en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=13 en-affil=Department of Orthopaedic surgery, Kansai Medical University Hospital kn-affil= affil-num=14 en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine kn-affil= affil-num=15 en-affil=Department of Orthopaedic Surgery Institute of Medicine, University of Tsukuba kn-affil= affil-num=16 en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University kn-affil= affil-num=17 en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University kn-affil= affil-num=18 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Orthopaedic Surgery, Iwate Medical University kn-affil= affil-num=20 en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Department of Orthopaedic Surgery, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine kn-affil= affil-num=23 en-affil=Department of Orthopaedic Surgery, Keio University kn-affil= affil-num=24 en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=25 en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo kn-affil= affil-num=26 en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine kn-affil= affil-num=27 en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=28 en-affil=Department of Orthopedic Surgery, Osaka University Graduate School of Medicine kn-affil= affil-num=29 en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine kn-affil= affil-num=30 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=31 en-affil=Department of Orthopaedic Surgery, Keio University kn-affil= affil-num=32 en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University kn-affil= en-keyword=Metastatic spinal tumor kn-keyword=Metastatic spinal tumor en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=Postoperative survival period kn-keyword=Postoperative survival period en-keyword=Barthel index kn-keyword=Barthel index en-keyword=Vitality index kn-keyword=Vitality index en-keyword=Molecularly targeted therapy kn-keyword=Molecularly targeted therapy END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=4 article-no= start-page=2286 end-page=2299 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Palliative Surgical Treatment for Spinal Metastases on the Patient’s Quality of Life With a Focus on the Segment of the Metastasis: A Prospective Multicenter Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Study Design: Prospective multicenter study.
Objectives: Palliative surgery is crucial for maintaining the quality of life (QOL) in patients with spinal metastases. This study aimed to compare the short-term outcomes of QOL after palliative surgery between patients with metastatic spinal tumors at different segments.
Methods: We prospectively compared the data of 203 patients with spinal metastases at 2-3 consecutive segments who were divided into the following three groups: cervical, patients with cervical spine lesions; thoracic, patients with upper?middle thoracic spine lesions; and TL/L/S, patients with lesions at the thoracolumbar junction and lumbar and sacral regions. Preoperative and postoperative EuroQol 5-dimension (EQ5D) 5-level were compared.
Results: All groups exhibited improvement in the Frankel grade, performance status, pain, Barthel index, EQ5D health state utility value (HSUV), and EQ5D visual analog scale (VAS) postoperatively. Although preoperative EQ5D HSUVs did not significantly differ between the groups (cervical, 0.461 ± 0.291; thoracic, 0.321 ± 0.292; and TL/L/S, 0.376 ± 0.272), the thoracic group exhibited significantly lower postoperative EQ5D HSUVs than the other two groups (cervical, 0.653 ± 0.233; thoracic, 0.513 ± 0.252; and TL/L/S, 0.624 ± 0.232). However, postoperative EQ5D VAS was not significantly different between the groups (cervical, 63.4 ± 25.8; thoracic, 54.7 ± 24.5; and TL/L/S, 61.7 ± 21.9).
Conclusions: Palliative surgery for metastatic spinal tumors provided comparable QOL improvement, irrespective of the spinal segment involved. Patients with upper and middle thoracic spinal metastases had poorer QOL outcomes than those with metastases in other segments; however, sufficient QOL improvement was achieved. en-copyright= kn-copyright= en-aut-name=SegiNaoki en-aut-sei=Segi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakashimaHiroaki en-aut-sei=Nakashima en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoSadayuki en-aut-sei=Ito en-aut-mei=Sadayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OuchidaJun en-aut-sei=Ouchida en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShirataniYuki en-aut-sei=Shiratani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimizuTakaki en-aut-sei=Shimizu en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiAkinobu en-aut-sei=Suzuki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TeraiHidetomi en-aut-sei=Terai en-aut-mei=Hidetomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KakutaniKenichiro en-aut-sei=Kakutani en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KandaYutaro en-aut-sei=Kanda en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TominagaHiroyuki en-aut-sei=Tominaga en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawamuraIchiro en-aut-sei=Kawamura en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiharaMasayuki en-aut-sei=Ishihara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=PakuMasaaki en-aut-sei=Paku en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakahashiYohei en-aut-sei=Takahashi en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FunabaMasahiro en-aut-sei=Funaba en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FunayamaToru en-aut-sei=Funayama en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakajimaHideaki en-aut-sei=Nakajima en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=AkedaKoji en-aut-sei=Akeda en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HiraiTakashi en-aut-sei=Hirai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=InoueHirokazu en-aut-sei=Inoue en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=NakanishiKazuo en-aut-sei=Nakanishi en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FunaoHaruki en-aut-sei=Funao en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=OshigiriTsutomu en-aut-sei=Oshigiri en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=OtsukiBungo en-aut-sei=Otsuki en-aut-mei=Bungo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KobayakawaKazu en-aut-sei=Kobayakawa en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TanishimaShinji en-aut-sei=Tanishima en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HashimotoKo en-aut-sei=Hashimoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=IimuraTakuya en-aut-sei=Iimura en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SawadaHirokatsu en-aut-sei=Sawada en-aut-mei=Hirokatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=ManabeHiroaki en-aut-sei=Manabe en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=IwaiChizuo en-aut-sei=Iwai en-aut-mei=Chizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=YamabeDaisuke en-aut-sei=Yamabe en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=HiyamaAkihiko en-aut-sei=Hiyama en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=SekiShoji en-aut-sei=Seki en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=GotoYuta en-aut-sei=Goto en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=MiyazakiMasashi en-aut-sei=Miyazaki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=WatanabeKazuyuki en-aut-sei=Watanabe en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=NakamaeToshio en-aut-sei=Nakamae en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=KaitoTakashi en-aut-sei=Kaito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=NagoshiNarihito en-aut-sei=Nagoshi en-aut-mei=Narihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=KatoSatoshi en-aut-sei=Kato en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=WatanabeKota en-aut-sei=Watanabe en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=ImagamaShiro en-aut-sei=Imagama en-aut-mei=Shiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=InoueGen en-aut-sei=Inoue en-aut-mei=Gen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=FuruyaTakeo en-aut-sei=Furuya en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Chiba University Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=12 en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=13 en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital kn-affil= affil-num=14 en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital kn-affil= affil-num=15 en-affil=Department of Orthopaedic Surgery, Keio University kn-affil= affil-num=16 en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine kn-affil= affil-num=17 en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba kn-affil= affil-num=18 en-affil=Department of Orthopaedics and Rehabilitation Medicine, University of Fukui Faculty of Medical Sciences kn-affil= affil-num=19 en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Orthopedic Surgery, Tokyo Medical and Dental University kn-affil= affil-num=21 en-affil=Rehabilitation Center, Jichi Medical University Hospital kn-affil= affil-num=22 en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School kn-affil= affil-num=23 en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital kn-affil= affil-num=24 en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine kn-affil= affil-num=25 en-affil=Department of Orthopaedic Surgery, Kyoto University Hospital kn-affil= affil-num=26 en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=27 en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University kn-affil= affil-num=28 en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=29 en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University kn-affil= affil-num=30 en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine kn-affil= affil-num=31 en-affil=Department of Orthopaedic Surgery, Okayama University Hospital kn-affil= affil-num=32 en-affil=Department of Orthopedics, Tokushima University kn-affil= affil-num=33 en-affil=Department of Orthopaedic Surgery, Gifu University Hospital kn-affil= affil-num=34 en-affil=Department of Orthopaedic Surgery, Iwate Medical University kn-affil= affil-num=35 en-affil=Department of Orthopaedic Surgery, Tokai University School of Medicine kn-affil= affil-num=36 en-affil=Department of Orthopaedic Surgery, University of Toyama kn-affil= affil-num=37 en-affil=Department of Orthopaedic Surgery, Nagoya City University kn-affil= affil-num=38 en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University kn-affil= affil-num=39 en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine kn-affil= affil-num=40 en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=41 en-affil=Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine kn-affil= affil-num=42 en-affil=Department of Orthopaedic Surgery, Keio University kn-affil= affil-num=43 en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=44 en-affil=Department of Orthopaedic Surgery, Keio University kn-affil= affil-num=45 en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=46 en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine kn-affil= affil-num=47 en-affil=Department of Orthopaedic Surgery, Chiba University Hospital kn-affil= en-keyword=spinal metastasis kn-keyword=spinal metastasis en-keyword=metastasis segment kn-keyword=metastasis segment en-keyword=palliative surgery kn-keyword=palliative surgery en-keyword=quality of life kn-keyword=quality of life en-keyword=activities of daily living kn-keyword=activities of daily living en-keyword=pain kn-keyword=pain en-keyword=anxiety kn-keyword=anxiety END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=209 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exercise hemodynamic evaluation in the management of dasatinib-related pulmonary arterial hypertension: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Dasatinib-related pulmonary arterial hypertension is a rare complication of chronic therapy for hematological malignancies. Pulmonary hypertension often persists despite drug discontinuation and might require vasodilators. Normalizing pulmonary hemodynamics and avoiding the long-term use of vasodilators is challenging.
Case presentation Patient was a 55-year-old Japanese man complaining of progressive dyspnea on effort and fatigue. He had a history of hypertension and chronic myeloid leukemia treated with dasatinib. He was diagnosed with dasatinib-related pulmonary arterial hypertension by a right heart catheterization at rest, demonstrating a mean pulmonary artery pressure of 31 mmHg and a normal pulmonary arterial wedge pressure of 6 mmHg. Symptoms and hemodynamics significantly improved after the discontinuation of dasatinib and the initiation of upfront combination therapy of vasodilators. An exercise right heart catheterization, performed more than 2 years after the initiation of vasodilators, showed a mean pulmonary artery pressure of 15 mmHg at rest and 29 mmHg at peak exercise (normal reference value,? Conclusions The evaluation of pulmonary microcirculation by exercise right heart catheterization can be useful for withdrawing pulmonary vasodilators safely in the management of patients with dasatinib-related pulmonary arterial hypertension. en-copyright= kn-copyright= en-aut-name=YamashitaShuhei en-aut-sei=Yamashita en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraideTakahiro en-aut-sei=Hiraide en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiraishiYasuyuki en-aut-sei=Shiraishi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsumataYoshinori en-aut-sei=Katsumata en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KataokaMasaharu en-aut-sei=Kataoka en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuiShogo en-aut-sei=Fukui en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawakamiMichiyuki en-aut-sei=Kawakami en-aut-mei=Michiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkamotoShinichiro en-aut-sei=Okamoto en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FukudaKeiichi en-aut-sei=Fukuda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IedaMasaki en-aut-sei=Ieda en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=5 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=6 en-affil=Department of Rehabilitation, Keio University Hospital kn-affil= affil-num=7 en-affil=Department of Rehabilitation, Keio University School of Medicine kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Hematology, Keio University School of Medicine kn-affil= affil-num=10 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= en-keyword=Case report kn-keyword=Case report en-keyword=Dasatinib kn-keyword=Dasatinib en-keyword=Drug-induced kn-keyword=Drug-induced en-keyword=Exercise-induced pulmonary hypertension kn-keyword=Exercise-induced pulmonary hypertension en-keyword=Pulmonary arterial hypertension kn-keyword=Pulmonary arterial hypertension END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=2 article-no= start-page=euaf024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SCN5A variant type-dependent risk prediction in Brugada syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims The variant in SCN5A with the loss of function (LOF) effect in the cardiac Na+ channel (Nav1.5) is the definitive cause for Brugada syndrome (BrS), and the functional analysis data revealed that LOF variants are associated with poor prognosis. However, which variant types (e.g. missense or non-missense) affect the prognoses of those variant carriers remain unelucidated.
Methods and results We defined SCN5A LOF variants as all non-missense and missense variants that produce peak INa < 65% of wild-type previously confirmed by patch-clamp studies. The study population consisted of 76 Japanese BrS patients (74% patients were male and the median age [IQR] at diagnosis was 28 [14?45] years) with LOF type of SCN5A variants: 40 with missense and 36 with non-missense variants. Non-missense variant carriers presented significantly more severe cardiac conduction disorder compared to the missense variant carriers. During follow-up periods of 9.0 [5.0?14.0] years, compared to missense variants, non-missense variants were significant risk factors of lifetime lethal arrhythmia events (LAEs) (P = 0.023). When focusing only on the missense variants that produce no peak INa, these missense variant carriers exhibited the same clinical outcomes as those with non-missense (log-rank P = 0.325). After diagnosis, however, both variant types were comparable in risk of LAEs (P = 0.155).
Conclusion We identified, for the first time, that SCN5A non-missense variants were associated with higher probability of LAE than missense variants in BrS patients though it did not change significantly after diagnosis. en-copyright= kn-copyright= en-aut-name=AizawaTakanori en-aut-sei=Aizawa en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiyamaTakeru en-aut-sei=Makiyama en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangHai en-aut-sei=Huang en-aut-mei=Hai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImamuraTomohiko en-aut-sei=Imamura en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuyamaMegumi en-aut-sei=Fukuyama en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SonodaKeiko en-aut-sei=Sonoda en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoKoichi en-aut-sei=Kato en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraYuko en-aut-sei=Nakamura en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoshinoKenji en-aut-sei=Hoshino en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OzawaJunichi en-aut-sei=Ozawa en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiHiroshi en-aut-sei=Suzuki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YasudaKazushi en-aut-sei=Yasuda en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AokiHisaaki en-aut-sei=Aoki en-aut-mei=Hisaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KuritaTakashi en-aut-sei=Kurita en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YoshidaYoko en-aut-sei=Yoshida en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SuzukiTsugutoshi en-aut-sei=Suzuki en-aut-mei=Tsugutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OgawaYoshiharu en-aut-sei=Ogawa en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YamagamiShintaro en-aut-sei=Yamagami en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FukudaMasakazu en-aut-sei=Fukuda en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=OnoMakoto en-aut-sei=Ono en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHidekazu en-aut-sei=Kondo en-aut-mei=Hidekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TakahashiNaohiko en-aut-sei=Takahashi en-aut-mei=Naohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=OhnoSeiko en-aut-sei=Ohno en-aut-mei=Seiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=NakagawaYoshihisa en-aut-sei=Nakagawa en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=OnoKoh en-aut-sei=Ono en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=HorieMinoru en-aut-sei=Horie en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine , 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 , kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science kn-affil= affil-num=6 en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science kn-affil= affil-num=8 en-affil=Department of Public Health, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Tsuchiura Kyodo General Hospital kn-affil= affil-num=10 en-affil=Department of Cardiology, Saitama Children’s Medical Center kn-affil= affil-num=11 en-affil=Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=12 en-affil=Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital kn-affil= affil-num=13 en-affil=Department of Pediatric Cardiology, Aichi Children’s Health and Medical Center kn-affil= affil-num=14 en-affil=Department of Pediatric Cardiology, Osaka Women’s and Children’s Hospital kn-affil= affil-num=15 en-affil=Division of Cardiovascular Center, Kindai University School of Medicine kn-affil= affil-num=16 en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital kn-affil= affil-num=17 en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital kn-affil= affil-num=18 en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital kn-affil= affil-num=19 en-affil=Division of Cardiology, Hyogo Prefectural Kobe Children’s Hospital kn-affil= affil-num=20 en-affil=Department of Cardiology, Tenri Hospital kn-affil= affil-num=21 en-affil=Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=22 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=24 en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=25 en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University kn-affil= affil-num=26 en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University kn-affil= affil-num=27 en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center kn-affil= affil-num=28 en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science kn-affil= affil-num=29 en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science kn-affil= en-keyword=Brugada syndrome kn-keyword=Brugada syndrome en-keyword=SCN5A kn-keyword=SCN5A en-keyword=Lethal arrhythmia event kn-keyword=Lethal arrhythmia event en-keyword=Variant type kn-keyword=Variant type en-keyword=Loss of function kn-keyword=Loss of function END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=2 article-no= start-page=395 end-page=412.e6 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease. en-copyright= kn-copyright= en-aut-name=YaoNa en-aut-sei=Yao en-aut-mei=Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinouchiKenichiro en-aut-sei=Kinouchi en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AshtianiKousha Changizi en-aut-sei=Ashtiani en-aut-mei=Kousha Changizi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbdelkarimSherif en-aut-sei=Abdelkarim en-aut-mei=Sherif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimotoHiroyuki en-aut-sei=Morimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TorimitsuTakuto en-aut-sei=Torimitsu en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KozumaTakahide en-aut-sei=Kozuma en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwaharaAkihide en-aut-sei=Iwahara en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KosugiShotaro en-aut-sei=Kosugi en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKyosuke en-aut-sei=Kato en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TonomuraShun en-aut-sei=Tonomura en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakamuraToshifumi en-aut-sei=Nakamura en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItohArata en-aut-sei=Itoh en-aut-mei=Arata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamaguchiShintaro en-aut-sei=Yamaguchi en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshinoJun en-aut-sei=Yoshino en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IrieJunichiro en-aut-sei=Irie en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SatohAkiko en-aut-sei=Satoh en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=MikamiYohei en-aut-sei=Mikami en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UchidaShusaku en-aut-sei=Uchida en-aut-mei=Shusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=UekiTakatoshi en-aut-sei=Ueki en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=BaldiPierre en-aut-sei=Baldi en-aut-mei=Pierre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiKaori en-aut-sei=Hayashi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=ItohHiroshi en-aut-sei=Itoh en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Computer Science, University of California kn-affil= affil-num=5 en-affil=Department of Computer Science, University of California kn-affil= affil-num=6 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=7 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=8 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=9 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=10 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=18 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=21 en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University kn-affil= affil-num=22 en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=23 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=24 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=25 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=26 en-affil=Department of Computer Science, University of California kn-affil= affil-num=27 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=28 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= en-keyword=circadian rhythm kn-keyword=circadian rhythm en-keyword=metabolism kn-keyword=metabolism en-keyword=circadian clock kn-keyword=circadian clock en-keyword=pregnancy kn-keyword=pregnancy en-keyword=developmental origins of health and disease kn-keyword=developmental origins of health and disease en-keyword=obesity kn-keyword=obesity en-keyword=leptin kn-keyword=leptin en-keyword=time-restricted feeding kn-keyword=time-restricted feeding en-keyword=caloric restriction kn-keyword=caloric restriction en-keyword=eating behavior kn-keyword=eating behavior END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=D?rrwaldRalf en-aut-sei=D?rrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-Ast?aJuliana en-aut-sei=Freitas-Ast?a en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesM?rcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=M?rcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=?klandArnfinn Lodden en-aut-sei=?kland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNo?l en-aut-sei=Tordo en-aut-mei=No?l kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Par? kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran? kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=12 article-no= start-page=2429 end-page=2437 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy. en-copyright= kn-copyright= en-aut-name=KurogiHaruna en-aut-sei=Kurogi en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumarAshutosh en-aut-sei=Kumar en-aut-mei=Ashutosh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SawadaDaisuke en-aut-sei=Sawada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangKam Y.J. en-aut-sei=Zhang en-aut-mei=Kam Y.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN kn-affil= affil-num=9 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=e70040 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250514 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Avoidant/restrictive food intake disorder prognosis and its relation with autism spectrum disorder in Japanese children en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: There is a lack of reported clinical factors associated with the outcomes of children and adolescents with avoidant/restrictive food intake disorder (ARFID) in Japan. This study aimed to identify these clinical factors and explore the relationship between ARFID and autism spectrum disorder (ASD).
Methods: This retrospective study analyzed data from 48 Japanese children and adolescents with ARFID who visited Okayama University Hospital between January 2011 and March 2022. Clinical characteristics were assessed using medical records and natural history questionnaires. The study compared patients with good and poor prognosis groups and used multiple logistic regression analysis to determine factors influencing prognosis.
Results: The study included 33 patients with good prognoses and 15 with poor prognoses. Comorbid ASD was more prevalent in the poor prognosis group (60%) compared to the good prognosis group (21%). Additionally, more than half of the ARFID patients with comorbid ASD were initially undiagnosed. Multivariate analysis revealed that older age at first visit (p?=?0.022) and comorbid ASD (p?=?0.022) were statistically significant factors associated with poor prognosis in ARFID patients. There were no significant differences in body mass index standard deviation score and maximal weight loss between the two groups.
Conclusions: The poor prognosis group had a higher prevalence of comorbid ASD diagnoses. Therefore, it is crucial to evaluate patient's developmental characteristics early in treatment and consider these characteristics throughout the course of care. en-copyright= kn-copyright= en-aut-name=TanakaChie en-aut-sei=Tanaka en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaAyumi en-aut-sei=Okada en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShigeyasuYoshie en-aut-sei=Shigeyasu en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugiharaAkiko en-aut-sei=Sugihara en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoriuchiMakiko en-aut-sei=Horiuchi en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Clinical Psychology Section, Department of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=autism spectrum disorder kn-keyword=autism spectrum disorder en-keyword=avoidant/restrictive food intake disorder kn-keyword=avoidant/restrictive food intake disorder en-keyword=children kn-keyword=children en-keyword=feeding and eating disorders kn-keyword=feeding and eating disorders en-keyword=outcome kn-keyword=outcome END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=551 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Body weight and eating attitudes influence improvement of depressive symptoms in children and pre-adolescents with eating disorders: a prospective multicenter cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Pediatric patients with eating disorders in a multicenter joint study on 11 facilities were enrolled and prospectively investigated to determine whether improvement in body weight, eating attitudes, and psychosocial factors in children with eating disorders would also improve depressive symptoms.
Methods In this study, 91 patients were enrolled between April 2014 and March 2016. The severity of underweight was assessed using the body mass index-standard deviation score (BMI-SDS), eating behavior was assessed using the children's eating attitude test (ChEAT26), the outcome of childhood eating disorders was assessed using the childhood eating disorder outcome scale, and depressive symptoms were assessed using the Children's Depression Inventory (CDI) score.
Results After 12 months of treatment, depressive symptoms were evaluated in 62 of the 91 cases where it was evaluated at the initial phase. There was no difference in background characteristics between the included patients and the 29 patients who dropped out. A paired-sample t-test revealed a significant decrease in CDI scores after 12 months of treatment (p? Conclusions Depressive symptoms in children with eating disorders improved with therapeutic intervention on body weight and eating attitudes.
Trial registration The Clinical Trial Number for this study is UMIN000055004. en-copyright= kn-copyright= en-aut-name=SuzukiYuichi en-aut-sei=Suzuki en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagamitsuShinichiro en-aut-sei=Nagamitsu en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EshimaNobuoki en-aut-sei=Eshima en-aut-mei=Nobuoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueTakeshi en-aut-sei=Inoue en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtaniRyoko en-aut-sei=Otani en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakutaRyoichi en-aut-sei=Sakuta en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IguchiToshiyuki en-aut-sei=Iguchi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiiRyuta en-aut-sei=Ishii en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaSoh en-aut-sei=Uchida en-aut-mei=Soh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaAyumi en-aut-sei=Okada en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KitayamaShinji en-aut-sei=Kitayama en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KoyanagiKenshi en-aut-sei=Koyanagi en-aut-mei=Kenshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiYuki en-aut-sei=Suzuki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SumiYoshino en-aut-sei=Sumi en-aut-mei=Yoshino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakamiyaShizuo en-aut-sei=Takamiya en-aut-mei=Shizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FukaiYoshimitsu en-aut-sei=Fukai en-aut-mei=Yoshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Pediatrics, Fukushima Medical University School of Medicine kn-affil= affil-num=2 en-affil=Department of Pediatrics, Fukuoka University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Pediatrics, Kurume University School of Medicine kn-affil= affil-num=4 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=5 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=6 en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=7 en-affil=Department of Pediatrics, Hoshigaoka Maternity Hospital kn-affil= affil-num=8 en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine kn-affil= affil-num=9 en-affil=Karamun`S Forest Children`S Clinic kn-affil= affil-num=10 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Himeji City Center for the Disabled kn-affil= affil-num=12 en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children kn-affil= affil-num=13 en-affil=Department of Pediatrics, National Hospital Organization Mie National Hospital kn-affil= affil-num=14 en-affil=Mental and Developmental Clinic for Children “Elm Tree” kn-affil= affil-num=15 en-affil=Takamiya Psychiatry Clinic kn-affil= affil-num=16 en-affil=Department of Pediatrics/Child Psychosomatic Medicine, Okayama University Hospital kn-affil= affil-num=17 en-affil=Department of Pediatrics, St. Luke’s International Hospital kn-affil= en-keyword=Eating disorders kn-keyword=Eating disorders en-keyword=Anorexia nervosa kn-keyword=Anorexia nervosa en-keyword=Body mass index-standard deviation score kn-keyword=Body mass index-standard deviation score en-keyword=Eating attitudes kn-keyword=Eating attitudes en-keyword=Children’s depression inventory kn-keyword=Children’s depression inventory END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=6 article-no= start-page=466 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification. en-copyright= kn-copyright= en-aut-name=TanabeShihori en-aut-sei=Tanabe en-aut-mei=Shihori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=QuaderSabina en-aut-sei=Quader en-aut-mei=Sabina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoRyuichi en-aut-sei=Ono en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHiroyoshi Y. en-aut-sei=Tanaka en-aut-mei=Hiroyoshi Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoAkihisa en-aut-sei=Yamamoto en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KojimaMotohiro en-aut-sei=Kojima en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=PerkinsEdward J. en-aut-sei=Perkins en-aut-mei=Edward J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CabralHoracio en-aut-sei=Cabral en-aut-mei=Horacio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences kn-affil= affil-num=2 en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion kn-affil= affil-num=3 en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences kn-affil= affil-num=4 en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University kn-affil= affil-num=6 en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine kn-affil= affil-num=7 en-affil=US Army Engineer Research and Development Center kn-affil= affil-num=8 en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=coronavirus kn-keyword=coronavirus en-keyword=coronaviral infection kn-keyword=coronaviral infection en-keyword=machine learning kn-keyword=machine learning en-keyword=pathway analysis kn-keyword=pathway analysis en-keyword=predictionmodel kn-keyword=predictionmodel en-keyword=molecular network kn-keyword=molecular network en-keyword=molecular pathway image kn-keyword=molecular pathway image en-keyword=network analysis kn-keyword=network analysis END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=8 article-no= start-page=1621 end-page=1630 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Percutaneous cryoablation versus robot-assisted partial nephrectomy for small renal cell carcinoma: a retrospective cost analysis at Japanese single-institution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: No direct cost comparison has been conducted between percutaneous cryoablation (PCA) and robot-assisted partial nephrectomy (RAPN) for clinical T1a renal cell carcinoma (RCC) in Japan. This study aimed to compare their costs.
Methods: We retrospectively analyzed data from 212 PCAs (including 155 with transcatheter arterial embolization) and 119 RAPN cases performed between December 2017 and May 2022.
Results: PCA patients were older with higher American Society of Anesthesiologists scores, Charlson Comorbidity Index, and history of previous RCC treatment, cardiovascular disease, and antithrombotic drug use than RAPN patients. PCA was associated with a significantly shorter procedure time and hospitalization duration with fewer major complications than those associated with RAPN. While PCA incurred a slightly lower total cost (1,123,000 vs. 1,155,000 yen), it had a significantly higher procedural cost (739,000 vs. 693,000 yen) and markedly worse total (? 93,000 vs. 249,000 yen) and procedural income-expenditure balance (? 189,000 vs. 231,000 yen) than those of RAPN. After statistical adjustment, PCA demonstrated significantly higher total (difference: 114,000 yen) and procedural costs (difference: 72,000 yen), alongside significantly worse total (difference: ? 358,000 yen) and procedural income-expenditure balances (difference: ? 439,000 yen). The incremental cost-effectiveness ratio was more favorable for PCA than for RAPN.
Conclusion: For high- risk patients, PCA demonstrated a safer option with shorter hospitalization duration than those of RAPN. Although PCA was more cost-effective, its higher procedural cost and unfavorable income-expenditure balance require careful evaluation, especially for large tumors that require three or more needles. en-copyright= kn-copyright= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GobaraHideo en-aut-sei=Gobara en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Medical Informatics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Renal cancer kn-keyword=Renal cancer en-keyword=Cryoablation kn-keyword=Cryoablation en-keyword=Robot-assisted partial nephrectomy kn-keyword=Robot-assisted partial nephrectomy en-keyword=Cost kn-keyword=Cost en-keyword=Cost effectiveness kn-keyword=Cost effectiveness END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=27163 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade???3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade???3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of???2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23?4.54, p?=?0.01) and a low neutrophil/eosinophil ratio (NER) of???40.0 (OR: 2.78, 95% CI 1.39?5.53, p?=?0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade???3 TRAEs and help determine individualized treatment strategies in patients with mRCC. en-copyright= kn-copyright= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanagisawaTakafumi en-aut-sei=Yanagisawa en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriKeiichiro en-aut-sei=Mori en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuokayaWataru en-aut-sei=Fukuokaya en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KomuraKazumasa en-aut-sei=Komura en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujinoTakuya en-aut-sei=Tsujino en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaenosonoRyoichi en-aut-sei=Maenosono en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaKiyoshi en-aut-sei=Takahara en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NukayaTakuhisa en-aut-sei=Nukaya en-aut-mei=Takuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InokiLan en-aut-sei=Inoki en-aut-mei=Lan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ToyodaShingo en-aut-sei=Toyoda en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HashimotoTakeshi en-aut-sei=Hashimoto en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HirasawaYosuke en-aut-sei=Hirasawa en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TsuboiKazuma en-aut-sei=Tsuboi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KuroseKyohei en-aut-sei=Kurose en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KimuraTakahiro en-aut-sei=Kimura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=AzumaHaruhito en-aut-sei=Azuma en-aut-mei=Haruhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ShirokiRyoichi en-aut-sei=Shiroki en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=FujitaKazutoshi en-aut-sei=Fujita en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=OhnoYoshio en-aut-sei=Ohno en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=4 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=5 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=6 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=7 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=8 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=9 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=10 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=11 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=13 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=14 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=24 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=25 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=26 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=27 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=28 en-affil=Department of Urology, The Jikei University School of Medicine kn-affil= affil-num=29 en-affil=Department of Urology, Osaka Medical and Pharmaceutical University kn-affil= affil-num=30 en-affil=Department of Urology, Fujita Health University School of Medicine kn-affil= affil-num=31 en-affil=Department of Urology, Kindai University Faculty of Medicine kn-affil= affil-num=32 en-affil=Department of Urology, Tokyo Medical University kn-affil= affil-num=33 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Renal cell carcinoma kn-keyword=Renal cell carcinoma en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor en-keyword=ICI kn-keyword=ICI en-keyword=Eosinophil kn-keyword=Eosinophil en-keyword=Immune-related adverse event kn-keyword=Immune-related adverse event en-keyword=Treatment-related adverse event kn-keyword=Treatment-related adverse event END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=107 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of concomitant medications on the oncologic efficacy of systemic therapy in patients with advanced or metastatic urothelial carcinoma: a systematic review and meta-analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Immune checkpoint inhibitors (ICI) and chemotherapy, including antibody-drug conjugates, are widely used for the treatment of patients with advanced unresectable or metastatic urothelial carcinoma (UC). The majority of elderly patients receive concomitant medications to address various comorbidities. We aimed to evaluate the impact of concomitant medications on oncological outcomes in patients with advanced unresectable or metastatic UC treated with systemic therapy.
Material & methods: In August 2024, three datasets were queried for studies evaluating concomitant medications in patients with advanced unresectable or metastatic UC. The review protocol was registered in PROSPERO (CRD42024547335). The primary outcome was overall survival (OS). A fixed- or random-effects model was used for meta-analysis depending on the heterogeneity.
Results: We identified 16 eligible studies (3 prospective and 13 retrospective) comprising 4,816 patients. Most reported concomitant medications included proton pump inhibitors (PPIs), antibiotics, steroids, and opioids. The use of concomitant PPIs, antibiotics, steroids or opioids during ICI therapy was associated with worsened OS (PPIs: HR: 1.43, 95% CI: 1.31?1.57, p? Conclusions: When treating advanced unresectable or metastatic UC with ICI therapy, we need to pay attention to concomitant medications, such as PPIs and antibiotics to avoid reducing the efficacy of ICI therapy. The mechanism of action of these drugs on ICI efficacy requires further examination. en-copyright= kn-copyright= en-aut-name=TsuboiIchiro en-aut-sei=Tsuboi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PariziMehdi Kardoust en-aut-sei=Parizi en-aut-mei=Mehdi Kardoust kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiszczykMarcin en-aut-sei=Miszczyk en-aut-mei=Marcin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FazekasTam?s en-aut-sei=Fazekas en-aut-mei=Tam?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SchulzRobert J en-aut-sei=Schulz en-aut-mei=Robert J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LaukhtinaEkaterina en-aut-sei=Laukhtina en-aut-mei=Ekaterina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RajwaPawel en-aut-sei=Rajwa en-aut-mei=Pawel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ObernederKatharina en-aut-sei=Oberneder en-aut-mei=Katharina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ChlostaPiotr en-aut-sei=Chlosta en-aut-mei=Piotr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KarakiewiczPierre I. en-aut-sei=Karakiewicz en-aut-mei=Pierre I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=3 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=4 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=5 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=6 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=7 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=8 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=13 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=14 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=15 en-affil=Department of Urology, Medical College, Jagiellonian University kn-affil= affil-num=16 en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre kn-affil= affil-num=17 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=Concomitant medications kn-keyword=Concomitant medications en-keyword=Proton pump inhibitors kn-keyword=Proton pump inhibitors en-keyword=Antibiotics kn-keyword=Antibiotics en-keyword=steroids kn-keyword=steroids en-keyword=Opioids kn-keyword=Opioids en-keyword=Histamine type-2 receptor antagonists kn-keyword=Histamine type-2 receptor antagonists en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors en-keyword=Urothelial carcinoma kn-keyword=Urothelial carcinoma END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=1 end-page=11 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating Pericoronary Adipose Tissue?Attenuation to Predict Cardiovascular Events en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pericoronary adipose tissue attenuation (PCATA) is a novel imaging biomarker of pericoronary inflammation associated with coronary artery disease. Several studies have reported the usefulness of PCATA among people of European ethnicity; however, data are lacking concerning those of Asian ethnicity.
Objectives: This multicenter study aimed to evaluate the effect of PCATA on prognosis in East Asian patients.
Methods: Between August 2011 and December 2016, 2,172 patients underwent clinically indicated coronary computed tomography angiography (CTA) at 4 hospitals in Japan. Among them, 1,270 patients were analyzed. PCATA was evaluated using coronary CTA to measure pericoronary adipose tissue density surrounding the 3 major coronary arteries. The outcomes were composite cardiovascular events, including cardiovascular death and acute coronary syndrome; 33 cardiovascular events observed during a median follow-up of 6.0 years (Q1-Q3: 3.6-8.2 years).
Results: Right coronary artery (RCA)-PCATA was significantly higher in patients with cardiovascular events than in those without (?63.7 ± 8.9 HU vs ?67.4 ± 9.1 HU, respectively; P = 0.021). High RCA-PCATA was significantly associated with cardiovascular events in a model that included the Hisayama risk score and adverse coronary CTA findings (HR: 1.55; 95% CI: 1.07-2.24; P = 0.019).
Conclusions: High RCA-PCATA showed significant association with future cardiovascular events after adjusting conventional risk factors and adverse coronary CTA findings in East Asian patients who underwent clinically indicated coronary CTA. en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukeSoichiro en-aut-sei=Fuke en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SeiyamaKousuke en-aut-sei=Seiyama en-aut-mei=Kousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=acute coronary syndrome(s) kn-keyword=acute coronary syndrome(s) en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=high-risk plaque kn-keyword=high-risk plaque en-keyword=obstructive stenosis kn-keyword=obstructive stenosis en-keyword=pericoronary adipose tissue attenuation kn-keyword=pericoronary adipose tissue attenuation END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=6 article-no= start-page=1711 end-page=1720 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dotinurad Treatment for Patients With Hyperuricemia Complicating CKD en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: The management of hyperuricemia is important to reduce cardiovascular risk and the progression of renal injury in chronic kidney disease (CKD). This study aimed to assess the efficacy and safety of dotinurad, a novel urate transporter-1 inhibitor, in patients with hyperuricemia and CKD.
Methods: In a nonrandomized, parallel interventional study, patients were grouped based on their estimated glomerular filtration rate (eGFR) at baseline. The starting dotinurad dose was 0.5 mg/d and titrated to a final dose of 2 mg/d to 4 mg/d. The primary end point was the noninferiority of the change in serum uric acid (UA) levels between the G1/G2 and G3/G4 groups at week 24. The main secondary end points were changes in eGFR and UA clearance-to-creatinine clearance ratio (CUA/CCr). Reported adverse events were also investigated.
Results: Ninety-eight patients continued the dose titration. The mean percentage reduction in serum UA level at week 24 were 47.2% and 42.8% for the G1/G2 and G3/G4 groups, respectively; the between-group difference was ?4.3% (95% confidence interval [CI], ?9.5% to 0.9%, noninferiority P = 0.0321), validating the noninferiority of treatment in the G3/G4 group to the G1/G2 group. eGFR tended to increase slightly through to week 24, suggesting that spontaneous eGFR decline was counteracted. Mean CUA/CCr generally increased over time from week 4 to week 24. No new safety issues of particular concern were identified; and there were no marked changes in urinary pH.
Conclusion: Dotinurad therapy may be well-tolerated in patients with hyperuricemia and may have efficacy comparable with existing standard treatment in patients with CKD stages G3/G4. Randomized controlled trials in larger patient groups are needed. en-copyright= kn-copyright= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItabashiNaoki en-aut-sei=Itabashi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaAkihiro en-aut-sei=Katayama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraAkihiko en-aut-sei=Nakamura en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhbayashiHiroyuki en-aut-sei=Ohbayashi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeKyoko en-aut-sei=Watanabe en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaruyamaKeisuke en-aut-sei=Maruyama en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HosoyaTakeshi en-aut-sei=Hosoya en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaShinichi en-aut-sei=Okada en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Nunoue Clinic kn-affil= affil-num=3 en-affil=Itabashi Diabetes and Dermatology Medical Clinic kn-affil= affil-num=4 en-affil=NHO Okayama Medical Center kn-affil= affil-num=5 en-affil=Osafune Clinic kn-affil= affil-num=6 en-affil=Tohno Chuo Clinic kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Japanese Red Cross Okayama Hospital kn-affil= affil-num=9 en-affil=Okayama Saiseikai Outpatient Center Hospital kn-affil= affil-num=10 en-affil=Hosoya Clinic kn-affil= affil-num=11 en-affil=Okada Medical Clinic kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=chronic kidney disease kn-keyword=chronic kidney disease en-keyword=dotinurad kn-keyword=dotinurad en-keyword=efficacy kn-keyword=efficacy en-keyword=hyperuricemia kn-keyword=hyperuricemia en-keyword=safety kn-keyword=safety en-keyword=serum uric acid kn-keyword=serum uric acid END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=3 article-no= start-page=104810 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99°C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field. en-copyright= kn-copyright= en-aut-name=TakanoAruto en-aut-sei=Takano en-aut-mei=Aruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmaliDennis V. en-aut-sei=Umali en-aut-mei=Dennis V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WardhanaApril H. en-aut-sei=Wardhana en-aut-mei=April H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SawitriDyah H. en-aut-sei=Sawitri en-aut-mei=Dyah H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeramotoIsao en-aut-sei=Teramoto en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HatabuToshimitsu en-aut-sei=Hatabu en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KidoYasutoshi en-aut-sei=Kido en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekoAkira en-aut-sei=Kaneko en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SasaiKazumi en-aut-sei=Sasai en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatohHiromitsu en-aut-sei=Katoh en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsubayashiMakoto en-aut-sei=Matsubayashi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Ba?os, College kn-affil= affil-num=3 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=4 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=6 en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=8 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=9 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=10 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=11 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= en-keyword=Coccidian parasite kn-keyword=Coccidian parasite en-keyword=Eimeria tenella kn-keyword=Eimeria tenella en-keyword=Extraction kn-keyword=Extraction en-keyword=Molecular identification kn-keyword=Molecular identification en-keyword=Oocyst kn-keyword=Oocyst END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=4 article-no= start-page=263 end-page=272 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering en-subtitle= kn-subtitle= en-abstract= kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. en-copyright= kn-copyright= en-aut-name=FerrerasAndrea en-aut-sei=Ferreras en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatesanzAna en-aut-sei=Matesanz en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MendizabalJabier en-aut-sei=Mendizabal en-aut-mei=Jabier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArtolaKoldo en-aut-sei=Artola en-aut-mei=Koldo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AcedoPablo en-aut-sei=Acedo en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JorcanoJos? L. en-aut-sei=Jorcano en-aut-mei=Jos? L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RuizAmalia en-aut-sei=Ruiz en-aut-mei=Amalia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ReinaGiacomo en-aut-sei=Reina en-aut-mei=Giacomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Mart?nCristina en-aut-sei=Mart?n en-aut-mei=Cristina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=2 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=3 en-affil=Domotek ingenier?a prototipado y formaci?n S.L. kn-affil= affil-num=4 en-affil=Domotek ingenier?a prototipado y formaci?n S.L. kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=7 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=8 en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford kn-affil= affil-num=9 en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology kn-affil= affil-num=10 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= en-keyword=photothermal therapy kn-keyword=photothermal therapy en-keyword=graphene derivatives kn-keyword=graphene derivatives en-keyword=4D bioprinting kn-keyword=4D bioprinting en-keyword=alginate kn-keyword=alginate en-keyword=tissue engineering kn-keyword=tissue engineering END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=7 article-no= start-page=001430 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic features of three major diarrhoeagenic Escherichia coli pathotypes in India en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background. Diarrhoea remains a major threat to children in developing nations, with diarrhoeagenic Escherichia coli (DEC) being the primary causative agent. Characterizing prevalent DEC strains is crucial, yet comprehensive genomic analyses of major DEC strains, including enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC), are lacking in India.
Methods. We sequenced 24 EAEC and 23 EPEC strains from Indian patients with diarrhoea and conducted an extensive database search for DEC human isolates from India. Detailed phylogenetic analyses, virulence gene subtyping and examinations of accessory virulence and antimicrobial resistance (AMR) genes were performed.
Results. The analysed DEC strains included 32 EAEC, 25 EPEC, 32 ETEC and 1 each of the EPEC/ETEC-hybrid and ETEC/EAEC-hybrid pathotypes. These strains were predominantly classified into phylogroups A (35.2%) and B1 (41.8%) and dispersed within these phylogroups without pathotype-specific clustering. One ETEC strain was classified into cryptic clade 1. Subtypes of hallmark virulence genes varied substantially amongst strains in each pathotype, and 31 accessory virulence genes were detected either specifically within certain pathotypes or across multiple pathotypes at varying frequencies, indicating diversification of the virulence gene repertoire within each pathotype. Acquired AMR genes were found in 73.6% of the strains, with frequent identification of AMR genes for aminoglycosides (40.0%), β-lactams (64.8%), sulphonamides (49.5%) and trimethoprim (42.9%). Known quinolone-resistant mutations were found in 74.7% of the strains, whereas AMR genes for macrolide (30.8%), phenicol (11.0%) and tetracycline (27.4%) were less frequent.
Conclusions. The diverse virulence potential and trends in AMR gene prevalence amongst major DEC strains in India are highlighted in this study. Continuous monitoring of DEC strain characteristics is essential for the effective control and treatment of DEC infections in India. en-copyright= kn-copyright= en-aut-name=HoshikoYuki en-aut-sei=Hoshiko en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChowdhuryGoutam en-aut-sei=Chowdhury en-aut-mei=Goutam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GhoshDebjani en-aut-sei=Ghosh en-aut-mei=Debjani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaganoDebora Satie en-aut-sei=Nagano en-aut-mei=Debora Satie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkunoMiki en-aut-sei=Okuno en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoTakeshi en-aut-sei=Yamamoto en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DuttaShanta en-aut-sei=Dutta en-aut-mei=Shanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MukhopadhyayAsish K. en-aut-sei=Mukhopadhyay en-aut-mei=Asish K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OguraYoshitoshi en-aut-sei=Ogura en-aut-mei=Yoshitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=2 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=3 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=4 en-affil=Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=5 en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=6 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=9 en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= affil-num=10 en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=11 en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=12 en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=diarrhoeagenic Escherichia coli kn-keyword=diarrhoeagenic Escherichia coli en-keyword=genome kn-keyword=genome en-keyword=India kn-keyword=India en-keyword=virulence gene kn-keyword=virulence gene END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas en-subtitle= kn-subtitle= en-abstract= kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and ??900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was??5%, and the dose difference corresponding to an LN-300 lung CT value difference of?>?20 HU was?>?1% at a field size of 2?×?2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used. en-copyright= kn-copyright= en-aut-name=NomuraMia en-aut-sei=Nomura en-aut-mei=Mia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotoShunsuke en-aut-sei=Goto en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaMizuki en-aut-sei=Yoshioka en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYuiko en-aut-sei=Kato en-aut-mei=Yuiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsunodaAyaka en-aut-sei=Tsunoda en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiokaKunio en-aut-sei=Nishioka en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiology, Tokuyama Central Hospital kn-affil= affil-num=7 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Computed tomography kn-keyword=Computed tomography en-keyword=Dose calculation kn-keyword=Dose calculation en-keyword=Inter-facility variation kn-keyword=Inter-facility variation en-keyword=Low-density regions kn-keyword=Low-density regions en-keyword=Percentage depth dose kn-keyword=Percentage depth dose en-keyword=Radiation therapy planning system kn-keyword=Radiation therapy planning system END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=7 article-no= start-page=319 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide Survey of Middle Meningeal Artery Embolization for Chronic Subdural Hematoma in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Middle meningeal artery embolization has increasingly been used to treat chronic subdural hematoma. However, the current state of its application and outcomes in Japan remains unclear. We conducted a multicenter observational study involving facilities affiliated with the Japanese Society for Neuroendovascular Therapy to assess current practices and clarify the usefulness and safety of middle meningeal artery embolization for chronic subdural hematoma. A total of 466 patients from 40 facilities were included. The mean age of the patients was 78.0 ± 10.5 years, and bleeding risks, including antithrombotic therapy or bleeding predisposition, were present in 36.1% of patients. The most common timing for middle meningeal artery embolization was after the second burr hole surgery, accounting for 34.8% of cases. N-butyl-2-cyanoacrylate was used as the embolic material in 67% of cases. The complication rate was 5.2%, with complication-related morbidity at 0.9%. Hematomas were stable in 91.5% of cases at 30 days post-middle meningeal artery embolization. The symptomatic recurrence rate was 8.9%. Cases that underwent middle meningeal artery embolization after the second or subsequent burr hole surgeries were significantly associated with symptomatic recurrence. This study is the first nationwide survey investigating the real-world clinical practice of middle meningeal artery embolization for chronic subdural hematoma in Japan. While it included many elderly patients, recurrent cases, and those with bleeding risks, the safety and usefulness of middle meningeal artery embolization were deemed acceptable. However, symptomatic recurrence was common even in cases with middle meningeal artery embolization when performed after the second or subsequent burr hole surgeries. A further prospective study will be warranted to clarify treatment indications, optimal timing, and treatment techniques of middle meningeal artery embolization. en-copyright= kn-copyright= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SATOWTetsu en-aut-sei=SATOW en-aut-mei=Tetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Neurosurgery/Stroke Center, Kindai University Hospital kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=chronic subdural hematoma kn-keyword=chronic subdural hematoma en-keyword=endovascular therapy kn-keyword=endovascular therapy en-keyword=middle meningeal artery kn-keyword=middle meningeal artery END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=115 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Safety of Adenosine-assisted Clipping Surgery for Unruptured Cerebral Aneurysms: Interim Results of a Single-center, Single-arm Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this single-center, single-arm study was to evaluate the safety of adenosine-assisted clipping surgery for unruptured cerebral aneurysms. Five patients underwent aneurysmal clipping during adenosine-induced hypotension at ?60 mmHg. The mean age of patients was 63.4±8.5 years, and the mean aneurysm size was 5.3±1.1 mm. The prevalence of patients with modified Rankin Scale scores of zero 30 days after surgery was 100%. The degree of aneurysm obliteration was complete in 4 patients and residual dome in 1 patient. The mean total dosage of adenosine was 37.4±18.8 mg. The mean duration of systolic blood pressure at ?60 mmHg was 64.2±28.3 secs. No patients exhibited paroxysmal atrial fibrillation within 24 hours after adenosine administration or elevation of high-sensitivity cardiac troponin T on postoperative day 1. There was no reduction in either motor-evoked or somatosensory-evoked potential amplitude during surgery. Adenosine-induced hypotension is a safe procedure in clipping surgery for unruptured cerebral aneurysms. en-copyright= kn-copyright= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YASUHARATakao en-aut-sei=YASUHARA en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SHIMIZUKazuyoshi en-aut-sei=SHIMIZU en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NAKAGAWAKoji en-aut-sei=NAKAGAWA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KIMURA-ONOAya en-aut-sei=KIMURA-ONO en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HOTTAKatsuyuki en-aut-sei=HOTTA en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MORIMATSUHiroshi en-aut-sei=MORIMATSU en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DATEIsao en-aut-sei=DATE en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=adenosine kn-keyword=adenosine en-keyword=clipping kn-keyword=clipping en-keyword=safety kn-keyword=safety en-keyword=unruptured cerebral aneurysm kn-keyword=unruptured cerebral aneurysm END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=ncaf080 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy. en-copyright= kn-copyright= en-aut-name=MaedaTakahiko en-aut-sei=Maeda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraMakoto en-aut-sei=Hara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamasakiHiroyuki en-aut-sei=Yamasaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaharaMakoto en-aut-sei=Nakahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center kn-affil= affil-num=5 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=7 article-no= start-page=902 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KameyamaTakeru en-aut-sei=Kameyama en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=antimicrobial kn-keyword=antimicrobial en-keyword=denture liner kn-keyword=denture liner en-keyword=cetylpyridiniumchloride kn-keyword=cetylpyridiniumchloride en-keyword=drug release kn-keyword=drug release en-keyword=drug recharge kn-keyword=drug recharge END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=118030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties. en-copyright= kn-copyright= en-aut-name=Aoki-SaitoHaruka en-aut-sei=Aoki-Saito en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakakuraTakashi en-aut-sei=Nakakura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTsutomu en-aut-sei=Sasaki en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraTadahiro en-aut-sei=Kitamura en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisadaTakeshi en-aut-sei=Hisada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaShuichi en-aut-sei=Okada en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasanobu en-aut-sei=Yamada en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=3 en-affil=Department of Anatomy, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Gunma University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Diabetes, Soleiyu Asahi Clinic kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= en-keyword=(+)-Terrein kn-keyword=(+)-Terrein en-keyword=Brown adipose tissue kn-keyword=Brown adipose tissue en-keyword=Thermogenesis kn-keyword=Thermogenesis en-keyword=Obesity kn-keyword=Obesity en-keyword=PPARγ kn-keyword=PPARγ END start-ver=1.4 cd-journal=joma no-vol=599 cd-vols= no-issue=13 article-no= start-page=1914 end-page=1924 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438?463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435?505) directly interacted with EGFP-CaMKKα/1 residues 435?505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain. en-copyright= kn-copyright= en-aut-name=UenoyamaShun en-aut-sei=Uenoyama en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NittaHayato en-aut-sei=Nitta en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhtsukaSatomi en-aut-sei=Ohtsuka en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuizuFutoshi en-aut-sei=Suizu en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TokumitsuHiroshi en-aut-sei=Tokumitsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=6 en-affil= kn-affil= en-keyword=calmodulin kn-keyword=calmodulin en-keyword=calmodulin-kinase cascade kn-keyword=calmodulin-kinase cascade en-keyword=CaMKKa/ kn-keyword=CaMKKa/ en-keyword=oligomerization kn-keyword=oligomerization en-keyword=protein?protein interaction kn-keyword=protein?protein interaction en-keyword=regulatory domain kn-keyword=regulatory domain END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=8 article-no= start-page=379 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and microbiological effects of a propolis toothpaste in patients with periodontitis under supportive periodontal therapy: a randomized double-blind clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives Propolis possesses antibacterial, anti-inflammatory, and antioxidant properties. While its application in oral care has garnered significant attention, evidence supporting its effectiveness against periodontal bacteria is limited. This study used a randomized double-blind protocol to assess the safety and efficacy of toothpaste containing propolis compared to a placebo in patients undergoing supportive periodontal therapy (SPT).
Materials and methods Thirty-two participants in SPT were randomized into two groups: toothpaste containing 2.5% ethanol-extracted propolis (EEP) and a placebo without EEP. Participants brushed twice daily for four weeks, and clinical parameters, bacterial counts, and salivary characteristics were assessed before and after the intervention.
Results The propolis group showed a significant reduction in periodontal pocket depth (P?=?0.006), with a mean depth of 3.80 mm compared to 4.35 mm in the placebo group. Bleeding on probing was significantly reduced in both groups (P?=?0.032 in the propolis group and 0.0498 in the placebo group), but did not differ between groups. Total bacterial and Porphyromonas gingivalis (P. gingivalis) counts did not differ significantly between the groups; however, the number of patients with decreased P. gingivalis was slightly larger than those in the placebo group (not significant). Additionally, saliva acidity decreased significantly in the propolis group (P?=?0.041), suggesting a shift toward a less pathogenic oral environment. No adverse events were observed.
Conclusion These findings suggest that propolis may contribute to stabilizing periodontal disease during supportive periodontal therapy by modulating salivary acidity.
Clinical relevance Periodontal pocket depth and the rate of bleeding on probing are reduced, along with decreased saliva acidity. Meanwhile, the levels of P. gingivalis in the periodontal pockets remain low. Propolis-dentifrice may help alleviate gingival inflammation during SPT.
Clinical trial registration Registered in the University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN000029554). en-copyright= kn-copyright= en-aut-name=Takeuchi-HatanakaKazu en-aut-sei=Takeuchi-Hatanaka en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiYoshihiro en-aut-sei=Hayashi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaHiroe en-aut-sei=Maruyama en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonoHiroyuki en-aut-sei=Kono en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Propolis kn-keyword=Propolis en-keyword=Toothpaste kn-keyword=Toothpaste en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Periodontal pocket kn-keyword=Periodontal pocket en-keyword=Saliva kn-keyword=Saliva en-keyword=Randomized controlled trial kn-keyword=Randomized controlled trial END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10819 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload. en-copyright= kn-copyright= en-aut-name=YoshinariYuto en-aut-sei=Yoshinari en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakashi en-aut-sei=Nishimura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoShu en-aut-sei=Kondo en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoHiromu en-aut-sei=Tanimoto en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiTomoe en-aut-sei=Kobayashi en-aut-mei=Tomoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NiwaRyusuke en-aut-sei=Niwa en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=2 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=6 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=7 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=8 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=12 article-no= start-page=2916 end-page=2926.e3 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxytocin facilitates human touch-induced play behavior in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions. en-copyright= kn-copyright= en-aut-name=HayashiHimeka en-aut-sei=Hayashi en-aut-mei=Himeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TateishiSayaka en-aut-sei=Tateishi en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InutsukaAyumu en-aut-sei=Inutsuka en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaejimaSho en-aut-sei=Maejima en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakumaYasuo en-aut-sei=Sakuma en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnakaTatsushi en-aut-sei=Onaka en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GrinevichValery en-aut-sei=Grinevich en-aut-mei=Valery kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=4 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=6 en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School kn-affil= affil-num=7 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=8 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=9 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= en-keyword=tickling kn-keyword=tickling en-keyword=oxytocin kn-keyword=oxytocin en-keyword=oxytocin receptor kn-keyword=oxytocin receptor en-keyword=ventrolateral part of the ventromedial hypothalamus kn-keyword=ventrolateral part of the ventromedial hypothalamus en-keyword=affinity-like behaviors kn-keyword=affinity-like behaviors END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=100242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers en-subtitle= kn-subtitle= en-abstract= kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications. en-copyright= kn-copyright= en-aut-name=MaemotoHayaki en-aut-sei=Maemoto en-aut-mei=Hayaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzakiRyohei en-aut-sei=Suzaki en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItakaKeiji en-aut-sei=Itaka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=mRNA kn-keyword=mRNA en-keyword=Photochemical internalization kn-keyword=Photochemical internalization en-keyword=Photosensitizer kn-keyword=Photosensitizer END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=1 article-no= start-page=11 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between media literacy and searching skills on report assignments in nursing students in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: This study evaluates the relationship between information access and media literacy attitudes. We also assessed the impact of “Medical Literature Reading” on media literacy among Japanese university students. Methods: A cross-sectional study was conducted from April 2?16 and from August 2?16, 2024. A self-reporting questionnaire, including the school year, was used to determine if participants had taken the “Medical Literature Reading” course and to identify the sources often used for reporting assignments and media literacy. Results: This study included 195 subjects. The differences in media literacy scores between school years were analyzed. The total scores of fourth-year students were significantly higher than those of first-year on the media literacy scale (p = 0.014). The differences in media literacy scores among students enrolled in “Medical Literature Reading” were analyzed. The scores on the media literacy scale (p = 0.006) were significantly higher in participants than in non-participants. The relationships among the three groups by sources used for report assignments, school years (χ2(6) = 42.101, p < 0.0001), and history of taking “Medical Literature Reading” (χ2(2) = 7.048, p = 0.030) were also analyzed. Conclusions: Media literacy improved with schooling. Certain report assignments and subjects related to information literacy were found to have affected media literacy. Combining continuing experience and knowledge can lead to improvements in media literacy. en-copyright= kn-copyright= en-aut-name=NagaoYurii en-aut-sei=Nagao en-aut-mei=Yurii kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoWakana en-aut-sei=Yano en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahataYoko en-aut-sei=Takahata en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=2 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=3 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= en-keyword=Media literacy kn-keyword=Media literacy en-keyword=Media literacy education kn-keyword=Media literacy education en-keyword=Nursing department kn-keyword=Nursing department en-keyword=University students kn-keyword=University students END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=7 article-no= start-page=808 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy. en-copyright= kn-copyright= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaKazuki en-aut-sei=Ogawa en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuiYu en-aut-sei=Yasui en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaYoji en-aut-sei=Wada en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraHiromichi en-aut-sei=Nakamura en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=9 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=10 en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SARM1 kn-keyword=SARM1 en-keyword=carnosol kn-keyword=carnosol en-keyword=NAD+ kn-keyword=NAD+ en-keyword=axon degeneration kn-keyword=axon degeneration en-keyword=peripheral neuropathy kn-keyword=peripheral neuropathy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of transcatheter patent foramen ovale closure for drug-resistant migraine: initial experience in Japan and long-term outcome en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study evaluates the efficacy and safety of transcatheter patent foramen ovale (PFO) closure for the treatment of drug-resistant migraine in Japan. Previous studies have suggested a potential benefit for migraine with aura, although large-scale trials in the United States and Europe have failed to confirm efficacy as a primary endpoint. The study included 27 patients (mean age 36.4 years, 15 female, 21 with aura) who had more than two migraine attacks per month despite medication. All had PFO confirmed by transesophageal echocardiography and underwent transcatheter closure with the Amplatzer PFO Occluder. Patients were followed up to 12 months with migraine severity monitored by headache specialist. The procedure was successful and without complications in all cases. One patient required a larger occluder (35 mm) due to the size of PFO. At 12 months, 22 of 27 (81%) patients reported either complete resolution or improvement of migraine. Specifically, 10 of 21 (48%) patients with aura experienced complete resolution of migraine at one year. Patients without aura had a lower response rate, with only one case of complete resolution. Despite limitations such as the lack of a control group and potential patient selection bias, the study demonstrated that PFO closure may provide significant relief for patients with drug-resistant migraine, particularly those with aura. These findings support further investigation to better define its clinical indications and potential benefits. en-copyright= kn-copyright= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakashimaMitsuki en-aut-sei=Nakashima en-aut-mei=Mitsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYoshiaki en-aut-sei=Takahashi en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HishikawaNozomi en-aut-sei=Hishikawa en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Patent foramen ovale kn-keyword=Patent foramen ovale en-keyword=Migraine kn-keyword=Migraine en-keyword=Headache kn-keyword=Headache en-keyword=Stroke kn-keyword=Stroke en-keyword=Catheter kn-keyword=Catheter END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=e70055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Short‐process incudo‐stapedioplasty in congenital ear malformation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Although various stapedotomy and stapedectomy techniques exist, anchoring the piston can be challenging. We present a novel surgical approach for treating congenital stapes malformations with an atypical facial nerve trajectory.
Methods: This is a case of a 7-year-old boy presenting with bilateral conductive hearing loss. Prior attempts at tympanoplasty had proven unsuccessful in improving his hearing. Presurgical imaging studies revealed an unusual anatomical configuration, with the facial nerve positioned inferior to the oval window. This anatomical variation precluded the use of conventional prosthesis-anchoring techniques typically employed in stapedotomies. Thus, we devised an innovative approach, opting to anchor the prosthesis to the short process of the incus.
Results: This novel technique circumvented the atypical course of the facial nerve, allowing for successful reconstruction of the ossicular chain. The patient demonstrated an acceptable improvement (30?dB gain) in hearing 1-year post-surgery, with no reported complications.
Conclusion: This case underscores the critical importance of adapting surgical techniques to address the unique anatomical challenges that may arise in the context of congenital ear malformations. It also highlights the potential of the short process of the incus as a viable alternative anchoring site for stapes prostheses, thereby improving the outcomes of such complex cases. This technique not only restored the patient's hearing but also contributed valuable insights into the management of similar cases, potentially improving the quality of life for individuals with rare and challenging anatomical variations.
Level of evidence: 5. en-copyright= kn-copyright= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KariyaShin en-aut-sei=Kariya en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=congenital ear malformation kn-keyword=congenital ear malformation en-keyword=incus kn-keyword=incus en-keyword=prosthesis kn-keyword=prosthesis en-keyword=stapedectomy kn-keyword=stapedectomy en-keyword=stapedotomy kn-keyword=stapedotomy END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=4 article-no= start-page=773 end-page=782 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Japanese translation of the Functional Assessment of Cancer Therapy-Breast?+?4 (FACT-B?+?4) following international guidelines: a verification of linguistic validity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background For breast cancer patients, postoperative lymphedema and upper limb movement disorders are serious complications that absolutely reduce their quality of life (QOL). To evaluate this serious complication, we used “Quick Dash” or “FACT-B”, which can assess a patient's physical, social, emotional, and functional health status. To evaluate their breast cancer surgery-related dysfunction correctly, “FACT-B?+?4” was created by adding four questions about “arm swelling'' and “tenderness”. We have translated it into Japanese according to international translation guidelines.
Methods At the beginning, we contacted FACT headquarters that we would like to create a Japanese version of FACT-B?+?4. They formed the FACIT Trans Team (FACIT) following international translation procedures, and then, we began translating according to them. The steps are 1: perform “Forward and Reverse translations” to create a “Preliminary Japanese version”, 2: request the cooperation of 5 breast cancer patients and “conduct a pilot study” and “questionnaire survey”, and 3: amendments and final approval based on pilot study results and clinical perspectives.
Result In Step1, FACIT requested faithful translation of the words, verbs, and nouns from the original text. In Step2, patients reported that they felt uncomfortable with the Japanese version words such as “numb'' and “stiffness'' and felt that it might be difficult to describe their symptoms accurately. In Step3, we readjusted the translation to be more concise and closer to common Japanese language, and performed “Step1” again to ensure that the translation definitely retained the meaning of the original.
Conclusion A Japanese version of FACT has existed until now, but there was no Japanese version of FACT-B?+?4, which adds four additional items to evaluate swelling and pain in the upper limbs. This time, we have created a Japanese version that has been approved by FACT. en-copyright= kn-copyright= en-aut-name=TsukiokiTakahiro en-aut-sei=Tsukioki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakataNozomu en-aut-sei=Takata en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DennisSaya R. en-aut-sei=Dennis en-aut-mei=Saya R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TerataKaori en-aut-sei=Terata en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SagaraYasuaki en-aut-sei=Sagara en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakaiTakehiko en-aut-sei=Sakai en-aut-mei=Takehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayamaShin en-aut-sei=Takayama en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KitagawaDai en-aut-sei=Kitagawa en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KikawaYuichiro en-aut-sei=Kikawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiYuko en-aut-sei=Takahashi en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwataniTsuguo en-aut-sei=Iwatani en-aut-mei=Tsuguo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujisawaTomomi en-aut-sei=Fujisawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Simpson Querrey Biomedical Research Center, Northwestern University kn-affil= affil-num=3 en-affil=Department of Preventive Medicine Feinberg School of Medicine, Northwestern University kn-affil= affil-num=4 en-affil=Department of Breast and Endocrine Surgery, Akita University Hospital kn-affil= affil-num=5 en-affil=Department of Breast Surgical Oncology, Social Medical Corporation Hakuaikai Sagara Hospital kn-affil= affil-num=6 en-affil=Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital of JFCR kn-affil= affil-num=7 en-affil=Department of Breast Surgery, National Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgical Oncology, National Center for Global Health and Medicine kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Kansai Medical University Hospital kn-affil= affil-num=10 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= affil-num=13 en-affil=Department of Breast Cancer, Gunma Prefectural Cancer Center kn-affil= affil-num=14 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=FACT-B kn-keyword=FACT-B en-keyword=FACT-B+4 kn-keyword=FACT-B+4 en-keyword=QOL kn-keyword=QOL END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=10 article-no= start-page=1692 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Characteristics of Vitamin D Deficiency Detected in Long COVID Patients During the Omicron Phase en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: To characterize the clinical significance of vitamin D deficiency (VDD) detected in long COVID, a retrospective observational study was performed for outpatients who visited our clinic during the period from May 2024 to November 2024. Methods: Clinical trends in long COVID patients diagnosed with VDD who showed serum concentrations of 25-hydroxyvitamin D (25-OHD) lower than 20 ng/mL were compared with those in long COVID patients in a non-deficient vitamin D (NDD) group. Results: Of 126 patients with long COVID, 97 patients (female: 50) who had been infected during the Omicron phase were included. Sixty-six patients (68%) were classified in the VDD group. The median serum concentrations of 25-OHD were 14.8 ng/mL in the VDD group and 22.9 ng/mL in the NDD group. There were no significant differences between the two groups in terms of age, gender, BMI, severity of COVID-19, period after infection and vaccination history. Although the levels of serum calcium and phosphate were not significantly different between the two groups, the percentages of patients in the VDD group who complained of dizziness, memory impairment, palpitation and appetite loss were larger than those in the NDD group. Of note, the patients who complained of palpitation showed significantly lower concentrations of serum 25-OHD than those in the patients without palpitation (median: 11.9 vs. 17.3 ng/mL). Moreover, patients in the VDD group had significantly higher scores for physical and mental fatigue as well as higher scores for depressive symptoms. Conclusions: Collectively, VDD is involved in clinical manifestations of long COVID, particularly symptoms of palpitation, fatigue and depression. en-copyright= kn-copyright= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokotaYuya en-aut-sei=Yokota en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmuraDaisuke en-aut-sei=Omura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=25-hydroxyvitamin D kn-keyword=25-hydroxyvitamin D en-keyword=long COVID kn-keyword=long COVID en-keyword=palpitation kn-keyword=palpitation en-keyword=vitamin D deficiency kn-keyword=vitamin D deficiency END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e000923 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reversible cerebral vasoconstriction syndrome in idiopathic multicentric Castleman disease under treatment with tocilizumab en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Idiopathic multicentric Castleman disease (iMCD) is a rare polyclonal lymphoproliferative disorder characterised by systemic inflammation resulting from overproduction of interleukin 6 (IL-6). While iMCD primarily affects the lymph nodes and related tissues, it can also rarely involve the central nervous system.
Case presentation We report the case of a 58-year-old female patient with at least a 3-year history of iMCD, who experienced acute thunderclap headaches due to reversible cerebral vasoconstriction syndrome (RCVS). RCVS occurred 3?months after initiating treatment with tocilizumab, a humanised anti-IL-6 receptor monoclonal antibody, and was accompanied by focal cortical subarachnoid haemorrhage (SAH). Elevated IL-6 levels were found in both serum and cerebrospinal fluid. MR angiography revealed multiple diffuse stenotic lesions in the bilateral middle and posterior cerebral arteries, which, along with bilateral cerebral oedema, resolved within 3?months. The diffuse nature of the cerebral vasospasm and the presence of bilateral brain oedema suggested that cerebral vasospasm was due to RCVS rather than SAH.
Conclusions In patients with Castleman disease, RCVS may occur due to IL-6-dependent chronic cerebral vascular inflammation, either as a primary condition or as a complication of tocilizumab treatment. en-copyright= kn-copyright= en-aut-name=KamimuraNaoya en-aut-sei=Kamimura en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaNaohisa en-aut-sei=Ueda en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraKatsuo en-aut-sei=Kimura en-aut-mei=Katsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishidaHitaru en-aut-sei=Kishida en-aut-mei=Hitaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaFumiaki en-aut-sei=Tanaka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=2 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=3 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil= kn-affil= affil-num=6 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=7 en-affil=Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=4 article-no= start-page=510 end-page=524 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis. en-copyright= kn-copyright= en-aut-name=OTANIYUSUKE en-aut-sei=OTANI en-aut-mei=YUSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MAEKAWAMASAKI en-aut-sei=MAEKAWA en-aut-mei=MASAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TANAKAATSUSHI en-aut-sei=TANAKA en-aut-mei=ATSUSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PE?ATIRSO en-aut-sei=PE?A en-aut-mei=TIRSO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CHINVANESSA D. en-aut-sei=CHIN en-aut-mei=VANESSA D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ROGACHEVSKAYAANNA en-aut-sei=ROGACHEVSKAYA en-aut-mei=ANNA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TOYOOKASHINICHI en-aut-sei=TOYOOKA en-aut-mei=SHINICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ROEHRLMICHAEL H. en-aut-sei=ROEHRL en-aut-mei=MICHAEL H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FUJIMURAATSUSHI en-aut-sei=FUJIMURA en-aut-mei=ATSUSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=2 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=3 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=4 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=5 en-affil=UMass Chan Medical School, UMass Memorial Medical Center kn-affil= affil-num=6 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=9 en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=C1orf50 kn-keyword=C1orf50 en-keyword=melanoma kn-keyword=melanoma en-keyword=cancer stem cells kn-keyword=cancer stem cells en-keyword=YAP/TAZ kn-keyword=YAP/TAZ END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=6 article-no= start-page=e86695 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Managing Persistent Pupillary Membranes With Surgery or Medication: A Report of Three Cases en-subtitle= kn-subtitle= en-abstract= kn-abstract=The persistent pupillary membrane, as a congenital anomaly, is a remnant of a network of feeding blood vessels for the lens of the eye, called tunica vasculosa lentis. This study reports three patients with persistent pupillary membrane in both eyes who presented in different situations and were managed differently to achieve better vision. The first child (Case 1) who had been seen initially at the age of two years complained of severe photophobia even though he had good visual acuity, and hence, he and his family chose surgical resection of the pupillary membrane in both eyes at the age of six years just before the admission to an elementary school. He did not develop any surgical complications, such as cataract and glaucoma, and maintained the visual acuity in decimals of 1.2 in both eyes at the age of 17 years.
The second child (Case 2), who was seen first at the age of one month, had persistent pupillary membranes in both eyes, together with Peters' anomaly in the left eye. The iris process adhesion to the corneal inner surface was visualized later by optical coherence tomography. She wore full-correction glasses and obtained the visual acuity of 0.7 in the right eye, so she had no problem studying at an elementary school. She used topical 1% atropine once a week in both eyes to maintain pupillary dilation and also used 0.5% timolol and 1% brinzolamide as pressure-lowering eye drops in the left eye with Peters' anomaly.
The third patient (Case 3) with persistent pupillary membranes in both eyes complained of vision problems for the first time at the age of 49 years when she developed cataract. Surgical resection of the pupillary membrane was done in the initial phase of cataract surgery with intraocular lens implantation in both eyes. At surgical resection of the pupillary membrane, a safe and efficient way was to cut the root of the pupillary membrane on the iris surface with scissors, and then the isolated tissues of the pupillary membrane were pulled out with forceps from the side port at the corneal limbus. Pathological examinations of the excised tissues showed blood vessels with red blood cells in the lumen. In such a rare congenital disease as the persistent pupillary membrane, a case-based approach to choose a better option in different conditions from individual to individual is still required to have a better vision in learning at school and in daily working life. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=anterior segment dysgenesis kn-keyword=anterior segment dysgenesis en-keyword=cataract kn-keyword=cataract en-keyword=forceps kn-keyword=forceps en-keyword=optical coherence tomography kn-keyword=optical coherence tomography en-keyword=persistent pupillary membrane kn-keyword=persistent pupillary membrane en-keyword=peters anomaly kn-keyword=peters anomaly en-keyword=resection kn-keyword=resection en-keyword=scissors kn-keyword=scissors en-keyword=vitrectomy cutter kn-keyword=vitrectomy cutter END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=6 article-no= start-page=e85680 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Whole-Eye Radiation for the Local Control of Choroidal Lymphoma in Primary Central Nervous System Lymphoma: A 14-Year Case Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Involved-site radiation therapy is effective for curative and palliative treatments of cancers, including lymphoma. This case study describes the use of whole-eye radiation for primary intraocular lymphoma occurring during primary central nervous system lymphoma. The patient, a 68-year-old man, developed personality changes and apathy two weeks after cataract surgery combined with vitrectomy for vitreous opacity in the left eye. Magnetic resonance imaging revealed a mass lesion in the left frontal lobe, and biopsy by craniotomy confirmed diffuse large B-cell lymphoma. He underwent chemotherapy using rituximab combined with high-dose methotrexate and high-dose cytarabine in association with intrathecal methotrexate and cytarabine injections, leading to complete remission. At age 75, he noticed forgetfulness, and fluorodeoxyglucose positron emission tomography and magnetic resonance imaging revealed a relapse of lymphoma in the splenium of the corpus callosum. He underwent chemotherapy using rituximab combined with high-dose methotrexate, followed by monthly rituximab monotherapy for one year and then rituximab monotherapy every two months for one year. He maintained complete remission with no treatment until age 78, when he developed subretinal choroidal lesions in the left eye and underwent whole-eye radiation at 40 Gy. One year later, he developed subretinal choroidal lesions in the right eye and underwent whole-eye radiation at 40 Gy. At age 81, he had lower limb weakness with disorientation. Magnetic resonance imaging showed a relapse of lymphoma in the right frontal to temporal lobe. The brain lesions showed a marked response to four weeks of oral tirabrutinib as a salvage therapy, but the lesions regrew, and the patient died seven months later. Throughout the treatment, he maintained a visual acuity of 0.7 (decimal scale) in both eyes. In conclusion, whole-eye radiation should be considered as a treatment option for the local control of active intraocular lymphoma, especially choroidal lesions, for patients with primary central nervous system lymphoma with no active brain lesions and without systemic treatment. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoTomofumi en-aut-sei=Yano en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshioKotaro en-aut-sei=Yoshio en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraHirotake en-aut-sei=Nishimura en-aut-mei=Hirotake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Okayama Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=brain biopsy kn-keyword=brain biopsy en-keyword=bruton tyrosine kinase (btk) inhibitor kn-keyword=bruton tyrosine kinase (btk) inhibitor en-keyword=chemotherapy kn-keyword=chemotherapy en-keyword=diffuse large b-cell lymphoma kn-keyword=diffuse large b-cell lymphoma en-keyword=fluorodeoxyglucose positron emission tomography kn-keyword=fluorodeoxyglucose positron emission tomography en-keyword=primary central nervous system lymphoma kn-keyword=primary central nervous system lymphoma en-keyword=primary intraocular (vitreoretinal) lymphoma kn-keyword=primary intraocular (vitreoretinal) lymphoma en-keyword=radiation therapy (radiotherapy) kn-keyword=radiation therapy (radiotherapy) en-keyword=tirabrutinib kn-keyword=tirabrutinib en-keyword=whole-eye radiation kn-keyword=whole-eye radiation END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=5 article-no= start-page=164 end-page=173 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nephronophthisis and Retinitis Pigmentosa (Senior-Loken Syndrome) After Living-Donor Kidney Transplantation: Twelve-Year Follow-Up in a Young Woman en-subtitle= kn-subtitle= en-abstract= kn-abstract=Senior-Loken syndrome is a hereditary ciliopathy with recessive trait that manifests as nephronophthisis and retinitis pigmentosa. This report described an 18-year-old woman who was referred to a University Hospital to set up a treatment plan for chronic renal failure of an unknown cause. She had experienced nocturnal polyurea from the age of 12 years and was found to have an elevated level of serum creatinine at 3 mg/dL at the age of 15 years. She underwent renal biopsy at a hometown regional hospital which showed global glomerulosclerosis in six of the 13 glomeruli examined, renal tubular dilation in irregular shape, and marked interstitial fibrosis with lymphocytic infiltration. At the age of 19 years, she received a living-donor kidney transplant from her 46-year-old father as a preemptive therapy. At surgery, biopsy of the father’s donor kidney showed two glomeruli with global sclerosis out of 24 glomeruli examined, in association with minimal interstitial fibrosis and lymphocytic infiltration. She began to have extended-release tacrolimus 4 mg daily and mycophenolate mofetil 1,000 mg daily. According to the standard protocol, she underwent biopsy of the transplanted donor kidney to reveal interstitial fibrosis and lymphocytic infiltration, in addition to no sign of rejection and no glomerular deposition of immunoglobulins and complements, both 4 weeks and 14 months after the kidney transplantation. At the age of 23 years, 4 years after the kidney transplantation, she was, for the first time, diagnosed retinitis pigmentosa, and hence, Senior-Loken syndrome. She was followed up in the stable condition with basal doses of tacrolimus 5 mg daily, mycophenolate mofetil 1,000 mg daily, and prednisolone 5 mg daily up until now in 12 years after the kidney transplantation. The interstitial fibrosis with lymphocytic infiltration in the donor kidney might be a milder presentation of the disease with recessive inheritance. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Urology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Retinitis pigmentosa kn-keyword=Retinitis pigmentosa en-keyword=Nephronophthisis kn-keyword=Nephronophthisis en-keyword=Senior-Loken syndrome kn-keyword=Senior-Loken syndrome en-keyword=Kidney transplantation kn-keyword=Kidney transplantation en-keyword=Living donor kn-keyword=Living donor en-keyword=Kidney biopsy kn-keyword=Kidney biopsy en-keyword=Pathology kn-keyword=Pathology en-keyword=Computed tomography scan kn-keyword=Computed tomography scan en-keyword=Ciliopathy kn-keyword=Ciliopathy en-keyword=Optical coherence tomography kn-keyword=Optical coherence tomography END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=7 article-no= start-page=110291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A repertoire of visible light?sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457?517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light?sensitive opsins, including the uniquely tuned Opn5. en-copyright= kn-copyright= en-aut-name=NagataYuya en-aut-sei=Nagata en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoNorio en-aut-sei=Miyamoto en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniokaYuki en-aut-sei=Tanioka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamanakaYuji en-aut-sei=Yamanaka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKuto en-aut-sei=Takahashi en-aut-mei=Kuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ObayashiKohei en-aut-sei=Obayashi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukamotoHisao en-aut-sei=Tsukamoto en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaiKen en-aut-sei=Takai en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaTakahiro en-aut-sei=Yamashita en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=11 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=12 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Biophysics, Graduate School of Science, Kyoto University kn-affil= affil-num=14 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=opsin kn-keyword=opsin en-keyword=G protein?coupled receptor kn-keyword=G protein?coupled receptor en-keyword=signal transduction kn-keyword=signal transduction en-keyword=photoreceptor kn-keyword=photoreceptor en-keyword=vision kn-keyword=vision en-keyword=photobiology kn-keyword=photobiology en-keyword=vent shrimp kn-keyword=vent shrimp en-keyword=deep sea kn-keyword=deep sea en-keyword=molecular evolution kn-keyword=molecular evolution END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes?idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and “whirlpool” vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required. en-copyright= kn-copyright= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaratakeTomoka en-aut-sei=Haratake en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SumiyoshiRemi en-aut-sei=Sumiyoshi en-aut-mei=Remi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UjiieHideki en-aut-sei=Ujiie en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaharaYuri en-aut-sei=Kawahara en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KogaTomohiro en-aut-sei=Koga en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UekiMasao en-aut-sei=Ueki en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LaczkoDorottya en-aut-sei=Laczko en-aut-mei=Dorottya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OksenhendlerEric en-aut-sei=Oksenhendler en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawakamiAtsushi en-aut-sei=Kawakami en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=6 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=9 en-affil=School of Information and Data Sciences, Nagasaki University kn-affil= affil-num=10 en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania kn-affil= affil-num=11 en-affil=Department of Clinical Immunology, H?pital Saint-Louis kn-affil= affil-num=12 en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=13 en-affil=Myeloma Center, University of Arkansas for Medical Sciences kn-affil= affil-num=14 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=15 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=clinical subtype kn-keyword=clinical subtype en-keyword=histopathological criteria kn-keyword=histopathological criteria en-keyword=idiopathic multicentric castleman disease kn-keyword=idiopathic multicentric castleman disease en-keyword=lymphoproliferative disease kn-keyword=lymphoproliferative disease en-keyword=machine-learning kn-keyword=machine-learning END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=12 article-no= start-page=3780 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Sampling Frequency on Human Activity Recognition with Machine Learning Aiming at Clinical Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human activity recognition using wearable accelerometer data can be a useful digital biomarker for severity assessment and the diagnosis of diseases, where the relationship between onset and patient activity is crucial. For long-term monitoring in clinical settings, the volume of data collected over time should be minimized to reduce power consumption, computational load, and communication volume. This study aimed to determine the lowest sampling frequency that maintains recognition accuracy for each activity. Thirty healthy participants wore nine-axis accelerometer sensors at five body locations and performed nine activities. Machine-learning-based activity recognition was conducted using data sampled at 100, 50, 25, 20, 10, and 1 Hz. Data from the non-dominant wrist and chest, which have previously shown high recognition accuracy, were used. Reducing the sampling frequency to 10 Hz did not significantly affect the recognition accuracy for either location. However, lowering the frequency to 1 Hz decreases the accuracy of many activities, particularly brushing teeth. Using data with a 10 Hz sampling frequency can maintain recognition accuracy while decreasing data volume, enabling long-term patient monitoring and device miniaturization for clinical applications. en-copyright= kn-copyright= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraMoeka en-aut-sei=Kimura en-aut-mei=Moeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=wearable devices kn-keyword=wearable devices en-keyword=machine learning kn-keyword=machine learning en-keyword=human activity recognition kn-keyword=human activity recognition en-keyword=sampling frequency kn-keyword=sampling frequency en-keyword=digital health kn-keyword=digital health en-keyword=digital biomarkers kn-keyword=digital biomarkers END start-ver=1.4 cd-journal=joma no-vol=166 cd-vols= no-issue=8 article-no= start-page=bqaf102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)?expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone. en-copyright= kn-copyright= en-aut-name=OtsukaMai en-aut-sei=Otsuka en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyamaMaho en-aut-sei=Moriyama en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EgoshiSakura en-aut-sei=Egoshi en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoYuki en-aut-sei=Goto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GuTingting en-aut-sei=Gu en-aut-mei=Tingting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraAtsushi P en-aut-sei=Kimura en-aut-mei=Atsushi P kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaraguchiShogo en-aut-sei=Haraguchi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BentleyGeorge E en-aut-sei=Bentley en-aut-mei=George E kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University kn-affil= affil-num=8 en-affil=Department of Biochemistry, Showa University School of Medicine kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=12 en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Neuromedin U kn-keyword=Neuromedin U en-keyword=rat kn-keyword=rat en-keyword=motivation kn-keyword=motivation en-keyword=activity kn-keyword=activity en-keyword=testosterone kn-keyword=testosterone en-keyword=wheel-running kn-keyword=wheel-running END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=5 article-no= start-page=759 end-page=762 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel De Novo Variant in KCNH5 in a Patient with Refractory Epileptic Encephalopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=We herein report a novel de novo KCNH5 variant in a patient with refractory epileptic encephalopathy. The patient exhibited seizures at 1 year and 7 months old, which gradually worsened, leading to a bedridden status. Brain magnetic resonance imaging (MRI) showed cerebral atrophy and cerebellar hypoplasia. A trio whole-exome sequence analysis identified a de novo heterozygous c.640A>C, p.Lys214Gln variant in KCNH5 that was predicted to be deleterious. Recent studies have linked KCNH5 to various epileptic encephalopathies, with many patients showing normal MRI findings. The present case expands the clinical spectrum of the disease, as it is characterized by severe neurological prognosis, cerebral atrophy, and cerebellar hypoplasia. en-copyright= kn-copyright= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaitoTatsuhiko en-aut-sei=Naito en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaradaHiroaki en-aut-sei=Harada en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujioKeishi en-aut-sei=Fujio en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujishiroJun en-aut-sei=Fujishiro en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriHarushi en-aut-sei=Mori en-aut-mei=Harushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Radiology, School of Medicine, Jichi Medical University kn-affil= affil-num=10 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=epileptic encephalopathy kn-keyword=epileptic encephalopathy en-keyword=whole-exome sequencing kn-keyword=whole-exome sequencing en-keyword=KCNH5 kn-keyword=KCNH5 en-keyword=de novo variant kn-keyword=de novo variant END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent progress in oculopharyngodistal myopathy research from clinical and genetic viewpoints en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oculopharyngodistal myopathy (OPDM) is a rare muscular disorder characterized by ocular symptoms, pharyngeal symptoms, facial weakness, and distal predominant limb muscle weakness. The cause of the disease was unknown for a long time. Recently, however, it has been reported that expansions of CGG or CCG repeats in LRP12, LOC642361/NUTM2B-AS1, GIPC1, NOTCH2NLC, RILPL1, and ABCD3 are the causes of the disease. Cases sometimes present with neurological symptoms, and the clinical spectrum of diseases caused by expansions of CGG or CCG repeats has been proposed to be called FNOP-spectrum disorder after the names of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukoencephalopathy, and OPDM. In this article, the recent progress in the field of OPDM is reviewed, and remaining issues in OPDM are discussed. en-copyright= kn-copyright= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oculopharyngodistal myopathy kn-keyword=oculopharyngodistal myopathy en-keyword=CGG repeat kn-keyword=CGG repeat en-keyword=CCG repeat kn-keyword=CCG repeat en-keyword=repeat motif?phenotype correlation kn-keyword=repeat motif?phenotype correlation en-keyword=FNOP-spectrum disorder kn-keyword=FNOP-spectrum disorder END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=5602-25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Two Cases of Autosomal Recessive Spinocerebellar Ataxia-8 Showing Two Novel Variants of SYNE1 in Japanese Families en-subtitle= kn-subtitle= en-abstract= kn-abstract=Autosomal recessive spinocerebellar ataxia-8 (SCAR8) is a neurodegenerative disorder caused by the biallelic pathogenic variants of SYNE1. It is characterized by slowly progressive cerebellar ataxia and atrophy. We identified two SCAR8 families using exome analyses and two novel variants, c.2127delG (p.Met709Ilefs) and c.15943G>T (p.Gly5315*), in SYNE1 (NM_182961.4). Pathogenic variants of SYNE1 cause various symptoms, including cerebellar ataxia, pyramidal tract disorders, and joint disorders, and the pathogenic variants discovered in this study were located in a region prone to cerebellar ataxia. en-copyright= kn-copyright= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuokaChika en-aut-sei=Matsuoka en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsakadaYosuke en-aut-sei=Osakada en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SCAR8 kn-keyword=SCAR8 en-keyword=SCAR kn-keyword=SCAR en-keyword=cerebellar ataxia kn-keyword=cerebellar ataxia en-keyword=whole-exome sequencing analysis kn-keyword=whole-exome sequencing analysis END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=6 article-no= start-page=388.e1 end-page=388.e14 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS. en-copyright= kn-copyright= en-aut-name=KonumaTakaaki en-aut-sei=Konuma en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiokaMachiko en-aut-sei=Fujioka en-aut-mei=Machiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuseKyoko en-aut-sei=Fuse en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosoiHiroki en-aut-sei=Hosoi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasamotoYosuke en-aut-sei=Masamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DokiNoriko en-aut-sei=Doki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaNaoyuki en-aut-sei=Uchida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaMasatsugu en-aut-sei=Tanaka en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SawaMasashi en-aut-sei=Sawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishidaTetsuya en-aut-sei=Nishida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshikawaJun en-aut-sei=Ishikawa en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamaeHirohisa en-aut-sei=Nakamae en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaYuta en-aut-sei=Hasegawa en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OnizukaMakoto en-aut-sei=Onizuka en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaTakeshi en-aut-sei=Maeda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FukudaTakahiro en-aut-sei=Fukuda en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawamuraKoji en-aut-sei=Kawamura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KandaYoshinobu en-aut-sei=Kanda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhbikiMarie en-aut-sei=Ohbiki en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AtsutaYoshiko en-aut-sei=Atsuta en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ItonagaHidehiro en-aut-sei=Itonaga en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Hematology, Sasebo City General Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University kn-affil= affil-num=4 en-affil=Department of Hematology/Oncology, Wakayama Medical University kn-affil= affil-num=5 en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital kn-affil= affil-num=6 en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital kn-affil= affil-num=7 en-affil=Department of Hematology, Toranomon Hospital kn-affil= affil-num=8 en-affil=Department of Hematology, Kanagawa Cancer Center kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Osaka International Cancer Institute kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Hematology, Hokkaido University Hospital kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Tokai University School of Medicine kn-affil= affil-num=16 en-affil=Department of Hematology and oncology, Kurashiki Central Hospital kn-affil= affil-num=17 en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital kn-affil= affil-num=18 en-affil=Department of Hematology, Tottori University Hospital kn-affil= affil-num=19 en-affil=Division of Hematology, Jichi Medical University kn-affil= affil-num=20 en-affil=Japanese Data Center for Hematopoietic Cell Transplantation kn-affil= affil-num=21 en-affil=Japanese Data Center for Hematopoietic Cell Transplantation kn-affil= affil-num=22 en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital kn-affil= en-keyword=Granulocyte colony-stimulating factor kn-keyword=Granulocyte colony-stimulating factor en-keyword=Graft-versus-host disease kn-keyword=Graft-versus-host disease en-keyword=Bone marrow transplantation kn-keyword=Bone marrow transplantation en-keyword=Peripheral blood stem cell transplantation kn-keyword=Peripheral blood stem cell transplantation en-keyword=Cord blood transplantation kn-keyword=Cord blood transplantation en-keyword=Myelodysplastic syndrome kn-keyword=Myelodysplastic syndrome END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=2 article-no= start-page=145 end-page=148 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review en-subtitle= kn-subtitle= en-abstract= kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea. en-copyright= kn-copyright= en-aut-name=du PlooyXander en-aut-sei=du Plooy en-aut-mei=Xander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CardonaJuan J. en-aut-sei=Cardona en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TabiraYoko en-aut-sei=Tabira en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BubbKathleen Carol en-aut-sei=Bubb en-aut-mei=Kathleen Carol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RaeburnKazzara en-aut-sei=Raeburn en-aut-mei=Kazzara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwanagaJoe en-aut-sei=Iwanaga en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TubbsR. Shane en-aut-sei=Tubbs en-aut-mei=R. Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Tulane University School of Medicine kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= affil-num=4 en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine kn-affil= affil-num=5 en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College kn-affil= affil-num=6 en-affil=Department of Anatomical Sciences, St. George’s University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= affil-num=9 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= en-keyword=Digastric muscles kn-keyword=Digastric muscles en-keyword=Intermediate tendon kn-keyword=Intermediate tendon en-keyword=Trochlea kn-keyword=Trochlea en-keyword=Anatomy kn-keyword=Anatomy en-keyword=Fascia kn-keyword=Fascia END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=5 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In-frame deletion variant of ABCD1 in a sporadic case of adrenoleukodystrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adrenoleukodystrophy (ALD), an X-linked leukodystrophy caused by pathogenic variants in ABCD1, exhibits a broad range of phenotypes from childhood-onset cerebral forms to adult-onset adrenomyeloneuropathy (AMN). We report a rare in-frame ABCD1 deletion c.1469_71delTGG (p.Val490del) in a man with AMN. Although this variant has been interpreted as ‘uncertain significance’ in ClinVar, biochemical analysis along with clinical evaluation confirmed the pathogenicity of this variant, underscoring the importance of functional assessment of in-frame deletions. en-copyright= kn-copyright= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SudoAtsushi en-aut-sei=Sudo en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakumotoToshiyuki en-aut-sei=Kakumoto en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaoAkihito en-aut-sei=Hao en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KainagaMitsuhiro en-aut-sei=Kainaga en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChangHyangri en-aut-sei=Chang en-aut-mei=Hyangri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ManoTatsuo en-aut-sei=Mano en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiToshihiro en-aut-sei=Hayashi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=e70119 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative quality control of 3D water tank using image analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objective: Accurate beam data acquisition using three-dimensional (3D) water tanks is essential for beam commissioning and quality control (QC) in clinical radiation therapy. This study introduces a novel method for quantitative QC of the system, utilizing MV images and webcam videos. The stability of the motor drive speed and the positional accuracy of the fixture were evaluated under two measurement modes: “continuous mode” and “step-by-step mode.”
Methods: A TRUFIX mounting system (PTW Freiburg Inc., Germany) was used to attach the center of the steel ball to its top, ensuring alignment with the water surface of the tank. To assess deviations from the radiation isocenter, MV images were acquired and compared with digitally reconstructed radiographs (DRRs). These evaluations were performed at different speed settings (slow, medium, and fast) using ET CT Body Marker (BRAINLAB Inc., USA) mounted on the drive unit. A webcam was utilized to capture the images, and custom-developed tracking software was employed to analyze deviations in driving speed and positional errors.
Results: The mean error of the radiation isocenter was 0.37 ± 0.09 mm. As the motor drive speed increased, the discrepancy between the set speed and the actual speed observed in the analysis also became larger. In “continuous mode,” the deviation from the displayed value was greater than that observed in “step-by-step mode.”
Conclusion: It is demonstrated that the proposed analysis method can quantitatively evaluate radiation isocenter misalignment, tank setup position deviation, and both the indicated drive speed values and their stability. At higher drive speeds, the “step-by-step mode” showed smaller deviations from the indicated values. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanishiDaiki en-aut-sei=Nakanishi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, NHO Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Division of Radiology, Department of Medical Technology, Kyushu University Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= affil-num=10 en-affil=Department of Healthcare Science, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=3D water tank kn-keyword=3D water tank en-keyword=drive speed stability kn-keyword=drive speed stability en-keyword=quality control kn-keyword=quality control en-keyword=radiation isocenter kn-keyword=radiation isocenter en-keyword=x-ray image analysis kn-keyword=x-ray image analysis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=78 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiwakiKiyoshi en-aut-sei=Ishiwaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiramatsuFutoshi en-aut-sei=Hiramatsu en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiToshihisa en-aut-sei=Sasaki en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IseHiroki en-aut-sei=Ise en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyagawaTakashi en-aut-sei=Miyagawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaTakeshi en-aut-sei=Maeda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkahiraShinsuke en-aut-sei=Okahira en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HamaguchiTakashi en-aut-sei=Hamaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaguchiTatsuya en-aut-sei=Kawaguchi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FunadaNorihiro en-aut-sei=Funada en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoShuhei en-aut-sei=Yamamoto en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MukaiYuki en-aut-sei=Mukai en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Department of Healthcare Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Higashi-Hiroshima Medical Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=8 en-affil=Department of Radiology, NHO Kanmon Medical Center kn-affil= affil-num=9 en-affil=Department of Radiology, NHO Kochi National Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, NHO Yamaguchi-Ube Medical Center kn-affil= affil-num=11 en-affil=Department of Radiology, NHO Okayama Medical Center kn-affil= affil-num=12 en-affil=Department of Radiology, NHO Shikoku Medical Center for Children and Adults kn-affil= affil-num=13 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=14 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=15 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=17 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=18 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=19 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=20 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= en-keyword=Radiation therapy kn-keyword=Radiation therapy en-keyword=Quality control kn-keyword=Quality control en-keyword=Failure mode and effects analysis kn-keyword=Failure mode and effects analysis en-keyword=Cost-effectiveness kn-keyword=Cost-effectiveness END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250609 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons en-subtitle= kn-subtitle= en-abstract= kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery. en-copyright= kn-copyright= en-aut-name=RaeburnKazzara en-aut-sei=Raeburn en-aut-mei=Kazzara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeshitaYohei en-aut-sei=Takeshita en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakuraHiroaki en-aut-sei=Takakura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KikutaShogo en-aut-sei=Kikuta en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SamridRarinthorn en-aut-sei=Samrid en-aut-mei=Rarinthorn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LoukasMarios en-aut-sei=Loukas en-aut-mei=Marios kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TubbsR. Shane en-aut-sei=Tubbs en-aut-mei=R. Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwanagaJoe en-aut-sei=Iwanaga en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Anatomical Sciences, St. George’s University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Dental and Oral Medical Center, Kurume University School of Medicine kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Department of Anatomical Sciences, St. George’s University kn-affil= affil-num=9 en-affil=Department of Anatomical Sciences, St. George’s University kn-affil= affil-num=10 en-affil=Dental and Oral Medical Center, Kurume University School of Medicine kn-affil= en-keyword=Embryology kn-keyword=Embryology en-keyword=Anatomy kn-keyword=Anatomy en-keyword=Radiology kn-keyword=Radiology en-keyword=Cadaver kn-keyword=Cadaver en-keyword=Mandible kn-keyword=Mandible END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=RP99858 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein?protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingJian en-aut-sei=Xing en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHaruya en-aut-sei=Ogawa en-aut-mei=Haruya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ワルファリン継続またはDOAC当日休薬で施行する胃ESDの出血リスクの検討 kn-title=Rates and risk factors of bleeding after gastric endoscopic submucosal dissection with continuous warfarin or 1-day withdrawal of direct oral anticoagulants en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HIRATAShoichiro en-aut-sei=HIRATA en-aut-mei=Shoichiro kn-aut-name=平田翔一郎 kn-aut-sei=平田 kn-aut-mei=翔一郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=c-jun/c-fos mRNAの発現は呼吸停止下による心停止において持続的な心筋の過伸展を示唆する kn-title=Expression of c-jun/c-fos mRNA Indicates Persistent Myocardial Stretch During Asphyxia-Induced Cardiac Arrest en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YOKOTAYutaka en-aut-sei=YOKOTA en-aut-mei=Yutaka kn-aut-name=横田豊 kn-aut-sei=横田 kn-aut-mei=豊 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=リトルリーグショルダーの診断とスポーツ復帰時期を決定するための新しいストレステスト kn-title=Novel stress tests for diagnosing Little League shoulder, and determining the timing of return to sports en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UCHINOTakahiko en-aut-sei=UCHINO en-aut-mei=Takahiko kn-aut-name=内野崇彦 kn-aut-sei=内野 kn-aut-mei=崇彦 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=vdaf036 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0?14, 15?39, 40?69, and 70+ years. Also, we employed the Fine?Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs. en-copyright= kn-copyright= en-aut-name=TomitaYusuke en-aut-sei=Tomita en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirotsuneNobuyuki en-aut-sei=Hirotsune en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=long-term survivor kn-keyword=long-term survivor en-keyword=SEER kn-keyword=SEER en-keyword=short-term survivor kn-keyword=short-term survivor en-keyword=United States kn-keyword=United States END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=8 article-no= start-page=100782 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Involvement of PI3K?Akt Signaling in the Clinical and Pathological Findings of Idiopathic Multicentric Castleman Disease?Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, and Organomegaly and Not Otherwise Specified Subtypes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic multicentric Castleman disease is a rare lymphoproliferative disorder that is clinically classified into idiopathic plasmacytic lymphadenopathy (IPL); thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO); and not otherwise specified (NOS). Although each subtype shows varying degrees of hypervascularity, no statistical data on the degree of vascularization have been reported. Additionally, the mechanisms underlying vascularization in each clinical subtype are poorly understood. Here, we aimed to clarify these mechanisms by evaluating the histopathological characteristics of each clinical subtype across 37 patients and performing a whole-transcriptome analysis focusing on angiogenesis-related gene expression. Histologically, TAFRO and NOS exhibited a significantly higher degree of vascularization than IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .002). In addition, the germinal centers (GCs) were significantly more atrophic in TAFRO than in IPL. In TAFRO and NOS, “whirlpool vessels” in GCs were seen in most cases (TAFRO, 9/9, 100%; NOS, 6/8, 75%) but not in IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .007). Likewise, immunostaining for Ets-related gene revealed higher levels in endothelial cells of GCs in TAFRO than in IPL (P = .014), and TAFRO and NOS were associated with a significantly higher number of endothelial cells in interfollicular areas compared with that in IPL (TAFRO vs IPL, P < .001; NOS vs IPL, P = .002). Gene expression analysis revealed that the PI3K?Akt signaling pathway was significantly enriched in the TAFRO and NOS (TAFRO/NOS) groups. This pathway, which may be activated by vascular endothelial growth factor A and some integrins, is known to affect angiogenesis by increasing vascular permeability, which may explain the clinical manifestations of anasarca and/or fluid retention in TAFRO/NOS. These results suggest that the PI3K?Akt pathway plays an important role in the pathogenesis of TAFRO/NOS. en-copyright= kn-copyright= en-aut-name=HaratakeTomoka en-aut-sei=Haratake en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GonzalezMichael V. en-aut-sei=Gonzalez en-aut-mei=Michael V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LaiYou Cheng en-aut-sei=Lai en-aut-mei=You Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchiSayaka en-aut-sei=Ochi en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsunodaManaka en-aut-sei=Tsunoda en-aut-mei=Manaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=5 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Medical Biotechnology and Laboratory Science, Chang Gung University kn-affil= affil-num=7 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=9 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=10 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=11 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=12 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=idiopathic multicentric Castleman disease kn-keyword=idiopathic multicentric Castleman disease en-keyword=integrin subunit alpha 5 kn-keyword=integrin subunit alpha 5 en-keyword=PI3K?Akt signaling pathway kn-keyword=PI3K?Akt signaling pathway en-keyword=platelet-derived growth factor receptor beta kn-keyword=platelet-derived growth factor receptor beta en-keyword=vascular endothelial growth factor A kn-keyword=vascular endothelial growth factor A en-keyword=vascularity kn-keyword=vascularity END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=20 article-no= start-page=eadv7488 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem I supercomplex from Galdieria sulphuraria close to an ancestral red alga en-subtitle= kn-subtitle= en-abstract= kn-abstract=Red algae exhibit unique photosynthetic adaptations, characterized by photosystem I (PSI) supercomplexes containing light-harvesting complexes (LHCs), forming PSI-LHCI supercomplexes. In this study, we solved the PSI-LHCI structure of Galdieria sulphuraria NIES-3638 at 2.19-angstrom resolution using cryo-electron microscopy, revealing a PSI monomer core associated with seven LHCI subunits. Structural analysis uncovered the absence of phylloquinones, the common secondary electron acceptor in PSI of photosynthetic organisms, suggesting adaptation to a benzoquinone-like molecule. Phylogenetic analysis suggests that G. sulphuraria retains traits characteristic of an ancestral red alga, including distinctive LHCI binding and interaction patterns. Variations in LHCI composition and interactions across red algae, particularly in red-lineage chlorophyll a/b-binding-like protein and red algal LHCs, highlight evolutionary divergence and specialization. These findings not only deepen our understanding of red algal PSI-LHCI diversification but also enable us to predict features of an ancestral red algal PSI-LHCI supercomplex, providing a framework to explore evolutionary adaptations from an ancestral red alga. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=3 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=4 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=5 article-no= start-page=e0320426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications. en-copyright= kn-copyright= en-aut-name=SariYuita Arum en-aut-sei=Sari en-aut-mei=Yuita Arum kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazawaAtsushi en-aut-sei=Nakazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaniYudi Arimba en-aut-sei=Wani en-aut-mei=Yudi Arimba kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=213 end-page=219 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Chromophobe Renal Cell Carcinoma Metastasizing to the Cervical Lymph Nodes after Long-term Follow-up en-subtitle= kn-subtitle= en-abstract= kn-abstract=Renal cell carcinoma (RCC) can metastasize hematogenously and recur after a long dormancy. Chromophobe RCC metastasized to the cervical lymph nodes 10 years after the primary resection in a woman who underwent nephrectomy for RCC (T1aN0M0 stage I). Metastatic RCC diagnosis was confirmed by aspiration. The lymph node mass was resected, and the tumor cells matched chromophobe RCC metastasis. No adjuvant therapy was administered due to the lack of evidence regarding adjuvant therapy for chromophobe RCC. Long-term surveillance is crucial in RCC because of the possibility of late metastasis. We reviewed the clinical aspects and literature on metastatic cervical RCC. en-copyright= kn-copyright= en-aut-name=WatanabeMakoto en-aut-sei=Watanabe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaTomoyuki en-aut-sei=Ogawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiKanao en-aut-sei=Kobayashi en-aut-mei=Kanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaNarutaka en-aut-sei=Katsuya en-aut-mei=Narutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshikawaAkira en-aut-sei=Ishikawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamamotoTakao en-aut-sei=Hamamoto en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaharaHiroaki en-aut-sei=Tahara en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UedaTsutomu en-aut-sei=Ueda en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakenoSachio en-aut-sei=Takeno en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Otolaryngology, Chugoku Rosai Hospital kn-affil= affil-num=2 en-affil=Department of Otolaryngology, Chugoku Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Nephrology and Urological Surgery, Chugoku Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University kn-affil= affil-num=6 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=7 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=8 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma en-keyword=cervical lymph node metastasis kn-keyword=cervical lymph node metastasis en-keyword=late recurrence kn-keyword=late recurrence en-keyword=head and neck kn-keyword=head and neck END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=209 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Aniline Poisoning Manifesting as Cyanosis with Unknown Cause en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 38-year-old man was brought to the hospital for emergency treatment of cyanosis. The patient exhibited generalized cyanosis and impaired consciousness despite adequate oxygen therapy. Arterial blood was black, and arterial blood gas analysis revealed an abnormally high methemoglobin level of 67.8%. We later interviewed his colleagues regarding his exposure to aniline while working at the factory and diagnosed him with methemoglobinemia due to aniline poisoning. The patient was administered methylene blue (MB) after being transferred to another hospital, where this treatment was available, resulting in an improvement in symptoms. Although rare, methemoglobinemia is serious. A good understanding of the circumstances at disease onset, characteristic findings, and abnormal values of methemoglobinemia is important. In addition, MB is an important therapeutic for the treatment of methemoglobinemia; if MB is not available at a particular hospital, transfer of the patient to a hospital that stocks MB should be considered. en-copyright= kn-copyright= en-aut-name=TaguchiKenichi en-aut-sei=Taguchi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HataSakura en-aut-sei=Hata en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaShoichi en-aut-sei=Tanaka en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= en-keyword=methemoglobinemia kn-keyword=methemoglobinemia en-keyword=aniline kn-keyword=aniline en-keyword=methylene blue kn-keyword=methylene blue en-keyword=cyanosis kn-keyword=cyanosis END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=205 end-page=208 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Asymptomatic Perigraft Seroma in a Patient who Underwent Aortic Root Replacement for Annulo-Aortic Ectasia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perigraft seroma, a sterile fluid accumulation around the graft, is a potential complication after thoracic aortic surgery. The optimal treatment strategy for a perigraft seroma with vascular compression after thoracic aortic surgery has been unclear. We describe the case of a 62-year-old Japanese male in whom an asymptomatic perigraft seroma was observed after he had undergone aortic root replacement for annulo-aortic ectasia. The seroma was successfully treated with thoracoscopic drainage and conservative therapy. Less invasive therapy, including conservative therapy, may also be an option for asymptomatic perigraft seromas observed after thoracic aortic surgery. en-copyright= kn-copyright= en-aut-name=FujitaYasufumi en-aut-sei=Fujita en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuShuji en-aut-sei=Shimizu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Kure Kyosai Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=perigraft seroma kn-keyword=perigraft seroma en-keyword=aortic root replacement kn-keyword=aortic root replacement en-keyword=thoracoscopic drainage kn-keyword=thoracoscopic drainage en-keyword=conservative therapy kn-keyword=conservative therapy END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=197 end-page=203 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rheumatoid Arthritis with Rapid Destructive Arthropathy of the Shoulder due to Calcium Pyrophosphate Deposition en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 67-year-old woman with rheumatoid arthritis presented with an untriggered hematoma in the right shoulder joint. Radiographic findings showed humeral head collapse and destruction of the glenoid fossa with ectopic calcification. Calcium pyrophosphate deposition (CPPD) in the synovial fluid was observed using a polarizing microscope. Histopathological findings revealed chronic inflammatory cell infiltration and giant cells surrounded by CPPD. The patient was diagnosed with rapid destructive arthropathy (RDA). Endoscopic shoulder joint debridement was performed. Postoperatively, active flexion improved from 40 to 75 degrees. This case highlights that CPPD can cause RDA in the shoulder, detectable with detailed histopathology. en-copyright= kn-copyright= en-aut-name=KondoNaoki en-aut-sei=Kondo en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KakutaniRika en-aut-sei=Kakutani en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MochizukiTomoharu en-aut-sei=Mochizuki en-aut-mei=Tomoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakuiJunichi en-aut-sei=Wakui en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaoNariaki en-aut-sei=Hao en-aut-mei=Nariaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinoshitaEiji en-aut-sei=Kinoshita en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaHiroyuki en-aut-sei=Kawashima en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=2 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=3 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=4 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=5 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=6 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=7 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis en-keyword=calcium pyrophosphate deposition kn-keyword=calcium pyrophosphate deposition en-keyword=rapid destructive arthropathy kn-keyword=rapid destructive arthropathy en-keyword=case report kn-keyword=case report END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=185 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Emotional Changes among Young Patients with Breast Cancer to Foster Relationship-Building with Their Partners: A Qualitative Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the emotional changes that young patients with breast cancer need to undergo in order to foster relationship-building with their partners by conducting a qualitative descriptive study (March 1 to Nov. 26, 2021) and semi-structured interviews with eight postoperative patients (age 20-40 years) with breast cancer. The data were analyzed using the modified grounded theory approach (M-GTA), yielding five categories: (i) Awareness of being a breast cancer patient, (ii) Being at a loss, (iii) Support from significant others, (iv) The struggle to transition from being a patient with cancer to becoming “the person I want to be”, and (v) Reaching the “me” I want to be who can face building a relationship with a partner. These findings suggest that young breast cancer patients must feel that they can lead a normal life through activities such as work or acquiring qualifications before building relationships with their partners, and that getting closer to their desired selves is important. Nurses can provide information to young patients with breast cancer to assist them in building a solid relationship with their partners. We believe that this support may enhance the patients’ quality of life and help them achieve stronger relationships with their partners. en-copyright= kn-copyright= en-aut-name=YoshikawaAyumi en-aut-sei=Yoshikawa en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkanagaMayumi en-aut-sei=Okanaga en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoShinya en-aut-sei=Saito en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Nursing, Osaka Dental University kn-affil= affil-num=2 en-affil=Kawasaki Medical School, Department of Breast and Thyroid Surgery kn-affil= affil-num=3 en-affil=Gifu College of Nursing, Nursing of Children and Child-Rearing Families kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=breast cancer patient kn-keyword=breast cancer patient en-keyword=young patient kn-keyword=young patient en-keyword=single kn-keyword=single en-keyword=partners kn-keyword=partners en-keyword=relationships kn-keyword=relationships END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=177 end-page=184 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of Cup Placement Position in Total Hip Arthroplasty with Cup-side Implant Placement in Computed Tomography Horizontal Sections en-subtitle= kn-subtitle= en-abstract= kn-abstract=The position attained in total hip arthroplasty (THA) is ideally in the center of the horizontal plane of the acetabulum. However, central placement is not always possible. We hypothesized that differences in approach result in individual differences in cup positioning; thus, we investigated the cup positions of 217 hips that underwent THA. The acetabulum’s anteroposterior diameter was measured, and the cups placed within 2 mm of the line perpendicular to the center as a central placement (central). Of the 217 hips, 68, 114, and 35 hips were anterior, central, and posterior, respectively. In 21 hips, anteroposterior deviation was noted. Among patients operated using the anterolateral approach, 48, 93, and 30 hips were anterior, central, and posterior, respectively. Among those operated using the posterolateral approach, 16, 20, and 4 hips were anterior, central, and posterior, respectively. The cup position shifted either anteriorly or posteriorly to the acetabulum in approximately half of all hips operated using both approaches and tended to shift anteriorly in the hips operated using the posterolateral approach. During THA surgery, it is important to operate with awareness of the center of the acetabulum. en-copyright= kn-copyright= en-aut-name=FuruichiShuro en-aut-sei=Furuichi en-aut-mei=Shuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitaniShigeru en-aut-sei=Mitani en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EndoHirosuke en-aut-sei=Endo en-aut-mei=Hirosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NambaYoshifumi en-aut-sei=Namba en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamotoToyohiro en-aut-sei=Kawamoto en-aut-mei=Toyohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Bone and Joint Surgery, Kawasaki Medical School kn-affil= en-keyword=total hip arthroplasty kn-keyword=total hip arthroplasty en-keyword=cup horizontal position kn-keyword=cup horizontal position en-keyword=total hip arthroplasty approach kn-keyword=total hip arthroplasty approach en-keyword=navigation system kn-keyword=navigation system en-keyword=computed tomography kn-keyword=computed tomography END