start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=30
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250529
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Non-convulsive status epilepticus as a cause of delayed emergence after a thoracic surgery: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Non-convulsive status epilepticus (NCSE) is an electrical discharge which occurs without prominent motor symptoms. NCSE is one of the causes of delayed emergence from anesthesia; however, as far as we know, previous reports of postoperative NCSE were related to patients after neurological surgery. Herein, we report a case of an elderly male who developed initial NCSE after thoracic surgery. The patient remained unresponsive and developed hemiplegia after lung resection, and then the symptoms fluctuated between better and worse. Metabolic disorders and stroke were ruled out, and NCSE was diagnosed by magnetic resonance imaging (MRI) and electroencephalography (EEG). NCSE occurred in a patient who had no predisposing factors or underwent non-neurological surgery. When anesthesiologists encounter delayed emergence, NCSE should be listed as a differential diagnosis and examined by MRI and EEG.
en-copyright=
kn-copyright=
en-aut-name=IritaniYusuke
en-aut-sei=Iritani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaniMakiko
en-aut-sei=Tani
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgaShinji
en-aut-sei=Iga
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology, Okayama Red Cross Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Non-convulsive status epilepticus
kn-keyword=Non-convulsive status epilepticus
en-keyword=Delayed emergence
kn-keyword=Delayed emergence
en-keyword=Anesthesia
kn-keyword=Anesthesia
en-keyword=Electroencephalography
kn-keyword=Electroencephalography
en-keyword=Postoperative complication
kn-keyword=Postoperative complication
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=kwaf146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250711
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immortal time bias from selection: a principal stratification perspective
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immortal time bias due to post-treatment definition of eligibility criteria can affect experimental and observational studies, and yet, in contrast to the extensive literature on the classical form of immortal time bias, it has seldom been the focus of methodological discussions. Here, we propose an account of eligibility-related immortal time bias that uses the principal stratification framework to explain the noncomparability of treatment arms (or exposure groups) conditional on selection. In particular, we show that the statistical estimand that conditions on observed eligibility after time zero of follow-up can be interpreted using partially overlapping principal strata. Furthermore, we show that, under this perspective, as the timing of eligibility approaches time zero of follow-up, the probabilities of the outcome for eligible individuals monotonically approach the corresponding unconditional (in absence of selection) expected potential outcomes under different treatment levels. Our study provides a potential outcomes-based explanation of eligibility-related immortal time bias, and indicates that, in addition to the target trial emulation framework, principal effects might, for some studies, be useful causal estimands.
en-copyright=
kn-copyright=
en-aut-name=GonçalvesBronner P
en-aut-sei=Gonçalves
en-aut-mei=Bronner P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=immortal time bias
kn-keyword=immortal time bias
en-keyword=principal stratification
kn-keyword=principal stratification
en-keyword=potential outcomes
kn-keyword=potential outcomes
en-keyword=causal inference
kn-keyword=causal inference
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=e60943
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Usefulness of Interventions Using a Smartphone Cognitive Behavior Therapy Application for Children With Mental Health Disorders: Prospective, Single-Arm, Uncontrolled Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The prevalence of mental health disorders among children in Japan has increased rapidly, and these children often show depressive symptoms and reduced quality of life (QOL). We previously developed a smartphone-based self-monitoring app to deliver cognitive behavioral therapy (CBT), implemented it in healthy children, and reported its effectiveness for health promotion.
Objective: This study aims to examine the usefulness of the CBT app for improvement in depressive symptoms and QOL in children with mental health disorders.
Methods: The participants were 115 children with mental health disorders (eg, school refusal, orthostatic hypotension, eating disorders, developmental disorders, among others) and aged 12‐18 years. The CBT app–based program comprised 1 week of psychoeducation followed by 1 week of self-monitoring. After reading story-like scenarios, participants created a self-monitoring sheet with 5 panels: events, thoughts, feelings, body responses, and actions. All participants received regular mental health care from physicians in addition to the app-based program. To evaluate the participants’ depressive symptoms and QOL, Patient Health Questionnaire for Adolescents (PHQ-9A), Depression Self-Rating Scale for Children (DSRS-C), and Pediatric Quality of Life Inventory (PedsQL) were measured at the beginning of the intervention, and at 2 and 6 months thereafter. Questionnaire for Triage and Assessment with 30 items (QTA30), and Rosenberg Self-Esteem Scale (RSES) were also used to measure their health and self-esteem. Participants were divided into 4 groups on the basis of the PHQ-9A score (above or below the cutoff; PHQ-9A≥5 or PHQ-9A<5) and completion or noncompletion of the CBT app–based program (app [+] or app [-]). The primary outcome was improvement in the DSRS-C score, and secondary outcomes were improvement in other psychometric scales including PedsQL, QTA30, and RSE. A paired-samples t test was used for statistical analysis. The Medical Ethics Committee of Fukuoka University Faculty of Medicine (approval U22-05-002) approved the study design.
Results: There were 48, 18, 18, and 7 participants in the PHQ-9A≥5 app (+), PHQ-9A≥5 app (-), PHQ-9A<5 app (+), and PHQ-9A<5 app (-) groups, respectively. A total of 24 participants dropped out. No improvement in the DSRS-C score was observed in all groups. However, PedsQL scores improved significantly at 2 and 6 months in the PHQ-9A<5 app (+) group (t17=6.62; P<.001 and t17=6.11; P<.001, respectively). There was a significant positive correlation between the PHQ-9A scores and the number of self-monitoring sheets completed.
Conclusions: The CBT app was useful for improving PedsQL scores of children with mental health disorders. However, a higher-intensity CBT program is necessary for more severely depressed children.
Trial Registration: University Hospital Medical Information Network Clinical Trials Registry UMIN000046775; center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053360
en-copyright=
kn-copyright=
en-aut-name=NagamitsuShinichiro
en-aut-sei=Nagamitsu
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakutaRyoichi
en-aut-sei=Sakuta
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiRyuta
en-aut-sei=Ishii
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoyanagiKenshi
en-aut-sei=Koyanagi
en-aut-mei=Kenshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabukawaChizu
en-aut-sei=Habukawa
en-aut-mei=Chizu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaTakashi
en-aut-sei=Katayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoMasaya
en-aut-sei=Ito
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanieAyako
en-aut-sei=Kanie
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtaniRyoko
en-aut-sei=Otani
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitajimaTasuku
en-aut-sei=Kitajima
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsubaraNaoki
en-aut-sei=Matsubara
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaChie
en-aut-sei=Tanaka
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShigeyasuYoshie
en-aut-sei=Shigeyasu
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsuokaMichiko
en-aut-sei=Matsuoka
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KakumaTatsuyuki
en-aut-sei=Kakuma
en-aut-mei=Tatsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HorikoshiMasaru
en-aut-sei=Horikoshi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Faculty of Medicine, Fukuoka University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pediatrics & Child Health, Kurume University, School of Medicine
kn-affil=
affil-num=5
en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children
kn-affil=
affil-num=6
en-affil=Department of Pediatric Allergy, Minami Wakayama Medical Center
kn-affil=
affil-num=7
en-affil=L2B Inc
kn-affil=
affil-num=8
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=10
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=11
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=12
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=13
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neuropsychiatry, Kurume University School of Medicine
kn-affil=
affil-num=18
en-affil=Biostatistics Center, Kurume University
kn-affil=
affil-num=19
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=smartphone
kn-keyword=smartphone
en-keyword=cognitive behavioral therapy
kn-keyword=cognitive behavioral therapy
en-keyword=application
kn-keyword=application
en-keyword=adolescent
kn-keyword=adolescent
en-keyword=youth
kn-keyword=youth
en-keyword=teen
kn-keyword=teen
en-keyword=pediatric
kn-keyword=pediatric
en-keyword=mental health
kn-keyword=mental health
en-keyword=psychoeducation
kn-keyword=psychoeducation
en-keyword=self-monitoring
kn-keyword=self-monitoring
en-keyword=questionnaire
kn-keyword=questionnaire
en-keyword=depressive symptoms
kn-keyword=depressive symptoms
en-keyword=effectiveness
kn-keyword=effectiveness
en-keyword=Japan
kn-keyword=Japan
en-keyword=statistical analysis
kn-keyword=statistical analysis
en-keyword=single-arm uncontrolled study
kn-keyword=single-arm uncontrolled study
en-keyword=mobile phone
kn-keyword=mobile phone
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=6155
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia–resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric–differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SpirrettFiona
en-aut-sei=Spirrett
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiriharaSoshu
en-aut-sei=Kirihara
en-aut-mei=Soshu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=3
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuven
kn-affil=
affil-num=7
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
en-keyword=additive manufacturing
kn-keyword=additive manufacturing
en-keyword=subtractive manufacturing
kn-keyword=subtractive manufacturing
en-keyword=dental prosthesis
kn-keyword=dental prosthesis
en-keyword=ceramic prosthesis
kn-keyword=ceramic prosthesis
en-keyword=zirconia laminates
kn-keyword=zirconia laminates
en-keyword=stereolithography
kn-keyword=stereolithography
en-keyword=thermogravimetry–differential thermal analysis
kn-keyword=thermogravimetry–differential thermal analysis
en-keyword=X-ray diffraction
kn-keyword=X-ray diffraction
en-keyword=scanning electron microscopy
kn-keyword=scanning electron microscopy
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ≤12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 as a prognostic marker for patients with colorectal cancer and synchronous liver metastasis and a predictor of chemotherapy efficacy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes plays a role in cancer progression. However, its clinical significance in metastatic colorectal cancer (CRC) remains unclear. This study aimed to evaluate whether ADAR1 expression predicts prognosis and treatment response in colorectal cancer (CRC) with synchronous liver metastasis. This study included 40 patients with stage IV CRC and synchronous liver metastases. ADAR1 expression in tumor tissues was evaluated using immunohistochemistry. Expression levels were quantified using the immunoreactive score, and associations with clinicopathological features, overall survival (OS), and chemotherapy response were examined. High ADAR1 expression was significantly associated with multiple liver metastases (P = 0.0206), lymph node metastasis (P = 0.0241), and reduced response to chemotherapy (P = 0.0224). Significantly shorter OS was observed in patients with high ADAR1 expression in the nucleus (P = 0.0458). ADAR1 expression was an independent prognostic factor comparable to the presence of extrahepatic metastases. Low ADAR1 expression was correlated with a higher likelihood of achieving a response to chemotherapy. ADAR1 expression can reflect tumor aggressiveness and chemotherapy resistance in patients with CRC and synchronous liver metastasis. ADAR1 has considerable potential as a dual-purpose biomarker for stratifying patients based on prognosis and optimizing treatment intensity.
en-copyright=
kn-copyright=
en-aut-name=NittaKaori
en-aut-sei=Nitta
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MiyakeEiki
en-aut-sei=Miyake
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA editing
kn-keyword=RNA editing
en-keyword=Liver metastasis
kn-keyword=Liver metastasis
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs.
en-copyright=
kn-copyright=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaNaohiro
en-aut-sei=Okada
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHiroaki
en-aut-sei=Inoue
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Neutron Therapy Research Center, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=199
cd-vols=
no-issue=
article-no=
start-page=108027
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan–Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy—61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group—42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group—37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era.
en-copyright=
kn-copyright=
en-aut-name=HorinouchiHidehito
en-aut-sei=Horinouchi
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHaruyasu
en-aut-sei=Murakami
en-aut-mei=Haruyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaHideyuki
en-aut-sei=Harada
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobueTomotaka
en-aut-sei=Sobue
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTomohiro
en-aut-sei=Kato
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AtagiShinji
en-aut-sei=Atagi
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokitoTakaaki
en-aut-sei=Tokito
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OizumiSatoshi
en-aut-sei=Oizumi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeMasahiro
en-aut-sei=Seike
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MioTadashi
en-aut-sei=Mio
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SoneTakashi
en-aut-sei=Sone
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwaoChikako
en-aut-sei=Iwao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwaneTakeshi
en-aut-sei=Iwane
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KotoRyo
en-aut-sei=Koto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsuboiMasahiro
en-aut-sei=Tsuboi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Radiation Therapy, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente
kn-affil=
affil-num=6
en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center
kn-affil=
affil-num=7
en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Kanazawa University Hospital
kn-affil=
affil-num=14
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=15
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=16
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East
kn-affil=
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Adjuvant therapy
kn-keyword=Adjuvant therapy
en-keyword=Neoadjuvant therapy
kn-keyword=Neoadjuvant therapy
en-keyword=Chemoradiotherapy
kn-keyword=Chemoradiotherapy
en-keyword=Observational study
kn-keyword=Observational study
en-keyword=Retrospective study
kn-keyword=Retrospective study
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=40
article-no=
start-page=3355-
end-page=3364
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plain language summary: tarlatamab for patients with previously treated small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AhnMyung-Ju
en-aut-sei=Ahn
en-aut-mei=Myung-Ju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KorantzisIppokratis
en-aut-sei=Korantzis
en-aut-mei=Ippokratis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MajemMargarita
en-aut-sei=Majem
en-aut-mei=Margarita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Juan-VidalOscar
en-aut-sei=Juan-Vidal
en-aut-mei=Oscar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HandzhievSabin
en-aut-sei=Handzhiev
en-aut-mei=Sabin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IzumiHiroki
en-aut-sei=Izumi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WolfJürgen
en-aut-sei=Wolf
en-aut-mei=Jürgen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlackhallFiona
en-aut-sei=Blackhall
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ReckMartin
en-aut-sei=Reck
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AlvarezJean Bustamante
en-aut-sei=Alvarez
en-aut-mei=Jean Bustamante
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HummelHorst-Dieter
en-aut-sei=Hummel
en-aut-mei=Horst-Dieter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SandsJacob
en-aut-sei=Sands
en-aut-mei=Jacob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkamatsuHiroaki
en-aut-sei=Akamatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OwonikokoTaofeek K.
en-aut-sei=Owonikoko
en-aut-mei=Taofeek K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RamalingamSuresh S.
en-aut-sei=Ramalingam
en-aut-mei=Suresh S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=BorghaeiHossein
en-aut-sei=Borghaei
en-aut-mei=Hossein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohnsonMelissa L.
en-aut-sei=Johnson
en-aut-mei=Melissa L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HuangShuang
en-aut-sei=Huang
en-aut-mei=Shuang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MukherjeeSujoy
en-aut-sei=Mukherjee
en-aut-mei=Sujoy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MinochaMukul
en-aut-sei=Minocha
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=JiangTony
en-aut-sei=Jiang
en-aut-mei=Tony
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MartinezPablo
en-aut-sei=Martinez
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AndersonErik S.
en-aut-sei=Anderson
en-aut-mei=Erik S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=Paz-AresLuis
en-aut-sei=Paz-Ares
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=2
en-affil=Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
affil-num=3
en-affil=Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology
kn-affil=
affil-num=4
en-affil=Department of Medical Oncology, Saint Loukas Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Hospital de la Santa Creu i Sant Pau
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Klinische Abteilung für Pneumologie, Universitätsklinikum Krems
kn-affil=
affil-num=9
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=10
en-affil=Seoul National University Bundang Hospital
kn-affil=
affil-num=11
en-affil=Department of Oncology and Radiotherapy and Early Phase Clinical Trials Center, Medical University of Gdansk
kn-affil=
affil-num=12
en-affil=Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne
kn-affil=
affil-num=13
en-affil=Christie NHS Foundation Trust and University of Manchester
kn-affil=
affil-num=14
en-affil=Lungen Clinic, Airway Research Center North, German Center for Lung Research
kn-affil=
affil-num=15
en-affil=West Virginia University Health Sciences Center
kn-affil=
affil-num=16
en-affil=Translational Oncology–Early Clinical Trial Unit, Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center, Universitätsklinikum Würzburg
kn-affil=
affil-num=17
en-affil=Department of Pulmonary Medicine, Erasmus MC Cancer Institute
kn-affil=
affil-num=18
en-affil=Dana–Farber Cancer Institute, Harvard Medical School
kn-affil=
affil-num=19
en-affil=Wakayama Medical University Hospital
kn-affil=
affil-num=20
en-affil=Division of Hematology–Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center
kn-affil=
affil-num=21
en-affil=Winship Cancer Institute of Emory University
kn-affil=
affil-num=22
en-affil=Fox Chase Cancer Center
kn-affil=
affil-num=23
en-affil=Sarah Cannon Research Institute at Tennessee Oncology
kn-affil=
affil-num=24
en-affil=Amgen
kn-affil=
affil-num=25
en-affil=Amgen
kn-affil=
affil-num=26
en-affil=Amgen
kn-affil=
affil-num=27
en-affil=Amgen
kn-affil=
affil-num=28
en-affil=Amgen
kn-affil=
affil-num=29
en-affil=Amgen
kn-affil=
affil-num=30
en-affil=Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc
kn-affil=
en-keyword=Clinical trials
kn-keyword=Clinical trials
en-keyword=DeLLphi-301
kn-keyword=DeLLphi-301
en-keyword=DLL3
kn-keyword=DLL3
en-keyword=Immunotherapy
kn-keyword=Immunotherapy
en-keyword=SCLC
kn-keyword=SCLC
en-keyword=Small cell lung cancer
kn-keyword=Small cell lung cancer
en-keyword=T cell
kn-keyword=T cell
en-keyword=Tarlatamab
kn-keyword=Tarlatamab
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24117
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250706
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Survival days of patients with metastatic spinal tumors of lung cancer requiring surgery: a prospective multicenter study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Surgery for metastatic spinal tumors has improved postoperative activities of daily living. A few studies reported on prognostic factors assessed in large multicenter prospective studies for metastatic spinal tumors of lung cancer origin. This study aimed to determine preoperative prognostic factors in patients undergoing surgery for metastatic spinal tumors associated with lung cancer. This prospective registry study included 74 patients diagnosed and operated with metastatic spine tumors derived from lung cancer in 39 high-volume cancer centers. We examined the postoperative survival period and the preoperative factors related to postoperative survival time. We conducted univariate and multivariate Cox regression analyses to determine preoperative prognostic factors. The mean postoperative survival period was 343 days. Multivariate Cox regression analysis revealed a higher feeding score of vitality index, indications for molecularly targeted therapy, and a higher mobility score of Barthel index as independent factors associated with postoperative survival time in metastatic spinal tumors derived from lung cancer. Patients with indications for molecular-targeted therapy and good vitality exhibited longer survival. These results may help in surgical selection for patients with metastatic spinal tumors derived from lung cancer.
en-copyright=
kn-copyright=
en-aut-name=TakahashiTakuya
en-aut-sei=Takahashi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakegamiNorihiko
en-aut-sei=Takegami
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiiToshitaka
en-aut-sei=Yoshii
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=8
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=12
en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic surgery, Kansai Medical University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=17
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=18
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=25
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=28
en-affil=Department of Orthopedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=32
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
en-keyword=Metastatic spinal tumor
kn-keyword=Metastatic spinal tumor
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Postoperative survival period
kn-keyword=Postoperative survival period
en-keyword=Barthel index
kn-keyword=Barthel index
en-keyword=Vitality index
kn-keyword=Vitality index
en-keyword=Molecularly targeted therapy
kn-keyword=Molecularly targeted therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=5
article-no=
start-page=594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Review Article: Diagnostic Paradigm Shift in Spine Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Meticulous clinical examination is essential for spinal disorders to utilize the diagnostic methods and technologies that strongly support physicians and enhance clinical practice. A significant change in the approach to diagnosing spinal disorders has occurred in the last three decades, which has enhanced a more nuanced understanding of spine pathology. Traditional radiographic methods such as conventional and functional X-rays and CT scans are still the first line in the diagnosis of spinal disorders due to their low cost and accessibility. As more advanced imaging technologies become increasingly available worldwide, there is a constantly increasing trend in MRI scans for detecting spinal pathologies and making treatment decisions. Not only do MRI scans have superior diagnostic capabilities, but they also assist surgeons in performing meticulous preoperative planning, making them currently the most widely used diagnostic tool for spinal disorders. Positron Emission Tomography (PET) can help detect inflammatory lesions, infections, and tumors. Other advanced diagnostic tools such as CT/MRI fusion image, Functional Magnetic Resonance Imaging (fMRI), Upright and Kinetic MRI, magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) could play an important role when it comes to detecting more special pathologies. However, some technical difficulties in the daily praxis and their high costs act as obstacles to their further spread. Integrating artificial intelligence and advancements in data analytics and virtual reality promises to enhance spinal procedures’ precision, safety, and efficacy. As these technologies continue to develop, they will play a critical role in transforming spinal surgery. This paradigm shift emphasizes the importance of continuous innovation and adaptability in improving the diagnosis and treatment of spinal disorders.
en-copyright=
kn-copyright=
en-aut-name=LeventAras Efe
en-aut-sei=Levent
en-aut-mei=Aras Efe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HengChristian
en-aut-sei=Heng
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NikolaosSalamalikis
en-aut-sei=Nikolaos
en-aut-mei=Salamalikis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LatkaKajetan
en-aut-sei=Latka
en-aut-mei=Kajetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=innovative technique
kn-keyword=innovative technique
en-keyword=MRI
kn-keyword=MRI
en-keyword=myelography
kn-keyword=myelography
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=4
article-no=
start-page=2286
end-page=2299
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Palliative Surgical Treatment for Spinal Metastases on the Patient’s Quality of Life With a Focus on the Segment of the Metastasis: A Prospective Multicenter Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Study Design: Prospective multicenter study.
Objectives: Palliative surgery is crucial for maintaining the quality of life (QOL) in patients with spinal metastases. This study aimed to compare the short-term outcomes of QOL after palliative surgery between patients with metastatic spinal tumors at different segments.
Methods: We prospectively compared the data of 203 patients with spinal metastases at 2-3 consecutive segments who were divided into the following three groups: cervical, patients with cervical spine lesions; thoracic, patients with upper–middle thoracic spine lesions; and TL/L/S, patients with lesions at the thoracolumbar junction and lumbar and sacral regions. Preoperative and postoperative EuroQol 5-dimension (EQ5D) 5-level were compared.
Results: All groups exhibited improvement in the Frankel grade, performance status, pain, Barthel index, EQ5D health state utility value (HSUV), and EQ5D visual analog scale (VAS) postoperatively. Although preoperative EQ5D HSUVs did not significantly differ between the groups (cervical, 0.461 ± 0.291; thoracic, 0.321 ± 0.292; and TL/L/S, 0.376 ± 0.272), the thoracic group exhibited significantly lower postoperative EQ5D HSUVs than the other two groups (cervical, 0.653 ± 0.233; thoracic, 0.513 ± 0.252; and TL/L/S, 0.624 ± 0.232). However, postoperative EQ5D VAS was not significantly different between the groups (cervical, 63.4 ± 25.8; thoracic, 54.7 ± 24.5; and TL/L/S, 61.7 ± 21.9).
Conclusions: Palliative surgery for metastatic spinal tumors provided comparable QOL improvement, irrespective of the spinal segment involved. Patients with upper and middle thoracic spinal metastases had poorer QOL outcomes than those with metastases in other segments; however, sufficient QOL improvement was achieved.
en-copyright=
kn-copyright=
en-aut-name=SegiNaoki
en-aut-sei=Segi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoSadayuki
en-aut-sei=Ito
en-aut-mei=Sadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OuchidaJun
en-aut-sei=Ouchida
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuTakaki
en-aut-sei=Shimizu
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraiHidetomi
en-aut-sei=Terai
en-aut-mei=Hidetomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KandaYutaro
en-aut-sei=Kanda
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawamuraIchiro
en-aut-sei=Kawamura
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=PakuMasaaki
en-aut-sei=Paku
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakahashiYohei
en-aut-sei=Takahashi
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkedaKoji
en-aut-sei=Akeda
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FunaoHaruki
en-aut-sei=Funao
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=OtsukiBungo
en-aut-sei=Otsuki
en-aut-mei=Bungo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=ManabeHiroaki
en-aut-sei=Manabe
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IwaiChizuo
en-aut-sei=Iwai
en-aut-mei=Chizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HiyamaAkihiko
en-aut-sei=Hiyama
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=SekiShoji
en-aut-sei=Seki
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=GotoYuta
en-aut-sei=Goto
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=MiyazakiMasashi
en-aut-sei=Miyazaki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=16
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=18
en-affil=Department of Orthopaedics and Rehabilitation Medicine, University of Fukui Faculty of Medical Sciences
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Orthopedic Surgery, Tokyo Medical and Dental University
kn-affil=
affil-num=21
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Orthopaedic Surgery, Kyoto University Hospital
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=27
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=28
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=32
en-affil=Department of Orthopedics, Tokushima University
kn-affil=
affil-num=33
en-affil=Department of Orthopaedic Surgery, Gifu University Hospital
kn-affil=
affil-num=34
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=35
en-affil=Department of Orthopaedic Surgery, Tokai University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Orthopaedic Surgery, University of Toyama
kn-affil=
affil-num=37
en-affil=Department of Orthopaedic Surgery, Nagoya City University
kn-affil=
affil-num=38
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=39
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=40
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=41
en-affil=Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=42
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=43
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=44
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=45
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=46
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=47
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
en-keyword=spinal metastasis
kn-keyword=spinal metastasis
en-keyword=metastasis segment
kn-keyword=metastasis segment
en-keyword=palliative surgery
kn-keyword=palliative surgery
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=activities of daily living
kn-keyword=activities of daily living
en-keyword=pain
kn-keyword=pain
en-keyword=anxiety
kn-keyword=anxiety
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=4
article-no=
start-page=616
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel Technique for Basilar Invagination Treatment in a Patient with Klippel–Feil Syndrome: A Clinical Example and Brief Literature Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives and Background: To present a novel technique of treatment for a patient with basilar invagination. Basilar invagination (BI) is a congenital condition that can compress the cervicomedullary junction, leading to neurological deficits. Severe cases require surgical intervention, but there is debate over the choice of approach. The anterior approach allows direct decompression but carries high complication rates, while the posterior approach provides indirect decompression and offers good stability with fewer complications. Materials and Methods: A 15-year-old boy with severe myelopathy presented to our hospital with neck pain, bilateral upper limb muscle weakness, and hand numbness persisting for 4 years. Additionally, he experienced increased numbness and gait disturbance three months before his visit. On examination, he exhibited hyperreflexia in both upper and lower limbs, muscle weakness in the bilateral upper limbs (MMT 4), bilateral hypoesthesia below the elbow and in both legs, mild urinary and bowel incontinence, and a spastic gait. Radiographs revealed severe basilar invagination (BI). Preoperative images showed severe BI and that the spinal cord was severely compressed with odontoid process. Results: The patient underwent posterior surgery with the C-arm free technique. All screws including occipital screws were inserted into the adequate position under navigation guidance. Reduction was achieved with skull rotation and distraction. A follow-up at one year showed the following results: Manual muscle testing results and sensory function tests showed almost full recovery, with bilateral arm recovery (MMT 5) and smooth walking. The cervical Japanese Orthopedic Association score of the patient improved from 9/17 to 16/17. Postoperative images showed excellent spinal cord decompression, and no major or severe complications had occurred. Conclusions: Basilar invagination alongside Klippel–Feil syndrome represents a relatively uncommon condition. Utilizing a posterior approach for treating reducible BI with a C-arm-free technique proved to be a safe method in addressing severe myelopathy. This novel navigation technique yields excellent outcomes for patients with BI.
en-copyright=
kn-copyright=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AskarAbd El Kader Al
en-aut-sei=Askar
en-aut-mei=Abd El Kader Al
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaokaTakuya
en-aut-sei=Taoka
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=basilar invagination
kn-keyword=basilar invagination
en-keyword=Klippel–Feil syndrome
kn-keyword=Klippel–Feil syndrome
en-keyword=navigation
kn-keyword=navigation
en-keyword=C-arm free
kn-keyword=C-arm free
en-keyword=novel technique
kn-keyword=novel technique
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=23
article-no=
start-page=2715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predicting Surgical Site Infections in Spine Surgery: Association of Postoperative Lymphocyte Reduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Postoperative lymphopenia is reported as an excellent indicator to predict surgical-site infection (SSI) after spine surgery. However, there is still controversy concerning which serological markers can predict spinal SSI. This study aims to evaluate excellent and early indicators for detecting SSI, focusing on spine instrumented surgery. Materials and Methods: This study included 268 patients who underwent spinal instrumented surgery from January 2022 to December 2023 (159 female and 109 male, average 62.9 years). The SSI group included 20 patients, and the non-SSI group comprised 248 patients. Surgical time, intraoperative blood loss, and glycemic levels were measured in both groups. The complete blood cell counts, differential counts, albumin, and C-reactive protein (CRP) levels were measured pre-surgery and postoperative on Days 1, 3, and 7. In comparing the groups, the Mann–Whitney U test analysis was used for continuous variables, while the chi-squared test and Fisher’s exact test were used for dichotomous variables. Results: The incidence of SSI after spinal instrumentation was 7.46% and was relatively higher in scoliosis surgery. The SSI group had significantly longer surgical times (248 min vs. 180 min, p = 0.0004) and a higher intraoperative blood loss (772 mL vs. 372 mL, p < 0.0001) than the non-SSI group. In the SSI group, the Day 3 (10.5 ± 6.2% vs. 13.8 ± 6.0%, p = 0.012) and Day 7 (14.4 ± 4.8% vs. 18.8 ± 7.1%, p = 0.012) lymphocyte ratios were lower than the non-SSI group. Albumin levels on Day 1 in the SSI group were lower than in the non-SSI group (2.94 ± 0.30 mg/dL vs. 3.09 ± 0.38 mg/dL, p = 0.045). There is no difference in CRP and lymphocyte count between the two groups. Conclusions: SSI patients had lower lymphocyte percentages than non-SSI patients, which was a risk factor for SSI, with constant high inflammation. The Day 3 lymphocyte percentage may predict SSI after spinal instrumented surgery.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuDongwoo
en-aut-sei=Yu
en-aut-mei=Dongwoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JainMukul
en-aut-sei=Jain
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HengChristan
en-aut-sei=Heng
en-aut-mei=Christan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=instrumentation
kn-keyword=instrumentation
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=lymphocyte
kn-keyword=lymphocyte
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=4
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240322
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Retrospective Cohort Study of Early versus Delayed Ballon Kyphoplasty Intervention for Osteoporotic Vertebral Fracture Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To investigate the outcomes of early balloon kyphoplasty (BKP) intervention compared with late intervention for osteoporotic vertebral fracture (OVF). Background: Osteoporotic vertebral fracture can lead to kyphotic deformity, severe back pain, depression, and disturbances in activities of daily living (ADL). Balloon kyphoplasty has been widely utilized to treat symptomatic OVFs and has proven to be a very effective surgical option for this condition. Furthermore, BKP is relatively a safe and effective method due to its reduced acrylic cement leakage and greater kyphosis correction. Materials and Methods: A retrospective cohort study was conducted at our hospital for patients who underwent BKP for osteoporotic vertebral fractures in the time frame between January 2020 and December 2022. Ninety-nine patients were included in this study, and they were classified into two groups: in total, 36 patients underwent early BKP intervention (EI) at <4 weeks, and 63 patients underwent late BKP intervention (LI) at ≥4 weeks. We performed a clinical, radiological and statistical comparative evaluation for the both groups with a mean follow-up of one year. Results: Adjacent segmental fractures were more frequently observed in the LI group compared to the EI group (33.3% vs. 13.9%, p = 0.034). There was a significant improvement in postoperative vertebral angles in both groups (p = 0.036). The cement volume injected was 7.42 mL in the EI, compared with 6.3 mL in the LI (p = 0.007). The mean surgery time was shorter in the EI, at 30.2 min, compared with 37.1 min for the LI, presenting a significant difference (p = 0.0004). There was no statistical difference in the pain visual analog scale (VAS) between the two groups (p = 0.711), and there was no statistical difference in cement leakage (p = 0.192). Conclusions/Level of Evidence: Early BKP for OVF treatment may achieve better outcomes and fewer adjacent segmental fractures than delayed intervention.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PariharUmesh
en-aut-sei=Parihar
en-aut-mei=Umesh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=El Kader Al AskarAbd
en-aut-sei=El Kader Al Askar
en-aut-mei=Abd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GunjotikarSharvari
en-aut-sei=Gunjotikar
en-aut-mei=Sharvari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaokaTakuya
en-aut-sei=Taoka
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraYoshihiro
en-aut-sei=Fujiwara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
en-keyword=ballon kyphoplasty
kn-keyword=ballon kyphoplasty
en-keyword=osteoporotic vertebral fractures
kn-keyword=osteoporotic vertebral fractures
en-keyword=kyphosis
kn-keyword=kyphosis
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=3381
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic Bridging Stent Placement Improves Bile Leaks After Hepatic Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Endoscopic treatment is one of the first-line treatments for bile leaks after hepatic surgery. However, detailed reports of endoscopic treatment for bile leaks after hepatic resection (HR) or liver transplantation (LT) are scarce. The outcomes of endoscopic treatment for bile leaks after hepatic surgery were examined, and factors related to successful treatment were identified. Methods: A total of 122 patients underwent endoscopic treatment for bile leaks after hepatic surgery. The diagnosis of a bile leak is based on the ISGLS criteria. The decision to perform endoscopic retrograde cholangiography (ERC) is made based on the amount of drainage output, laboratory data, clinical symptoms, and CT scan findings. In our study, the site of the bile leak was assessed using ERC. Endoscopic stents were placed to bridge across the bile leak site as much as possible. Otherwise, stents were placed near the leak site. Endoscopic stents were replaced every 2–3 months until an improvement in the bile leak was observed with or without biliary strictures. The outcomes of endoscopic treatment and the factors related to clinical success were evaluated. Results: Seventy-four patients with HR and forty-eight patients with LT were treated endoscopically. Technical and clinical success was achieved in 89% (109/122) and 82% (100/122) of patients, respectively. Three (2%) patients died from uncontrollable bile leaks. Bridging stent placement (p < 0.001), coexistent percutaneous drainage (p = 0.0025), and leak severity (p = 0.015) were identified as independent factors related to the clinical success of endoscopic treatment. During a median observation period of 1162 days after the achievement of clinical success, bile leak recurrence was observed in only three cases (3%). Conclusions: Endoscopic treatment is safe and effective for bile leaks after hepatic surgery. Bridging stent placement across the leak site is the most crucial factor for clinical success.
en-copyright=
kn-copyright=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TerasawaHiroyuki
en-aut-sei=Terasawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=bile leak
kn-keyword=bile leak
en-keyword=endoscopic treatment
kn-keyword=endoscopic treatment
en-keyword=bridging
kn-keyword=bridging
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Employment of artificial intelligence for an unbiased evaluation regarding the recovery of right ventricular function after mitral valve transcatheter edge-to-edge repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims Long-standing severe mitral regurgitation (MR) leads to left atrial (LA) enlargement, elevated pulmonary artery pressures, and ultimately right heart failure. While mitral valve transcatheter edge-to-edge repair (M-TEER) alleviates left-sided volume overload, its impact on right ventricular (RV) recovery is unclear. This study aims to use both conventional echocardiography and artificial intelligence to assess the recovery of RV function in patients undergoing M-TEER for severe MR.
Methods and results The change in RV function from baseline to 3-month follow-up was analysed in a dual-centre registry of patients undergoing M-TEER for severe MR. RV function was conventionally assessed by measuring the tricuspid annular plane systolic excursion (TAPSE). Additionally, RV function was evaluated using a deep learning model that predicts RV ejection fraction (RVEF) based on two-dimensional apical four-chamber view echocardiographic videos. Among the 851 patients who underwent M-TEER, the 1-year survival rate was 86.8%. M-TEER resulted in a significant reduction in both LA volume and estimated systolic pulmonary artery pressure (sPAP) levels (median LA volume: from 123 ml [interquartile range, IQR 92–169 ml] to 104 ml [IQR 78–142 ml], p < 0.001; median sPAP: from 46 mmHg [IQR 35–58 mmHg] to 41 mmHg [IQR 32–54 mmHg], p = 0.036). In contrast, TAPSE remained unchanged (median: from 17 mm [IQR 14–21 mm] to 18 mm [IQR 15–21 mm], p = 0.603). The deep learning model confirmed this finding, showing no significant change in predicted RVEF after M-TEER (median: from 43.1% [IQR 39.1–47.4%] to 43.2% [IQR 39.2–47.2%], p = 0.475).
Conclusions While M-TEER improves left-sided haemodynamics, it does not lead to significant RV function recovery, as confirmed by both conventional echocardiography and artificial intelligence. This finding underscores the importance of treating patients before irreversible right heart damage occurs.
en-copyright=
kn-copyright=
en-aut-name=FortmeierVera
en-aut-sei=Fortmeier
en-aut-mei=Vera
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HesseAmelie
en-aut-sei=Hesse
en-aut-mei=Amelie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TrenkwalderTeresa
en-aut-sei=Trenkwalder
en-aut-mei=Teresa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokodiMárton
en-aut-sei=Tokodi
en-aut-mei=Márton
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KovácsAttila
en-aut-sei=Kovács
en-aut-mei=Attila
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RippenElena
en-aut-sei=Rippen
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TervoorenJule
en-aut-sei=Tervooren
en-aut-mei=Jule
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FettMichelle
en-aut-sei=Fett
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HarmsenGerhard
en-aut-sei=Harmsen
en-aut-mei=Gerhard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KühleinMoritz
en-aut-sei=Kühlein
en-aut-mei=Moritz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=CovarrubiasHéctor Alfonso Alvarez
en-aut-sei=Covarrubias
en-aut-mei=Héctor Alfonso Alvarez
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=von ScheidtMoritz
en-aut-sei=von Scheidt
en-aut-mei=Moritz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=RoskiFerdinand
en-aut-sei=Roski
en-aut-mei=Ferdinand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=GerçekMuhammed
en-aut-sei=Gerçek
en-aut-mei=Muhammed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SchusterTibor
en-aut-sei=Schuster
en-aut-mei=Tibor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MayrN. Patrick
en-aut-sei=Mayr
en-aut-mei=N. Patrick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=XhepaErion
en-aut-sei=Xhepa
en-aut-mei=Erion
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=LaugwitzKarl‐Ludwig
en-aut-sei=Laugwitz
en-aut-mei=Karl‐Ludwig
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=JonerMichael
en-aut-sei=Joner
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RudolphVolker
en-aut-sei=Rudolph
en-aut-mei=Volker
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=LachmannMark
en-aut-sei=Lachmann
en-aut-mei=Mark
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=3
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=4
en-affil=Heart and Vascular Center, Semmelweis University
kn-affil=
affil-num=5
en-affil=Heart and Vascular Center, Semmelweis University
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=8
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=9
en-affil=Department of Physics, University of Johannesburg
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=13
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=15
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=16
en-affil=Department of Family Medicine, McGill University
kn-affil=
affil-num=17
en-affil=Institute of Anesthesiology, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=18
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=19
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=20
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=21
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=22
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
en-keyword=Echocardiography
kn-keyword=Echocardiography
en-keyword=Mitral regurgitation
kn-keyword=Mitral regurgitation
en-keyword=Right ventricular dysfunction
kn-keyword=Right ventricular dysfunction
en-keyword=Deep learning
kn-keyword=Deep learning
en-keyword=Transcatheter edge-to-edge repair
kn-keyword=Transcatheter edge-to-edge repair
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=2
article-no=
start-page=euaf024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SCN5A variant type-dependent risk prediction in Brugada syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims The variant in SCN5A with the loss of function (LOF) effect in the cardiac Na+ channel (Nav1.5) is the definitive cause for Brugada syndrome (BrS), and the functional analysis data revealed that LOF variants are associated with poor prognosis. However, which variant types (e.g. missense or non-missense) affect the prognoses of those variant carriers remain unelucidated.
Methods and results We defined SCN5A LOF variants as all non-missense and missense variants that produce peak INa < 65% of wild-type previously confirmed by patch-clamp studies. The study population consisted of 76 Japanese BrS patients (74% patients were male and the median age [IQR] at diagnosis was 28 [14–45] years) with LOF type of SCN5A variants: 40 with missense and 36 with non-missense variants. Non-missense variant carriers presented significantly more severe cardiac conduction disorder compared to the missense variant carriers. During follow-up periods of 9.0 [5.0–14.0] years, compared to missense variants, non-missense variants were significant risk factors of lifetime lethal arrhythmia events (LAEs) (P = 0.023). When focusing only on the missense variants that produce no peak INa, these missense variant carriers exhibited the same clinical outcomes as those with non-missense (log-rank P = 0.325). After diagnosis, however, both variant types were comparable in risk of LAEs (P = 0.155).
Conclusion We identified, for the first time, that SCN5A non-missense variants were associated with higher probability of LAE than missense variants in BrS patients though it did not change significantly after diagnosis.
en-copyright=
kn-copyright=
en-aut-name=AizawaTakanori
en-aut-sei=Aizawa
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiyamaTakeru
en-aut-sei=Makiyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImamuraTomohiko
en-aut-sei=Imamura
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuyamaMegumi
en-aut-sei=Fukuyama
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SonodaKeiko
en-aut-sei=Sonoda
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatoKoichi
en-aut-sei=Kato
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HoshinoKenji
en-aut-sei=Hoshino
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzawaJunichi
en-aut-sei=Ozawa
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SuzukiHiroshi
en-aut-sei=Suzuki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YasudaKazushi
en-aut-sei=Yasuda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AokiHisaaki
en-aut-sei=Aoki
en-aut-mei=Hisaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KuritaTakashi
en-aut-sei=Kurita
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YoshidaYoko
en-aut-sei=Yoshida
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuzukiTsugutoshi
en-aut-sei=Suzuki
en-aut-mei=Tsugutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OgawaYoshiharu
en-aut-sei=Ogawa
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YamagamiShintaro
en-aut-sei=Yamagami
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FukudaMasakazu
en-aut-sei=Fukuda
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OnoMakoto
en-aut-sei=Ono
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHidekazu
en-aut-sei=Kondo
en-aut-mei=Hidekazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakahashiNaohiko
en-aut-sei=Takahashi
en-aut-mei=Naohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=OhnoSeiko
en-aut-sei=Ohno
en-aut-mei=Seiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakagawaYoshihisa
en-aut-sei=Nakagawa
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=OnoKoh
en-aut-sei=Ono
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HorieMinoru
en-aut-sei=Horie
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine , 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 ,
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Public Health, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Tsuchiura Kyodo General Hospital
kn-affil=
affil-num=10
en-affil=Department of Cardiology, Saitama Children’s Medical Center
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=12
en-affil=Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatric Cardiology, Aichi Children’s Health and Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatric Cardiology, Osaka Women’s and Children’s Hospital
kn-affil=
affil-num=15
en-affil=Division of Cardiovascular Center, Kindai University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=17
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=18
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=19
en-affil=Division of Cardiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=20
en-affil=Department of Cardiology, Tenri Hospital
kn-affil=
affil-num=21
en-affil=Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=22
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=24
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=26
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=27
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=28
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=29
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
en-keyword=Brugada syndrome
kn-keyword=Brugada syndrome
en-keyword=SCN5A
kn-keyword=SCN5A
en-keyword=Lethal arrhythmia event
kn-keyword=Lethal arrhythmia event
en-keyword=Variant type
kn-keyword=Variant type
en-keyword=Loss of function
kn-keyword=Loss of function
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=2
article-no=
start-page=395
end-page=412.e6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
en-copyright=
kn-copyright=
en-aut-name=YaoNa
en-aut-sei=Yao
en-aut-mei=Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinouchiKenichiro
en-aut-sei=Kinouchi
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshtianiKousha Changizi
en-aut-sei=Ashtiani
en-aut-mei=Kousha Changizi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbdelkarimSherif
en-aut-sei=Abdelkarim
en-aut-mei=Sherif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoHiroyuki
en-aut-sei=Morimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TorimitsuTakuto
en-aut-sei=Torimitsu
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KozumaTakahide
en-aut-sei=Kozuma
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwaharaAkihide
en-aut-sei=Iwahara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KosugiShotaro
en-aut-sei=Kosugi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKyosuke
en-aut-sei=Kato
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TonomuraShun
en-aut-sei=Tonomura
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraToshifumi
en-aut-sei=Nakamura
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItohArata
en-aut-sei=Itoh
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaguchiShintaro
en-aut-sei=Yamaguchi
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshinoJun
en-aut-sei=Yoshino
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrieJunichiro
en-aut-sei=Irie
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=SatohAkiko
en-aut-sei=Satoh
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MikamiYohei
en-aut-sei=Mikami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UchidaShusaku
en-aut-sei=Uchida
en-aut-mei=Shusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UekiTakatoshi
en-aut-sei=Ueki
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=BaldiPierre
en-aut-sei=Baldi
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiKaori
en-aut-sei=Hayashi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ItohHiroshi
en-aut-sei=Itoh
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=5
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=6
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=7
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=21
en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University
kn-affil=
affil-num=22
en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=24
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=25
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=26
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=27
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=28
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
en-keyword=circadian rhythm
kn-keyword=circadian rhythm
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=circadian clock
kn-keyword=circadian clock
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=developmental origins of health and disease
kn-keyword=developmental origins of health and disease
en-keyword=obesity
kn-keyword=obesity
en-keyword=leptin
kn-keyword=leptin
en-keyword=time-restricted feeding
kn-keyword=time-restricted feeding
en-keyword=caloric restriction
kn-keyword=caloric restriction
en-keyword=eating behavior
kn-keyword=eating behavior
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(−) Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(−) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses.
en-copyright=
kn-copyright=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BallingerMatthew J.
en-aut-sei=Ballinger
en-aut-mei=Matthew J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BaoYiming
en-aut-sei=Bao
en-aut-mei=Yiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BlasdellKim R.
en-aut-sei=Blasdell
en-aut-mei=Kim R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BrieseThomas
en-aut-sei=Briese
en-aut-mei=Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrignoneJulia
en-aut-sei=Brignone
en-aut-mei=Julia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CarreraJean Paul
en-aut-sei=Carrera
en-aut-mei=Jean Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=De ConinckLander
en-aut-sei=De Coninck
en-aut-mei=Lander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=de SouzaWilliam Marciel
en-aut-sei=de Souza
en-aut-mei=William Marciel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DürrwaldRalf
en-aut-sei=Dürrwald
en-aut-mei=Ralf
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ErdinMert
en-aut-sei=Erdin
en-aut-mei=Mert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FooksAnthony R.
en-aut-sei=Fooks
en-aut-mei=Anthony R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ForbesKristian M.
en-aut-sei=Forbes
en-aut-mei=Kristian M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Freitas-AstúaJuliana
en-aut-sei=Freitas-Astúa
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=GarciaJorge B.
en-aut-sei=Garcia
en-aut-mei=Jorge B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GeogheganJemma L.
en-aut-sei=Geoghegan
en-aut-mei=Jemma L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GrimwoodRebecca M.
en-aut-sei=Grimwood
en-aut-mei=Rebecca M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HorieMasayuki
en-aut-sei=Horie
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HyndmanTimothy H.
en-aut-sei=Hyndman
en-aut-mei=Timothy H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohneReimar
en-aut-sei=Johne
en-aut-mei=Reimar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KlenaJohn D.
en-aut-sei=Klena
en-aut-mei=John D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KooninEugene V.
en-aut-sei=Koonin
en-aut-mei=Eugene V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KostygovAlexei Y.
en-aut-sei=Kostygov
en-aut-mei=Alexei Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=LetkoMichael
en-aut-sei=Letko
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LiJun-Min
en-aut-sei=Li
en-aut-mei=Jun-Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=LiuYiyun
en-aut-sei=Liu
en-aut-mei=Yiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=MartinMaria Laura
en-aut-sei=Martin
en-aut-mei=Maria Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MullNathaniel
en-aut-sei=Mull
en-aut-mei=Nathaniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NazarYael
en-aut-sei=Nazar
en-aut-mei=Yael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=NowotnyNorbert
en-aut-sei=Nowotny
en-aut-mei=Norbert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NunesMárcio Roberto Teixeira
en-aut-sei=Nunes
en-aut-mei=Márcio Roberto Teixeira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=ØklandArnfinn Lodden
en-aut-sei=Økland
en-aut-mei=Arnfinn Lodden
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=RubbenstrothDennis
en-aut-sei=Rubbenstroth
en-aut-mei=Dennis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=RussellBrandy J.
en-aut-sei=Russell
en-aut-mei=Brandy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=SchottEric
en-aut-sei=Schott
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SeifertStephanie
en-aut-sei=Seifert
en-aut-mei=Stephanie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SenCarina
en-aut-sei=Sen
en-aut-mei=Carina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ShedroffElizabeth
en-aut-sei=Shedroff
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=SironenTarja
en-aut-sei=Sironen
en-aut-mei=Tarja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=SmuraTeemu
en-aut-sei=Smura
en-aut-mei=Teemu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=TavaresCamila Prestes Dos Santos
en-aut-sei=Tavares
en-aut-mei=Camila Prestes Dos Santos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=TeshRobert B.
en-aut-sei=Tesh
en-aut-mei=Robert B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=TilstonNatasha L.
en-aut-sei=Tilston
en-aut-mei=Natasha L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=TordoNoël
en-aut-sei=Tordo
en-aut-mei=Noël
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=VasilakisNikos
en-aut-sei=Vasilakis
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WangFei
en-aut-sei=Wang
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=WhitmerShannon L.M.
en-aut-sei=Whitmer
en-aut-mei=Shannon L.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=WolfYuri I.
en-aut-sei=Wolf
en-aut-mei=Yuri I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=XiaHan
en-aut-sei=Xia
en-aut-mei=Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=YeGong-Yin
en-aut-sei=Ye
en-aut-mei=Gong-Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=YeZhuangxin
en-aut-sei=Ye
en-aut-mei=Zhuangxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=YurchenkoVyacheslav
en-aut-sei=Yurchenko
en-aut-mei=Vyacheslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=ZhaoMingli
en-aut-sei=Zhao
en-aut-mei=Mingli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
affil-num=1
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=2
en-affil=Biological Sciences, Mississippi State University
kn-affil=
affil-num=3
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Nacional de Tecnología Agropecuaria (INTA)
kn-affil=
affil-num=5
en-affil=CSIRO Health and Biosecurity
kn-affil=
affil-num=6
en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University
kn-affil=
affil-num=7
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=8
en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud
kn-affil=
affil-num=9
en-affil=Division of Clinical and Epidemiological Virology, KU Leuven
kn-affil=
affil-num=10
en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
kn-affil=
affil-num=11
en-affil=Instituto Nacional de Tecnología Agropecuaria (INTA)
kn-affil=
affil-num=12
en-affil=QAAFI, The University of Queensland
kn-affil=
affil-num=13
en-affil=Robert Koch Institut
kn-affil=
affil-num=14
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=15
en-affil=Animal and Plant Health Agency (APHA)
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, University of Arkansas
kn-affil=
affil-num=17
en-affil=Embrapa Cassava and Fruits
kn-affil=
affil-num=18
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=19
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=20
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=21
en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University
kn-affil=
affil-num=22
en-affil=School of Veterinary Medicine, Murdoch University
kn-affil=
affil-num=23
en-affil=German Federal Institute for Risk Assessment
kn-affil=
affil-num=24
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=25
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=26
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=27
en-affil=University of Ostrava
kn-affil=
affil-num=28
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=29
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=30
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=31
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=32
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=33
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=34
en-affil=Department of Natural Sciences, Shawnee State University
kn-affil=
affil-num=35
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=36
en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health
kn-affil=
affil-num=37
en-affil=Universidade Federal do Pará
kn-affil=
affil-num=38
en-affil=Pharmaq Analytiq
kn-affil=
affil-num=39
en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut
kn-affil=
affil-num=40
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=41
en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science
kn-affil=
affil-num=42
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=43
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=44
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=45
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=46
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=47
en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná
kn-affil=
affil-num=48
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=49
en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine
kn-affil=
affil-num=50
en-affil=Institut Pasteur
kn-affil=
affil-num=51
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=52
en-affil=University of Queensland
kn-affil=
affil-num=53
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=54
en-affil=North Carolina State University
kn-affil=
affil-num=55
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=56
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=57
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=58
en-affil=Institute of Insect Sciences, Zhejiang University
kn-affil=
affil-num=59
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=60
en-affil=University of Ostrava
kn-affil=
affil-num=61
en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-IbañezJosé T.
en-aut-sei=Ascencio-Ibañez
en-aut-mei=José T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HafrénAnders
en-aut-sei=Hafrén
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasiów-JaroszewskaBeata
en-aut-sei=Hasiów-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HernándezCarmen
en-aut-sei=Hernández
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=López-LambertiniPaola M.
en-aut-sei=López-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=MäkinenKristiina
en-aut-sei=Mäkinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJesús
en-aut-sei=Navas-Castillo
en-aut-mei=Jesús
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=PallásVicente
en-aut-sei=Pallás
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-GonzálezPedro L.
en-aut-sei=Ramos-González
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-PöggelerKatja R.
en-aut-sei=Richert-Pöggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=ŠafářováDana
en-aut-sei=Šafářová
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=SanfaçonHélène
en-aut-sei=Sanfaçon
en-aut-mei=Hélène
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=SõmeraMerike
en-aut-sei=Sõmera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRené A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=René A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Français de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortaliças
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patología Vegetal (IPAVE), INTA, Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ciências Biológicas, Universidade de Brasília
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biológico de São Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Genéticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Université de la Réunion
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum Ländlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Avoidant/restrictive food intake disorder prognosis and its relation with autism spectrum disorder in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: There is a lack of reported clinical factors associated with the outcomes of children and adolescents with avoidant/restrictive food intake disorder (ARFID) in Japan. This study aimed to identify these clinical factors and explore the relationship between ARFID and autism spectrum disorder (ASD).
Methods: This retrospective study analyzed data from 48 Japanese children and adolescents with ARFID who visited Okayama University Hospital between January 2011 and March 2022. Clinical characteristics were assessed using medical records and natural history questionnaires. The study compared patients with good and poor prognosis groups and used multiple logistic regression analysis to determine factors influencing prognosis.
Results: The study included 33 patients with good prognoses and 15 with poor prognoses. Comorbid ASD was more prevalent in the poor prognosis group (60%) compared to the good prognosis group (21%). Additionally, more than half of the ARFID patients with comorbid ASD were initially undiagnosed. Multivariate analysis revealed that older age at first visit (p = 0.022) and comorbid ASD (p = 0.022) were statistically significant factors associated with poor prognosis in ARFID patients. There were no significant differences in body mass index standard deviation score and maximal weight loss between the two groups.
Conclusions: The poor prognosis group had a higher prevalence of comorbid ASD diagnoses. Therefore, it is crucial to evaluate patient's developmental characteristics early in treatment and consider these characteristics throughout the course of care.
en-copyright=
kn-copyright=
en-aut-name=TanakaChie
en-aut-sei=Tanaka
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HanzawaMana
en-aut-sei=Hanzawa
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShigeyasuYoshie
en-aut-sei=Shigeyasu
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiharaAkiko
en-aut-sei=Sugihara
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HoriuchiMakiko
en-aut-sei=Horiuchi
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Clinical Psychology Section, Department of Medical Support, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=autism spectrum disorder
kn-keyword=autism spectrum disorder
en-keyword=avoidant/restrictive food intake disorder
kn-keyword=avoidant/restrictive food intake disorder
en-keyword=children
kn-keyword=children
en-keyword=feeding and eating disorders
kn-keyword=feeding and eating disorders
en-keyword=outcome
kn-keyword=outcome
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=551
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Body weight and eating attitudes influence improvement of depressive symptoms in children and pre-adolescents with eating disorders: a prospective multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pediatric patients with eating disorders in a multicenter joint study on 11 facilities were enrolled and prospectively investigated to determine whether improvement in body weight, eating attitudes, and psychosocial factors in children with eating disorders would also improve depressive symptoms.
Methods In this study, 91 patients were enrolled between April 2014 and March 2016. The severity of underweight was assessed using the body mass index-standard deviation score (BMI-SDS), eating behavior was assessed using the children's eating attitude test (ChEAT26), the outcome of childhood eating disorders was assessed using the childhood eating disorder outcome scale, and depressive symptoms were assessed using the Children's Depression Inventory (CDI) score.
Results After 12 months of treatment, depressive symptoms were evaluated in 62 of the 91 cases where it was evaluated at the initial phase. There was no difference in background characteristics between the included patients and the 29 patients who dropped out. A paired-sample t-test revealed a significant decrease in CDI scores after 12 months of treatment (p < 0.001, 95% CI: 2.401–7.373) and a significant increase in the BMI-SDS (p < 0.001, 95% CI: − 2.41973–1.45321). Multiple regression analysis revealed that BMI-SDS and ChEAT26 scores at the initial phase were beneficial in CDI recovery. In addition, BMI-SDS at the initial phase was useful for predicting BMI-SDS recovery after 12 months of treatment.
Conclusions Depressive symptoms in children with eating disorders improved with therapeutic intervention on body weight and eating attitudes.
Trial registration The Clinical Trial Number for this study is UMIN000055004.
en-copyright=
kn-copyright=
en-aut-name=SuzukiYuichi
en-aut-sei=Suzuki
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagamitsuShinichiro
en-aut-sei=Nagamitsu
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EshimaNobuoki
en-aut-sei=Eshima
en-aut-mei=Nobuoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtaniRyoko
en-aut-sei=Otani
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakutaRyoichi
en-aut-sei=Sakuta
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IguchiToshiyuki
en-aut-sei=Iguchi
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiiRyuta
en-aut-sei=Ishii
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchidaSoh
en-aut-sei=Uchida
en-aut-mei=Soh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitayamaShinji
en-aut-sei=Kitayama
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KoyanagiKenshi
en-aut-sei=Koyanagi
en-aut-mei=Kenshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiYuki
en-aut-sei=Suzuki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SumiYoshino
en-aut-sei=Sumi
en-aut-mei=Yoshino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakamiyaShizuo
en-aut-sei=Takamiya
en-aut-mei=Shizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukaiYoshimitsu
en-aut-sei=Fukai
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Fukushima Medical University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Fukuoka University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kurume University School of Medicine
kn-affil=
affil-num=4
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=5
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=6
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Hoshigaoka Maternity Hospital
kn-affil=
affil-num=8
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=Karamun`S Forest Children`S Clinic
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Himeji City Center for the Disabled
kn-affil=
affil-num=12
en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, National Hospital Organization Mie National Hospital
kn-affil=
affil-num=14
en-affil=Mental and Developmental Clinic for Children “Elm Tree”
kn-affil=
affil-num=15
en-affil=Takamiya Psychiatry Clinic
kn-affil=
affil-num=16
en-affil=Department of Pediatrics/Child Psychosomatic Medicine, Okayama University Hospital
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, St. Luke’s International Hospital
kn-affil=
en-keyword=Eating disorders
kn-keyword=Eating disorders
en-keyword=Anorexia nervosa
kn-keyword=Anorexia nervosa
en-keyword=Body mass index-standard deviation score
kn-keyword=Body mass index-standard deviation score
en-keyword=Eating attitudes
kn-keyword=Eating attitudes
en-keyword=Children’s depression inventory
kn-keyword=Children’s depression inventory
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=466
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification.
en-copyright=
kn-copyright=
en-aut-name=TanabeShihori
en-aut-sei=Tanabe
en-aut-mei=Shihori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuaderSabina
en-aut-sei=Quader
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoRyuichi
en-aut-sei=Ono
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoAkihisa
en-aut-sei=Yamamoto
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaMotohiro
en-aut-sei=Kojima
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PerkinsEdward J.
en-aut-sei=Perkins
en-aut-mei=Edward J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CabralHoracio
en-aut-sei=Cabral
en-aut-mei=Horacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion
kn-affil=
affil-num=3
en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine
kn-affil=
affil-num=7
en-affil=US Army Engineer Research and Development Center
kn-affil=
affil-num=8
en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=coronavirus
kn-keyword=coronavirus
en-keyword=coronaviral infection
kn-keyword=coronaviral infection
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=pathway analysis
kn-keyword=pathway analysis
en-keyword=predictionmodel
kn-keyword=predictionmodel
en-keyword=molecular network
kn-keyword=molecular network
en-keyword=molecular pathway image
kn-keyword=molecular pathway image
en-keyword=network analysis
kn-keyword=network analysis
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=13
article-no=
start-page=7238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH.
en-copyright=
kn-copyright=
en-aut-name=LeeYoung-Hyeon
en-aut-sei=Lee
en-aut-mei=Young-Hyeon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeoMin-Ho
en-aut-sei=Yeo
en-aut-mei=Min-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoonWeon-Jong
en-aut-sei=Yoon
en-aut-mei=Weon-Jong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJongwan
en-aut-sei=Kim
en-aut-mei=Jongwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHye-Ran
en-aut-sei=Kim
en-aut-mei=Hye-Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=3
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=4
en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)
kn-affil=
affil-num=5
en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anatomy, College of Medicine, Dongguk University
kn-affil=
affil-num=7
en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology
kn-affil=
en-keyword=metabolic dysfunction-associated steatohepatitis
kn-keyword=metabolic dysfunction-associated steatohepatitis
en-keyword=Distylium racemosum
kn-keyword=Distylium racemosum
en-keyword=ethyl acetate fraction
kn-keyword=ethyl acetate fraction
en-keyword=extract
kn-keyword=extract
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27163
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade ≥ 3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade ≥ 3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of ≥ 2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23–4.54, p = 0.01) and a low neutrophil/eosinophil ratio (NER) of ≤ 40.0 (OR: 2.78, 95% CI 1.39–5.53, p = 0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade ≥ 3 TRAEs and help determine individualized treatment strategies in patients with mRCC.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KuroseKyohei
en-aut-sei=Kurose
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AzumaHaruhito
en-aut-sei=Azuma
en-aut-mei=Haruhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=28
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=30
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=32
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=ICI
kn-keyword=ICI
en-keyword=Eosinophil
kn-keyword=Eosinophil
en-keyword=Immune-related adverse event
kn-keyword=Immune-related adverse event
en-keyword=Treatment-related adverse event
kn-keyword=Treatment-related adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=468
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Urinary tract infection (UTI) is predominantly caused by uropathogenic Escherichia coli (UPEC). Previous studies have reported that the fimbriae of UPEC are involved in virulence and antimicrobial resistance. We aimed to analyze the fimbrial gene profiles of UPEC and investigate the specificity of these expressions in symptomatic UTI, urinary device use, and levofloxacin (LVFX) resistance/extended-spectrum beta-lactamase (ESBL) production. Methods: A total of 120 UPEC strains were isolated by urine culture between 2019 and 2023 at our institution. They were subjected to an antimicrobial susceptibility test and polymerase chain reaction (PCR) to identify 14 fimbrial genes and their association with clinical outcomes or antimicrobial resistance. Results: The prevalence of the papG2 gene was significantly higher in the symptomatic UTI group by multivariate analyses (OR 5.850, 95% CI 1.390–24.70, p = 0.016). The prevalence of the c2395 gene tended to be lower in the symptomatic UTI group with urinary devices (all p < 0.05). In LVFX-resistant UPEC strains from both the asymptomatic bacteriuria (ABU) and the symptomatic UTI group, the expression of the papEF, papG3, c2395, and yadN genes tended to be lower (all p < 0.05). Conclusion: The fimbrial genes of UPEC are associated with virulence and LVFX resistance, suggesting that even UPEC with fewer motility factors may be more likely to ascend the urinary tract in the presence of the urinary devices. These findings may enhance not only the understanding of the virulence of UPEC but also the management of UTI.
en-copyright=
kn-copyright=
en-aut-name=MitsuiMasao
en-aut-sei=Mitsui
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruhashiMai
en-aut-sei=Maruhashi
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirakawaHidetada
en-aut-sei=Hirakawa
en-aut-mei=Hidetada
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fimbriae
kn-keyword=fimbriae
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=drug resistance
kn-keyword=drug resistance
en-keyword=virulence
kn-keyword=virulence
en-keyword=uropathogenic Escherichia coli
kn-keyword=uropathogenic Escherichia coli
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=107
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of concomitant medications on the oncologic efficacy of systemic therapy in patients with advanced or metastatic urothelial carcinoma: a systematic review and meta-analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Immune checkpoint inhibitors (ICI) and chemotherapy, including antibody-drug conjugates, are widely used for the treatment of patients with advanced unresectable or metastatic urothelial carcinoma (UC). The majority of elderly patients receive concomitant medications to address various comorbidities. We aimed to evaluate the impact of concomitant medications on oncological outcomes in patients with advanced unresectable or metastatic UC treated with systemic therapy.
Material & methods: In August 2024, three datasets were queried for studies evaluating concomitant medications in patients with advanced unresectable or metastatic UC. The review protocol was registered in PROSPERO (CRD42024547335). The primary outcome was overall survival (OS). A fixed- or random-effects model was used for meta-analysis depending on the heterogeneity.
Results: We identified 16 eligible studies (3 prospective and 13 retrospective) comprising 4,816 patients. Most reported concomitant medications included proton pump inhibitors (PPIs), antibiotics, steroids, and opioids. The use of concomitant PPIs, antibiotics, steroids or opioids during ICI therapy was associated with worsened OS (PPIs: HR: 1.43, 95% CI: 1.31–1.57, p < 0.001; antibiotics: HR: 1.2, 95% CI: 1.04–1.38, p = 0.01; steroids: HR: 1.45, 95% CI: 1.25–1.67, p < 0.001; and opioids: HR: 1.74, 95% CI: 1.46–2.07, p < 0.001). Concomitant use of antibiotics during chemotherapy did not impact OS (HR: 1.01, 95% CI: 0.67–1.51).
Conclusions: When treating advanced unresectable or metastatic UC with ICI therapy, we need to pay attention to concomitant medications, such as PPIs and antibiotics to avoid reducing the efficacy of ICI therapy. The mechanism of action of these drugs on ICI efficacy requires further examination.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PariziMehdi Kardoust
en-aut-sei=Parizi
en-aut-mei=Mehdi Kardoust
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiszczykMarcin
en-aut-sei=Miszczyk
en-aut-mei=Marcin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FazekasTamás
en-aut-sei=Fazekas
en-aut-mei=Tamás
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SchulzRobert J
en-aut-sei=Schulz
en-aut-mei=Robert J
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LaukhtinaEkaterina
en-aut-sei=Laukhtina
en-aut-mei=Ekaterina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RajwaPawel
en-aut-sei=Rajwa
en-aut-mei=Pawel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ObernederKatharina
en-aut-sei=Oberneder
en-aut-mei=Katharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ChlostaPiotr
en-aut-sei=Chlosta
en-aut-mei=Piotr
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=6
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=8
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=13
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=14
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=15
en-affil=Department of Urology, Medical College, Jagiellonian University
kn-affil=
affil-num=16
en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre
kn-affil=
affil-num=17
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Concomitant medications
kn-keyword=Concomitant medications
en-keyword=Proton pump inhibitors
kn-keyword=Proton pump inhibitors
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=steroids
kn-keyword=steroids
en-keyword=Opioids
kn-keyword=Opioids
en-keyword=Histamine type-2 receptor antagonists
kn-keyword=Histamine type-2 receptor antagonists
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
en-keyword=Urothelial carcinoma
kn-keyword=Urothelial carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=3
article-no=
start-page=258
end-page=263
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postoperative infections after robotic‐assisted radical prostatectomy in a single large institution: Effect of type and duration of prophylactic antibiotic administration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: We evaluated the incidence of and risk factors for postoperative infections after robotic-assisted radical prostatectomy (RARP) according to the type and duration of prophylactic antibiotic administration.
Methods: A total of 1038 patients underwent RARP at our institution from 2010 to 2021; 1026 patients (201 in the cefazolin [CEZ] group and 825 in the ampicillin/sulbactam [ABPC/SBT] group) were analyzed, and 12 who used other antibiotics were excluded. The primary endpoint was the incidence of urinary tract infection (UTI), surgical site infection (SSI), and remote infection (RI). T-tests, propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were performed. Multivariate logistic regression analysis was performed to evaluate the effect of type and duration of prophylactic antibiotic administration.
Results: The incidence of UTI was 2.5% (5/201) in the CEZ group and 3.2% (26/825) in the ABPC/SBT group, with no significant difference between groups (p = 0.622). The rates of SSI and RI were comparable between groups (p = 0.680 and 0.906, respectively). Although the duration of antimicrobial therapy was longer in the ABPC/SBT group (p < 0.001), there was no significant difference in the incidence of UTI/SSI/RI after PSM and IPTW (all p > 0.05). Multivariate logistic regression analysis showed that neither the type of antibiotic nor the duration of administration affected the incidence of UTI/SSI/RI.
Conclusion: The risk of postoperative UTI/SSI/RI after RARP did not change with the type and duration of antimicrobial therapy.
en-copyright=
kn-copyright=
en-aut-name=MitsuiMasao
en-aut-sei=Mitsui
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasakiNaoya
en-aut-sei=Nagasaki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cefazolin
kn-keyword=cefazolin
en-keyword=postoperative infections
kn-keyword=postoperative infections
en-keyword=prophylactic antibiotics
kn-keyword=prophylactic antibiotics
en-keyword=prostate
kn-keyword=prostate
en-keyword=robotic-assisted radical prostatectomy
kn-keyword=robotic-assisted radical prostatectomy
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=4
article-no=
start-page=48
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Influence of tumor‑associated factors on the treatment selection between partial nephrectomy and ablation therapy for small renal tumors (Review)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For small renal tumors, nephron‑preserving treatment, including partial nephrectomy or ablation therapy, is recommended. According to major guidelines, ablation therapies are advised for patients who are deemed not suitable to undergo surgery due to an advanced age or the presence of comorbidities. However, compared with surgery, ablation therapy can result in superior safety and functional outcomes. The present review discusses the factors affecting decision‑making as regards treatment options for small renal tumors. When determining an appropriate treatment option, tumor locations, as well as the condition and preferences of the patient, are considered. Scoring systems, such as the RENAL Nephrometry Score can assist in guiding treatment decisions. However, surgery may be the preferred approach for tumors near major vessels and collecting systems. For endophytic tumors, partial nephrectomy can be challenging due to the difficulty in visualizing intra‑parenchymal tumors during the procedure, whereas ablation therapies may be inferior to partial nephrectomy. Although treatment selection for small renal tumors can be affected by tumor location, partial nephrectomy remains the gold standard for numerous cases.
en-copyright=
kn-copyright=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueShota
en-aut-sei=Inoue
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=small renal mass
kn-keyword=small renal mass
en-keyword=partial nephrectomy
kn-keyword=partial nephrectomy
en-keyword=ablation therapy
kn-keyword=ablation therapy
en-keyword=tumor location
kn-keyword=tumor location
en-keyword=endophytic tumor
kn-keyword=endophytic tumor
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating Pericoronary Adipose Tissue Attenuation to Predict Cardiovascular Events
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pericoronary adipose tissue attenuation (PCATA) is a novel imaging biomarker of pericoronary inflammation associated with coronary artery disease. Several studies have reported the usefulness of PCATA among people of European ethnicity; however, data are lacking concerning those of Asian ethnicity.
Objectives: This multicenter study aimed to evaluate the effect of PCATA on prognosis in East Asian patients.
Methods: Between August 2011 and December 2016, 2,172 patients underwent clinically indicated coronary computed tomography angiography (CTA) at 4 hospitals in Japan. Among them, 1,270 patients were analyzed. PCATA was evaluated using coronary CTA to measure pericoronary adipose tissue density surrounding the 3 major coronary arteries. The outcomes were composite cardiovascular events, including cardiovascular death and acute coronary syndrome; 33 cardiovascular events observed during a median follow-up of 6.0 years (Q1-Q3: 3.6-8.2 years).
Results: Right coronary artery (RCA)-PCATA was significantly higher in patients with cardiovascular events than in those without (−63.7 ± 8.9 HU vs −67.4 ± 9.1 HU, respectively; P = 0.021). High RCA-PCATA was significantly associated with cardiovascular events in a model that included the Hisayama risk score and adverse coronary CTA findings (HR: 1.55; 95% CI: 1.07-2.24; P = 0.019).
Conclusions: High RCA-PCATA showed significant association with future cardiovascular events after adjusting conventional risk factors and adverse coronary CTA findings in East Asian patients who underwent clinically indicated coronary CTA.
en-copyright=
kn-copyright=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukeSoichiro
en-aut-sei=Fuke
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SeiyamaKousuke
en-aut-sei=Seiyama
en-aut-mei=Kousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoiMasayuki
en-aut-sei=Doi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=acute coronary syndrome(s)
kn-keyword=acute coronary syndrome(s)
en-keyword=coronary computed tomography angiography
kn-keyword=coronary computed tomography angiography
en-keyword=high-risk plaque
kn-keyword=high-risk plaque
en-keyword=obstructive stenosis
kn-keyword=obstructive stenosis
en-keyword=pericoronary adipose tissue attenuation
kn-keyword=pericoronary adipose tissue attenuation
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=5
article-no=
start-page=686
end-page=689
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=L or M1—Critical Challenges in Mediation Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methods for causal mediation analysis have developed dramatically over the past few decades.1–7 In the causal mediation literature, several causal quantities—or estimands—have been proposed, including natural direct and indirect effects, interventional direct and indirect effects, and separable direct and indirect effects. As another possible causal estimand, Chen and Lin8 proposed separable path-specific effects, which is an extension of the separable effects framework to cases that involve multiple ordered mediators. In this commentary, I briefly discuss the newly proposed method from a broader perspective on causal mediation analysis. For readers less familiar with common causal mediation approaches, please see related literature.1–3,9–11
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=3
article-no=
start-page=104810
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99°C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field.
en-copyright=
kn-copyright=
en-aut-name=TakanoAruto
en-aut-sei=Takano
en-aut-mei=Aruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmaliDennis V.
en-aut-sei=Umali
en-aut-mei=Dennis V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WardhanaApril H.
en-aut-sei=Wardhana
en-aut-mei=April H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SawitriDyah H.
en-aut-sei=Sawitri
en-aut-mei=Dyah H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TeramotoIsao
en-aut-sei=Teramoto
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HatabuToshimitsu
en-aut-sei=Hatabu
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KidoYasutoshi
en-aut-sei=Kido
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoAkira
en-aut-sei=Kaneko
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SasaiKazumi
en-aut-sei=Sasai
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatohHiromitsu
en-aut-sei=Katoh
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsubayashiMakoto
en-aut-sei=Matsubayashi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College
kn-affil=
affil-num=3
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=4
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=5
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=10
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=11
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
en-keyword=Coccidian parasite
kn-keyword=Coccidian parasite
en-keyword=Eimeria tenella
kn-keyword=Eimeria tenella
en-keyword=Extraction
kn-keyword=Extraction
en-keyword=Molecular identification
kn-keyword=Molecular identification
en-keyword=Oocyst
kn-keyword=Oocyst
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=7
article-no=
start-page=koaf142
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancentromere analysis of Allium species reveals diverse centromere positions in onion and gigantic centromeres in garlic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In eukaryotes, centromeres interact with the kinetochore for distribution of genetic information in cell division, yet their sequence and size are diverse among species. However, their position on chromosomes is considered to be conserved within a species. In this study, we analyzed the centromeres of 3 Allium species, namely, Welsh onion (Allium fistulosum), onion (Allium cepa), and garlic (Allium sativum) via pancentromere analysis and repetitive sequence analysis of centromeres and their neighborhoods and revealed their mobility, sequence organization, and size. Among the 3 species, Welsh onion and garlic had stable centromeres, but the onion centromere appeared to be polymorphic and frequently differed in position by up to 28.0 Mb among cultivars and between multiple individuals of the same cultivar. This mobility was stabilized by hybridization with Welsh onions. Furthermore, these 3 species have very different centromere sequence organization, including differences in the existence and maturity of centromeric satellites, and differences in centromere size, with Welsh onion having a centromere of 1.9 Mb, and garlic having a centromere of ∼10.6 Mb, the largest of any organism with monocentric chromosomes analyzed to date. Our pancentromere analysis of these Allium species reveals the variation in sequence organization, size, and position of this important chromosomal region.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTakashi
en-aut-sei=Akagi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=1041
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Longitudinal changes and tracking of in-school physical activity in primary school children: four-year longitudinal study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background There is little evidence on the tracking of physical activity during school hours. In addition, tracking physical activity in schools provides important evidence for understanding children’s physical activity and conducting intervention studies. Therefore, this study examined longitudinal changes and tracking of in-school physical activity in primary school children.
Methods In this study, physical activity was investigated longitudinally in primary school children for 4 years. The baseline participants consisted of 103 second-grade students (7–8 years old) who participated. Step counts and moderate-to-vigorous physical activity (MVPA) in school and during first recess and lunch/second recess were examined using an accelerometer (Kenz Lifecorder GS 4-second version; Suzuken Co. Ltd, Nagoya, Japan).
Results After excluding missing data (moving school; n = 8, physical activity; n = 8), 87 (43 boys and 44 girls) of whom were included in the final analysis. Step counts and MVPA during school and physical education in boys did not decrease across the school years. By contrast, in girls, step counts during school did not decrease across the school years, however MVPA did decrease. In addition, for both sexes, step counts and MVPA during first recess decrease across the school years. During lunch/second recess, only step counts decrease across the school years in both sexes. In addition, the tracking coefficients for step counts and MVPA for boys in school and during first recess and lunch/second recess were found across many school years. Contrarily, girls had fewer significant tracking coefficients between school years than boys. There were also few significant tracking coefficients between grades for physical education step counts and MVPA for both boys and girls.
Conclusions Our results suggested that in-school step counts for both boys and girls does not decrease across the school years. However, given that girls demonstrated reduced levels of in-school MVPA across the school years, it is important to promote strategies to increase MVPA in this group.
en-copyright=
kn-copyright=
en-aut-name=SasayamaKensaku
en-aut-sei=Sasayama
en-aut-mei=Kensaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasunebeJin
en-aut-sei=Yasunebe
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AdachiMinoru
en-aut-sei=Adachi
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Education, Mie University
kn-affil=
affil-num=2
en-affil=Faculty of Education, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Education, Okayama University
kn-affil=
en-keyword=Physical activity
kn-keyword=Physical activity
en-keyword=Step counts
kn-keyword=Step counts
en-keyword=Moderate-to-vigorous physical activity
kn-keyword=Moderate-to-vigorous physical activity
en-keyword=Youth
kn-keyword=Youth
en-keyword=Recess
kn-keyword=Recess
en-keyword=Physical education
kn-keyword=Physical education
en-keyword=Longitudinal study
kn-keyword=Longitudinal study
en-keyword=Tracking
kn-keyword=Tracking
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie – CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=12
article-no=
start-page=4932
end-page=4951
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
en-copyright=
kn-copyright=
en-aut-name=GotoYukihisa
en-aut-sei=Goto
en-aut-mei=Yukihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadotaYasuhiro
en-aut-sei=Kadota
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MbengueMalick
en-aut-sei=Mbengue
en-aut-mei=Malick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LewisJennifer D
en-aut-sei=Lewis
en-aut-mei=Jennifer D
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MakiNoriko
en-aut-sei=Maki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NgouBruno Pok Man
en-aut-sei=Ngou
en-aut-mei=Bruno Pok Man
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SklenarJan
en-aut-sei=Sklenar
en-aut-mei=Jan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DerbyshirePaul
en-aut-sei=Derbyshire
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShibataArisa
en-aut-sei=Shibata
en-aut-mei=Arisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchihashiYasunori
en-aut-sei=Ichihashi
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GuttmanDavid S
en-aut-sei=Guttman
en-aut-mei=David S
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakagamiHirofumi
en-aut-sei=Nakagami
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MenkeFrank L H
en-aut-sei=Menke
en-aut-mei=Frank L H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=RobatzekSilke
en-aut-sei=Robatzek
en-aut-mei=Silke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DesveauxDarrell
en-aut-sei=Desveaux
en-aut-mei=Darrell
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ZipfelCyril
en-aut-sei=Zipfel
en-aut-mei=Cyril
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=2
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=3
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=4
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=7
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=8
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=9
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=10
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=11
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=12
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=13
en-affil=Plant Proteomics Research Unit, RIKEN CSRS
kn-affil=
affil-num=14
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=15
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=16
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=17
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=18
en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
kn-affil=
affil-num=19
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrochemical Generation of Sulfonamidyl Radicals via Anodic Oxidation of Hydrogen Bonding Complexes: Applications to Electrosynthesis of Benzosultams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amidyl radicals and sulfonamidyl radicals are widely used in the field of organic synthesis. In particular, the electrochemical oxidation of amides in the presence of bases is one of the most practical methods for generating amidyl radicals. However, it is often difficult to observe the “true” radical precursor, such as an amide anion and/or a hydrogen bonding complex with an amide and a base. We found that a sulfonamide and Bu4NOAc form a 1:1 hydrogen bonding complex by spectroscopic experiments. Cyclic voltammetry suggested that 1:1 hydrogen bonding complexes should be oxidized predominantly under the optimized conditions to afford a sulfonamidyl radical via the proton-coupled electron transfer (PCET) process by the oxidation of the complex. Thus-generated sulfonamidyl radicals could be used in the electrochemical synthesis of a variety of benzosultams.
en-copyright=
kn-copyright=
en-aut-name=OkumuraYasuyuki
en-aut-sei=Okumura
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=electrochemical generation
kn-keyword=electrochemical generation
en-keyword=sulfonamidyl radicals
kn-keyword=sulfonamidyl radicals
en-keyword=hydrogen bonding complexes
kn-keyword=hydrogen bonding complexes
en-keyword=anodic oxidation
kn-keyword=anodic oxidation
en-keyword=proton-coupled electron transfer
kn-keyword=proton-coupled electron transfer
en-keyword=electrosynthesis
kn-keyword=electrosynthesis
en-keyword=benzosultams
kn-keyword=benzosultams
en-keyword=cyclization
kn-keyword=cyclization
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=e88945
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Six-Year Remission With No Relapse After Four-Time Weekly Rituximab Only for Bilateral Ocular Adnexal Follicular Lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Follicular lymphoma mostly takes an indolent course, and thus, observation with watchful waiting is a main therapeutic strategy. Recent long-term studies suggest earlier treatment with rituximab monotherapy may benefit patients by delaying the need for treatment in the later phase of exacerbation. In this study, we reported a patient with bilateral orbital follicular lymphoma who received four-time weekly rituximab monotherapy as an induction therapy only and maintained the remission for 5 years with no treatment. The patient was a 51-year-old woman who developed a right upper orbital mass and was diagnosed with follicular lymphoma grade 1 by the excisional biopsy. Two years later, at the age of 53 years, she developed a left lacrimal gland mass and underwent excision. The pathological diagnosis was follicular lymphoma grade 1. She did not have any other systemic lesions by fluorodeoxyglucose positron emission tomography. At the age of 54 years, she developed a new mass on the nasal side of the right orbit and underwent weekly rituximab monotherapy (375 mg/m2) four times a month, leading to the reduction of the mass in 3 months. Two high uptake sites on the temporal and nasal side of the right superior orbit by fluorodeoxyglucose positron emission tomography disappeared one year later at the age of 55 years. She was followed with no treatment for 6 years until the age of 60 years at the latest visit. In case of a local orbital relapse, local radiotherapy would be the standard, but rituximab monotherapy as an induction therapy only was chosen in the present patient. Rituximab monotherapy in place of local radiotherapy would be a treatment option for orbital follicular lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Transfusion and Cell Therapy, Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=claustrophobia
kn-keyword=claustrophobia
en-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
kn-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=follicular lymphoma
kn-keyword=follicular lymphoma
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
kn-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
en-keyword=ocular adnexa
kn-keyword=ocular adnexa
en-keyword=orbital mass
kn-keyword=orbital mass
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=rituximab
kn-keyword=rituximab
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=11
article-no=
start-page=uhae248
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies.
en-copyright=
kn-copyright=
en-aut-name=NagasakaKyoka
en-aut-sei=Nagasaka
en-aut-mei=Kyoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamagataKeigo
en-aut-sei=Yamagata
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaSoichiro
en-aut-sei=Nishiyama
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaneHisayo
en-aut-sei=Yamane
en-aut-mei=Hisayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaoRyutaro
en-aut-sei=Tao
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoRyohei
en-aut-sei=Nakano
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakazakiTetsuya
en-aut-sei=Nakazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=9
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25 cm; inner diameter, 9 cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7 cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=94
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=72
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of an AI-based Image Analysis System to Calculate the Visit Duration of a Green Blow Fly on a Strawberry Flower
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pollinator insects are required to pollinate flowers in the production of some fruits and vegetables, and strawberries fall into this category. However, the function of pollinators has not been clarified by quantitative metrics such as the duration of pollinator visits needed by flowers. Due to the long activity time of pollinators (approximately 10-h), it is not easy to observe the visitation characteristics manually. Therefore, we developed software for evaluating pollinator performance using two types of artificial intelligence (AI), YOLOv4, which is an object detection AI, and VGG16, which is an image classifier AI. In this study, we used Phaenicia sericata Meigen (green blow fly) as the strawberry pollinator. The software program can automatically estimate the visit duration of a fly on a flower from video clips. First, the position of the flower is identified using YOLO, and the identified location is cropped. Next, the cropped image is classified by VGG16 to determine if the fly is on the flower. Finally, the results are saved in CSV and HTML format. The program processed 10 h of video (collected from 07:00 h to 17:00 h) taken under actual growing conditions to estimate the visit durations of flies on flowers. The recognition accuracy was approximately 97%, with an average difference of 550 s. The software was run on a small computer board (the Jetson Nano), indicating that it can easily be used without a complicated AI configuration. This means that the software can be used immediately by distributing pre-configured disk images. When the software was run on the Jetson Nano, it took approximately 11 min to estimate one day of 2-h video. It is therefore clear that the visit duration of a fly on a flower can be estimated much faster than by manually checking videos. Furthermore, this system can estimate the visit durations of pollinators to other flowers by changing the YOLO and VGG16 model files.
en-copyright=
kn-copyright=
en-aut-name=TaniguchiHiroki
en-aut-sei=Taniguchi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsukudaYuki
en-aut-sei=Tsukuda
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotoTanjuro
en-aut-sei=Goto
en-aut-mei=Tanjuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasubaKen-ichiro
en-aut-sei=Yasuba
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=School of Agriculture Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=deep learning
kn-keyword=deep learning
en-keyword=fly
kn-keyword=fly
en-keyword=microcomputer
kn-keyword=microcomputer
en-keyword=VGG16
kn-keyword=VGG16
en-keyword=YOLO
kn-keyword=YOLO
END
start-ver=1.4
cd-journal=joma
no-vol=93
cd-vols=
no-issue=4
article-no=
start-page=335
end-page=343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of Low-temperature Regulated Flavone Synthesis in Dahlia Variabilis and its Effects on Flower Color
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dahlia (Dahlia variabilis) flower colors are diverse and are determined by the accumulation of flavonoids. Cultivars with dark red flowers accumulate more anthocyanins in their petals. Flower color changes such as color fading often occur in some cultivars. In this study, low minimum temperature regulated flower color fading and flavonoid synthesis in dahlia ‘Nessho’ were investigated. The pigment contents and expression levels of flavonoid biosynthesis genes were investigated in detail under several growing environments in which color fading occurs. Flavones accumulate more in color-faded orange flowers than in dark red ray florets. The expression analysis of the anthocyanin synthesis pathway genes indicated that the upregulation of flavone synthase (DvFNS) gene expression correlated with the high accumulation of flavones in color-faded petals. DvFNS expression was also detected in young leaves, and the expression level was higher in winter than in summer. Seasonal changes in DvFNS expression in young leaves significantly correlated with color fading in petals. The change in DvFNS expression in young unexpanded leaves of relatively high-sensitive plants was significantly higher than that of low-sensitive plants before and after treatment under inductive conditions. In conclusion, low-temperature-inducible changes in the flavonoid accumulation in petals was suggested to reflect a change in DvFNS expression occurring in the meristem prior to flower bud formation. This temporal DvFNS expression in young unexpanded leaves of ‘Nessho’ dahlia could be an insight for the selection and breeding of non-color fading plants.
en-copyright=
kn-copyright=
en-aut-name=K. MuthamiaEdna
en-aut-sei=K. Muthamia
en-aut-mei=Edna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoKoji
en-aut-sei=Naito
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaHiromasa
en-aut-sei=Okada
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KarasawaYukino
en-aut-sei=Karasawa
en-aut-mei=Yukino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KikumuraTokuyu
en-aut-sei=Kikumura
en-aut-mei=Tokuyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaraTakuya
en-aut-sei=Nara
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamauzuYasunori
en-aut-sei=Hamauzu
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasubaKen-ichiro
en-aut-sei=Yasuba
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitamuraYoshikuni
en-aut-sei=Kitamura
en-aut-mei=Yoshikuni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GotoTanjuro
en-aut-sei=Goto
en-aut-mei=Tanjuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=6
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=anthocyanin
kn-keyword=anthocyanin
en-keyword=dahlia
kn-keyword=dahlia
en-keyword=flavone synthase
kn-keyword=flavone synthase
en-keyword=seasonal color fading
kn-keyword=seasonal color fading
en-keyword=young unexpanded leaves
kn-keyword=young unexpanded leaves
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=120296
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications.
en-copyright=
kn-copyright=
en-aut-name=KimuraRyota
en-aut-sei=Kimura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ferré-PujolPilar
en-aut-sei=Ferré-Pujol
en-aut-mei=Pilar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Virus adsorption
kn-keyword=Virus adsorption
en-keyword=Dye adsorption
kn-keyword=Dye adsorption
en-keyword=Cationic polymer composites
kn-keyword=Cationic polymer composites
en-keyword=Adsorbent
kn-keyword=Adsorbent
en-keyword=Aggregation
kn-keyword=Aggregation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and − 900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was < 0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at − 900 HU had a maximum difference between facilities of > 5%, and the dose difference corresponding to an LN-300 lung CT value difference of > 20 HU was > 1% at a field size of 2 × 2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.
en-copyright=
kn-copyright=
en-aut-name=NomuraMia
en-aut-sei=Nomura
en-aut-mei=Mia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoShunsuke
en-aut-sei=Goto
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaMizuki
en-aut-sei=Yoshioka
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYuiko
en-aut-sei=Kato
en-aut-mei=Yuiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsunodaAyaka
en-aut-sei=Tsunoda
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiokaKunio
en-aut-sei=Nishioka
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Dose calculation
kn-keyword=Dose calculation
en-keyword=Inter-facility variation
kn-keyword=Inter-facility variation
en-keyword=Low-density regions
kn-keyword=Low-density regions
en-keyword=Percentage depth dose
kn-keyword=Percentage depth dose
en-keyword=Radiation therapy planning system
kn-keyword=Radiation therapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=213
end-page=231
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RKPM: Restricted Kernel Page Mechanism to Mitigate Privilege Escalation Attacks
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Kernel memory corruption attacks against operating systems exploit kernel vulnerabilities to overwrite kernel data. Kernel address space layout randomization makes it difficult to identify kernel data by randomizing their virtual address space. Control flow integrity (CFI) prevents unauthorized kernel code execution by verifying kernel function calls. However, these countermeasures do not prohibit writing to kernel data. If the virtual address of privileged information is specified and CFI is circumvented, the privileged information can be modified by a kernel memory corruption attack. In this paper, we propose a restricted kernel page mechanism (RKPM) to mitigate kernel memory corruption attacks by introducing restricted kernel pages to protect the kernel data specified in the kernel. The RKPM focuses on the fact that kernel memory corruption attacks attempt to read the virtual addresses around the privileged information. The RKPM adopts page table mapping handling and a memory protection key to control the read and write restrictions of the restricted kernel pages. This allows us to mitigate kernel memory corruption attacks by capturing reads to the restricted kernel page before the privileged information is overwritten. As an evaluation of the RKPM, we confirmed that it can mitigate privilege escalation attacks on the latest Linux kernel. We also measured that there was a certain overhead in the kernel performance. This study enhances kernel security by mitigating privilege escalation attacks through the use of software or hardware based restricted kernel pages.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=66
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=kdMonitor: Kernel Data Monitor for Detecting Kernel Memory Corruption
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Privilege escalation attacks through memory corruption via kernel vulnerabilities pose significant threats to operating systems. Although the extended Berkley Packet Filter has been employed to trace kernel code execution by inserting interrupts before and after kernel code invocations, it does not track operations before and after kernel data writes, thus hindering effective kernel data monitoring. In this study, we introduce a kernel data monitor (kdMonitor), which is a novel security mechanism designed to detect unauthorized alterations in the monitored kernel data of a dedicated kernel page. The kdMonitor incorporates two distinct methods. The first is periodic monitoring which regularly outputs the monitored kernel data of the dedicated kernel pages. The second is dynamic monitoring, which restricts write access to a dedicated kernel page, supplements any write operations with page faults, and outputs the monitored kernel data of dedicated kernel pages. kdMonitor enables real-time tracking of specified kernel data of the dedicated kernel page residing in the kernel's virtual memory space from the separated machine. Using kdMonitor, we demonstrated its capability to pinpoint tampering with user process privileged information stemming from privilege escalation attacks on the kernel. Through an empirical evaluation, we validated the effectiveness of kdMonitor in detecting privilege escalation attacks by user processes on Linux. Performance assessments revealed that kdMonitor achieved an attack detection time of 0.83 seconds with an overhead of 0.726 %.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Okayama University,Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vulnerability countermeasure
kn-keyword=Vulnerability countermeasure
en-keyword=Operating system security
kn-keyword=Operating system security
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=50
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=A New Approach to Economic Ripple Effects in Regional Input-Output Tables
kn-title=地域産業連関表における経済波及効果のNew Approach
en-subtitle=
kn-subtitle=
en-abstract= This paper first addresses the concept of economic ripple effects, highlighting that simulation results based on input-output tables often lead to overestimations. The primary reason for this overestimation lies in a misunderstanding of the underlying assumptions that generate ripple effects. Specifically, household consumption within a given region merely represents a transfer of money rather than a genuine economic impact. In principle, ripple effects should be understood as additional consumption resulting from increased income. In the absence of income growth, such effects largely represent consumption substitution or intertemporal shifts in spending. Furthermore, what is commonly referred to as “economic impact” is typically calculated as the cumulative total of sales revenue, which aggregates all monetary transactions indiscriminately. This approach differs from the concept of value-added effects, or income effects, which cannot exceed the initial inflow of money from outside the region. One of the factors contributing to these misinterpretations is the insufficient education on input-output analysis at universities. Additionally, computational tools provided by think tanks and public institutions for estimating ripple effects also present methodological issues. To address these challenges, this paper further refines a model previously proposed by the author that visualizes the ripple effect process. The study demonstrates, using real-world examples, the process of constructing ex-post input-output tables following exogenous impacts such as events. In particular, the paper introduces a “partially non-competitive import type” input structure as an alternative to the conventional competitive import-type input-output tables, which tend to overestimate the effects of changes in self-sufficiency rates. This new approach offers a more accurate framework for analyzing economic impacts.
kn-abstract= 本稿では,まず経済波及効果の考え方について,産業連関表を用いたシミュレーションの結果が,しばしば過大評価になっていることを述べる。その理由として,経済波及効果をもたらす前提条件の考え方にしばしば誤解があることを指摘する。域内の居住者の消費はマネーの移転であり,真の経済効果ではない。波及効果とは,本来,所得が増えた結果の追加消費であって,所得が増えない状況では,代替消費や消費の先取りに過ぎないのである。また,一般にいう経済効果とは,売上高の積み上げであって同じマネーが何でも加算されているものであり,付加価値効果すなわち所得効果とは異なる。付加価値効果は,当初の域外から入ってきたマネー以上にはならない。こういった解釈の誤謬をもたらしているのは,大学での産業連関分析の教育が十分でないことも原因の1つであるが,シンクタンクや公的機関などで提供されている波及効果の計算ツールにも問題がある。そこで本稿では,これまで筆者が提唱してきた波及効果プロセスを見える化するモデルを更に精緻化し,イベントなど外生的インパクトが発生した後の事後的な産業連関表を構築する流れに関して実例を用いて説明を行う。特に自給率の変化の効果については,これまでの競争移入型連関表では効果が過大傾向になる問題点を解消するべく,「部分非競争移入型」の投入構造を提案し,新たな分析方法を提案する。
en-copyright=
kn-copyright=
en-aut-name=NakamuraRyohei
en-aut-sei=Nakamura
en-aut-mei=Ryohei
kn-aut-name=中村良平
kn-aut-sei=中村
kn-aut-mei=良平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Re-Thinking the Locus of Innovation
kn-title=イノベーションの発生源研究の再検討
en-subtitle=
kn-subtitle=
en-abstract= This study aims to theoretically examine prior research on the locus of innovation, with a particular focus on clarifying "when," "where," and "by whom" innovation is generated. The analysis reveals that in the context of B to B (Industrial Goods) , the shift of innovation sources toward enterprise users has been explained from the perspective of economic rationality, incorporating multiple factors such as transaction cost, expected innovation rents, sticky information, internal capabilities (Absorptive Capacity) , and external industrial structures (Product Architecture, Ecosystem) . In contrast, in the B to C context (Consumer Goods) , end users pursue innovation for a wide variety of reasons, including manufacturers' lack of responsiveness to niche markets, the enjoyment of creative activity, connection with user communities, and personal growth. Among these, the enjoyment derived from creative activity has deemed to be identified as one of the most fundamental motivational factors. However, the methodological articulation of such psychological factors is not enough. Leaving the psychological drivers behind innovation as a black box is not merely a matter of academic curiosity but presents a significant challenge for management studies as a social science. This is because management is always purposive attempts for directing and controlling the process of value creation and sometimes psychological exaltation, which may be recently called 'flow' experience, may conflict such attempts. In future research on the locus of innovation, it is essential to focus on these psychological aspects of individual innovator and to develop new research approaches. First, it has a room for further elucidation of the mechanisms by which positive emotions contribute to innovation, but this challenge is hardly easy to overcome. Since creativity is essentially a construct of the individual level and innovation is not, the argument of balancing the entrepreneurial motivational drivers and the managerial direction and control of creative destruction needs to be mediated by meso-level constructs. In our prospect, such concepts as underdeveloped ecosystem on the supply side and immature connoisseur on the side of consumers may be promising. Another concern is the generally limited sample size of creative minds. The existent research tactics that have been found in our neighboring disciplines sharing the same problem as ours, either qualitative or quantitative, may provide us with methodical benchmarks.
kn-abstract= 本論文は,イノベーションの発生源に関する先行研究を振り返り,「いつ」「どこで」「誰によって」イノベーションが生み出されるのかを理論的に考察することを目的とする。考察の結果,「B to B」の文脈においては,イノベーションの発生源が企業ユーザーへ移行するメカニズムとして,取引コスト理論,期待利益仮説,情報粘着性の仮説,企業内部の独自能力(吸収能力),および外部の産業構造(製品アーキテクチャ・エコシステム)といった複数の要素からなる経済的合理性の観点から分析されていることが明らかになった。一方,「B to C」の文脈では,エンドユーザーがイノベーションに向かう動機として,「ニッチ市場に対するメーカーの消極的な対応」「創造的活動の楽しさ」「ユーザーコミュニティとの繋がり」「知識・スキルの向上」など多種多様な要素が存在し,中でも創造的活動の楽しさが根源的な動機づけの1つであると確認された。一方で,イノベーターを突き動かす心理的要因をブラックボックス化したまま放置することは,単なる知的好奇心の問題に留まらず,社会科学としての経営学にとっても重要な問題であると考えられる。今後のイノベーションの発生源研究においては,起業家をはじめとするイノベーター個人の心理的側面にいかに目を向け,創造的活動におけるポジティブな感情が働くメカニズムをイノベーションの発生メカニズムにいかに位置づけるか,その研究アプローチの提示が求められる。
en-copyright=
kn-copyright=
en-aut-name=HuangQi
en-aut-sei=Huang
en-aut-mei=Qi
kn-aut-name=黄琪
kn-aut-sei=黄
kn-aut-mei=琪
aut-affil-num=1
ORCID=
en-aut-name=FujiiDaiji
en-aut-sei=Fujii
en-aut-mei=Daiji
kn-aut-name=藤井大児
kn-aut-sei=藤井
kn-aut-mei=大児
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
affil-num=2
en-affil=
kn-affil=岡山大学学術研究院ヘルスシステム統合科学学域
en-keyword=イノベーションの発生源 (Locus of Innovation)
kn-keyword=イノベーションの発生源 (Locus of Innovation)
en-keyword=ユーザーイノベーション (User Innovation)
kn-keyword=ユーザーイノベーション (User Innovation)
en-keyword=経済的合理性 (Economic Rationality)
kn-keyword=経済的合理性 (Economic Rationality)
en-keyword=内発的動機づけ (Intrinsic Motivation)
kn-keyword=内発的動機づけ (Intrinsic Motivation)
en-keyword=フロー体験 (Flow Experience)
kn-keyword=フロー体験 (Flow Experience)
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=ncaf080
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy.
en-copyright=
kn-copyright=
en-aut-name=MaedaTakahiko
en-aut-sei=Maeda
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraMakoto
en-aut-sei=Hara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamasakiHiroyuki
en-aut-sei=Yamasaki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaMakoto
en-aut-sei=Nakahara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=902
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250711
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KameyamaTakeru
en-aut-sei=Kameyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=antimicrobial
kn-keyword=antimicrobial
en-keyword=denture liner
kn-keyword=denture liner
en-keyword=cetylpyridiniumchloride
kn-keyword=cetylpyridiniumchloride
en-keyword=drug release
kn-keyword=drug release
en-keyword=drug recharge
kn-keyword=drug recharge
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=118030
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6 J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180 mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
en-copyright=
kn-copyright=
en-aut-name=Aoki-SaitoHaruka
en-aut-sei=Aoki-Saito
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakakuraTakashi
en-aut-sei=Nakakura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiTsutomu
en-aut-sei=Sasaki
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraTadahiro
en-aut-sei=Kitamura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisadaTakeshi
en-aut-sei=Hisada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaShuichi
en-aut-sei=Okada
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaMasanobu
en-aut-sei=Yamada
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Anatomy, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Gunma University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diabetes, Soleiyu Asahi Clinic
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
en-keyword=(+)-Terrein
kn-keyword=(+)-Terrein
en-keyword=Brown adipose tissue
kn-keyword=Brown adipose tissue
en-keyword=Thermogenesis
kn-keyword=Thermogenesis
en-keyword=Obesity
kn-keyword=Obesity
en-keyword=PPARγ
kn-keyword=PPARγ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From Carboxylic Acids or Their Derivatives to Amines and Ethers: Modern Decarboxylative Approaches for Sustainable C–N and C–O Bond Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.
en-copyright=
kn-copyright=
en-aut-name=YanWeidan
en-aut-sei=Yan
en-aut-mei=Weidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TianTian
en-aut-sei=Tian
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00678
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alkoxy‐Substituted Anthrabis(Thiadiazole)‐Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c′]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs).
en-copyright=
kn-copyright=
en-aut-name=YanYi
en-aut-sei=Yan
en-aut-mei=Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriHiroki
en-aut-sei=Mori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTomoki
en-aut-sei=Yoshino
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InamiRyuki
en-aut-sei=Inami
en-aut-mei=Ryuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJiaxin
en-aut-sei=Chang
en-aut-mei=Jiaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoJunqing
en-aut-sei=Gao
en-aut-mei=Junqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Backbone conformation
kn-keyword=Backbone conformation
en-keyword=Conjugated polymers
kn-keyword=Conjugated polymers
en-keyword=Organic solar cells
kn-keyword=Organic solar cells
en-keyword=Semiconducting polymers
kn-keyword=Semiconducting polymers
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=8
article-no=
start-page=1653
end-page=1660
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemical composition of essential oil of Acacia crassicarpa Benth. (Fabaceae) from Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This research aimed to identify the volatile compounds found in the fresh leaves of Acacia crassicarpa Benth. This is the first phytochemical investigation of this species. Essential oils from the leaves of A. crassicarpa were obtained by hydro-distillation and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Sixty-one compounds accounting for 95.8% of the leaf oil were identified. The classes of compounds identified in the oil sample were aldehydes (30.7%), sesquiterpene hydrocarbons (25.2%), alkanes (19.1%), oxygenated monoterpenes (3.6%) oxygenated sesquiterpenes (2.3%), monoterpene hydrocarbons (0.8%) and others (14.2%). The major constituents in the leaf oil were tridecanal (24.5%), (E)-caryophyllene (11.7%), n-heneicosane (7.2%), squalene (6.5%), and 7-tetradecenal (5.9%).
en-copyright=
kn-copyright=
en-aut-name=Quoc DoanTuan
en-aut-sei=Quoc Doan
en-aut-mei=Tuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Tien DinhTai
en-aut-sei=Tien Dinh
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=K. MatsumotoTetsuya
en-aut-sei=K. Matsumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DinhDien
en-aut-sei=Dinh
en-aut-mei=Dien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MikiNaoko
en-aut-sei=Miki
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirobeMuneto
en-aut-sei=Hirobe
en-aut-mei=Muneto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Thi NguyenHoai
en-aut-sei=Thi Nguyen
en-aut-mei=Hoai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Hue Union of Science and Technology Associations (HUSTA)
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Engineering, Ibaraki University
kn-affil=
affil-num=4
en-affil=Phong Dien Nature Reserve, Phong Dien district, Thua Thien Hue province
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University
kn-affil=
en-keyword=Acacia crassicarpa
kn-keyword=Acacia crassicarpa
en-keyword=Essential oil
kn-keyword=Essential oil
en-keyword=Tridecanal
kn-keyword=Tridecanal
en-keyword=(E)-Caryophyllene
kn-keyword=(E)-Caryophyllene
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10712
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone “florigen” differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses.
en-copyright=
kn-copyright=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShaoJi Feng
en-aut-sei=Shao
en-aut-mei=Ji Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanukiShota
en-aut-sei=Watanuki
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=20715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trends in the incidence of severe fever with thrombocytopenia syndrome in Japan: an observational study from 2013 to 2022
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We aimed to determine the 10-year trend in the incidence of Severe fever with thrombocytopenia syndrome (SFTS) in Japan. This retrospective observational study used a publicly available national database. Trends in the incidence of SFTS with annual percent changes (APC) were examined using Joinpoint regression analysis with stratification by patient age, season, and region. The association between disease incidence and environmental factors was investigated using Spearman’s rank correlation. Between 2013 and 2022, there were 803 notified cases (397 males and 406 females) of SFTS, with 79.5% aged ≥ 65 years. The annual incidence rate increased continuously with an APC of 9.6%. The incidence peaked between May and June, with 80.8% of cases observed between May and October. The incidence was predominantly higher in western Japan, and the mean annual incidence rate was the highest in Miyazaki prefecture, with 0.89 per 100,000 people. Correlations between the SFTS incidence rates and environmental factors were observed in western Japan, with forest area (correlation coefficient, 0.80), followed by agricultural population rate (0.70). SFTS incidence is continuously increasing in Japan, especially among the elderly population. Environmental factors such as broader forest areas and increased agricultural population were possibly associated with the incidence.
en-copyright=
kn-copyright=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkazawaHidemasa
en-aut-sei=Akazawa
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of General Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Health Data Science, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
en-keyword=Epidemiology
kn-keyword=Epidemiology
en-keyword=Severe fever with thrombocytopenia syndrome (SFTS)
kn-keyword=Severe fever with thrombocytopenia syndrome (SFTS)
en-keyword=Tick-borne infectious disease
kn-keyword=Tick-borne infectious disease
en-keyword=Joinpoint regression analysis
kn-keyword=Joinpoint regression analysis
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=23758
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Automated identification of the origin of energy loss in nonoriented electrical steel by feature extended Ginzburg–Landau free energy framework
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study presents the automated identification of the complex magnetization reversal process in nonoriented electrical steel (NOES) using the feature extended Ginzburg–Landau (eX-GL) free energy framework. eX-GL provides a robust connection between microscopic magnetic domains and macroscopic magnetic hysteresis using a data science perspective. This method employs physically meaningful features to analyze the energy landscape, providing insights into the mechanisms behind function. We obtained features representing both the microstructure and energy of the domain wall. The causes of iron loss were traced to the original domain structure, through which we could successfully distinguish and visualize the role of pinning as a promoting and resisting factor. We found that the reversal process was governed not only by general grain boundary pinning but also by segmented magnetic domains within the grain. This method revealed the complex interplay between magnetism and metallography and introduced a new means for transformative material design, bridging structures and functions.
en-copyright=
kn-copyright=
en-aut-name=TaniwakiMichiki
en-aut-sei=Taniwaki
en-aut-mei=Michiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaokaRyunosuke
en-aut-sei=Nagaoka
en-aut-mei=Ryunosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasuzawaKen
en-aut-sei=Masuzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoShunsuke
en-aut-sei=Sato
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FoggiattoAlexandre Lira
en-aut-sei=Foggiatto
en-aut-mei=Alexandre Lira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsumataChiharu
en-aut-sei=Mitsumata
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamazakiTakahiro
en-aut-sei=Yamazaki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ObayashiIppei
en-aut-sei=Obayashi
en-aut-mei=Ippei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaYasuaki
en-aut-sei=Hiraoka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IgarashiYasuhiko
en-aut-sei=Igarashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MizutoriYuta
en-aut-sei=Mizutori
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HosseinSepehri Amin
en-aut-sei=Hossein
en-aut-mei=Sepehri Amin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhkuboTadakatsu
en-aut-sei=Ohkubo
en-aut-mei=Tadakatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MogiHisashi
en-aut-sei=Mogi
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KotsugiMasato
en-aut-sei=Kotsugi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Tokyo University of Science
kn-affil=
affil-num=6
en-affil=Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Tokyo University of Science
kn-affil=
affil-num=8
en-affil=Okayama University
kn-affil=
affil-num=9
en-affil=Kyoto University
kn-affil=
affil-num=10
en-affil=University of Tsukuba
kn-affil=
affil-num=11
en-affil=University of Tsukuba
kn-affil=
affil-num=12
en-affil=NIMS
kn-affil=
affil-num=13
en-affil=NIMS
kn-affil=
affil-num=14
en-affil=Nippon Steel
kn-affil=
affil-num=15
en-affil=Tokyo University of Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=158
cd-vols=
no-issue=
article-no=
start-page=107932
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trends in nontuberculous mycobacterial disease mortality based on 2000-2022 data from 83 countries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To examine the international trends for nontuberculous mycobacterial-associated mortality rates, as nontuberculous mycobacterial infections are becoming increasingly prevalent and pose a significant public health challenge, especially in older populations.
Methods: This retrospective observational study used data from the World Health Organization mortality database, which included patients with nontuberculous mycobacterial infection in 83 countries. We stratified the data by sex, age, and geographic region and calculated crude and age-standardized mortality rates to estimate long-term mortality trends.
Results: In total, 42,182 nontuberculous mycobacterial infection-associated deaths (58.1% in women) were reported in 83 countries between 2000 and 2022. The locally weighted regression model estimation for the nontuberculous mycobacterial infection-associated mortality rate more than doubled—from 0.36 deaths per 1000,000 individuals in 2000 to 0.77 deaths per 1000,000 individuals in 2022. Eighty-six percent of nontuberculous mycobacterial infection-associated deaths occurred in people aged ≥65 years. The mortality rate was the highest in the Western Pacific Region.
Conclusion: This study highlights the impact of emerging nontuberculous mycobacterial diseases and the importance of targeted interventions for managing and reducing mortality, particularly in vulnerable older populations. Further studies are warranted to determine the factors contributing to geographical disparity and treatment options.
en-copyright=
kn-copyright=
en-aut-name=HaradaKo
en-aut-sei=Harada
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=VuQuynh Thi
en-aut-sei=Vu
en-aut-mei=Quynh Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MinatoYusuke
en-aut-sei=Minato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=2
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Hematology/Oncology, Mayo Clinic
kn-affil=
affil-num=4
en-affil=Department of Education and Research Centre for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Infectious Disease Research, Fujita Health University
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
en-keyword=Population surveillance
kn-keyword=Population surveillance
en-keyword=Mortality
kn-keyword=Mortality
en-keyword=Nontuberculous mycobacterial infections
kn-keyword=Nontuberculous mycobacterial infections
END
start-ver=1.4
cd-journal=joma
no-vol=262
cd-vols=
no-issue=2
article-no=
start-page=385
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm−1). We found that the relative value of the hydraulic resistance (rLpm−1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm−1 = ρmCs + 1, where ρm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp−1. We used their data to estimate Lpm−1 and rLpm−1. The values of rLpm−1 fit the above relation we found for alcohols. When we plotted the ρm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M−1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm−1) as a function of the external (π0) and internal (πi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ρm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M−1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ρm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449–461, 2004) is the decisive factor in a solute’s influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes.
en-copyright=
kn-copyright=
en-aut-name=TazawaMasashi
en-aut-sei=Tazawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WayneRandy
en-aut-sei=Wayne
en-aut-mei=Randy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Yoshida Biological Laboratory
kn-affil=
affil-num=2
en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Chara corallina
kn-keyword=Chara corallina
en-keyword=Effective osmotic pressure
kn-keyword=Effective osmotic pressure
en-keyword=Hydraulic resistance
kn-keyword=Hydraulic resistance
en-keyword=Plasma membrane
kn-keyword=Plasma membrane
en-keyword=Reflection coefficient
kn-keyword=Reflection coefficient
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=
article-no=
start-page=155745
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recent progress on phenothiazine organophotoredox catalysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photoredox catalysis has garnered significant attention in recent years due to its broad applicability in visible-light-induced organic transformations. While significant progress has been made in the development of highly oxidizing catalysts, such as acridinium catalysts, there remains a notable shortage of strongly reducing organophotoredox catalysts. Phenothiazines are widely used as photoredox catalysts owing to their unique redox potentials, particularly their low excited-state oxidation potentials (Eox* = −1.35 V to −3.51 V vs. SCE). Thus, they can be applied to a variety of photoredox reactions with oxidative-quenching cycles, and effectively reduce various organic molecules, such as aryl and alkyl halides, alkenes, malonyl peroxides, cobalt complexes, and redox-active esters. Due to their unique properties, this review focuses on the recent advances in phenothiazine organophotoredox catalysis.
en-copyright=
kn-copyright=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Phenothiazine
kn-keyword=Phenothiazine
en-keyword=Photoredox catalysis
kn-keyword=Photoredox catalysis
en-keyword=Visible light
kn-keyword=Visible light
en-keyword=Radical
kn-keyword=Radical
END
start-ver=1.4
cd-journal=joma
no-vol=599
cd-vols=
no-issue=13
article-no=
start-page=1914
end-page=1924
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438–463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435–505) directly interacted with EGFP-CaMKKα/1 residues 435–505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
en-copyright=
kn-copyright=
en-aut-name=UenoyamaShun
en-aut-sei=Uenoyama
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NittaHayato
en-aut-sei=Nitta
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukaSatomi
en-aut-sei=Ohtsuka
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuizuFutoshi
en-aut-sei=Suizu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokumitsuHiroshi
en-aut-sei=Tokumitsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=calmodulin
kn-keyword=calmodulin
en-keyword=calmodulin-kinase cascade
kn-keyword=calmodulin-kinase cascade
en-keyword=CaMKKa/
kn-keyword=CaMKKa/
en-keyword=oligomerization
kn-keyword=oligomerization
en-keyword=protein–protein interaction
kn-keyword=protein–protein interaction
en-keyword=regulatory domain
kn-keyword=regulatory domain
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=5
article-no=
start-page=705
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) “Akashinriki” is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group–associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKoki
en-aut-sei=Nakamura
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiYuichi
en-aut-sei=Kikuchi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiragaMizuho
en-aut-sei=Shiraga
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotakeToshihisa
en-aut-sei=Kotake
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaketaShin
en-aut-sei=Taketa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaYoko
en-aut-sei=Ikeda
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=awn development
kn-keyword=awn development
en-keyword=EMBRYONIC FLOWER 1 (EMF1)
kn-keyword=EMBRYONIC FLOWER 1 (EMF1)
en-keyword=homeotic genes
kn-keyword=homeotic genes
en-keyword=H3K27 trimethylation
kn-keyword=H3K27 trimethylation
en-keyword=epigenetic regulation
kn-keyword=epigenetic regulation
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=8
article-no=
start-page=379
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250709
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical and microbiological effects of a propolis toothpaste in patients with periodontitis under supportive periodontal therapy: a randomized double-blind clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives Propolis possesses antibacterial, anti-inflammatory, and antioxidant properties. While its application in oral care has garnered significant attention, evidence supporting its effectiveness against periodontal bacteria is limited. This study used a randomized double-blind protocol to assess the safety and efficacy of toothpaste containing propolis compared to a placebo in patients undergoing supportive periodontal therapy (SPT).
Materials and methods Thirty-two participants in SPT were randomized into two groups: toothpaste containing 2.5% ethanol-extracted propolis (EEP) and a placebo without EEP. Participants brushed twice daily for four weeks, and clinical parameters, bacterial counts, and salivary characteristics were assessed before and after the intervention.
Results The propolis group showed a significant reduction in periodontal pocket depth (P = 0.006), with a mean depth of 3.80 mm compared to 4.35 mm in the placebo group. Bleeding on probing was significantly reduced in both groups (P = 0.032 in the propolis group and 0.0498 in the placebo group), but did not differ between groups. Total bacterial and Porphyromonas gingivalis (P. gingivalis) counts did not differ significantly between the groups; however, the number of patients with decreased P. gingivalis was slightly larger than those in the placebo group (not significant). Additionally, saliva acidity decreased significantly in the propolis group (P = 0.041), suggesting a shift toward a less pathogenic oral environment. No adverse events were observed.
Conclusion These findings suggest that propolis may contribute to stabilizing periodontal disease during supportive periodontal therapy by modulating salivary acidity.
Clinical relevance Periodontal pocket depth and the rate of bleeding on probing are reduced, along with decreased saliva acidity. Meanwhile, the levels of P. gingivalis in the periodontal pockets remain low. Propolis-dentifrice may help alleviate gingival inflammation during SPT.
Clinical trial registration Registered in the University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN000029554).
en-copyright=
kn-copyright=
en-aut-name=Takeuchi-HatanakaKazu
en-aut-sei=Takeuchi-Hatanaka
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoMasahiro
en-aut-sei=Ito
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiYoshihiro
en-aut-sei=Hayashi
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaHiroe
en-aut-sei=Maruyama
en-aut-mei=Hiroe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonoHiroyuki
en-aut-sei=Kono
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology–Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology–Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology–Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Propolis
kn-keyword=Propolis
en-keyword=Toothpaste
kn-keyword=Toothpaste
en-keyword=Periodontitis
kn-keyword=Periodontitis
en-keyword=Periodontal pocket
kn-keyword=Periodontal pocket
en-keyword=Saliva
kn-keyword=Saliva
en-keyword=Randomized controlled trial
kn-keyword=Randomized controlled trial
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor Microvessels with Specific Morphology as a Prognostic Factor in Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Angiogenesis is essential for tumor progression. Microvessel density (MVD) is a widely used histological method to assess angiogenesis using immunostained sections, but its prognostic significance in esophageal cancer remains controversial. Recently, the evaluation of microvascular architecture has gained importance as a method to assess tumor aggressiveness. The present study aimed to identify the histological characteristics of tumor microvessels that are associated with the aggressiveness of esophageal squamous cell carcinoma.
Patients and Methods A total of 108 esophageal squamous cell carcinoma tissues were immunohistochemically stained with blood vessel markers and angiogenesis-related markers, including CD31, alpha smooth muscle actin, vascular endothelial growth factor A (VEGF-A), CD206, and D2-40. MVD, microvessel pericyte coverage index (MPI), and tumor vascular morphology were evaluated by microscopy.
Results MVD was significantly associated with patient outcomes, whereas neither MPI nor VEGF-A expression throughout the tumor showed a significant correlation. In addition, the presence of blood vessels encircling clusters of tumor cells, termed C-shaped microvessels, and excessively branching microvessels, termed X-shaped microvessels, was significantly associated with poor prognosis. These vessel types were also correlated with clinicopathological parameters, including deeper invasion of the primary tumor, presence of lymph node metastasis, advanced pathological stage, and distant metastasis. Focal VEGF-A immunoexpression in tumor cells was higher in areas containing C-shaped or X-shaped microvessels compared with areas lacking these vessel morphologies.
Conclusions The data suggest that tumor microvessels with specific morphologies (C-shaped and X-shaped microvessels) may serve as a promising prognostic factor in esophageal squamous cell carcinoma.
en-copyright=
kn-copyright=
en-aut-name=TunHnin Thida
en-aut-sei=Tun
en-aut-mei=Hnin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Esophageal neoplasms
kn-keyword=Esophageal neoplasms
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Microvessel density
kn-keyword=Microvessel density
en-keyword=Pericytes
kn-keyword=Pericytes
en-keyword=VEGF-A
kn-keyword=VEGF-A
en-keyword=Immunohistochemistry
kn-keyword=Immunohistochemistry
en-keyword=Prognosis
kn-keyword=Prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=4
article-no=
start-page=e70396
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22– and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable.
en-copyright=
kn-copyright=
en-aut-name=AkterRojina
en-aut-sei=Akter
en-aut-mei=Rojina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueYasuhiro
en-aut-sei=Inoue
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasumotoSaori
en-aut-sei=Masumoto
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MimataYoshiharu
en-aut-sei=Mimata
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=calcium signaling
kn-keyword=calcium signaling
en-keyword=CNGC
kn-keyword=CNGC
en-keyword=stomata
kn-keyword=stomata
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=13
article-no=
start-page=9595
end-page=9603
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microagglomerate of VO2 Particles Packing Paraffin Wax Using Capillary Force as a Latent Thermal Energy Storage Medium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study proposed a material to retain paraffin wax with vanadium dioxide (VO2) particles as a latent thermal energy storage medium, an alternative to core–shell microcapsules containing phase change materials. VO2 microparticles, which were synthesized through a sol–gel method and annealing process, were dispersed in the oil-in-water microemulsion to obtain microagglomerates of VO2 microparticles. The average diameter of microagglomerates was 5 μm, and they retained paraffin wax at the vacancies among VO2 particles. Although the microagglomerates had no complete shells similar to core–shell microcapsules, the microagglomerates successfully trapped paraffin wax droplets without any leakage even in a high-temperature environment. It was because capillary forces acting among VO2 particles strictly prevented any leakage of paraffin waxes. The differential scanning calorimetry revealed that the microagglomerates contained only 16.5 wt % of n-octadecane, used as a paraffin wax. However, since VO2 particles can release or absorb latent heat due to their metal–insulator phase transition, the proposed microagglomerates exhibited higher thermal energy storage densities than phase change microcapsules whose shells do not show phase transitions. Moreover, the microagglomerates exhibited higher thermal conductivity than microcapsules with amorphous inorganic shells because the VO2 particles were crystallized through annealing. The proposed microagglomerate is a promising form for further improving the thermal energy storage density and thermal performance of the latent thermal energy storage medium, especially in the temperature range of 30 to 70 °C.
en-copyright=
kn-copyright=
en-aut-name=IsobeKazuma
en-aut-sei=Isobe
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiKaketo
en-aut-sei=Yamauchi
en-aut-mei=Kaketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaYutaka
en-aut-sei=Yamada
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoribeAkihiko
en-aut-sei=Horibe
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=microagglomerate
kn-keyword=microagglomerate
en-keyword=vanadium dioxide
kn-keyword=vanadium dioxide
en-keyword=paraffin wax
kn-keyword=paraffin wax
en-keyword=latent thermal energy storage medium
kn-keyword=latent thermal energy storage medium
en-keyword=capillary force
kn-keyword=capillary force
en-keyword=thermal energy storage density
kn-keyword=thermal energy storage density
en-keyword=thermal conductivity
kn-keyword=thermal conductivity
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=2
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of temperature cycles on the sleep-like state in Hydra vulgaris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris.
Results Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5° C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light–dark cycles at a constant temperature.
Conclusions These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state.
en-copyright=
kn-copyright=
en-aut-name=SatoAya
en-aut-sei=Sato
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiguchiManabu
en-aut-sei=Sekiguchi
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakadaKoga
en-aut-sei=Nakada
en-aut-mei=Koga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItohTaichi Q.
en-aut-sei=Itoh
en-aut-mei=Taichi Q.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Systems Life Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
en-keyword=Hydra
kn-keyword=Hydra
en-keyword=Sleep
kn-keyword=Sleep
en-keyword=Temperature
kn-keyword=Temperature
en-keyword=Environmental cues
kn-keyword=Environmental cues
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=7
article-no=
start-page=1073
end-page=1082
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250520
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure.
en-copyright=
kn-copyright=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangShuyan
en-aut-sei=Wang
en-aut-mei=Shuyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Ion channel
kn-keyword=Ion channel
en-keyword=Artificial lipid bilayer
kn-keyword=Artificial lipid bilayer
en-keyword=Suction fixation
kn-keyword=Suction fixation
en-keyword=Soft agarose bead
kn-keyword=Soft agarose bead
en-keyword=Current recording
kn-keyword=Current recording
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins.
en-copyright=
kn-copyright=
en-aut-name=HayakawaTohru
en-aut-sei=Hayakawa
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaSyun
en-aut-sei=Yamaoka
en-aut-mei=Syun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Bacillus thuringiensis
kn-keyword=Bacillus thuringiensis
en-keyword=mosquito-larvicidal proteins
kn-keyword=mosquito-larvicidal proteins
en-keyword=synergistic toxicity
kn-keyword=synergistic toxicity
en-keyword=Culex pipiens mosquito larvae
kn-keyword=Culex pipiens mosquito larvae
en-keyword=side-directed mutagenesis
kn-keyword=side-directed mutagenesis
en-keyword=electrophysiologic analysis
kn-keyword=electrophysiologic analysis
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=18
article-no=
start-page=2413456
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter Shibae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The reaction center-light harvesting 1 (RC-LH1) complex converts solar energy into electrical energy, driving the initiation of photosynthesis. The authors present a cryo-electron microscopy structure of the RC-LH1 isolated from a marine photoheterotrophic bacterium Dinoroseobacter shibae. The RC comprises four subunits, including a three-heme cytochrome (Cyt) c protein, and is surrounded by a closed LH ring composed of 17 pairs of antenna subunits. Notably, a novel subunit with an N-terminal “helix-turn-helix” motif embedded in the gap between the RC and the LH ring is identified. The purified RC-LH1 complex exhibits high stability in solutions containing Mg2+ or Ca2+. The periplasmic Cyt c2 is predicted to bind at the junction between the Cyt subunit and the membrane plane, enabling electron transfer from Cyt c2 to the proximal heme of the tri-heme Cyt, and subsequently to the special pair of bacteriochlorophylls. These findings provide structural insights into the efficient energy and electron transfer processes within a distinct type of RC-LH1, and shed light on evolutionary adaptations of photosynthesis.
en-copyright=
kn-copyright=
en-aut-name=WangWeiwei
en-aut-sei=Wang
en-aut-mei=Weiwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYanting
en-aut-sei=Liu
en-aut-mei=Yanting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GuJiayi
en-aut-sei=Gu
en-aut-mei=Jiayi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnShaoya
en-aut-sei=An
en-aut-mei=Shaoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaCheng
en-aut-sei=Ma
en-aut-mei=Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoHaichun
en-aut-sei=Gao
en-aut-mei=Haichun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JiaoNianzhi
en-aut-sei=Jiao
en-aut-mei=Nianzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShenJian‐Ren
en-aut-sei=Shen
en-aut-mei=Jian‐Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BeattyJohn Thomas
en-aut-sei=Beatty
en-aut-mei=John Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoblížekMichal
en-aut-sei=Koblížek
en-aut-mei=Michal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZhangXing
en-aut-sei=Zhang
en-aut-mei=Xing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhengQiang
en-aut-sei=Zheng
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChenJing‐Hua
en-aut-sei=Chen
en-aut-mei=Jing‐Hua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=2
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=3
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=4
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=7
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Microbiology & Immunology, University of British Columbia
kn-affil=
affil-num=10
en-affil=Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science
kn-affil=
affil-num=11
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=12
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=13
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
en-keyword=energy transfer
kn-keyword=energy transfer
en-keyword=photoheterotrophic bacteria
kn-keyword=photoheterotrophic bacteria
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=reaction center
kn-keyword=reaction center
en-keyword=structure
kn-keyword=structure
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter and Receptor Mapping in Drosophila Circadian Clock Neurons via T2A-GAL4 Screening
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The circadian neuronal network in the brain comprises central pacemaker neurons and associated input and output pathways. These components work together to generate coherent rhythmicity, synchronize with environmental time cues, and convey circadian information to downstream neurons that regulate behaviors such as the sleep/wake cycle. To mediate these functions, neurotransmitters and neuromodulators play essential roles in transmitting and modulating signals between neurons. In Drosophila melanogaster, approximately 240 brain neurons function as clock neurons. Previous studies have identified several neurotransmitters and neuromodulators, including the Pigment-dispersing factor (PDF) neuropeptide, along with their corresponding receptors in clock neurons. However, our understanding of the neurotransmitters and receptors involved in the circadian system remains incomplete. In this study, we conducted a T2A-GAL4-based screening for neurotransmitter and receptor genes expressed in clock neurons. We identified 2 neurotransmitter-related genes and 22 receptor genes. Notably, while previous studies had reported the expression of 6 neuropeptide receptor genes in large ventrolateral neurons (l-LNv), we also found that 14 receptor genes—including those for dopamine, serotonin, and γ-aminobutyric acid—are expressed in l-LNv neurons. These findings suggest that l-LNv neurons serve as key integrative hubs within the circadian network, receiving diverse external signals.
en-copyright=
kn-copyright=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoAika
en-aut-sei=Saito
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=clock neurons
kn-keyword=clock neurons
en-keyword=neurotransmitter
kn-keyword=neurotransmitter
en-keyword=T2A-GAL4
kn-keyword=T2A-GAL4
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=Drosophila
kn-keyword=Drosophila
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two types of analytical instruments and devices—one sophisticated high-performance instrument and another portable device—have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter–detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable.
en-copyright=
kn-copyright=
en-aut-name=SeetasangSasikarn
en-aut-sei=Seetasang
en-aut-mei=Sasikarn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmedaMika I.
en-aut-sei=Umeda
en-aut-mei=Mika I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RenJianchao
en-aut-sei=Ren
en-aut-mei=Jianchao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Point-of-care testing
kn-keyword=Point-of-care testing
en-keyword=Onsite analysis
kn-keyword=Onsite analysis
en-keyword=Paper-based analytical device
kn-keyword=Paper-based analytical device
en-keyword=Paired emitter–detector light-emitting diode
kn-keyword=Paired emitter–detector light-emitting diode
en-keyword=Photometer
kn-keyword=Photometer
en-keyword=Environmental analysis
kn-keyword=Environmental analysis
en-keyword=Food analysis
kn-keyword=Food analysis
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=12
article-no=
start-page=2916
end-page=2926.e3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxytocin facilitates human touch-induced play behavior in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions.
en-copyright=
kn-copyright=
en-aut-name=HayashiHimeka
en-aut-sei=Hayashi
en-aut-mei=Himeka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TateishiSayaka
en-aut-sei=Tateishi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InutsukaAyumu
en-aut-sei=Inutsuka
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaejimaSho
en-aut-sei=Maejima
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HagiwaraDaisuke
en-aut-sei=Hagiwara
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakumaYasuo
en-aut-sei=Sakuma
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnakaTatsushi
en-aut-sei=Onaka
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GrinevichValery
en-aut-sei=Grinevich
en-aut-mei=Valery
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=6
en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School
kn-affil=
affil-num=7
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=8
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=9
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
en-keyword=tickling
kn-keyword=tickling
en-keyword=oxytocin
kn-keyword=oxytocin
en-keyword=oxytocin receptor
kn-keyword=oxytocin receptor
en-keyword=ventrolateral part of the ventromedial hypothalamus
kn-keyword=ventrolateral part of the ventromedial hypothalamus
en-keyword=affinity-like behaviors
kn-keyword=affinity-like behaviors
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=4
article-no=
start-page=329
end-page=334
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels.
en-copyright=
kn-copyright=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Human BK channel
kn-keyword=Human BK channel
en-keyword=Artificial lipid bilayer recording
kn-keyword=Artificial lipid bilayer recording
en-keyword=Ion channel current
kn-keyword=Ion channel current
en-keyword=Single-channel recording
kn-keyword=Single-channel recording
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=e70143
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors Influencing Pain Management Practices Among Nurses in University Hospitals in Western Japan: A Cross‐Sectional Study Using Hierarchical Multiple Regression Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Effective pain management remains a global nursing challenge, requiring awareness of influencing factors. This cross-sectional study examined such factors among nurses in Western Japan's university hospitals from September to November 2023. A self-reported questionnaire was used to investigate nurses' sociodemographic characteristics, collaboration with physicians in the ward, pain management knowledge, empathy, and pain management practices. Among 695 nurses (69.4% valid response rate), 51.4% had under 5 years' work experience, indicating a relatively junior nursing workforce. The mean practice score was 47.5 (SD = 7.1). Hierarchical regression showed knowledge and empathy increased practice scores by 6.2%. Nurses' empathy, particularly their perspective-taking, explained pain management practice (β = 0.242, p < 0.001). Information-sharing with pain specialists, effective collaboration with physicians in the ward, work experience, and clinical pain education were also associated with pain management practices (all p < 0.05). This study suggests that enhancing nurses' empathy and fostering a collaborative ward environment may be essential strategies to improve the pain management quality.
en-copyright=
kn-copyright=
en-aut-name=XiMengyao
en-aut-sei=Xi
en-aut-mei=Mengyao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KajiwaraYuki
en-aut-sei=Kajiwara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimotoMichiko
en-aut-sei=Morimoto
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Doctor's Program, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=collaboration
kn-keyword=collaboration
en-keyword=empathy
kn-keyword=empathy
en-keyword=nurse
kn-keyword=nurse
en-keyword=pain management practice
kn-keyword=pain management practice
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=2
article-no=
start-page=99
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Evaluation of Drying Process of a Slurry Droplet Containing Water-soluble Polymer
kn-title=水溶性高分子含有スラリー液滴乾燥過程の評価
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The granulation process of a slurry droplet containing a water-soluble polymer in a spray dryer is investigated. Although there have been many studies on the drying behavior of a single-component slurry droplet, there have been few reports for a multicomponent slurry droplet. This is due to the complexity and difficulty in evaluating the drying behavior of a multicomponent slurry droplet. Therefore, for the production of granules from multicomponent materials by a spray dryer, its operating conditions are usually determined by trial and error. To optimize the practical granule production process, the drying behavior of multicomponent slurry droplets should be studied. In this study, the drying behavior of a silica slurry droplet containing polyvinyl alcohol (PVA) is investigated. The drying behavior of a droplet suspended on the tip of a needle was observed. The effect of the volume fraction of PVA on the drying behavior and the morphology of a dried granule is studied. The effect of drying condition on the granule formation process is also investigated. As a result, the structure of dried granules was strongly influenced by PVA concentration. Segregation of PVA in the dried granules was observed. Based on the results, the drying process diagram is presented.
en-copyright=
kn-copyright=
en-aut-name=NakasoKoichi
en-aut-sei=Nakaso
en-aut-mei=Koichi
kn-aut-name=中曽浩一
kn-aut-sei=中曽
kn-aut-mei=浩一
aut-affil-num=1
ORCID=
en-aut-name=YamashitaDaichi
en-aut-sei=Yamashita
en-aut-mei=Daichi
kn-aut-name=山下大智
kn-aut-sei=山下
kn-aut-mei=大智
aut-affil-num=2
ORCID=
en-aut-name=AoyamaYutaro
en-aut-sei=Aoyama
en-aut-mei=Yutaro
kn-aut-name=青山祐太郎
kn-aut-sei=青山
kn-aut-mei=祐太郎
aut-affil-num=3
ORCID=
en-aut-name=MinoYasushi
en-aut-sei=Mino
en-aut-mei=Yasushi
kn-aut-name=三野泰志
kn-aut-sei=三野
kn-aut-mei=泰志
aut-affil-num=4
ORCID=
en-aut-name=GotohKuniaki
en-aut-sei=Gotoh
en-aut-mei=Kuniaki
kn-aut-name=後藤邦彰
kn-aut-sei=後藤
kn-aut-mei=邦彰
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
en-keyword=Spray Dryer
kn-keyword=Spray Dryer
en-keyword=Drying
kn-keyword=Drying
en-keyword=Droplet
kn-keyword=Droplet
en-keyword=Slurry
kn-keyword=Slurry
en-keyword=Water-Soluble Polymer
kn-keyword=Water-Soluble Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=7
article-no=
start-page=808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaKazuki
en-aut-sei=Ogawa
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiYu
en-aut-sei=Yasui
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaYoji
en-aut-sei=Wada
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraHiromichi
en-aut-sei=Nakamura
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=9
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=10
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SARM1
kn-keyword=SARM1
en-keyword=carnosol
kn-keyword=carnosol
en-keyword=NAD+
kn-keyword=NAD+
en-keyword=axon degeneration
kn-keyword=axon degeneration
en-keyword=peripheral neuropathy
kn-keyword=peripheral neuropathy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e202510319
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a Vinylated Cyclic Allene: A Fleeting Strained Diene for the Diels–Alder Reaction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fleeting molecules possessing strained multiple bonds are important components in organic synthesis due to their ability to undergo various chemical reactions driven by the release of strain energy. Although the use of strained π-bonds as 2π components, represented by dienophiles in Diels–Alder reactions, has been well studied, “the strained diene (4π component) approach” for molecular construction remains underexplored. Herein, we report the design of a vinyl cyclic allene (1-vinyl-1,2-cyclohexadiene) as a highly reactive strained diene and the development of its Diels–Alder reactions. Experimental and computational studies of vinyl cyclic allenes revealed that this diene system undergoes cycloaddition with dienophiles regio- and stereoselectively under mild reaction conditions. These studies also provide insight into the reactivity and selectivity of the system. The strained diene approach enables the convergent construction of polycyclic molecules through bond disconnections distinct from conventional retrosynthetic analysis, thus offering an efficient strategy for the assembly of functional molecules.
en-copyright=
kn-copyright=
en-aut-name=MizoguchiHaruki
en-aut-sei=Mizoguchi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataTakumi
en-aut-sei=Obata
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraiTaiki
en-aut-sei=Hirai
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KomatsuManaka
en-aut-sei=Komatsu
en-aut-mei=Manaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakakuraAkira
en-aut-sei=Sakakura
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Activation strain model
kn-keyword=Activation strain model
en-keyword=Carbocycles
kn-keyword=Carbocycles
en-keyword=Diels–Alder reaction
kn-keyword=Diels–Alder reaction
en-keyword=Strained diene
kn-keyword=Strained diene
en-keyword=Vinylated cyclic allene
kn-keyword=Vinylated cyclic allene
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=3
article-no=
start-page=152
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteogenesis imperfecta: pathogenesis, classification, and treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteogenesis imperfecta (OI) is a congenital skeletal disorder characterized by varying degrees of bone fragility and deformities. Extraskeletal manifestations, such as blue sclera, dentinogenesis imperfecta, growth disturbance, hearing impairment, and muscle weakness, occasionally accompany OI. Many genes have been identified as causative of OI, such as the type I collagen gene and genes involved in the folding, processing, and crosslinking of type I collagen molecules, osteoblast differentiation, and bone mineralization. According to the discovery of the causative gene of OI, nosology and classifications have also been revised and the “dyadic approach” based nomenclature according to the severity and each causative gene of OI was recently adopted. Intravenous or oral bisphosphonates have been administered to treat bone fragility in children with OI and a reduction in the frequency of bone fractures has been reported. However, despite the increase of bone mineral density, evidence of bone fracture prevention is limited. Recently, excessive transforming growth factor β signaling pathway and excessive endoplasmic reticulum stress have been reported as the pathogenesis of OI, and treatment strategies based on these pathogeneses have been developed. This review summarizes the molecular basis, transition of nosology and classification, status of bisphosphonate therapy, and development of treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=HasegawaKosei
en-aut-sei=Hasegawa
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
en-keyword=fracture
kn-keyword=fracture
en-keyword=child
kn-keyword=child
en-keyword=bisphosphonate
kn-keyword=bisphosphonate
en-keyword=classification
kn-keyword=classification
en-keyword=treatment
kn-keyword=treatment
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=4
article-no=
start-page=773
end-page=782
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Japanese translation of the Functional Assessment of Cancer Therapy-Breast + 4 (FACT-B + 4) following international guidelines: a verification of linguistic validity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background For breast cancer patients, postoperative lymphedema and upper limb movement disorders are serious complications that absolutely reduce their quality of life (QOL). To evaluate this serious complication, we used “Quick Dash” or “FACT-B”, which can assess a patient's physical, social, emotional, and functional health status. To evaluate their breast cancer surgery-related dysfunction correctly, “FACT-B + 4” was created by adding four questions about “arm swelling'' and “tenderness”. We have translated it into Japanese according to international translation guidelines.
Methods At the beginning, we contacted FACT headquarters that we would like to create a Japanese version of FACT-B + 4. They formed the FACIT Trans Team (FACIT) following international translation procedures, and then, we began translating according to them. The steps are 1: perform “Forward and Reverse translations” to create a “Preliminary Japanese version”, 2: request the cooperation of 5 breast cancer patients and “conduct a pilot study” and “questionnaire survey”, and 3: amendments and final approval based on pilot study results and clinical perspectives.
Result In Step1, FACIT requested faithful translation of the words, verbs, and nouns from the original text. In Step2, patients reported that they felt uncomfortable with the Japanese version words such as “numb'' and “stiffness'' and felt that it might be difficult to describe their symptoms accurately. In Step3, we readjusted the translation to be more concise and closer to common Japanese language, and performed “Step1” again to ensure that the translation definitely retained the meaning of the original.
Conclusion A Japanese version of FACT has existed until now, but there was no Japanese version of FACT-B + 4, which adds four additional items to evaluate swelling and pain in the upper limbs. This time, we have created a Japanese version that has been approved by FACT.
en-copyright=
kn-copyright=
en-aut-name=TsukiokiTakahiro
en-aut-sei=Tsukioki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakataNozomu
en-aut-sei=Takata
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DennisSaya R.
en-aut-sei=Dennis
en-aut-mei=Saya R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerataKaori
en-aut-sei=Terata
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SagaraYasuaki
en-aut-sei=Sagara
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakaiTakehiko
en-aut-sei=Sakai
en-aut-mei=Takehiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakayamaShin
en-aut-sei=Takayama
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KitagawaDai
en-aut-sei=Kitagawa
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KikawaYuichiro
en-aut-sei=Kikawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiYuko
en-aut-sei=Takahashi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwataniTsuguo
en-aut-sei=Iwatani
en-aut-mei=Tsuguo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HaraFumikata
en-aut-sei=Hara
en-aut-mei=Fumikata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujisawaTomomi
en-aut-sei=Fujisawa
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Simpson Querrey Biomedical Research Center, Northwestern University
kn-affil=
affil-num=3
en-affil=Department of Preventive Medicine Feinberg School of Medicine, Northwestern University
kn-affil=
affil-num=4
en-affil=Department of Breast and Endocrine Surgery, Akita University Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast Surgical Oncology, Social Medical Corporation Hakuaikai Sagara Hospital
kn-affil=
affil-num=6
en-affil=Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital of JFCR
kn-affil=
affil-num=7
en-affil=Department of Breast Surgery, National Cancer Center Hospital
kn-affil=
affil-num=8
en-affil=Department of Breast Surgical Oncology, National Center for Global Health and Medicine
kn-affil=
affil-num=9
en-affil=Department of Breast Surgery, Kansai Medical University Hospital
kn-affil=
affil-num=10
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital
kn-affil=
affil-num=13
en-affil=Department of Breast Cancer, Gunma Prefectural Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=FACT-B
kn-keyword=FACT-B
en-keyword=FACT-B+4
kn-keyword=FACT-B+4
en-keyword=QOL
kn-keyword=QOL
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PEÑATIRSO
en-aut-sei=PEÑA
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=91
cd-vols=
no-issue=946
article-no=
start-page=24-00128
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Development of a guideline proposal system for correcting cutting conditions based on the overhang length of ball end-mills
kn-title=ボールエンドミルの突き出し長さに応じた切削条件補正システムの開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the field of die and mold machining, determining appropriate cutting conditions is crucial. Factors such as tool geometry, machining path, work material characteristics, machining efficiency, and finishing accuracy must be taken into consideration. However, the current method of determining cutting conditions relies heavily on the intuition and experience of skilled engineers, and there is a need for a system to replace such knowledge. One of the critical factors affecting machining accuracy and efficiency is the tool overhang length, which is directly related to tool geometry. Unfortunately, there is no clear guideline for its determination. In a previous study, researchers developed a system to quickly derive cutting conditions using a data mining method and Random Forest Regression (RFR) applied to a tool catalog database. In this study, we constructed a new cutting condition compensation system based on the existing model, which accounts for the tool overhang length. The results of cutting experiments under high aspect ratio overhang lengths confirm that the correction coefficients proposed by the system are significant.
en-copyright=
kn-copyright=
en-aut-name=KODAMAHiroyuki
en-aut-sei=KODAMA
en-aut-mei=Hiroyuki
kn-aut-name=児玉紘幸
kn-aut-sei=児玉
kn-aut-mei=紘幸
aut-affil-num=1
ORCID=
en-aut-name=MORIYAYuki
en-aut-sei=MORIYA
en-aut-mei=Yuki
kn-aut-name=守屋祐輝
kn-aut-sei=守屋
kn-aut-mei=祐輝
aut-affil-num=2
ORCID=
en-aut-name=MORIMOTOTatsuo
en-aut-sei=MORIMOTO
en-aut-mei=Tatsuo
kn-aut-name=盛元達雄
kn-aut-sei=盛元
kn-aut-mei=達雄
aut-affil-num=3
ORCID=
en-aut-name=OHASHIKazuhito
en-aut-sei=OHASHI
en-aut-mei=Kazuhito
kn-aut-name=大橋一仁
kn-aut-sei=大橋
kn-aut-mei=一仁
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 学術研究院環境生命自然科学学域
affil-num=2
en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 大学院環境生命自然科学研究科
affil-num=3
en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 大学院環境生命自然科学研究科
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学 学術研究院環境生命自然科学学域
en-keyword=Data mining
kn-keyword=Data mining
en-keyword=Cutting conditions
kn-keyword=Cutting conditions
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Random Forest Regression
kn-keyword=Random Forest Regression
en-keyword=Ball end-mill
kn-keyword=Ball end-mill
en-keyword=Tool overhang length
kn-keyword=Tool overhang length
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual functions of SNAP25 in mouse taste buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III cells in mouse taste buds are considered to transmit aversive stimuli, such as sourness, to the gustatory nerve through vesicular synapses. Synaptosome-associated protein 25 (SNAP25) might contribute to synaptic vesicular release in sour sensation, although direct evidence has been lacking. Here, we demonstrated that epithelia-specific Snap25 conditional knockout (cKO) mice exhibited a significant reduction in the number of type III cells. Notably, the proportion of 5-ethynyl 2′-deoxyuridine-positive post-mitotic type III cells in Snap25 cKO mice was significantly lower on tracing day 14, but not at day 7, which suggests that SNAP25 contributes to the maintenance of type III cells. In a short-term lick test, Snap25 cKO (sour taste absent) and Snap25/ transient receptor potential vanilloid 1 double KO (sour taste and somatosensory absent) mice exhibit a significantly higher lick response to sour tastants, confirming the role of SNAP25 for sour sensation. Electrophysiological recordings of the chorda tympani nerve reveal nearly abolished ammonium and sour taste responses in Snap25 cKO mice, which concludes sour-dependent synapse transmission in type III cells. Overall, these data suggest that vesicular synapses in taste buds are indispensable for transmission of information from, and the replenishment of, sour-sensitive type III taste cells.
en-copyright=
kn-copyright=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasumatsuKeiko
en-aut-sei=Yasumatsu
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Tokyo Dental Junior College
kn-affil=
affil-num=5
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=sour taste
kn-keyword=sour taste
en-keyword=synapse
kn-keyword=synapse
en-keyword=taste buds
kn-keyword=taste buds
en-keyword=taste nerve
kn-keyword=taste nerve
en-keyword=Type III cells
kn-keyword=Type III cells
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=3
article-no=
start-page=337
end-page=345
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Grinding Temperature of Workpiece in Side Plunge Grinding Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Grinding is used to finish thrust metal attachment parts, such as crankshafts, which have both journal and thrust surfaces. In side plunge grinding, a thrust surface and a cylindrical surface of a shaft workpiece with collars are finished in a single plunge grinding process. However, the surface quality near the ground internal corner, where grinding fluid may not penetrate, can deteriorate, causing high residual stress and cracks owing to grinding heat. While it has been reported that quality issues at the inner corners of the ground surface can be mitigated by reducing the grinding point temperature through efficient cooling fluid supply, the mechanisms of grinding phenomena and heat generation in side plunge grinding are not yet fully understood. In this study, the variations in the grinding temperature at the thrust surface of a workpiece with a collar were experimentally investigated using a wire/workpiece thermocouple to clarify these phenomena. The results revealed a significant increase in the grinding temperature at the corners of the grinding zone. However, it slightly decreases as the thermocouple output approaches the center of the workpiece, indicating a slight effect of the grinding speed. The surface temperature of the workpiece in side plunge grinding is primarily influenced by the wheel depth-of-cut in the thrust direction. Additionally, the effect of workpiece rotational speed and grinding infeed speed on temperature distribution has been demonstrated.
en-copyright=
kn-copyright=
en-aut-name=GaoLingxiao
en-aut-sei=Gao
en-aut-mei=Lingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuidaMotoki
en-aut-sei=Kuida
en-aut-mei=Motoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaHiroyuki
en-aut-sei=Kodama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKazuhito
en-aut-sei=Ohashi
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=grinding
kn-keyword=grinding
en-keyword=thrust surface
kn-keyword=thrust surface
en-keyword=grinding temperature
kn-keyword=grinding temperature
en-keyword=thermocouple
kn-keyword=thermocouple
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=292
end-page=297
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analyzing Post-injection Attacker Activities in IoT Devices: A Comprehensive Log Analysis Approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=With the continuous proliferation of Internet of Things (IoT) devices, malware threats that specifically target these devices continue to increase. The urgent need for robust security measures is predicated on a comprehensive understanding of the behavioral patterns of IoT malware. However, previous studies have often overlooked the analysis of command sequences in Telnet logs. This study bridges this research gap by examining the post-injection behaviors of attackers. By analyzing a vast dataset comprising more than ten million logs collected from an IoT honeypot, we reveal three distinct post-injection activity patterns, each with unique characteristics. These patterns provide pivotal insights that not only help distinguish between legitimate operations and attempted attacks, but also drive the development of robust cybersecurity measures that effectively deter such behaviors. The nuances discovered in this study contribute significantly to IoT security by enhancing our understanding of malware tactics and informing targeted defense strategies.
en-copyright=
kn-copyright=
en-aut-name=VictorHervet
en-aut-sei=Victor
en-aut-mei=Hervet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Malware analysis
kn-keyword=Malware analysis
en-keyword=IoT
kn-keyword=IoT
en-keyword=Honeypot
kn-keyword=Honeypot
en-keyword=Log analysis
kn-keyword=Log analysis
en-keyword=Attack patterns
kn-keyword=Attack patterns
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=274
end-page=278
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevention Method for Stack Buffer Overflow Attack in TA Command Calls in OP-TEE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=TEE systems provide normal world and secure world. It is impossible to gain access to the secure world directly from the normal world. However, vulnerabilities in the secure world can cause attacks to compromise the secure world. In this study, we investigate the security features applied to trusted applications (TA) in OP-TEE and clarify the lack of protection against stack buffer overflow in TA command calls. We also propose a method for preventing attacks that exploit stack buffer overflows in TA command calls. In addition, the experimental results show that attacks on the vulnerable TAs can be prevented with the proposed method and the overhead can be evaluated.
en-copyright=
kn-copyright=
en-aut-name=ShibaKaito
en-aut-sei=Shiba
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Trusted execution environment
kn-keyword=Trusted execution environment
en-keyword=Stack overflow prevention method
kn-keyword=Stack overflow prevention method
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=161
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of Effectiveness of MAC Systems Based on LSM for Protecting IoT Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Numerous active attacks targeting Internet of Things (IoT) devices exist. They exploit the latest vulnerabilities discovered in IoT devices. Therefore, Mandatory Access Control (MAC) systems based on Linux Security Modules (LSM), such as SELinux and AppArmor, are effective security features for IoT devices because they can mitigate the impact of attacks even if software vulnerabilities are discovered. However, they are not adopted by most IoT devices. The existing approaches are insufficient for investigating the causes of this problem.In this study, we comprehensively investigated what factors can affect the applicability of MAC systems based on LSM in IoT devices. We focused on how frequently cases can occur where they cannot be adopted, owing to each factor. To increase the comprehensiveness of the factors affecting the adoption of MAC systems in IoT devices, we investigated the kernel version, CPU architecture, and support for BusyBox in addition to the investigation of resources, which conducted in previous studies. We also conducted simulated experiments based on the attack method of Mirai to investigate whether MAC systems can protect against IoT malware. Finally, we discuss the impact of a combination of these factors on MAC system adoption.
en-copyright=
kn-copyright=
en-aut-name=MikiMasato
en-aut-sei=Miki
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Mandatory Access Control System
kn-keyword=Mandatory Access Control System
en-keyword=IoT Security
kn-keyword=IoT Security
en-keyword=Linux Security Modules
kn-keyword=Linux Security Modules
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=236
end-page=244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Non Real-Time Data Transmission Performance Analysis of PROFINET for Assuring Data Transmission Quality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The industrial Ethernet PROFINET supports three different data transmission modes: isochronous real-time (IRT), real-time (RT), and non real-time (NRT) transmitting data requiring hard, soft, and no real-time performances, respectively. The data transmission latency in the NRT increased with the amount of data transmission in the IRT, RT, and NRT. Therefore, the quality of data transmission in NRT may degrade as the amount of data transmission in IRT, RT, and NRT increases. In this study, we derived the average data transmission latency in an NRT with data transmission in IRT and RT by applying stochastic processes. This allowed us to maintain the quality of data transmission in the NRT by adjusting the number of devices connected to the network and the number of applications transmitting data in the NRT so that the average latency of data in the NRT does not exceed a certain value.
en-copyright=
kn-copyright=
en-aut-name=NorimatsuTakashi
en-aut-sei=Norimatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Industrial Ethernet
kn-keyword=Industrial Ethernet
en-keyword=PROFINET
kn-keyword=PROFINET
en-keyword=Non Real Time
kn-keyword=Non Real Time
en-keyword=Real-Time
kn-keyword=Real-Time
en-keyword=Isochronous Real Time
kn-keyword=Isochronous Real Time
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=107
end-page=119
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation Towards Detecting Landing Websites for Fake Japanese Shopping Websites
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, the number of victims of fake shopping websites that imitate legitimate ones to defraud people has been increasing. It has been shown that fake shopping websites use legitimate defaced landing websites as their leading paths. Therefore, if the detection of landing websites for fake shopping websites can be achieved, it can assist in addressing these websites and reduce the opportunities for users to be redirected to fake shopping websites. In this study, we collect and investigate existing landing websites that redirect users to fake Japanese shopping websites and identify effective features for detecting them. We identified effective search terms for collecting landing websites for fake Japanese shopping websites and found that using Google searches with queries of top-level domain and product names was effective. We also investigated the conditions for activating analytical evasion functions in the collected landing websites for fake Japanese shopping websites and clarified the differences in search results between crawlers and users.
en-copyright=
kn-copyright=
en-aut-name=MichishitaDaigo
en-aut-sei=Michishita
en-aut-mei=Daigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e86695
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Managing Persistent Pupillary Membranes With Surgery or Medication: A Report of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The persistent pupillary membrane, as a congenital anomaly, is a remnant of a network of feeding blood vessels for the lens of the eye, called tunica vasculosa lentis. This study reports three patients with persistent pupillary membrane in both eyes who presented in different situations and were managed differently to achieve better vision. The first child (Case 1) who had been seen initially at the age of two years complained of severe photophobia even though he had good visual acuity, and hence, he and his family chose surgical resection of the pupillary membrane in both eyes at the age of six years just before the admission to an elementary school. He did not develop any surgical complications, such as cataract and glaucoma, and maintained the visual acuity in decimals of 1.2 in both eyes at the age of 17 years.
The second child (Case 2), who was seen first at the age of one month, had persistent pupillary membranes in both eyes, together with Peters' anomaly in the left eye. The iris process adhesion to the corneal inner surface was visualized later by optical coherence tomography. She wore full-correction glasses and obtained the visual acuity of 0.7 in the right eye, so she had no problem studying at an elementary school. She used topical 1% atropine once a week in both eyes to maintain pupillary dilation and also used 0.5% timolol and 1% brinzolamide as pressure-lowering eye drops in the left eye with Peters' anomaly.
The third patient (Case 3) with persistent pupillary membranes in both eyes complained of vision problems for the first time at the age of 49 years when she developed cataract. Surgical resection of the pupillary membrane was done in the initial phase of cataract surgery with intraocular lens implantation in both eyes. At surgical resection of the pupillary membrane, a safe and efficient way was to cut the root of the pupillary membrane on the iris surface with scissors, and then the isolated tissues of the pupillary membrane were pulled out with forceps from the side port at the corneal limbus. Pathological examinations of the excised tissues showed blood vessels with red blood cells in the lumen. In such a rare congenital disease as the persistent pupillary membrane, a case-based approach to choose a better option in different conditions from individual to individual is still required to have a better vision in learning at school and in daily working life.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=anterior segment dysgenesis
kn-keyword=anterior segment dysgenesis
en-keyword=cataract
kn-keyword=cataract
en-keyword=forceps
kn-keyword=forceps
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=persistent pupillary membrane
kn-keyword=persistent pupillary membrane
en-keyword=peters anomaly
kn-keyword=peters anomaly
en-keyword=resection
kn-keyword=resection
en-keyword=scissors
kn-keyword=scissors
en-keyword=vitrectomy cutter
kn-keyword=vitrectomy cutter
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e85680
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Whole-Eye Radiation for the Local Control of Choroidal Lymphoma in Primary Central Nervous System Lymphoma: A 14-Year Case Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Involved-site radiation therapy is effective for curative and palliative treatments of cancers, including lymphoma. This case study describes the use of whole-eye radiation for primary intraocular lymphoma occurring during primary central nervous system lymphoma. The patient, a 68-year-old man, developed personality changes and apathy two weeks after cataract surgery combined with vitrectomy for vitreous opacity in the left eye. Magnetic resonance imaging revealed a mass lesion in the left frontal lobe, and biopsy by craniotomy confirmed diffuse large B-cell lymphoma. He underwent chemotherapy using rituximab combined with high-dose methotrexate and high-dose cytarabine in association with intrathecal methotrexate and cytarabine injections, leading to complete remission. At age 75, he noticed forgetfulness, and fluorodeoxyglucose positron emission tomography and magnetic resonance imaging revealed a relapse of lymphoma in the splenium of the corpus callosum. He underwent chemotherapy using rituximab combined with high-dose methotrexate, followed by monthly rituximab monotherapy for one year and then rituximab monotherapy every two months for one year. He maintained complete remission with no treatment until age 78, when he developed subretinal choroidal lesions in the left eye and underwent whole-eye radiation at 40 Gy. One year later, he developed subretinal choroidal lesions in the right eye and underwent whole-eye radiation at 40 Gy. At age 81, he had lower limb weakness with disorientation. Magnetic resonance imaging showed a relapse of lymphoma in the right frontal to temporal lobe. The brain lesions showed a marked response to four weeks of oral tirabrutinib as a salvage therapy, but the lesions regrew, and the patient died seven months later. Throughout the treatment, he maintained a visual acuity of 0.7 (decimal scale) in both eyes. In conclusion, whole-eye radiation should be considered as a treatment option for the local control of active intraocular lymphoma, especially choroidal lesions, for patients with primary central nervous system lymphoma with no active brain lesions and without systemic treatment.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoTomofumi
en-aut-sei=Yano
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraHirotake
en-aut-sei=Nishimura
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=bruton tyrosine kinase (btk) inhibitor
kn-keyword=bruton tyrosine kinase (btk) inhibitor
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=radiation therapy (radiotherapy)
kn-keyword=radiation therapy (radiotherapy)
en-keyword=tirabrutinib
kn-keyword=tirabrutinib
en-keyword=whole-eye radiation
kn-keyword=whole-eye radiation
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=5
article-no=
start-page=164
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nephronophthisis and Retinitis Pigmentosa (Senior-Loken Syndrome) After Living-Donor Kidney Transplantation: Twelve-Year Follow-Up in a Young Woman
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Senior-Loken syndrome is a hereditary ciliopathy with recessive trait that manifests as nephronophthisis and retinitis pigmentosa. This report described an 18-year-old woman who was referred to a University Hospital to set up a treatment plan for chronic renal failure of an unknown cause. She had experienced nocturnal polyurea from the age of 12 years and was found to have an elevated level of serum creatinine at 3 mg/dL at the age of 15 years. She underwent renal biopsy at a hometown regional hospital which showed global glomerulosclerosis in six of the 13 glomeruli examined, renal tubular dilation in irregular shape, and marked interstitial fibrosis with lymphocytic infiltration. At the age of 19 years, she received a living-donor kidney transplant from her 46-year-old father as a preemptive therapy. At surgery, biopsy of the father’s donor kidney showed two glomeruli with global sclerosis out of 24 glomeruli examined, in association with minimal interstitial fibrosis and lymphocytic infiltration. She began to have extended-release tacrolimus 4 mg daily and mycophenolate mofetil 1,000 mg daily. According to the standard protocol, she underwent biopsy of the transplanted donor kidney to reveal interstitial fibrosis and lymphocytic infiltration, in addition to no sign of rejection and no glomerular deposition of immunoglobulins and complements, both 4 weeks and 14 months after the kidney transplantation. At the age of 23 years, 4 years after the kidney transplantation, she was, for the first time, diagnosed retinitis pigmentosa, and hence, Senior-Loken syndrome. She was followed up in the stable condition with basal doses of tacrolimus 5 mg daily, mycophenolate mofetil 1,000 mg daily, and prednisolone 5 mg daily up until now in 12 years after the kidney transplantation. The interstitial fibrosis with lymphocytic infiltration in the donor kidney might be a milder presentation of the disease with recessive inheritance.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Urology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Retinitis pigmentosa
kn-keyword=Retinitis pigmentosa
en-keyword=Nephronophthisis
kn-keyword=Nephronophthisis
en-keyword=Senior-Loken syndrome
kn-keyword=Senior-Loken syndrome
en-keyword=Kidney transplantation
kn-keyword=Kidney transplantation
en-keyword=Living donor
kn-keyword=Living donor
en-keyword=Kidney biopsy
kn-keyword=Kidney biopsy
en-keyword=Pathology
kn-keyword=Pathology
en-keyword=Computed tomography scan
kn-keyword=Computed tomography scan
en-keyword=Ciliopathy
kn-keyword=Ciliopathy
en-keyword=Optical coherence tomography
kn-keyword=Optical coherence tomography
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=e83484
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Detailed Ophthalmic and Pathological Features of Choroidal Metastasis From Breast Cancer: A Case Series of Five Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Breast cancer causes choroidal metastases on rare occasions. This study presented the eye manifestations of choroidal metastases from breast cancer and their response to treatments in detail as well as their pathological correlation in five patients. The patients' age at the diagnosis of breast cancer ranged from 24 to 69 years (median: 37 years). The time from the diagnosis of breast cancer to the detection of metastases was concurrent in one patient, two years later in three patients, and six years later in the other patient. The time from the detection of systemic metastases to the detection of choroidal metastases was the same in one patient, while it ranged from one to seven years later in four patients. Choroidal metastases were in the unilateral eye of four patients, whereas they were in both eyes of one patient. Choroidal metastases manifested as one or a few nodular or flat choroidal lesions with serous retinal detachment. As for the treatment of choroidal metastases, enucleation of the right eye was chosen based on the patient's wish as well as the family's wish in the earliest patient when cancer notification was not the norm in Japan. In the other four patients, whole-eye radiation was performed to reduce the choroidal metastatic lesions. As regards the prognosis, which was available in four patients, three patients died within one year from the diagnosis of choroidal metastases, while one patient died one year and eight months later. Regarding the pathology of breast cancer, which was available in four patients, immunostaining of the preserved enucleated eye in the earliest patient revealed that breast cancer cells in the choroidal metastatic lesion were positive for estrogen receptor and negative for progesterone receptor and human epidermal growth factor receptor 2 (HER2). Invasive ductal carcinoma in two patients was positive for estrogen receptor and negative for HER2, while invasive ductal carcinoma in the other patient was triple-negative for estrogen receptor, progesterone receptor, and HER2 with a high Ki-67 index. In conclusion, the prognosis for life was poor in patients with breast cancer who developed choroidal metastases. Choroidal metastatic lesions showed a response to whole-eye radiation to improve the quality of vision at the end of life. Vision-related symptoms should be monitored in the course of chemotherapy for systemic metastases.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MuraokaAtsushi
en-aut-sei=Muraoka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Kagawa Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=choroidal metastasis
kn-keyword=choroidal metastasis
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=her2
kn-keyword=her2
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=invasive ductal carcinoma
kn-keyword=invasive ductal carcinoma
en-keyword=ki-67
kn-keyword=ki-67
en-keyword=progesterone receptor
kn-keyword=progesterone receptor
en-keyword=radiation
kn-keyword=radiation
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=6
article-no=
start-page=e70126
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulphur‐Acquisition Pathways for Cysteine Synthesis Confer a Fitness Advantage to Bacteria in Plant Extracts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacteria and plants are closely associated with human society, in fields such as agriculture, public health, the food industry, and waste disposal. Bacteria have evolved nutrient-utilisation systems adapted to achieve the most efficient growth in their major habitats. However, empirical evidence to support the significance of bacterial nutrient utilisation in adaptation to plants is limited. Therefore, we investigated the genetic and nutritional factors required for bacterial growth in plant extracts by screening an Escherichia coli gene-knockout library in vegetable-based medium. Mutants lacking genes involved in sulphur assimilation, whereby sulphur is transferred from sulphate to cysteine, exhibited negligible growth in vegetable-based medium or plant extracts, owing to the low cysteine levels. The reverse transsulphuration pathway from methionine, another pathway for donating sulphur to cysteine, occurring in bacteria such as Bacillus subtilis, also played an important role in growth in plant extracts. These two sulphur-assimilation pathways were more frequently observed in plant-associated than in animal-associated bacteria. Sulphur-acquisition pathways for cysteine synthesis thus play a key role in bacterial growth in plant-derived environments such as plant residues and plant exudates.
en-copyright=
kn-copyright=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaguchiSaki
en-aut-sei=Yamaguchi
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsukaokaTaketo
en-aut-sei=Tsukaoka
en-aut-mei=Taketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsunodaMakoto
en-aut-sei=Tsunoda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Pharmaceutical Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Bacillus subtilis
kn-keyword=Bacillus subtilis
en-keyword=bacterial nutrient utilisation
kn-keyword=bacterial nutrient utilisation
en-keyword=cysteine synthesis
kn-keyword=cysteine synthesis
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=plant-derived environments
kn-keyword=plant-derived environments
en-keyword=sulphur acquisition pathway
kn-keyword=sulphur acquisition pathway
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes—idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and “whirlpool” vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SumiyoshiRemi
en-aut-sei=Sumiyoshi
en-aut-mei=Remi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UjiieHideki
en-aut-sei=Ujiie
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaharaYuri
en-aut-sei=Kawahara
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KogaTomohiro
en-aut-sei=Koga
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UekiMasao
en-aut-sei=Ueki
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LaczkoDorottya
en-aut-sei=Laczko
en-aut-mei=Dorottya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OksenhendlerEric
en-aut-sei=Oksenhendler
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawakamiAtsushi
en-aut-sei=Kawakami
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=9
en-affil=School of Information and Data Sciences, Nagasaki University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Clinical Immunology, Hôpital Saint-Louis
kn-affil=
affil-num=12
en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Myeloma Center, University of Arkansas for Medical Sciences
kn-affil=
affil-num=14
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=15
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=clinical subtype
kn-keyword=clinical subtype
en-keyword=histopathological criteria
kn-keyword=histopathological criteria
en-keyword=idiopathic multicentric castleman disease
kn-keyword=idiopathic multicentric castleman disease
en-keyword=lymphoproliferative disease
kn-keyword=lymphoproliferative disease
en-keyword=machine-learning
kn-keyword=machine-learning
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transformation of α,β-Unsaturated Aldehydes with a Small Amount of Electricity: Cyanosilylation, Isomerization, and Nucleophilic Addition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An electrochemical method was developed to convert α,β-unsaturated aldehydes into carboxylic acid derivatives via cyanosilylation, isomerization, and nucleophilic addition. This reaction is more sustainable than the usual electrochemical organic reaction because this reaction proceeds catalytically with active species generated by a very small amount of electricity. Furthermore, scale-up synthesis with a flow reactor has been achieved.
en-copyright=
kn-copyright=
en-aut-name=FujiiMayu
en-aut-sei=Fujii
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UenoNanaho
en-aut-sei=Ueno
en-aut-mei=Nanaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=12
article-no=
start-page=3780
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sampling Frequency on Human Activity Recognition with Machine Learning Aiming at Clinical Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human activity recognition using wearable accelerometer data can be a useful digital biomarker for severity assessment and the diagnosis of diseases, where the relationship between onset and patient activity is crucial. For long-term monitoring in clinical settings, the volume of data collected over time should be minimized to reduce power consumption, computational load, and communication volume. This study aimed to determine the lowest sampling frequency that maintains recognition accuracy for each activity. Thirty healthy participants wore nine-axis accelerometer sensors at five body locations and performed nine activities. Machine-learning-based activity recognition was conducted using data sampled at 100, 50, 25, 20, 10, and 1 Hz. Data from the non-dominant wrist and chest, which have previously shown high recognition accuracy, were used. Reducing the sampling frequency to 10 Hz did not significantly affect the recognition accuracy for either location. However, lowering the frequency to 1 Hz decreases the accuracy of many activities, particularly brushing teeth. Using data with a 10 Hz sampling frequency can maintain recognition accuracy while decreasing data volume, enabling long-term patient monitoring and device miniaturization for clinical applications.
en-copyright=
kn-copyright=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraMoeka
en-aut-sei=Kimura
en-aut-mei=Moeka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=wearable devices
kn-keyword=wearable devices
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=human activity recognition
kn-keyword=human activity recognition
en-keyword=sampling frequency
kn-keyword=sampling frequency
en-keyword=digital health
kn-keyword=digital health
en-keyword=digital biomarkers
kn-keyword=digital biomarkers
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)–expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=2
article-no=
start-page=232
end-page=243
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcomes of allogeneic SCT versus tisagenlecleucel in patients with R/R LBCL and poor prognostic factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the efficacy of tisagenlecleucel (tisa-cel) and allogeneic hematopoietic stem cell transplantation (allo-SCT) for patients with relapsed and/or refractory (r/r) large B-cell lymphoma (LBCL) with poor prognostic factors, defined as performance status (PS) ≥ 2, multiple extranodal lesions (EN), chemorefractory disease, or higher lactate dehydrogenase (LDH). Overall, the allo-SCT group demonstrated worse progression-free survival (PFS), higher non-relapse mortality, and a similar relapse/progression rate. Notably, the tisa-cel group showed better PFS than the allo-SCT group among patients with chemorefractory disease (3.2 vs. 2.0 months, p = 0.092) or higher LDH (4.0 vs. 2.0 months, p = 0.018), whereas PFS in the two cellular therapy groups was similar among those with PS ≥ 2 or multiple EN. Survival time after relapse post-cellular therapy in patients with poor prognostic factors was 1.6 with allo-SCT and 4.6 months with tisa-cel. These findings were confirmed in a propensity score matching cohort. In conclusion, tisa-cel resulted in better survival than allo-SCT in patients with poor prognostic factors. However, patients who relapsed post-cellular therapy had dismal outcomes regardless of therapy. Further strategies are warranted to improve outcomes in these patients.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=CAR-T cell therapy
kn-keyword=CAR-T cell therapy
en-keyword=Tisagenlecleucel
kn-keyword=Tisagenlecleucel
en-keyword=Poor prognostic factors
kn-keyword=Poor prognostic factors
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=5602-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Two Cases of Autosomal Recessive Spinocerebellar Ataxia-8 Showing Two Novel Variants of SYNE1 in Japanese Families
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Autosomal recessive spinocerebellar ataxia-8 (SCAR8) is a neurodegenerative disorder caused by the biallelic pathogenic variants of SYNE1. It is characterized by slowly progressive cerebellar ataxia and atrophy. We identified two SCAR8 families using exome analyses and two novel variants, c.2127delG (p.Met709Ilefs) and c.15943G>T (p.Gly5315*), in SYNE1 (NM_182961.4). Pathogenic variants of SYNE1 cause various symptoms, including cerebellar ataxia, pyramidal tract disorders, and joint disorders, and the pathogenic variants discovered in this study were located in a region prone to cerebellar ataxia.
en-copyright=
kn-copyright=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsakadaYosuke
en-aut-sei=Osakada
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SCAR8
kn-keyword=SCAR8
en-keyword=SCAR
kn-keyword=SCAR
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=whole-exome sequencing analysis
kn-keyword=whole-exome sequencing analysis
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=388.e1
end-page=388.e14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS.
en-copyright=
kn-copyright=
en-aut-name=KonumaTakaaki
en-aut-sei=Konuma
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaMachiko
en-aut-sei=Fujioka
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FuseKyoko
en-aut-sei=Fuse
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosoiHiroki
en-aut-sei=Hosoi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasamotoYosuke
en-aut-sei=Masamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawaMasashi
en-aut-sei=Sawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishidaTetsuya
en-aut-sei=Nishida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshikawaJun
en-aut-sei=Ishikawa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakamaeHirohisa
en-aut-sei=Nakamae
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasegawaYuta
en-aut-sei=Hasegawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OnizukaMakoto
en-aut-sei=Onizuka
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawamuraKoji
en-aut-sei=Kawamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhbikiMarie
en-aut-sei=Ohbiki
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ItonagaHidehiro
en-aut-sei=Itonaga
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Hematology, Sasebo City General Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University
kn-affil=
affil-num=4
en-affil=Department of Hematology/Oncology, Wakayama Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology, Toranomon Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Osaka International Cancer Institute
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Hematology, Hokkaido University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Tokai University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Hematology and oncology, Kurashiki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hematology, Jichi Medical University
kn-affil=
affil-num=20
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=21
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=22
en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital
kn-affil=
en-keyword=Granulocyte colony-stimulating factor
kn-keyword=Granulocyte colony-stimulating factor
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Bone marrow transplantation
kn-keyword=Bone marrow transplantation
en-keyword=Peripheral blood stem cell transplantation
kn-keyword=Peripheral blood stem cell transplantation
en-keyword=Cord blood transplantation
kn-keyword=Cord blood transplantation
en-keyword=Myelodysplastic syndrome
kn-keyword=Myelodysplastic syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=145
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea.
en-copyright=
kn-copyright=
en-aut-name=du PlooyXander
en-aut-sei=du Plooy
en-aut-mei=Xander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CardonaJuan J.
en-aut-sei=Cardona
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TabiraYoko
en-aut-sei=Tabira
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BubbKathleen Carol
en-aut-sei=Bubb
en-aut-mei=Kathleen Carol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Tulane University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College
kn-affil=
affil-num=6
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
en-keyword=Digastric muscles
kn-keyword=Digastric muscles
en-keyword=Intermediate tendon
kn-keyword=Intermediate tendon
en-keyword=Trochlea
kn-keyword=Trochlea
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Fascia
kn-keyword=Fascia
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=5
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=In-frame deletion variant of ABCD1 in a sporadic case of adrenoleukodystrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Adrenoleukodystrophy (ALD), an X-linked leukodystrophy caused by pathogenic variants in ABCD1, exhibits a broad range of phenotypes from childhood-onset cerebral forms to adult-onset adrenomyeloneuropathy (AMN). We report a rare in-frame ABCD1 deletion c.1469_71delTGG (p.Val490del) in a man with AMN. Although this variant has been interpreted as ‘uncertain significance’ in ClinVar, biochemical analysis along with clinical evaluation confirmed the pathogenicity of this variant, underscoring the importance of functional assessment of in-frame deletions.
en-copyright=
kn-copyright=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KakumotoToshiyuki
en-aut-sei=Kakumoto
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaoAkihito
en-aut-sei=Hao
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KainagaMitsuhiro
en-aut-sei=Kainaga
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChangHyangri
en-aut-sei=Chang
en-aut-mei=Hyangri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ManoTatsuo
en-aut-sei=Mano
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiToshihiro
en-aut-sei=Hayashi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorishitaShinichi
en-aut-sei=Morishita
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=e70119
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantitative quality control of 3D water tank using image analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objective: Accurate beam data acquisition using three-dimensional (3D) water tanks is essential for beam commissioning and quality control (QC) in clinical radiation therapy. This study introduces a novel method for quantitative QC of the system, utilizing MV images and webcam videos. The stability of the motor drive speed and the positional accuracy of the fixture were evaluated under two measurement modes: “continuous mode” and “step-by-step mode.”
Methods: A TRUFIX mounting system (PTW Freiburg Inc., Germany) was used to attach the center of the steel ball to its top, ensuring alignment with the water surface of the tank. To assess deviations from the radiation isocenter, MV images were acquired and compared with digitally reconstructed radiographs (DRRs). These evaluations were performed at different speed settings (slow, medium, and fast) using ET CT Body Marker (BRAINLAB Inc., USA) mounted on the drive unit. A webcam was utilized to capture the images, and custom-developed tracking software was employed to analyze deviations in driving speed and positional errors.
Results: The mean error of the radiation isocenter was 0.37 ± 0.09 mm. As the motor drive speed increased, the discrepancy between the set speed and the actual speed observed in the analysis also became larger. In “continuous mode,” the deviation from the displayed value was greater than that observed in “step-by-step mode.”
Conclusion: It is demonstrated that the proposed analysis method can quantitatively evaluate radiation isocenter misalignment, tank setup position deviation, and both the indicated drive speed values and their stability. At higher drive speeds, the “step-by-step mode” showed smaller deviations from the indicated values.
en-copyright=
kn-copyright=
en-aut-name=TanimotoYuki
en-aut-sei=Tanimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoKohei
en-aut-sei=Sugimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoshiKazunobu
en-aut-sei=Koshi
en-aut-mei=Kazunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiroshigeAkira
en-aut-sei=Hiroshige
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaShohei
en-aut-sei=Yoshida
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujitaYoshiki
en-aut-sei=Fujita
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakahiraAtsuki
en-aut-sei=Nakahira
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanishiDaiki
en-aut-sei=Nakanishi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HondaHirofumi
en-aut-sei=Honda
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiology, NHO Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=3
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Radiology, Department of Medical Technology, Kyushu University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Ehime University Hospital
kn-affil=
affil-num=10
en-affil=Department of Healthcare Science, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=3D water tank
kn-keyword=3D water tank
en-keyword=drive speed stability
kn-keyword=drive speed stability
en-keyword=quality control
kn-keyword=quality control
en-keyword=radiation isocenter
kn-keyword=radiation isocenter
en-keyword=x-ray image analysis
kn-keyword=x-ray image analysis
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=78
end-page=85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.
en-copyright=
kn-copyright=
en-aut-name=TanimotoYuki
en-aut-sei=Tanimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoshiKazunobu
en-aut-sei=Koshi
en-aut-mei=Kazunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiwakiKiyoshi
en-aut-sei=Ishiwaki
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiramatsuFutoshi
en-aut-sei=Hiramatsu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiToshihisa
en-aut-sei=Sasaki
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IseHiroki
en-aut-sei=Ise
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyagawaTakashi
en-aut-sei=Miyagawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkahiraShinsuke
en-aut-sei=Okahira
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HamaguchiTakashi
en-aut-sei=Hamaguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaguchiTatsuya
en-aut-sei=Kawaguchi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FunadaNorihiro
en-aut-sei=Funada
en-aut-mei=Norihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamamotoShuhei
en-aut-sei=Yamamoto
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HiroshigeAkira
en-aut-sei=Hiroshige
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MukaiYuki
en-aut-sei=Mukai
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshidaShohei
en-aut-sei=Yoshida
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujitaYoshiki
en-aut-sei=Fujita
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NakahiraAtsuki
en-aut-sei=Nakahira
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HondaHirofumi
en-aut-sei=Honda
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Department of Healthcare Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Radiology, NHO Iwakuni Medical Center
kn-affil=
affil-num=5
en-affil=Department of Radiology, NHO Hamada Medical Center
kn-affil=
affil-num=6
en-affil=Department of Radiology, NHO Higashi-Hiroshima Medical Center
kn-affil=
affil-num=7
en-affil=Department of Radiology, NHO Iwakuni Medical Center
kn-affil=
affil-num=8
en-affil=Department of Radiology, NHO Kanmon Medical Center
kn-affil=
affil-num=9
en-affil=Department of Radiology, NHO Kochi National Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, NHO Yamaguchi-Ube Medical Center
kn-affil=
affil-num=11
en-affil=Department of Radiology, NHO Okayama Medical Center
kn-affil=
affil-num=12
en-affil=Department of Radiology, NHO Shikoku Medical Center for Children and Adults
kn-affil=
affil-num=13
en-affil=Department of Radiology, NHO Hamada Medical Center
kn-affil=
affil-num=14
en-affil=Department of Radiology, NHO Fukuyama Medical Center
kn-affil=
affil-num=15
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=17
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=18
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Radiology, NHO Shikoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Radiological Technology, Ehime University Hospital
kn-affil=
en-keyword=Radiation therapy
kn-keyword=Radiation therapy
en-keyword=Quality control
kn-keyword=Quality control
en-keyword=Failure mode and effects analysis
kn-keyword=Failure mode and effects analysis
en-keyword=Cost-effectiveness
kn-keyword=Cost-effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Leg-biting fights reduce the number of sperm transferred by the loser and in draws in Zophobas atratus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intra-sexual selection has been observed across a wide range of species. Male-male combat can not only determine the winner and loser but also affect subsequent reproductive success. The effects of combat outcomes on reproduction are thought to depend on the reproductive ecology of the target species. However, to our knowledge, studies examining the impact of combat outcomes on sperm competition and fitness remain limited. In the giant mealworm (Zophobas atratus), male’s combat involves biting each other's hind legs. Females mated to the losers of leg-biting contests had significantly fewer eggs and fewer offspring than females mated to males that were not in a contest. Possible explanations for this fitness reduction include the inability of males to transfer sperm effectively due to the combat outcome or the inability of their sperm to fertilize eggs due to female cryptic sperm choice, and the mechanisms underlying this reduction remain unclear. Previous studies have observed distorted mating postures in losing males, leading us to hypothesize that leg-biting during combat might affect sperm transfer. To test this, we allowed uncontested males, winners, losers, and males with a draw outcome to mate with females and compared the number of sperm within the female’s spermatheca. Additionally, we examined the correlation between combat duration and sperm count. Results showed that losers and males with draw transferred fewer sperm than non-combat males. Moreover, the longer the combat duration, the fewer sperm males were able to transfer. These findings suggest that the reduction in sperm transferred was affected by both losing in combat and prolonged combat duration in leg-biting encounters.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraTeruhisa
en-aut-sei=Matsuura
en-aut-mei=Teruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Male combat
kn-keyword=Male combat
en-keyword=Male-male competition
kn-keyword=Male-male competition
en-keyword=Sperm transfer
kn-keyword=Sperm transfer
en-keyword=Sperm biology
kn-keyword=Sperm biology
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery.
en-copyright=
kn-copyright=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakuraHiroaki
en-aut-sei=Takakura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SamridRarinthorn
en-aut-sei=Samrid
en-aut-mei=Rarinthorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LoukasMarios
en-aut-sei=Loukas
en-aut-mei=Marios
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=9
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=10
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=Embryology
kn-keyword=Embryology
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Radiology
kn-keyword=Radiology
en-keyword=Cadaver
kn-keyword=Cadaver
en-keyword=Mandible
kn-keyword=Mandible
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=RP99858
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XingJian
en-aut-sei=Xing
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaHaruya
en-aut-sei=Ogawa
en-aut-mei=Haruya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=18981
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of galectin-9 in the development of gestational diabetes mellitus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galectin-9 (Gal-9) is highly expressed in trophoblasts in placenta. Interaction between Gal-9 and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is important for the differentiation of tissue resident natural killer (trNK) cells in placenta and maintenance of normal pregnancy. Furthermore, the enhanced maternal systemic inflammation associated with increased proinflammatory cytokines in preeclampsia is mediated by enhanced interaction between Gal-9 and Tim-3. However, the role of Gal-9 in gestational diabetes (GDM) remains unexplored. Plasma Gal-9 levels were elevated at 3rd trimester in pregnant women with GDM and positively correlated with placenta and newborn weight. Lgals9 knockout pregnant mice fed with high fat diet (HFD KO) demonstrated maternal glucose intolerance and fetus macrosomia compared with controls (HFD WT). In HFD KO, increased proliferating cells, reduced apoptosis, and autophagy impairment were observed in junctional zones. The number of trNK cells and percentage of Tim-3 + trNK increased, while early apoptosis percentage in Tim-3 + trNK was reduced in placenta of HFD KO. The elevation of plasma Gal-9 may be a biomarker for prediction of maternal glucose intolerance and fetal macrosomia in pregnant women with GDM and Gal-9 functions as a compensation factor for GDM by inducing apoptosis in Tim-3 + trNK cells.
en-copyright=
kn-copyright=
en-aut-name=AlbuayjanHaya Hamed Hassan
en-aut-sei=Albuayjan
en-aut-mei=Haya Hamed Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugawaraRyosuke
en-aut-sei=Sugawara
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OiYukiko
en-aut-sei=Oi
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KannoAyaka
en-aut-sei=Kanno
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangBoXuan
en-aut-sei=Yang
en-aut-mei=BoXuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaharaToshihisa
en-aut-sei=Tahara
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NojimaIchiro
en-aut-sei=Nojima
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ウメの青果流通期間拡大に向けた台湾ウメの果実発育・成熟特性の調査および鮮度保持技術の適用
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KASHIWAMOTOTomoaki
en-aut-sei=KASHIWAMOTO
en-aut-mei=Tomoaki
kn-aut-name=柏本知晟
kn-aut-sei=柏本
kn-aut-mei=知晟
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化
kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUWADAEriko
en-aut-sei=KUWADA
en-aut-mei=Eriko
kn-aut-name=桒田恵理子
kn-aut-sei=桒田
kn-aut-mei=恵理子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=タンパク質の限界発現により引き起こされるタンパク質毒性と細胞表現型の解析
kn-title=Analysis of Protein Toxicity and Cellular Phenotypes Triggered by the Maximum Overexpression of Proteins in Yeast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAMBAShotaro
en-aut-sei=NAMBA
en-aut-mei=Shotaro
kn-aut-name=難波匠太郎
kn-aut-sei=難波
kn-aut-mei=匠太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肝生検によって診断された脂肪性肝疾患における肝臓関連イベント予測の検討
kn-title=Clinical variables predicting liver-related events in steatotic liver disease diagnosed by liver biopsy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKUBOShinnosuke
en-aut-sei=OKUBO
en-aut-mei=Shinnosuke
kn-aut-name=大久保進之介
kn-aut-sei=大久保
kn-aut-mei=進之介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラドン吸入がマウス脳中のタンパク質に及ぼす作用:プロテオーム解析と多変量解析を用いた検討
kn-title=Effect of Radon Inhalation on Murine Brain Proteins : Investigation Using Proteomic and Multivariate Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAOEShota
en-aut-sei=NAOE
en-aut-mei=Shota
kn-aut-name=直江翔太
kn-aut-sei=直江
kn-aut-mei=翔太
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=食道癌術後6カ月の骨格筋減少における周術期身体活動の影響
kn-title=Effect of perioperative physical activity on skeletal muscle loss 6 months after esophageal cancer surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HONKEJunko
en-aut-sei=HONKE
en-aut-mei=Junko
kn-aut-name=本家淳子
kn-aut-sei=本家
kn-aut-mei=淳子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=不妊治療により妊娠した女性の性格特性と産後うつ症状との関連
kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women Who Became Pregnant Through Infertility Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AWAIKyoko
en-aut-sei=AWAI
en-aut-mei=Kyoko
kn-aut-name=粟井京子
kn-aut-sei=粟井
kn-aut-mei=京子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=肺腫瘍に対する定位放射線治療におけるターゲット設定の不確かさに関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKANISHIDaiki
en-aut-sei=NAKANISHI
en-aut-mei=Daiki
kn-aut-name=中西大樹
kn-aut-sei=中西
kn-aut-mei=大樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒトの感覚運動システムにおける体部位局在情報処理機構の解明
kn-title=Study of the Brain Topological Processing Mechanisms in the Human Sensorimotor System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WANGCHENYU
en-aut-sei=WANG
en-aut-mei=CHENYU
kn-aut-name=王晨宇
kn-aut-sei=王
kn-aut-mei=晨宇
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=注意が聴覚と触覚の多感覚情報処理に与える影響の神経基盤の解明
kn-title=Study on neural mechanisms of attention effects on auditory-tactile multisensory processing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ANWEICHAO
en-aut-sei=AN
en-aut-mei=WEICHAO
kn-aut-name=安衛超
kn-aut-sei=安
kn-aut-mei=衛超
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=物体の弾性が柔らかさと心地よさ知覚に与える影響に関する研究
kn-title=Study on the Influence of Object Compliance on Softness and Pleasantness Perception
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=GAOBINYUE
en-aut-sei=GAO
en-aut-mei=BINYUE
kn-aut-name=高彬月
kn-aut-sei=高
kn-aut-mei=彬月
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=高温超伝導SQUIDを用いた磁気ナノ粒子の磁気緩和ダイナミクス評価と応用探索
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YAMASHITAKei
en-aut-sei=YAMASHITA
en-aut-mei=Kei
kn-aut-name=山下慶
kn-aut-sei=山下
kn-aut-mei=慶
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=リニアエピトープを認識する自己抗体バイオマーカーの探索法と評価系の改良
kn-title=Improved linear epitope-specific autoantibody discovery and quantitative assay system
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DATE (MASUI)Mirei
en-aut-sei=DATE (MASUI)
en-aut-mei=Mirei
kn-aut-name=伊達(益井)実鈴
kn-aut-sei=伊達(益井)
kn-aut-mei=実鈴
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=がんセラノスティクスにおけるホウ素中性子捕捉療法BNCTのための新規薬剤送達システム
kn-title=A Novel Drug Delivery System for Boron Neutron Capture Therapy (BNCT) in Cancer Theranostics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ABDUL BASITH FITHRONI
en-aut-sei=ABDUL BASITH FITHRONI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム在来スイギュウにおける繁殖および生産形質に関連する新規遺伝的変異に関する研究
kn-title=Investigation of novel genetic variants related to reproductive and productive traits in Vietnamese native buffalo
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN THANH THUY
en-aut-sei=NGUYEN THANH THUY
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=夏季のミニトマト生産における暑熱対策に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KOZAIShuji
en-aut-sei=KOZAI
en-aut-mei=Shuji
kn-aut-name=香西修志
kn-aut-sei=香西
kn-aut-mei=修志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Rhizoctonia solani AG-1とAG-4の単子葉植物での感染様式の解析とAG-4系統へのオオムギ抵抗性遺伝子の同定
kn-title=Differential infection behavior of Rhizoctonia solani AG-1 and AG-4 in monocot plants, and identification of candidate resistance genes to R. solani AG-4 in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Niranjan MAHADEVAN
en-aut-sei=Niranjan MAHADEVAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWNを介したオオムギの芒形成機構の解析
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKAMURAKoki
en-aut-sei=NAKAMURA
en-aut-mei=Koki
kn-aut-name=中村光希
kn-aut-sei=中村
kn-aut-mei=光希
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=孔辺細胞のシグナル伝達におけるGUARD CELL HYDROGEN PEROXIDE-RESISTANT1と内因性アブシジン酸の役割
kn-title=Roles of GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 and endogenous abscisic acid in guard-cell signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHAIEK Oumayma
en-aut-sei=SHAIEK Oumayma
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ソラマメのアブシシン酸誘導気孔閉口におけるグルタチオンの二重機能
kn-title=A dual function of glutathione in abscisic acid-induced stomatal closure in Vicia faba
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YINHuifei
en-aut-sei=YIN
en-aut-mei=Huifei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=珪藻のシリカ被殻形成およびヒザラガイの磁鉄鉱歯形成に関わるタンパク質の機能解析
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKADAKoki
en-aut-sei=OKADA
en-aut-mei=Koki
kn-aut-name=岡田航輝
kn-aut-sei=岡田
kn-aut-mei=航輝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=持続可能な発展に向けた携帯電話リサイクルの推進:消費者行動分析、デジタルトランスフォーメーション戦略、および革新的インセンティブメカニズムの統合
kn-title=Optimizing cell phone recycling for sustainable development: Integrating consumer behavior analysis, digital transformation strategies, and innovative incentive mechanisms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DUYuxin
en-aut-sei=DU
en-aut-mei=Yuxin
kn-aut-name=杜余鑫
kn-aut-sei=杜
kn-aut-mei=余鑫
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=代替モデルに基づいた豪雨による地盤災害のリスク評価
kn-title=Risk Assessment for Heavy Rainfall-Induced Geohazards using Surrogate Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHENGSHIYING
en-aut-sei=ZHENG
en-aut-mei=SHIYING
kn-aut-name=鄭詩穎
kn-aut-sei=鄭
kn-aut-mei=詩穎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=簡略化メタ統計的極値分布を用いた極値雨量のバイアス補正に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SAKIKAWAKazuki
en-aut-sei=SAKIKAWA
en-aut-mei=Kazuki
kn-aut-name=﨑川和起
kn-aut-sei=﨑川
kn-aut-mei=和起
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=気候変動がタナ川流域の水利用可能量、作物水生産性、農業気候区に及ぼす影響の評価:ブラ灌漑計画を中心に
kn-title=Evaluation of the impacts of climate change on water availability, crop water productivity, and agroclimatic zones in the Tana River Basin, Kenya: a focus on the Bura irrigation scheme
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DANIEL MWENDWA WAMBUA
en-aut-sei=DANIEL MWENDWA WAMBUA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=岡山県高梁川と旭川におけるフルボ酸鉄の時空間評価
kn-title=Spatial and temporal evaluations of fulvic acid iron in Takahashi and Asahi Rivers in Okayama Prefecture, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ROHDOF LACTEM YENGEH
en-aut-sei=ROHDOF LACTEM YENGEH
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=異なるマイクロプラスチックが水田土壌からの温室効果ガス排出に及ぼす影響
kn-title=Effects of different microplastics on greenhouse gas emissions from paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHANGTian
en-aut-sei=ZHANG
en-aut-mei=Tian
kn-aut-name=張天
kn-aut-sei=張
kn-aut-mei=天
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=稲わら施用水田土壌からのCH4およびCO2 排出抑制に向けた底質微生物燃料電池の開発
kn-title=Development of sediment microbial fuel cells to reduce CH4 and CO2 emissions from straw-amended paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ADHENA TESFAU BEKELE
en-aut-sei=ADHENA TESFAU BEKELE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=分布型光ファイバセンシング技術を用いた河川堤防の浸透流速および越水による破壊プロセスのモニタリングに関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUJIIHirokazu
en-aut-sei=FUJII
en-aut-mei=Hirokazu
kn-aut-name=藤井宏和
kn-aut-sei=藤井
kn-aut-mei=宏和
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=建設工程のDX化のための3次元データを活用した施工管理技術の研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAGAEKenzo
en-aut-sei=NAGAE
en-aut-mei=Kenzo
kn-aut-name=長江健三
kn-aut-sei=長江
kn-aut-mei=健三
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ドローン測量による三次元点群データを活用した河川管理技術の開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TOMITANoriko
en-aut-sei=TOMITA
en-aut-mei=Noriko
kn-aut-name=富田紀子
kn-aut-sei=富田
kn-aut-mei=紀子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=港湾におけるICT施工のためのモニタリング手法の研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TERUYAIchiro
en-aut-sei=TERUYA
en-aut-mei=Ichiro
kn-aut-name=照屋市朗
kn-aut-sei=照屋
kn-aut-mei=市朗
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=マイクロ・ナノバブルを用いた集水井横ボーリング等閉塞物除去システムの研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHINANOKenzo
en-aut-sei=SHINANO
en-aut-mei=Kenzo
kn-aut-name=科野健三
kn-aut-sei=科野
kn-aut-mei=健三
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=農業および建設分野のSociety5.0実現に向けたUAV測量技術の研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SANOHikaru
en-aut-sei=SANO
en-aut-mei=Hikaru
kn-aut-name=佐野ひかる
kn-aut-sei=佐野
kn-aut-mei=ひかる
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=行動の社会的要因:歩行者の衝突回避におけるダイナミクスの定量化
kn-title=Social Factors in Motion: Quantifying the Dynamics of Dyad–Individual Collision Avoidance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Adrien Thibaud Marie GREGORJ
en-aut-sei=Adrien Thibaud Marie GREGORJ
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マイクロ流体ペーパー分析デバイスによる窒素化合物の現場環境分析法の開発
kn-title=Development of on-site environmental analytical methods for nitrogen compounds using microfluidic paper-based analytical devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UMEDA (ISOYAMA)Mika
en-aut-sei=UMEDA (ISOYAMA)
en-aut-mei=Mika
kn-aut-name=梅田(礒山)美華
kn-aut-sei=梅田(礒山)
kn-aut-mei=美華
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=環境中親電子物質によるDNAメチル化制御を介したケモカイン発現誘導機構
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TSUCHIDATomoki
en-aut-sei=TSUCHIDA
en-aut-mei=Tomoki
kn-aut-name=土田知貴
kn-aut-sei=土田
kn-aut-mei=知貴
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ビルベリー果実に含まれる抗歯周病原細菌物質の同定ならびに歯周病原細菌Porphyromonas gingivalisから単離した生理活性物質に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SATOHYutaroh
en-aut-sei=SATOH
en-aut-mei=Yutaroh
kn-aut-name=佐藤祐太郎
kn-aut-sei=佐藤
kn-aut-mei=祐太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=持続的な甘味刺激が唾液流量に及ぼす影響
kn-title=Effect of continuous sweet gustatory stimulation on salivary flow rate over time
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YAMADARanko
en-aut-sei=YAMADA
en-aut-mei=Ranko
kn-aut-name=山田蘭子
kn-aut-sei=山田
kn-aut-mei=蘭子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=人参養栄湯による破骨細胞分化と骨吸収においての抑制効果
kn-title=Herbal medicine Ninjinyoeito inhibits RANKL-induced osteoclast differentiation and bone resorption activity by regulating NF-κB and MAPK pathway.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAUNG HTIKE
en-aut-sei=KAUNG HTIKE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=総合診療の臨床にみられる血清GHとIGF-I値の関連性の検討
kn-title=Trends of correlations between serum levels of growth hormone and insulin-like growth factor-I in general practice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OGUNIKohei
en-aut-sei=OGUNI
en-aut-mei=Kohei
kn-aut-name=大國皓平
kn-aut-sei=大國
kn-aut-mei=皓平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=パートナーとの関係、絶望感、健康状態は妊産婦の幸福を強く予測する:ライトグラディエントブースティングマシンを用いたアプローチ
kn-title=Partner relationships, hopelessness, and health status strongly predict maternal well-being: an approach using light gradient boosting machine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OBAHikaru
en-aut-sei=OBA
en-aut-mei=Hikaru
kn-aut-name=大羽輝
kn-aut-sei=大羽
kn-aut-mei=輝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ワルファリン継続またはDOAC当日休薬で施行する胃ESDの出血リスクの検討
kn-title=Rates and risk factors of bleeding after gastric endoscopic submucosal dissection with continuous warfarin or 1-day withdrawal of direct oral anticoagulants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HIRATAShoichiro
en-aut-sei=HIRATA
en-aut-mei=Shoichiro
kn-aut-name=平田翔一郎
kn-aut-sei=平田
kn-aut-mei=翔一郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=水痘ワクチンの定期接種プログラムとCOVID-19流行が日本の小児の水痘・帯状疱疹の罹患と医療資源の利用に与えた影響
kn-title=Impacts of routine varicella vaccination program and COVID-19 pandemic on varicella and herpes zoster incidence and health resource use among children in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UDAKazuhiro
en-aut-sei=UDA
en-aut-mei=Kazuhiro
kn-aut-name=宇田和宏
kn-aut-sei=宇田
kn-aut-mei=和宏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肝細胞癌におけるアテゾリズマブ・ベバシズマブ併用療法後のコンバージョン治療に関する検討
kn-title=Predictive factors for transition to conversion therapy in hepatocellular carcinoma using atezolizumab plus bevacizumab
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KIKUCHITatsuya
en-aut-sei=KIKUCHI
en-aut-mei=Tatsuya
kn-aut-name=菊池達也
kn-aut-sei=菊池
kn-aut-mei=達也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=745
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250521
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the relationship between posture-dependent airway assessment in orthodontics: insights from kinetic MRI, cephalometric data, and three-dimensional MRI analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Previous studies have assessed the upper airway using various examination methods, such as cephalometric imaging and magnetic resonance imaging (MRI). However, there is a significant gap in the research regarding the relationship between these different imaging modalities. This study compares airway assessments using kinetic MRI and cephalometric scans, examining their correlation with three dimensional (3D) MRI data.
Materials and methods Kinetic MRI, cephalometric scans, and 3D MRI of forty-seven participants were used in the present study. Airway areas and widths were measured at the retropalatal, retroglossal, and hypopharyngeal levels in both kinetic MRI and cephalometric scans. Airway volumes were calculated from 3D MRI data. Statistical analyses, including the Wilcoxon Signed Rank test, Spearman correlation, and multiple linear regression, were performed to evaluate the data and identify significant differences, correlations, and prediction models, respectively.
Results Significant differences were found between kinetic MRI and cephalometric scans. Cephalometric data showed larger airway areas and widths compared to kinetic MRI measurements. Although both cephalometric and kinetic MRI showed a correlation with 3D MRI, kinetic MRI demonstrated stronger correlations with 3D MRI airway volumes than cephalometric scans. According to our linear regression model equations, RPA-Max (maximum retropalatal airway area) and RPA (retropalatal airway area) can elucidate variations in RPV (retropalatal airway volume). RGA-Med (median retroglossal airway area) and RGA-Min (minimum retroglossal airway area) can explain variations in RGV (retroglossal airway volume). HPA (hypopharyngeal airway area) and ULHPAW-Max (maximum upper limit hypopharyngeal airway width) account for variations in HPV (hypopharyngeal airway volume). Additionally, TA-Max (maximum total airway area) can account for variations in TPV (total pharyngeal airway volume).ConclusionBoth cephalometric data and kinetic MRI data showed correlations with 3D MRI data. The shared posture of kinetic MRI and 3D MRI led to stronger correlations between these two modalities. Although cephalometric data had fewer correlations with 3D MRI and predictors for 3D airway volume, they were still significant. Our study highlights the complementary nature of kinetic MRI and cephalometric imaging, as both provide valuable information for airway assessment and exhibit significant correlations with 3D MRI data.
en-copyright=
kn-copyright=
en-aut-name=OkaNaoki
en-aut-sei=Oka
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HabumugishaJanvier
en-aut-sei=Habumugisha
en-aut-mei=Janvier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraMasahiro
en-aut-sei=Nakamura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KataokaTomoki
en-aut-sei=Kataoka
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujisawaAtsuro
en-aut-sei=Fujisawa
en-aut-mei=Atsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawanabeNoriaki
en-aut-sei=Kawanabe
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IzawaTakashi
en-aut-sei=Izawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Oral and Maxillofacial Surgery, Tottori University
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Kinetic MRI
kn-keyword=Kinetic MRI
en-keyword=Posture
kn-keyword=Posture
en-keyword=Airway assessment
kn-keyword=Airway assessment
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=vdaf036
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0–14, 15–39, 40–69, and 70+ years. Also, we employed the Fine–Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs.
en-copyright=
kn-copyright=
en-aut-name=TomitaYusuke
en-aut-sei=Tomita
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmaeRyo
en-aut-sei=Omae
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirotsuneNobuyuki
en-aut-sei=Hirotsune
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=long-term survivor
kn-keyword=long-term survivor
en-keyword=SEER
kn-keyword=SEER
en-keyword=short-term survivor
kn-keyword=short-term survivor
en-keyword=United States
kn-keyword=United States
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=8
article-no=
start-page=100782
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Involvement of PI3K–Akt Signaling in the Clinical and Pathological Findings of Idiopathic Multicentric Castleman Disease–Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, and Organomegaly and Not Otherwise Specified Subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease is a rare lymphoproliferative disorder that is clinically classified into idiopathic plasmacytic lymphadenopathy (IPL); thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO); and not otherwise specified (NOS). Although each subtype shows varying degrees of hypervascularity, no statistical data on the degree of vascularization have been reported. Additionally, the mechanisms underlying vascularization in each clinical subtype are poorly understood. Here, we aimed to clarify these mechanisms by evaluating the histopathological characteristics of each clinical subtype across 37 patients and performing a whole-transcriptome analysis focusing on angiogenesis-related gene expression. Histologically, TAFRO and NOS exhibited a significantly higher degree of vascularization than IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .002). In addition, the germinal centers (GCs) were significantly more atrophic in TAFRO than in IPL. In TAFRO and NOS, “whirlpool vessels” in GCs were seen in most cases (TAFRO, 9/9, 100%; NOS, 6/8, 75%) but not in IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .007). Likewise, immunostaining for Ets-related gene revealed higher levels in endothelial cells of GCs in TAFRO than in IPL (P = .014), and TAFRO and NOS were associated with a significantly higher number of endothelial cells in interfollicular areas compared with that in IPL (TAFRO vs IPL, P < .001; NOS vs IPL, P = .002). Gene expression analysis revealed that the PI3K–Akt signaling pathway was significantly enriched in the TAFRO and NOS (TAFRO/NOS) groups. This pathway, which may be activated by vascular endothelial growth factor A and some integrins, is known to affect angiogenesis by increasing vascular permeability, which may explain the clinical manifestations of anasarca and/or fluid retention in TAFRO/NOS. These results suggest that the PI3K–Akt pathway plays an important role in the pathogenesis of TAFRO/NOS.
en-copyright=
kn-copyright=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GonzalezMichael V.
en-aut-sei=Gonzalez
en-aut-mei=Michael V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LaiYou Cheng
en-aut-sei=Lai
en-aut-mei=You Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiSayaka
en-aut-sei=Ochi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsunodaManaka
en-aut-sei=Tsunoda
en-aut-mei=Manaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MomoseShuji
en-aut-sei=Momose
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Medical Biotechnology and Laboratory Science, Chang Gung University
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=9
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=10
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=12
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=integrin subunit alpha 5
kn-keyword=integrin subunit alpha 5
en-keyword=PI3K–Akt signaling pathway
kn-keyword=PI3K–Akt signaling pathway
en-keyword=platelet-derived growth factor receptor beta
kn-keyword=platelet-derived growth factor receptor beta
en-keyword=vascular endothelial growth factor A
kn-keyword=vascular endothelial growth factor A
en-keyword=vascularity
kn-keyword=vascularity
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=5
article-no=
start-page=e0320426
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications.
en-copyright=
kn-copyright=
en-aut-name=SariYuita Arum
en-aut-sei=Sari
en-aut-mei=Yuita Arum
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakazawaAtsushi
en-aut-sei=Nakazawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WaniYudi Arimba
en-aut-sei=Wani
en-aut-mei=Yudi Arimba
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=364
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient diagnosis for endoscopic remission in Crohn's diseases by the combination of three non-invasive markers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Serum C-reactive protein (CRP), leucine-rich alpha-2 glycoprotein (LRG), and fecal calprotectin (Fcal) are non-invasive markers used to assess Crohn's disease (CD) severity. However, the accuracy of these markers alone is often limited, and most previous reports have evaluated the efficacy of each marker individually. We aimed to improve the diagnostic performance of endoscopic remission (ER) of CD by combining these 3 markers.
Methods We tested the diagnostic ability of various combinations of these 3 markers for endoscopic severity in 230 consecutive patients with CD from September 2014 to July 2023. The modified Simple Endoscopic Score for Crohn's disease (mSES-CD) was used to determine endoscopic severity.
Results Each of the 3 markers was correlated with mSED-CD (LRG: r = 0.69, CRP: r = 0.60, and Fcal: r = 0.67). A combination of 2 of the 3 markers did not increase the diagnostic accuracy of ER. However, by combining all 3 markers, the diagnostic ability for ER was improved in comparison to the diagnostic ability of the 3 individual markers, assuming that ER was obtained if 2 or 3 markers were negative. The sensitivity, specificity, and accuracy were 89%, 83%, and 86%, respectively. Additionally, we established a 2-step method using Fcal values after evaluating the 2 serum markers. This method was most useful for reducing both the patient burden and costs.
Conclusions The newly established 2-step method allowed for a higher accuracy in the non-invasive diagnosis of ER when the 3 markers were combined.
en-copyright=
kn-copyright=
en-aut-name=TakeiKensuke
en-aut-sei=Takei
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiguroMikako
en-aut-sei=Ishiguro
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyosawaJunki
en-aut-sei=Toyosawa
en-aut-mei=Junki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKeiko
en-aut-sei=Takeuchi
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Research Center for Intestinal Health Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=CD, Crohn's disease
kn-keyword=CD, Crohn's disease
en-keyword=LRG, Leucine-rich alpha-2 glycoprotein
kn-keyword=LRG, Leucine-rich alpha-2 glycoprotein
en-keyword=Fcal, Fecal calprotectin
kn-keyword=Fcal, Fecal calprotectin
en-keyword=CRP, C-reactive protein
kn-keyword=CRP, C-reactive protein
en-keyword=ER, Endoscopic remission
kn-keyword=ER, Endoscopic remission
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=4175
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores.
en-copyright=
kn-copyright=
en-aut-name=La RoccaRomain
en-aut-sei=La Rocca
en-aut-mei=Romain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsaiPi-Cheng
en-aut-sei=Tsai
en-aut-mei=Pi-Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=209
end-page=212
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Aniline Poisoning Manifesting as Cyanosis with Unknown Cause
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old man was brought to the hospital for emergency treatment of cyanosis. The patient exhibited generalized cyanosis and impaired consciousness despite adequate oxygen therapy. Arterial blood was black, and arterial blood gas analysis revealed an abnormally high methemoglobin level of 67.8%. We later interviewed his colleagues regarding his exposure to aniline while working at the factory and diagnosed him with methemoglobinemia due to aniline poisoning. The patient was administered methylene blue (MB) after being transferred to another hospital, where this treatment was available, resulting in an improvement in symptoms. Although rare, methemoglobinemia is serious. A good understanding of the circumstances at disease onset, characteristic findings, and abnormal values of methemoglobinemia is important. In addition, MB is an important therapeutic for the treatment of methemoglobinemia; if MB is not available at a particular hospital, transfer of the patient to a hospital that stocks MB should be considered.
en-copyright=
kn-copyright=
en-aut-name=TaguchiKenichi
en-aut-sei=Taguchi
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HataSakura
en-aut-sei=Hata
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuyamaShoichi
en-aut-sei=Kuyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaShoichi
en-aut-sei=Tanaka
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
en-keyword=methemoglobinemia
kn-keyword=methemoglobinemia
en-keyword=aniline
kn-keyword=aniline
en-keyword=methylene blue
kn-keyword=methylene blue
en-keyword=cyanosis
kn-keyword=cyanosis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=205
end-page=208
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Asymptomatic Perigraft Setoma in a Patient who Underwent Aortic Root Replacement for Annulo-Aortic Ectasia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perigraft seroma, a sterile fluid accumulation around the graft, is a potential complication after thoracic aortic surgery. The optimal treatment strategy for a perigraft seroma with vascular compression after thoracic aortic surgery has been unclear. We describe the case of a 62-year-old Japanese male in whom an asymptomatic perigraft seroma was observed after he had undergone aortic root replacement for annulo-aortic ectasia. The seroma was successfully treated with thoracoscopic drainage and conservative therapy. Less invasive therapy, including conservative therapy, may also be an option for asymptomatic perigraft seromas observed after thoracic aortic surgery.
en-copyright=
kn-copyright=
en-aut-name=FujitaYasufumi
en-aut-sei=Fujita
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuShuji
en-aut-sei=Shimizu
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Kure Kyosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=perigraft seroma
kn-keyword=perigraft seroma
en-keyword=aortic root replacement
kn-keyword=aortic root replacement
en-keyword=thoracoscopic drainage
kn-keyword=thoracoscopic drainage
en-keyword=conservative therapy
kn-keyword=conservative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=185
end-page=195
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Emotional Changes among Young Patients with Breast Cancer to Foster Relationship-Building with Their Partners: A Qualitative Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the emotional changes that young patients with breast cancer need to undergo in order to foster relationship-building with their partners by conducting a qualitative descriptive study (March 1 to Nov. 26, 2021) and semi-structured interviews with eight postoperative patients (age 20-40 years) with breast cancer. The data were analyzed using the modified grounded theory approach (M-GTA), yielding five categories: (i) Awareness of being a breast cancer patient, (ii) Being at a loss, (iii) Support from significant others, (iv) The struggle to transition from being a patient with cancer to becoming “the person I want to be”, and (v) Reaching the “me” I want to be who can face building a relationship with a partner. These findings suggest that young breast cancer patients must feel that they can lead a normal life through activities such as work or acquiring qualifications before building relationships with their partners, and that getting closer to their desired selves is important. Nurses can provide information to young patients with breast cancer to assist them in building a solid relationship with their partners. We believe that this support may enhance the patients’ quality of life and help them achieve stronger relationships with their partners.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaAyumi
en-aut-sei=Yoshikawa
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkanagaMayumi
en-aut-sei=Okanaga
en-aut-mei=Mayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoShinya
en-aut-sei=Saito
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Nursing, Osaka Dental University
kn-affil=
affil-num=2
en-affil=Kawasaki Medical School, Department of Breast and Thyroid Surgery
kn-affil=
affil-num=3
en-affil=Gifu College of Nursing, Nursing of Children and Child-Rearing Families
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=breast cancer patient
kn-keyword=breast cancer patient
en-keyword=young patient
kn-keyword=young patient
en-keyword=single
kn-keyword=single
en-keyword=partners
kn-keyword=partners
en-keyword=relationships
kn-keyword=relationships
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=167
end-page=176
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Promising Effectiveness of Combined Chemotherapy and Immunotherapy in Patients with Advanced Non-small Cell Lung Cancer: A Real-World Prospective Observational Study (CS-Lung-003)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This prospective observational study investigated the clinical status of patients with advanced non-small cell lung cancer (NSCLC) treated with cytotoxic chemotherapy+an immune checkpoint inhibitor (chemo + IO) as first-line treatment in a real-world setting. The cases of 98 patients treated with chemo + IO were prospectively collected and analyzed for effectiveness and safety. The response rate to chemo + IO was 46.9%, and the disease control rate was 76.5%. The median progression-free survival and overall survival (OS) in the total population were 5.2 and 22.3 months, respectively. The patients positive for PD-L1 (≥ 1%) showed significantly longer OS than the negative group (<1%) (median 26.7 vs. 18.7 months, p=0.04). Pre-existing interstitial lung disease (ILD) was associated with shorter OS than the absence of ILD (median 9.0 vs. 22.6 months, p<0.01). Immunerelated adverse events (irAEs) were observed in 28 patients (28.6%). The most frequent irAE was ILD (n=11); Grade 1 (n=1 patient), G2 (n=5), G3 (n=4), and only a single patient with a G5 irAE. In this CS-Lung-003 study, first-line chemo + IO in a real-world setting showed good effectiveness, comparable to that observed in international clinical trials. In real-world practice, chemo + IO is a promising and steadfast strategy.
en-copyright=
kn-copyright=
en-aut-name=KanajiNobuhiro
en-aut-sei=Kanaji
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsubataYukari
en-aut-sei=Tsubata
en-aut-mei=Yukari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaoMika
en-aut-sei=Nakao
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkunoTakae
en-aut-sei=Okuno
en-aut-mei=Takae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkawaSachi
en-aut-sei=Okawa
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakataKenji
en-aut-sei=Takata
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KodaniMasahiro
en-aut-sei=Kodani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamasakiMasahiro
en-aut-sei=Yamasaki
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujitakaKazunori
en-aut-sei=Fujitaka
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KubotaTetsuya
en-aut-sei=Kubota
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeNaoki
en-aut-sei=Watanabe
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CS-Lung-003 Investigator
en-aut-sei=CS-Lung-003 Investigator
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=9
en-affil=Department of Respiratory Disease, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital
kn-affil=
affil-num=10
en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine and Allergology, Kochi University
kn-affil=
affil-num=12
en-affil=Department of Chest Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=14
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=real-world
kn-keyword=real-world
en-keyword=first-line
kn-keyword=first-line
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=combined immunotherapy
kn-keyword=combined immunotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
en-keyword=advanced glycation end product
kn-keyword=advanced glycation end product
en-keyword=aging
kn-keyword=aging
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=collagen
kn-keyword=collagen
en-keyword=aggrecan
kn-keyword=aggrecan
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=147
end-page=155
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immunometabolic Regulation of Innate Immunity in Systemic Lupus Erythematosus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pathogens or their components can induce long-lasting changes in the behavior of innate immune cells, a process analogous to “training” for future threats or environmental adaptation. However, such training can sometimes have unintended consequences, such as the development of autoimmunity. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease characterized by the production of autoantibodies and progressive organ damage. Innate immunity plays a central role in its pathogenesis, contributing through impaired clearance of apoptotic cells, excessive type I interferon production, and dysregulated formation of neutrophil extracellular traps. Recent studies have revealed that metabolites and nucleic acids derived from mitochondria, a crucial energy production site, directly regulate type I interferon and anti-inflammatory cytokine production. These insights have fueled interest in targeting metabolic pathways as a novel therapeutic approach for SLE, offering promise for improving long-term patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=WatanabeHaruki
en-aut-sei=Watanabe
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=systemic lupus erythematosus
kn-keyword=systemic lupus erythematosus
en-keyword=interferon
kn-keyword=interferon
en-keyword=tricarboxylic acid cycle
kn-keyword=tricarboxylic acid cycle
en-keyword=innate immune memory
kn-keyword=innate immune memory
en-keyword=trained immunity
kn-keyword=trained immunity
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=5
article-no=
start-page=58
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel.
en-copyright=
kn-copyright=
en-aut-name=BufetovAlexander I.
en-aut-sei=Bufetov
en-aut-mei=Alexander I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamotoYosuke
en-aut-sei=Kawamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Steklov Mathematical Institute of RAS
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Random matrices
kn-keyword=Random matrices
en-keyword=Intertwining relation
kn-keyword=Intertwining relation
en-keyword=Interacting Brownian motions
kn-keyword=Interacting Brownian motions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comprehensive analysis of adverse event profile changes with pertuzumab addition to trastuzumab‐based breast cancer therapy: Disproportionality analysis using VigiBase
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Pertuzumab is used in combination with trastuzumab-based therapy for HER2-positive breast cancer. However, real-world safety information on pertuzumab remains limited. This study assessed the safety of adding pertuzumab to trastuzumab-based therapy for HER2-positive breast cancer using real-world data.
Methods: VigiBase, the World Health Organization's global database of adverse events (AEs), containing reports from November 1967 to December 2023, was used. Signals for pertuzumab-associated AEs in breast cancer cases were detected using the reporting odds ratio (ROR).
Results: Signals of trastuzumab plus pertuzumab relative to trastuzumab alone were detected in gastrointestinal disorders (ROR: 1.45, 95% confidence interval: 1.26–1.67), including diarrhoea (3.49, 2.83–4.30); infections and infestations (1.54, 1.24–1.91); and skin and subcutaneous tissue disorders (ROR: 1.63, 1.40–1.90), including pruritus (1.96, 1.51–2.55) and rash (1.63, 1.20–2.23). Further, signals of trastuzumab plus docetaxel plus pertuzumab relative to those of trastuzumab plus docetaxel were detected in gastrointestinal disorders (1.63, 1.38–1.93), including nausea (1.72, 1.24–2.39) and vomiting (1.48, 1.01–2.17), and in nervous system disorders (1.50, 1.20–1.87), including paraesthesia (2.60, 1.33–5.08) and peripheral sensory neuropathy (5.94, 1.79–19.71). The frequency of AEs causing or prolonging hospitalization was increased with trastuzumab plus pertuzumab compared to that with trastuzumab alone (1.18, 1.00–1.38).
Conclusions: AE profiles after the addition of pertuzumab to trastuzumab-based therapy were comprehensively identified. The findings in this study highlight the importance of considering these AEs when selecting pertuzumab combination therapy to ensure the safety of patients with breast cancer.
en-copyright=
kn-copyright=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoJun
en-aut-sei=Matsumoto
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaiTomonori
en-aut-sei=Sakai
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataNaohiro
en-aut-sei=Iwata
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AriyoshiNoritaka
en-aut-sei=Ariyoshi
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
en-keyword=adverse event
kn-keyword=adverse event
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=pertuzumab
kn-keyword=pertuzumab
en-keyword=trastuzumab
kn-keyword=trastuzumab
en-keyword=VigiBase
kn-keyword=VigiBase
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Acute kidney injury
kn-keyword=Acute kidney injury
en-keyword=Drug-induced nephrotoxicity
kn-keyword=Drug-induced nephrotoxicity
en-keyword=Kidney organoid
kn-keyword=Kidney organoid
en-keyword=Kidney stem cell
kn-keyword=Kidney stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=18
article-no=
start-page=4737
end-page=4741
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrochemical Oxidation of Benzyl Alcohols via Hydrogen Atom Transfer Mediated by 2,2,2-Trifluoroethanol
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a novel electrochemical oxidation of benzyl alcohols. We found that trifluoroethanol plays a role as a hydrogen atom transfer (HAT) mediator, enabling the oxidation of electron-deficient substrates that are difficult to directly oxidize on electrode surfaces. Density functional theory calculations, cyclic voltammetry measurements, and constant potential electrolysis studies supported the proposed HAT mechanism. Moreover, the obtained carbonyl compounds could be functionalized in an electrochemical one-pot manner, further highlighting their synthetic utility.
en-copyright=
kn-copyright=
en-aut-name=KawajiriTakahiro
en-aut-sei=Kawajiri
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HosoyaMasahiro
en-aut-sei=Hosoya
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaSatoshi
en-aut-sei=Goda
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=2
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=3
en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd.
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=241001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metamorphic pressure-temperature conditions of garnet granulite from the Eastern Iratsu body in the Sambagawa belt, SW Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several coarse-grained mafic bodies with evidence for eclogite-facies metamorphism are present in the Besshi area of the Sambagawa subduction-type metamorphic belt, SW Japan. Among them the granulite-bearing Eastern Iratsu metagabbro body involves an unresolved problem of whether it originated in the hanging-wall or footwall side of the subduction zone. The key to settle this problem is its relationship with the adjacent Western Iratsu metabasaltic body, which includes thick marble layer and certainly has the footwall ocean-floor origin. Several previous studies consider that the Western and Eastern Iratsu bodies were originally coherent in the footwall side and formed the shallower and deeper parts of a thick oceanic crust, respectively. The validity of this hypothesis may be assessed by deriving pressure-temperature history of the Eastern Iratsu body, or especially the pressure (depth) condition of the granulite-facies metamorphism before the eclogite-facies overprinting because, if the pressure was relatively high, the oceanic crust assumed in the above hypothesis might be too thick to tectonically achieve the present-day adjacence of the two bodies on the geological map. This study petrologically analyzes a garnet-bearing granulite from the Eastern Iratsu body and newly reports stable coexistence of garnet and orthopyroxene in the sample. By utilizing a garnet-orthopyroxene geothermobarometer, the minimum P-T conditions of the granulite-facies stage was estimated to be 0.8 GPa (∼ 27 km in depth) and 780 °C. If the Western and Eastern Iratsu bodies were assumed to have formed a coherent oceanic crust before their subduction, the original thickness of it was >27 km and this demands unusually strong ductile shortening (<1/9) or unrealistically large vertical displacement on intraplate faulting, suggesting invalidity of the assumption. The Western and Eastern Iratsu bodies, therefore, are originally bounded by subduction-boundary fault and the obtained pressure of 0.8 GPa can be interpreted to represent that of the hanging-wall lower continental crust in the subduction zone, where the Eastern Iratsu body originated. After the granulite-facies metamorphism, the Western Iratsu body, which was located near the footwall surface, initiated subduction and was subsequently juxtaposed with the above-located Eastern Iratsu body at the corresponding depth (∼ 27 km or greater) along the subduction boundary.
en-copyright=
kn-copyright=
en-aut-name=NAKAMURADaisuke
en-aut-sei=NAKAMURA
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AOYAMutsuki
en-aut-sei=AOYA
en-aut-mei=Mutsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OKAMURATomoki
en-aut-sei=OKAMURA
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Sambagawa belt
kn-keyword=Sambagawa belt
en-keyword=Iratsu body
kn-keyword=Iratsu body
en-keyword=Metagabbro
kn-keyword=Metagabbro
en-keyword=Granulite
kn-keyword=Granulite
en-keyword=Hanging wall
kn-keyword=Hanging wall
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70087
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence.
en-copyright=
kn-copyright=
en-aut-name=WatanabeYuta
en-aut-sei=Watanabe
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunishiKotomi
en-aut-sei=Kunishi
en-aut-mei=Kotomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Agriculture,Okayama University
kn-affil=
affil-num=3
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=horizontal gene transfer
kn-keyword=horizontal gene transfer
en-keyword=integrative and conjugative elements
kn-keyword=integrative and conjugative elements
en-keyword=pathogenicity island
kn-keyword=pathogenicity island
en-keyword=Pseudomonas syringae
kn-keyword=Pseudomonas syringae
en-keyword=tabtoxin
kn-keyword=tabtoxin
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=97
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of aged garlic extract on experimental periodontitis in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aged garlic extract (AGE) has been reported to exert anti‑inflammatory effects. AGE has been recently found to reduce the inflammatory symptoms of periodontitis, a widespread chronic inflammatory disease caused by oral bacterial infection. However, the mechanisms underlying these effects remain unclear. In the present study, it was aimed to determine the effects of AGE on experimental periodontitis and the related inflammatory factors. AGE (2 g/kg/day) was orally administered to 15 mice during the experimental period, while a control group consisted of 15 mice that received pure water. A total of 3 days after initiation of administration, the left maxillary second molar was ligated with a 5‑0 silk thread for 7 days. Blood biochemical tests were performed to monitor the systemic effects of AGE. Alveolar bone loss was measured morphometrically using a stereomicroscope, and reverse transcription‑quantitative PCR was performed to assay mRNAs of proinflammatory cytokines in gingival tissues. A histological survey was also performed to identify osteoclasts in periodontitis lesions (five mice per group). The total protein and albumin levels showed no significant differences between the AGE and control groups. However, ligation‑induced bone resorption was lower in the AGE group than in the control group (P=0.01). Additionally, ligature increased the mRNA expression of inflammatory cytokines, whereas AGE administration tended to suppress them. Remarkably, tumor necrosis factor gene expression was significantly suppressed (P=0.04). The number of osteoclasts in periodontitis lesions was reduced in the AGE‑treated group. These results indicate that AGE prevents alveolar bone loss by suppressing the inflammatory responses related to osteoclast differentiation in the periodontal tissue. Further research is needed to elucidate the role of AGE in reducing inflammatory bone resorption.
en-copyright=
kn-copyright=
en-aut-name=KuangCanyan
en-aut-sei=Kuang
en-aut-mei=Canyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiAnna
en-aut-sei=Hirai
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Kamei‑ΝagataChiaki
en-aut-sei=Kamei‑Νagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NangoHiroshi
en-aut-sei=Nango
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtaniMasahiro
en-aut-sei=Ohtani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd.
kn-affil=
affil-num=5
en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd.
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology‑Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology‑Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=AGE
kn-keyword=AGE
en-keyword=experimental periodontitis
kn-keyword=experimental periodontitis
en-keyword=bone resorption
kn-keyword=bone resorption
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=osteoclasts
kn-keyword=osteoclasts
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative inhibitory effects of bepotastine and diphenhydramine on rituximab-induced infusion reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Infusion-related reaction (IRR) is a common adverse event induced by rituximab. Although first-generation histamine 1 receptor antagonists (H1RAs) are commonly used to prevent IRR, evidence on IRR suppression by the second-generation H1RA bepotastine is scarce. In this study, we assessed the inhibitory effects of bepotastine on rituximab-induced IRR and compared them with those of the first-generation H1RA diphenhydramine.
Methods We retrospectively evaluated IRR incidence in patients with B-cell non-Hodgkin lymphoma who received their first dose of rituximab.
Results The incidence of any grade IRR was 9.8% in the bepotastine group (n = 92), which was significantly lower than the 30.2% rate in the diphenhydramine group (n = 96; p < 0.001). The incidence of grade 2 or higher IRR was similar between the two groups (6.5% vs. 12.5%; p = 0.16). Multivariable logistic regression analysis revealed that the risk of any grade IRR incidence was higher in patients with B symptoms and bulky disease. Premedication with bepotastine was an independent factor in reducing the risk of any grade IRR incidence (odds ratio = 0.19, 95% confidence interval: 0.08–0.47).
Conclusion Bepotastine may be more effective than diphenhydramine in reducing the incidence of rituximab-induced IRR, particularly low-grade reactions.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaTomoaki
en-aut-sei=Nakagawa
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaRinako
en-aut-sei=Nakagawa
en-aut-mei=Rinako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayamaMasami
en-aut-sei=Okayama
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudouTamika
en-aut-sei=Sudou
en-aut-mei=Tamika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamasakiMoe
en-aut-sei=Hamasaki
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasudaMai
en-aut-sei=Yasuda
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiShinya
en-aut-sei=Kobayashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraFumihiko
en-aut-sei=Nakamura
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YagiHideo
en-aut-sei=Yagi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=10
en-affil=Department of Laboratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=12
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Rituximab
kn-keyword=Rituximab
en-keyword=Infusion reaction
kn-keyword=Infusion reaction
en-keyword=Bepotastine
kn-keyword=Bepotastine
en-keyword=Diphenhydramine
kn-keyword=Diphenhydramine
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=2
article-no=
start-page=94
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years.
en-copyright=
kn-copyright=
en-aut-name=SamTruong Thao
en-aut-sei=Sam
en-aut-mei=Truong Thao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=hydrological model
kn-keyword=hydrological model
en-keyword=drought
kn-keyword=drought
en-keyword=coffee irrigation
kn-keyword=coffee irrigation
en-keyword=water-saving technique
kn-keyword=water-saving technique
en-keyword=water allocation
kn-keyword=water allocation
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=193
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs.
en-copyright=
kn-copyright=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshiokaYusuke
en-aut-sei=Yoshioka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Lung metastasis
kn-keyword=Lung metastasis
en-keyword=Tumor-associated macrophage
kn-keyword=Tumor-associated macrophage
en-keyword=CCL2
kn-keyword=CCL2
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=1559
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC.
en-copyright=
kn-copyright=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=dental follicle cells
kn-keyword=dental follicle cells
en-keyword=periodontal ligament cells
kn-keyword=periodontal ligament cells
en-keyword=bone invasion
kn-keyword=bone invasion
en-keyword=receptor activator of NF-kappa B ligand
kn-keyword=receptor activator of NF-kappa B ligand
en-keyword=parathyroid hormone-related peptide
kn-keyword=parathyroid hormone-related peptide
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=192
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC.
en-copyright=
kn-copyright=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TianMiao
en-aut-sei=Tian
en-aut-mei=Miao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
en-keyword=Microsatellite stable
kn-keyword=Microsatellite stable
en-keyword=Hypoxia-inducible factor
kn-keyword=Hypoxia-inducible factor
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=5
article-no=
start-page=101685
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Value of Pericoronary Fat Attenuation Index on Computed Tomography for Hospitalization for Heart Failure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BACKGROUND Pericoronary fat attenuation index (FAI) assessed on computed tomography is associated with the inflammation of the pericoronary artery.
OBJECTIVES This study aimed to investigate whether pericoronary FAI predicts hospitalization for heart failure with preserved ejection fraction (HFpEF).
METHODS This retrospective single-center study included 1,196 consecutive patients who underwent clinically indicated coronary computed tomography angiography (CCTA) and transthoracic echocardiography. We assessed the FAI of proximal 40-mm segments for each major epicardial coronary vessel. The primary outcome was the incidence of hospitalization for HFpEF. Patients were divided into groups based on the optimal cutoff value for predicting hospitalization for HFpEF by receiver operating characteristic curve analysis.
RESULTS During a median follow-up of 4.3 years, 29 hospitalizations for HFpEF occurred. Multivariable Cox regression analysis revealed that a left anterior descending artery (LAD)-FAI >=-63.4 HU and a left circumflex artery-FAI >=-61.6 HU were significantly associated with hospitalization for HF after adjustment for age and sex (HR: 4.8; 95% CI: 2.1-10.8 and HR: 4.5; 95% CI: 2.1-9.4, respectively). The addition of LAD-FAI >-63.4 HU to a model incorporating other risk factors, including hypertension, estimated glomerular filtration rate <60 mL/min/1.73 m2, and significant stenosis on CCTA, increased the C-statistic for predicting hospitalization for HFpEF from 0.646 to 0.750 (P = 0.010).
CONCLUSIONS LAD-and left circumflex artery-FAI can predict hospitalization for HFpEF in patients undergoing clinically indicated CCTA. Pericoronary inflammation may be useful for identifying patients at high risk of developing HFpEF.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaraShohei
en-aut-sei=Hara
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IchikawaKeishi
en-aut-sei=Ichikawa
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=coronary computed tomography angiography
kn-keyword=coronary computed tomography angiography
en-keyword=fat attenuation index
kn-keyword=fat attenuation index
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=inflammation
kn-keyword=inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=9
article-no=
start-page=1983
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Initial Bonding Performance to CAD/CAM Restorative Materials: The Impact of Stepwise Concentration Variation in 8-Methacryloxyoctyl Trimethoxy Silane and 3-Methacryloxypropyl Trimethoxy Silane on Feldspathic Ceramic, Lithium Disilicate Glass-Ceramic, and Polymer-Infiltrated Ceramic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the effects of varying concentrations of two distinct silane agents, 8-methacryloxyoctyl trimethoxy silane (8-MOTS) and 3-methacryloxypropyl trimethoxy silane (γ-MPTS), on their initial bonding efficacy to feldspathic ceramic (FC), lithium disilicate glass-ceramic (LD) and polymer-infiltrated ceramic (PIC) specimens, in 10% increments for concentrations ranging from 10% to 40%. Shear bond strengths between the ceramic substrates and the luting material were assessed following 24 h incubation in distilled water. For FC, the median value of shear bond strength peaked at 20% of γ-MPTS (7.4 MPa), while 8-MOTS exhibited a concentration-dependent increase, reaching its highest value at 40% (13.1 MPa). For LD, γ-MPTS above 10% yielded similar strength median values (10.2 MPa), whereas 8-MOTS at 30% (15.8 MPa) and 40% (13.4 MPa) yielded higher strength values than at 10% (2.9 MPa) and 20% (4.1 MPa), with the highest median value exhibited at 30%. For PIC, both γ-MPTS and 8-MOTS demonstrated similarly low bond strength values which were not significantly different from the non-silane-treated specimens. When applied on silica-based FC and LD, silane revealed a concentration-dependent bonding effect, with 8-MOTS exhibiting superior bond strength to γ-MPTS. However, PIC, characterized by a high inorganic filler content, demonstrated limited bondability with both silanes.
en-copyright=
kn-copyright=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IrieMasao
en-aut-sei=Irie
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshizaneMai
en-aut-sei=Yoshizane
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiyamaKentaro
en-aut-sei=Akiyama
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Health Research Institute, National Institute of Advanced Industrial Science and Technology
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=6
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=silane coupling
kn-keyword=silane coupling
en-keyword=bond strength
kn-keyword=bond strength
en-keyword=ceramic
kn-keyword=ceramic
en-keyword=feldspathic
kn-keyword=feldspathic
en-keyword=lithium
kn-keyword=lithium
en-keyword=polymer-infiltrated ceramic
kn-keyword=polymer-infiltrated ceramic
en-keyword=CAD/CAM
kn-keyword=CAD/CAM
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TRPV2 mediates stress resilience in mouse cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The heart dynamically compensates for haemodynamic stress, but how this resilience forms during cardiac growth is not clear. Using a temporally inducible, cardiac-specific knockout in mice we show that the Transient receptor potential vanilloid family 2 (TRPV2) channel is crucial for the maturation of cardiomyocyte stress resilience. TRPV2 defects in growing hearts lead to small morphology, abnormal intercalated discs, weak contractility, and low expression of serum response factor and Insulin-like growth factor-1 (IGF-1) signalling. Individual cardiomyocytes of TRPV2-deficient hearts show reduced contractility with abnormal Ca2+ handling. In cultured neonatal cardiomyocytes, mechanical Ca2+ response, excitation-contraction coupling, sarcoplasmic reticulum Ca2+ content, actin formation, nuclear localisation of Myocyte enhancer factor 2c, and IGF-1 expression require TRPV2. TRPV2-deficient hearts show a defective response to dobutamine stress and no compensatory hypertrophic response to phenylephrine administration, but no stress response to pressure overload. These data suggest TRPV2 mediates the maturation of cardiomyocyte stress resilience, and will advance therapeutic interventions and drug discovery for heart disease.
en-copyright=
kn-copyright=
en-aut-name=DongYubing
en-aut-sei=Dong
en-aut-mei=Yubing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangGuohao
en-aut-sei=Wang
en-aut-mei=Guohao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjiharaYoshihiro
en-aut-sei=Ujihara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYanzhu
en-aut-sei=Chen
en-aut-mei=Yanzhu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatanosakaKimiaki
en-aut-sei=Katanosaka
en-aut-mei=Kimiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana.
en-copyright=
kn-copyright=
en-aut-name=KuroeKana
en-aut-sei=Kuroe
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakafumi
en-aut-sei=Nishimura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KashiharaSachi
en-aut-sei=Kashihara
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=poly T3E mutant
kn-keyword=poly T3E mutant
en-keyword=type III effector
kn-keyword=type III effector
en-keyword=type III secretion system
kn-keyword=type III secretion system
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-Resolution HPLC for Separating Peptide-Oligonucleotide Conjugates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Peptide-oligonucleotide conjugates (POCs) are chimeric molecules that combine the specificity of oligonucleotides with the functionality of peptides, improving the delivery and therapeutic potential of nucleic acid-based drugs. However, the analysis of POCs, particularly those containing arginine-rich sequences, poses major challenges because of aggregation caused by electrostatic interactions. In this study, we developed an optimized high-performance liquid chromatography (HPLC) method for analyzing POCs. Using a conjugate of DNA and nona-arginine as a model compound, we systematically investigated the effects of various analytical parameters, including column type, column temperature, mobile-phase composition, and pH. A column packed with C18 resin with wide pores combined with butylammonium acetate as the ion-pairing reagent and an optimal column temperature of 80 degrees C provided superior peak resolution and sensitivity. The optimized conditions gave clear separation of POCs from unlinked oligonucleotides and enabled the detection of nucleic acid fragments lacking an alkyne moiety as a linkage part, which is critical for quality control. Our HPLC method is robust and reproducible and substantially reduces the complexity, time, and cost associated with the POC analysis. The method may improve the efficiency of quality control in the production of POCs, thereby supporting their development as promising therapeutic agents for clinical applications.
en-copyright=
kn-copyright=
en-aut-name=NaganumaMiyako
en-aut-sei=Naganuma
en-aut-mei=Miyako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiGenichiro
en-aut-sei=Tsuji
en-aut-mei=Genichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AmiyaMisato
en-aut-sei=Amiya
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraiReira
en-aut-sei=Hirai
en-aut-mei=Reira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiguchiYuki
en-aut-sei=Higuchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HataNaoko
en-aut-sei=Hata
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NozawaSaoko
en-aut-sei=Nozawa
en-aut-mei=Saoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeDaishi
en-aut-sei=Watanabe
en-aut-mei=Daishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakajimaTaeko
en-aut-sei=Nakajima
en-aut-mei=Taeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DemizuYosuke
en-aut-sei=Demizu
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=3
en-affil=YMC CO., LTD.
kn-affil=
affil-num=4
en-affil=YMC CO., LTD.
kn-affil=
affil-num=5
en-affil=YMC CO., LTD.
kn-affil=
affil-num=6
en-affil=YMC CO., LTD.
kn-affil=
affil-num=7
en-affil=YMC CO., LTD.
kn-affil=
affil-num=8
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=9
en-affil=YMC CO., LTD.
kn-affil=
affil-num=10
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=18515
end-page=18529
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources.
en-copyright=
kn-copyright=
en-aut-name=ShimomuraYu
en-aut-sei=Shimomura
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsanoTakashi
en-aut-sei=Asano
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiharaAyumi
en-aut-sei=Ishihara
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NodaSusumu
en-aut-sei=Noda
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYasushi
en-aut-sei=Takahashi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=4
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=1
article-no=
start-page=20
end-page=24
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Questionnaire survey of junior and mid-career otolaryngologists' attitudes towards clinical research
kn-title=若手・中堅耳鼻咽喉科医師の臨床研究に対する質問紙調査
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Introduction : Clinical research is crucial for the advancement of medicine, but modern otolaryngologists' attitudes regarding clinical research have not been known. This study was conducted to survey the background, knowledge, and interest in clinical research among junior and mid-career otolaryngologists.
Methods : A questionnaire survey was distributed to 34 otolaryngologists with ≤15 years' clinical experience working at Okayama University and its affiliated facilities. The respondents were divided into junior (non-specialists) and mid-career otolaryngologists (specialists) based on whether they were board-certified otolaryngologists. The survey assessed their background, understanding, and interest in clinical research.
Results : Twenty-nine otolaryngologists (83%) responded (10 junior and 19 mid-career otolaryngologists). There was significant individual variation in their interest and knowledge of clinical research. However, approximately half of the respondents indicated that they were not interested in and/or had never engaged in clinical research.
Conclusion : The data collected by this survey contribute to our understanding of the current state of clinical research engagement among junior and mid-career otolaryngologists, and they can serve as a basis for exploring future strategies to increase this engagement.
en-copyright=
kn-copyright=
en-aut-name=UraguchiKensuke
en-aut-sei=Uraguchi
en-aut-mei=Kensuke
kn-aut-name=浦口健介
kn-aut-sei=浦口
kn-aut-mei=健介
aut-affil-num=1
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=頼藤貴志
kn-aut-sei=頼藤
kn-aut-mei=貴志
aut-affil-num=2
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=高尾総司
kn-aut-sei=高尾
kn-aut-mei=総司
aut-affil-num=3
ORCID=
en-aut-name=SugayaAkiko
en-aut-sei=Sugaya
en-aut-mei=Akiko
kn-aut-name=菅谷明子
kn-aut-sei=菅谷
kn-aut-mei=明子
aut-affil-num=4
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=安藤瑞生
kn-aut-sei=安藤
kn-aut-mei=瑞生
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学
affil-num=2
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学
affil-num=3
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科 疫学・衛生学
affil-num=4
en-affil=Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学学術研究院医歯薬学域 耳鼻咽喉・頭頸部外科学
affil-num=5
en-affil=Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学学術研究院医歯薬学域 耳鼻咽喉・頭頸部外科学
en-keyword=臨床研究 (clinical research)
kn-keyword=臨床研究 (clinical research)
en-keyword=統計解析 (statistical analysis)
kn-keyword=統計解析 (statistical analysis)
en-keyword=ビッグデータ (bigdata)
kn-keyword=ビッグデータ (bigdata)
en-keyword=質問紙調査 (questionnaire survey)
kn-keyword=質問紙調査 (questionnaire survey)
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=2
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Olanzapine enabled rechallenge after lorlatinib-induced psychosis: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lorlatinib is a third-generation tyrosine kinase inhibitor for anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). While it has a high intracranial lesion control rate, it can also cause central nervous system complications, including psychotic symptoms. We present a case of lorlatinib-induced psychosis successfully managed with olanzapine, enabling lorlatinib rechallenge.
Case Presentation: A 32-year-old woman with ALK-positive NSCLC and brain metastases was started on lorlatinib. After 18 months, she developed hallucinations and delusions. Despite treatment with risperidone, her psychotic symptoms persisted, leading to hospitalization. Her symptoms resolved upon lorlatinib discontinuation while risperidone was continued. Given the critical role of lorlatinib in controlling brain metastases, rechallenge was considered. To mitigate concerns regarding drug interactions, risperidone was replaced with olanzapine. Following lorlatinib rechallenge with olanzapine, no recurrence of psychiatric symptoms was observed, allowing continued lorlatinib treatment. Additionally, no progression of lung cancer was noted.
Conclusion: Lorlatinib is an essential drug for controlling brain metastases in ALK-positive NSCLC. However, it can induce psychotic symptoms. When psychiatrists are involved in managing adverse effects during cancer treatment, close collaboration among oncologists, psychiatrists, and patients is essential.
en-copyright=
kn-copyright=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasaki
en-aut-sei=Fujiwara
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine,Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=psycho-oncology
kn-keyword=psycho-oncology
en-keyword=lorlatinib
kn-keyword=lorlatinib
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=medication-induced psychosis
kn-keyword=medication-induced psychosis
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in Neuroscience (2023 Niimi Prize)
kn-title=令和5年度岡山医学会賞 脳神経研究奨励賞(新見賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TakenoshitaShintaro
en-aut-sei=Takenoshita
en-aut-mei=Shintaro
kn-aut-name=竹之下慎太郎
kn-aut-sei=竹之下
kn-aut-mei=慎太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 精神神経病態学
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=2323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
en-copyright=
kn-copyright=
en-aut-name=AndoYushin
en-aut-sei=Ando
en-aut-mei=Yushin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakawaAyako
en-aut-sei=Yamakawa
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonomaSuzuna
en-aut-sei=Konoma
en-aut-mei=Suzuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiYuki
en-aut-sei=Kobayashi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItohYuzuru
en-aut-sei=Itoh
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=4
article-no=
start-page=e9631
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of a Metal Foreign Object Remaining in the Maxillary Bone for an Extended Period: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a rare case in which a metallic foreign body remained undetected in a patient's maxilla for nearly 40 years after a childhood bicycle accident. Despite the accident, the implant remained in place without causing infection due to the lack of imaging studies at the time. The metal was accidentally discovered during a routine dental imaging examination 40 years later and subsequently surgically removed. This case highlights the importance of comprehensive imaging and the dangers of overlooking foreign bodies, especially in the vulnerable head and neck region. The patient, 53 years old at the time of discovery, presented to the dentist due to discomfort in the palate and nasal cavity. During this visit, radiographs were taken and a foreign body was discovered. Surgical removal of the foreign body revealed significant corrosion and surrounding granulation tissue indicative of foreign body granuloma. Elemental analysis of the foreign body confirmed that it was an iron-based metal, unlike biocompatible materials such as titanium. These findings reinforce the need for close post-trauma evaluation and follow-up, especially in cases of pediatric trauma, to avoid the possibility of long-term complications arising from unnoticed foreign bodies in anatomically significant areas.
en-copyright=
kn-copyright=
en-aut-name=KadoyaKoichi
en-aut-sei=Kadoya
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakakuraHiroaki
en-aut-sei=Takakura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaTatsuo
en-aut-sei=Ogawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=case report
kn-keyword=case report
en-keyword=dentistry
kn-keyword=dentistry
en-keyword=foreign body
kn-keyword=foreign body
en-keyword=oral cavity
kn-keyword=oral cavity
en-keyword=trauma
kn-keyword=trauma
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=4
article-no=
start-page=139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions.
en-copyright=
kn-copyright=
en-aut-name=KongDezheng
en-aut-sei=Kong
en-aut-mei=Dezheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FangShihao
en-aut-sei=Fang
en-aut-mei=Shihao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NopriantoMitsuhiro
en-aut-sei=Noprianto
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PuspitaningayuPradini
en-aut-sei=Puspitaningayu
en-aut-mei=Pradini
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya
kn-affil=
en-keyword=creep test
kn-keyword=creep test
en-keyword=Raspberry Pi
kn-keyword=Raspberry Pi
en-keyword=dial gauge
kn-keyword=dial gauge
en-keyword=needle reading
kn-keyword=needle reading
en-keyword=smart lighting
kn-keyword=smart lighting
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=3
article-no=
start-page=374
end-page=380
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect Modification in Settings with “Truncation by Death”
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidemiologic studies recruiting individuals with higher-than-population-average mortality can be affected by “truncation by death,” whereby the outcome of interest (e.g., quality of life) is considered not to be defined for individuals who die before the end of follow-up. Here, we use the potential outcomes framework and principal stratification to derive conditions under which the survivor average causal effect, an estimand defined for the “always-survivors” stratum, is modified by a variable that represents a possible common cause of survival and the outcome of interest and by a variable that only affects survival. Further, we show that this principal effect can be expressed as a weighted average of this treatment effect for individuals with each level of these variables, and that these weights depend not only on the relative frequencies of the levels in the total population but also on the “always-survivors” principal stratum. We also discuss the implications of this work for the transportability of the survivor average causal effect.
en-copyright=
kn-copyright=
en-aut-name=GonçalvesBronner P.
en-aut-sei=Gonçalves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Comparative Biomedical Sciences, Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Causal inference
kn-keyword=Causal inference
en-keyword=Effect modification
kn-keyword=Effect modification
en-keyword=Principal stratification
kn-keyword=Principal stratification
en-keyword=Transportability
kn-keyword=Transportability
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anticoagulant effects of edoxaban in cancer and noncancer patients with venous thromboembolism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Edoxaban, a direct oral anticoagulant (DOAC), is a first-line treatment for venous thromboembolism (VTE) and the suppression of VTE recurrence. In patients with cancer, however, recurrent VTE after DOAC treatment may be more common than in noncancer patients. To evaluate our hypothesis that the anticoagulation effect of edoxaban is lower in VTE patients with cancer than in noncancer patients.
Methods This study was a prospective, multicenter, observational study including patients treated with edoxaban for VTE in Japan. The primary outcome was the difference in the prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer level at 5 h after initial edoxaban administration between the cancer and noncancer groups. An additional outcome was the longitudinal change in PT and APTT from 5 h to overnight after edoxaban administration. The incidence of adverse events was further investigated.
Results PT and APTT at 5 h after initial edoxaban administration were not significantly different between the cancer (n = 84) and noncancer groups (n = 138) (e.g., log-transformed APTT 3.55 vs. 3.55, p = 0.45). However, D-dimer in the cancer groups was significantly greater than that in the noncancer groups (log-transformed 1.83 vs. 1.79, p = 0.009). PT and APTT significantly decreased from 5 h to overnight after edoxaban, but a similar pattern was observed in each group. All adverse events after edoxaban administration were also similar between patients with cancer and noncancer.
Conclusion PT and APTT after edoxaban administration were similar between VTE patients with cancer and noncancer groups, suggesting that edoxaban has anticoagulation effects on cancer-associated VTE similar to those of noncancer patients.
Trial registration UMIN000041973; Registration Date: 2020.10.5.
en-copyright=
kn-copyright=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuoNaoaki
en-aut-sei=Matsuo
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaitoTakanori
en-aut-sei=Naito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokiokaKoji
en-aut-sei=Tokioka
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HatanakaKunihiko
en-aut-sei=Hatanaka
en-aut-mei=Kunihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujimotoRyohei
en-aut-sei=Fujimoto
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamaokaHidenaru
en-aut-sei=Yamaoka
en-aut-mei=Hidenaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KajikawaYutaka
en-aut-sei=Kajikawa
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SurugaKazuki
en-aut-sei=Suruga
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugiyamaHiroki
en-aut-sei=Sugiyama
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MiyajiTsuyoshi
en-aut-sei=Miyaji
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MorimotoYoshimasa
en-aut-sei=Morimoto
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OkamuraNobuhiro
en-aut-sei=Okamura
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SarashinaToshihiro
en-aut-sei=Sarashina
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Tsuyama Chuo Hospital
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, NHO Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Okayama Medical Center
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=13
en-affil=Hosogi Hospital
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Fukuyama City Hospital
kn-affil=
affil-num=15
en-affil=Okamura Isshindow Hospital
kn-affil=
affil-num=16
en-affil=Kuroda Clinic
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School
kn-affil=
affil-num=21
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Factor Xa inhibitors
kn-keyword=Factor Xa inhibitors
en-keyword=Anticoagulation effects
kn-keyword=Anticoagulation effects
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Venous thromboembolism
kn-keyword=Venous thromboembolism
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250419
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings.
en-copyright=
kn-copyright=
en-aut-name=SudoRyutaro
en-aut-sei=Sudo
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoKohta
en-aut-sei=Miyamoto
en-aut-mei=Kohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdoHirofumi
en-aut-sei=Ido
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Forestry and Forest Products Research Institute
kn-affil=
affil-num=3
en-affil=Forestry and Forest Products Research Institute
kn-affil=
en-keyword=Laminated veneer lumber (LVL)
kn-keyword=Laminated veneer lumber (LVL)
en-keyword=Partial compressive load
kn-keyword=Partial compressive load
en-keyword=Bearing strength
kn-keyword=Bearing strength
en-keyword=Embedment strength
kn-keyword=Embedment strength
en-keyword=Partial compression perpendicular to grain (PCPG)
kn-keyword=Partial compression perpendicular to grain (PCPG)
en-keyword=Adhesive layer
kn-keyword=Adhesive layer
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=129
end-page=134
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Retinitis Pigmentosa Diagnosed with Severe Anterior Capsule Contraction after Cataract Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 66-year-old woman presented with significant anterior capsule contraction and intraocular lens dislocation in both eyes 4 months after cataract surgery. Postoperative examinations such as fluorescein angiography, Goldmann perimetry, and electroretinography revealed retinitis pigmentosa (RP). Patients with significant anterior capsule contraction after cataract surgery should be closely examined because RP may be a contributing factor.
en-copyright=
kn-copyright=
en-aut-name=TsujiAkihiro
en-aut-sei=Tsuji
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKosuke
en-aut-sei=Takahashi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Fukuyama City Hospital, Fukuyama City
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=retinitis pigmentosa
kn-keyword=retinitis pigmentosa
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=anterior capsule contraction
kn-keyword=anterior capsule contraction
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=123
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Macular Hole Formation Six Months after Hemorrhage Displacement for Submacular and Henle Fiber Layer Hemorrhage due to Retinal Arterial Macroaneurysm Rupture
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 78-year-old woman presented with sudden vision loss and central scotoma. Visual acuity in the right eye was 20/222, with submacular hemorrhage (SMH) and Henle fiber layer hemorrhage (HFLh) due to retinal arterial macroaneurysm (RAM) rupture. She underwent SMH displacement, including cataract surgery, vitrectomy, intravitreal injection of tissue-plasminogen activator, and air tamponade. Three months postoperatively the SMH and HFLh had disappeared and visual acuity had improved to 20/200. Six months postoperatively, a macular hole had developed. We performed an inverted internal limiting membrane flap and gas tamponade. Ten months later, the hole had closed and visual acuity had improved to 20/100.
en-copyright=
kn-copyright=
en-aut-name=AkatsukaRiku
en-aut-sei=Akatsuka
en-aut-mei=Riku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Morizane HosokawaMio
en-aut-sei=Morizane Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoiShinichiro
en-aut-sei=Doi
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=submacular hemorrhage
kn-keyword=submacular hemorrhage
en-keyword=Henle fiber layer hemorrhage
kn-keyword=Henle fiber layer hemorrhage
en-keyword=retinal arterial macroaneurysm rupture
kn-keyword=retinal arterial macroaneurysm rupture
en-keyword=macular hole
kn-keyword=macular hole
en-keyword=inverted internal limiting membrane flap technique
kn-keyword=inverted internal limiting membrane flap technique
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=109
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their children’s 4-month health examination. The relationships between postpartum depression and the mothers’ background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score ≧9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the woman’s personality traits is needed.
en-copyright=
kn-copyright=
en-aut-name=AwaiKyoko
en-aut-sei=Awai
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakatsukaMikiya
en-aut-sei=Nakatsuka
en-aut-mei=Mikiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=infertility treatment
kn-keyword=infertility treatment
en-keyword=assisted reproductive technology
kn-keyword=assisted reproductive technology
en-keyword=postpartum
kn-keyword=postpartum
en-keyword=postpartum depression
kn-keyword=postpartum depression
en-keyword=personality trait
kn-keyword=personality trait
END