start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9?MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9?MCAM?ERK?c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK?c-Jun pathway. The S100A8/A9?signaling axis may represent a novel therapeutic target in GC.
en-copyright=
kn-copyright=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PanBo
en-aut-sei=Pan
en-aut-mei=Bo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WuFangping
en-aut-sei=Wu
en-aut-mei=Fangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXu
en-aut-sei=Zhang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunBei
en-aut-sei=Sun
en-aut-mei=Bei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Faculties of Educational and Research Management Field, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=S100 protein
kn-keyword=S100 protein
en-keyword=MCAM
kn-keyword=MCAM
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Metastasis
kn-keyword=Metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=67
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Depletion of Lysyl Oxidase-Like 4 (LOXL4) Attenuates Colony Formation in vitro and Collagen Deposition in vivo Breast Cancer Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lysyl oxidase (LOX) family proteins have recently become a topic in cancer progression. Our recent study found a high expression of LOX-like 4 (LOXL4) in MDA-MB-231 cells. Objective: To reveal the impact of depleted LOXL4 in both in vitro and in vivo breast cancer models from a histological perspective. Material and Method: Endogenous LOXL4 was depleted using the CRISPR/Cas9 on MDA-MB-231 parental cells. Based on the LOXL4 protein expression, the clone was determined for the next experiment, thus generating MDA-MB-231 LOXL4 KO. Cell assay was conducted using colony formation assay (n=3) followed by crystal violet staining. The indicated cells were inoculated orthotopically to female BALB/c nude mice (n=5). At the end of the experiment, tumors were isolated, fixed, and prepared for Masson Trichrome staining. Result: CRISPR/Cas9 completely depleted LOXL4 expression on clone number #2-22. Depletion of LOXL4 reduced the colony size formed by MDA-MB-231 cells. MDA-MB-231 LOXL4 KO #2-22 derived tumors showed depressed tumor volume compared to the parental group. Reduced collagen was also observed from the Masson Trichrome staining (p<0.001). Conclusion: Depletion of LOXL4 downregulates the growth of MDA-MB-231 cells in vitro and collagen deposition in vivo.
en-copyright=
kn-copyright=
en-aut-name=Ni Luh Gede Yoni Komalasari
en-aut-sei=Ni Luh Gede Yoni Komalasari
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=I Gde Haryo Ganesha
en-aut-sei=I Gde Haryo Ganesha
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=I Gusti Nyoman Sri Wiryawan
en-aut-sei=I Gusti Nyoman Sri Wiryawan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=3
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=Good health
kn-keyword=Good health
en-keyword=Lysyl oxidase
kn-keyword=Lysyl oxidase
en-keyword=Extracellular matrix
kn-keyword=Extracellular matrix
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=16
article-no=
start-page=2634
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Impact of Gastrointestinal Immune-Related Adverse Events Depends on Nutritional Status in Cancer Patients Treated with Immune Checkpoint Inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastrointestinal immune-related adverse events (GI-irAEs) are recognized complications of immune checkpoint inhibitors (ICIs), but their prognostic relevance and associated risk factors remain unclear. This study aimed to assess whether baseline nutritional status, measured using the prognostic nutritional index (PNI), modifies the prognostic impact of GI-irAEs, and to identify clinical factors associated with their occurrence. Methods: We retrospectively analyzed 1104 cancer patients treated with ICIs at a single institution. GI-irAEs were defined as gastrointestinal symptoms requiring clinical intervention. Patients were stratified by irAE type and PNI (?40 vs. <40), and differences in survival and treatment response were evaluated. Potential risk factors for developing GI-irAEs were also examined. Results: GI-irAEs occurred in 2.7% of patients and were associated with prolonged overall survival (median: 28.7 vs. 14.0 months) among those with PNI ? 40. This survival advantage was not observed in patients with PNI < 40. The PNI-dependent prognostic pattern was specific to GI-irAEs and not observed for non-GI irAEs. Similar trends were confirmed in 4- and 8-week landmark analyses. Differences in objective response rate and disease control rate by PNI status were most pronounced in patients with GI-irAEs. The use of anti-CTLA-4 antibodies was significantly associated with GI-irAE development (odds ratio 4.24; 95% confidence interval 1.73?10.39). Conclusions: GI-irAEs appear to confer a survival benefit primarily in patients with preserved nutritional status. PNI may serve as a useful tool to contextualize the clinical relevance of GI-irAEs and help identify patients most likely to benefit from immune activation during ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaEmi
en-aut-sei=Tanaka
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SueMasahiko
en-aut-sei=Sue
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshikawaTomoki
en-aut-sei=Yoshikawa
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KametakaDaisuke
en-aut-sei=Kametaka
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiChihiro
en-aut-sei=Sakaguchi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=gastrointestinal immune-related adverse events
kn-keyword=gastrointestinal immune-related adverse events
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=prognostic nutrition index
kn-keyword=prognostic nutrition index
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6207
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of the Diagnostic Performance of the Brush/Biopsy Rapid On-Site Evaluation (B-ROSE) in Cases of Bile Duct Stricture: A Prospective, Pilot Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=settingsOrder Article Reprints
Open AccessArticle
Evaluation of the Diagnostic Performance of the Brush/Biopsy Rapid On-Site Evaluation (B-ROSE) in Cases of Bile Duct Stricture: A Prospective, Pilot Study
by Nao Hattori 1,Daisuke Uchida 1,2,*,Kei Harada 1,Ryosuke Sato 1ORCID,Taisuke Obata 1,Akihiro Matsumi 1ORCID,Kazuya Miyamoto 1ORCID,Hiroyuki Terasawa 1ORCID,Yuki Fujii 1,Koichiro Tsutsumi 1ORCID,Shigeru Horiguchi 1,Kazuyuki Matsumoto 1ORCID andMotoyuki Otsuka 1
1
Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
2
Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2025, 14(17), 6207; https://doi.org/10.3390/jcm14176207
Submission received: 23 June 2025 / Revised: 21 August 2025 / Accepted: 26 August 2025 / Published: 2 September 2025
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Downloadkeyboard_arrow_down Browse Figures Versions Notes
Abstract
Background: Biliary strictures are diagnosed using endoscopic retrograde cholangiopancreatography (ERCP) with brush cytology and biopsy. However, brush cytology shows a sensitivity of 9?56.1% and a diagnostic accuracy of 43?65.4%, while biopsy demonstrates a sensitivity of 48%. Both methods exhibit high specificity but limited sensitivity. While rapid on-site evaluation (ROSE) is effective in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA), its application in ERCP-obtained samples remains underexplored. Methods: This prospective pilot study was conducted at Okayama University Hospital from April 2019 to July 2024. Patients requiring ERCP-guided sampling for bile duct strictures were included. ROSE was applied to brush cytology with up to three additional attempts and to imprint cytology from biopsy samples with up to two attempts. Diagnostic accuracy was assessed based on pathology and clinical course. Results: Among 37 patients (median age: 73 years, add range, and male?female ratio: 27:10), 18 had hilar and 19 had distal bile duct strictures. Brush cytology required one, two, or three attempts in twenty-six, six, and five cases, respectively, whereas biopsy required one or two attempts in thirty-five and two cases, respectively. Among the thirty-seven cases, thirty-five were malignant and two were benign. The B-ROSE group showed a sensitivity, specificity, and accuracy of 71.4%, 100.0%, and 73.0%, respectively, compared to lower accuracy in the conventional group, where single brush cytology attempts yielded a sensitivity of 48.6% and an accuracy of 48.6%, and single biopsy attempts showed a sensitivity of 68.6% and an accuracy of 70.3%. Conclusions: B-ROSE improves diagnostic accuracy, reduces repeat sampling, and minimizes patient burden in ERCP-based diagnosis of bile duct strictures, making it a valuable addition to current diagnostic protocols.
en-copyright=
kn-copyright=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TerasawaHiroyuki
en-aut-sei=Terasawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
en-keyword=bile duct stricture
kn-keyword=bile duct stricture
en-keyword=ERCP (endoscopic retrograde cholangiopancreatography)
kn-keyword=ERCP (endoscopic retrograde cholangiopancreatography)
en-keyword=rapid on-site evaluation (ROSE)
kn-keyword=rapid on-site evaluation (ROSE)
en-keyword=B-ROSE
kn-keyword=B-ROSE
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250903
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vendor‐Agnostic Vision Transformer‐Based Artificial Intelligence for Peroral Cholangioscopy: Diagnostic Performance in Biliary Strictures Compared With Convolutional Neural Networks and Endoscopists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Accurate diagnosis of biliary strictures remains challenging. This study aimed to develop an artificial intelligence (AI) system for peroral cholangioscopy (POCS) using a Vision Transformer (ViT) architecture and to evaluate its performance compared to different vendor devices, conventional convolutional neural networks (CNNs), and endoscopists.
Methods: We retrospectively analyzed 125 patients with indeterminate biliary strictures who underwent POCS between 2012 and 2024. AI models including the ViT architecture and two established CNN architectures were developed using images from CHF-B260 or B290 (CHF group; Olympus Medical) and SpyScope DS or DS II (Spy group; Boston Scientific) systems via a patient-level, 3-fold cross-validation. For a direct comparison against endoscopists, a balanced 440-image test set, containing an equal number of images from each vendor, was used for a blinded evaluation.
Results: The 3-fold cross-validation on the entire 2062-image dataset yielded a robust accuracy of 83.9% (95% confidence interval (CI), 80.9?86.7) for the ViT model. The model's accuracy was consistent between CHF (82.7%) and Spy (86.8%, p?=?0.198) groups, and its performance was comparable to the evaluated conventional CNNs. On the 440-image test set, the ViT's accuracy of 78.4% (95% CI, 72.5?83.8) was comparable to that of expert endoscopists (82.0%, p?=?0.148) and non-experts (73.0%, p?=?0.066), with no statistically significant differences observed.
Conclusions: The novel ViT-based AI model demonstrated high vendor-agnostic diagnostic accuracy across multiple POCS systems, achieving performance comparable to conventional CNNs and endoscopists evaluated in this study.
en-copyright=
kn-copyright=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiyaMasahiro
en-aut-sei=Tomiya
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimotoTakayoshi
en-aut-sei=Tanimoto
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtoAkimitsu
en-aut-sei=Ohto
en-aut-mei=Akimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkiKentaro
en-aut-sei=Oki
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KajitaniSatoshi
en-aut-sei=Kajitani
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KikuchiTatsuya
en-aut-sei=Kikuchi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd
kn-affil=
affil-num=4
en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd
kn-affil=
affil-num=5
en-affil=Healthcare Solutions Division, Ryobi Systems Co., Ltd
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=bile duct neoplasms
kn-keyword=bile duct neoplasms
en-keyword=cholangioscopy
kn-keyword=cholangioscopy
en-keyword=computer-assisted diagnosis
kn-keyword=computer-assisted diagnosis
en-keyword=vision transformer
kn-keyword=vision transformer
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=1370
end-page=1386
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time-Efficient and Practical Design Method for Skewed PMSMs: Integrating Numerical Calculations With Limited 3-D-FEA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This article proposes a time-efficient and practical design method for determining appropriate skew structures for permanent magnet synchronous motors (PMSMs). Various PMSMs use skew to suppress torque ripple, but 3-D finite element analysis (3-D-FEA) is required in order to accurately determine an appropriate structure for skewed PMSMs, resulting in a long analysis time. Therefore, this article constructs a hybrid analysis method that combines numerical calculations and minimal 3-D-FEA. The aim of this method is to be practical and easy to use, even for novice designers, and to accurately and quickly design skewed PMSMs. In this article, the effectiveness of the proposed method is clarified through several case studies, and then, a skewed PMSM designed using the proposed method is verified experimentally. It is also revealed that suppression of voltage harmonics contributes to improving the performance of PMSMs in experiments.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchimuraYu
en-aut-sei=Ichimura
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Design method
kn-keyword=Design method
en-keyword=efficiency
kn-keyword=efficiency
en-keyword=field weakening control
kn-keyword=field weakening control
en-keyword=interior permanent magnet synchronous motor (IPMSM)
kn-keyword=interior permanent magnet synchronous motor (IPMSM)
en-keyword=PMSMs
kn-keyword=PMSMs
en-keyword=skew
kn-keyword=skew
en-keyword=torque ripple
kn-keyword=torque ripple
en-keyword=voltage harmonics
kn-keyword=voltage harmonics
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudohypoxia induced by iron chelator activates tumor immune response in lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypoxia-inducible factor (HIF) signaling plays a critical role in immune cell function. Pseudohypoxia is characterized as iron-mediated stabilization of HIF-1α under normoxic conditions, which can be induced by iron chelators. This study explored whether iron chelators exert antitumor effects by enhancing tumor immune responses and elucidating the underlying mechanisms. The iron chelators Super?polyphenol 10 (SP10) and Deferoxamine (DFO) were used to create iron-deficient and pseudohypoxia conditions. Pseudohypoxia induced by iron chelators stimulates IL-2 secretion from T cells and from both human and murine nonsmall cell lung cancer (NSCLC) cell lines (A549, PC-3, and LLC). Administration of SP10 reduced tumor growth when LLC tumors were implanted in C57BL/6 mice; however, this was not observed in immunodeficient RAG1-deficient C57BL/6 mice. SP10 itself did not directly inhibit LLC cells proliferation in vitro, suggesting an activation of the tumor immune response. SP10 synergistically enhanced the efficacy of PD-1 antibody therapy in lung cancer by increasing the number of tumor-infiltrating lymphocytes (TILs). In conclusion, iron chelation-induced pseudohypoxia activates tumor immune responses by directly upregulating HIF-1α, augmenting T cell function, and inducing IL-2 secretion from T cells, and cancer cells, thereby amplifying the immune efficacy of the PD-1 antibody in lung cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeradaManato
en-aut-sei=Terada
en-aut-mei=Manato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=iron
kn-keyword=iron
en-keyword=hypoxia-inducible factor
kn-keyword=hypoxia-inducible factor
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27047
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of Streptococcus mutans harboring the cnm gene encoding cell surface protein Cnm in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dental caries is a highly prevalent infectious disease primarily caused by the pathogenic bacterium Streptococcus mutans, which has also been associated with systemic disease. A 120-kDa collagen-binding protein (Cnm) produced by S. mutans contributes to cardiovascular disease pathogenicity. Few studies have addressed the current prevalence of S. mutans and the cnm gene in Japanese children or examined caries pathology in relation to cnm presence. Here, we investigated the prevalence of S. mutans and the distribution of cnm-positive S. mutans among 490 children who visited two university hospitals in Japan. The caries experience index (dmft/DMFT) was calculated, and the collagen-binding ability of cnm-positive S. mutans strains was assessed. S. mutans was isolated from the oral cavities of 158 patients (36.8%); 10.1% (16/158) harbored cnm-positive S. mutans. When caries experience indices were compared across dentitions, patients harboring cnm-positive strains had significantly higher dmft/DMFT scores than those with cnm-negative strains (P?0.05). Additionally, a positive correlation was observed between the collagen-binding capacity of cnm-positive S. mutans and the dmft/DMFT score (r?=?0.601, P?0.05). These findings suggest that cnm contributes to caries progression through collagen-mediated adherence to tooth surfaces. The presence of cnm-positive S. mutans may represent a risk factor for increased caries susceptibility in children.
en-copyright=
kn-copyright=
en-aut-name=SuehiroYuto
en-aut-sei=Suehiro
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaMakoto
en-aut-sei=Okuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsuguMasatoshi
en-aut-sei=Otsugu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiaiMarin
en-aut-sei=Ochiai
en-aut-mei=Marin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMisato
en-aut-sei=Takagi
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TojoFumikazu
en-aut-sei=Tojo
en-aut-mei=Fumikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MikasaYusuke
en-aut-sei=Mikasa
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaShuhei
en-aut-sei=Naka
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Matsumoto-NakanoMichiyo
en-aut-sei=Matsumoto-Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapirattanakulJinthana
en-aut-sei=Lapirattanakul
en-aut-mei=Jinthana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkawaRena
en-aut-sei=Okawa
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=5
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=6
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Microbiology, Faculty of Dentistry, Mahidol University
kn-affil=
affil-num=11
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=12
en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=13
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=Collagen-binding protein
kn-keyword=Collagen-binding protein
en-keyword=Cnm
kn-keyword=Cnm
en-keyword=Prevalence
kn-keyword=Prevalence
en-keyword=Dental caries
kn-keyword=Dental caries
en-keyword=Japanese population
kn-keyword=Japanese population
END
start-ver=1.4
cd-journal=joma
no-vol=188
cd-vols=
no-issue=
article-no=
start-page=118137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unravelling the cardioprotective effects of calcitriol in Sunitinib-induced toxicity: A comprehensive in silico and in vitro study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sunitinib (SUN), a drug used to treat advanced renal cell carcinoma and other cancers, causes cardiotoxicity. This study aimed to identify a potential drug candidate to counteract SUN-induced cardiotoxicity. We analysed real-world data from adverse event report databases of existing clinically approved drugs to identify potential candidates. Through in silico analyses and in vitro experiments, the mechanisms of action were determined. The study identified calcitriol (CTL), an active form of vitamin D, as a promising candidate against SUN-induced cardiotoxicity. In H9c2 cells, SUN decreased cell viability significantly, whereas CTL mitigated this effect significantly. The SUN-treated group exhibited increased autophagy in H9c2 cells, which was reduced significantly in the CTL group. Bioinformatics analysis using Ingenuity Pathway Analysis revealed the mechanistic target of rapamycin (mTOR) as a common factor between autophagy and CTL. Notably, rapamycin, an mTOR inhibitor, nullified the effects of CTL on cell viability and autophagy. Furthermore, SUN treatment led to significant reductions in cardiomyocyte diameters and increases in their widths, changes that were inhibited by CTL. SUN also induced morphological changes in surviving H9c2 cells, causing them to adopt a rounded shape, whereas CTL improved their morphology to resemble the elongated shape of the control group. In conclusion, the findings of the present study suggest that CTL has the potential to prevent SUN-induced cardiomyocyte damage through autophagy, particularly via mTOR-mediated pathways. The findings indicate that CTL could serve as an effective prophylactic agent against SUN-induced cardiotoxicity, offering a promising avenue for further research and potential clinical applications.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshika
en-aut-sei=Sakamoto
en-aut-mei=Yoshika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaMitsuhiro
en-aut-sei=Goda
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomochikaNanami
en-aut-sei=Tomochika
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakawaWakana
en-aut-sei=Murakawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AizawaFuka
en-aut-sei=Aizawa
en-aut-mei=Fuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiKenta
en-aut-sei=Yagi
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Izawa-IshizawaYuki
en-aut-sei=Izawa-Ishizawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshizawaKeisuke
en-aut-sei=Ishizawa
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=6
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
en-keyword=Sunitinib
kn-keyword=Sunitinib
en-keyword=Advanced renal cell carcinoma
kn-keyword=Advanced renal cell carcinoma
en-keyword=Cardiotoxicity
kn-keyword=Cardiotoxicity
en-keyword=Calcitriol
kn-keyword=Calcitriol
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=MTOR
kn-keyword=MTOR
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MATERIAL PROPERTIES OF DIE-CASTING DIE AROUND HEAT-CHECKING CREATED BY A HIGH-PRESSURE ALUMINUM ALLOY DIE-CASTING OPERATION
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, the material properties of a nitride die-casting die exhibiting heat-checking after the die-casting process were experimentally investigated using various methods. Based on the obtained results, the authors believe that several possible mechanisms underlying the formation of heat-checking can be identified. The microstructure of the die-casting die near the heat-checking region is characterized by equiaxed grains along the vicinity of the prior γ-grain boundaries, resulting from the lath martensitic formation. Additionally, numerous Cr?Mo?V-based nitride particles, approximately 100 nm in diameter, are precipitated. The surface hardness of the die-casting die, enhanced by nitriding, induces compressive residual stresses and increases adhesive forces. As a result of changes in microstructural characteristics and crack formation, the stress state near the die-casting die is altered, where compressive residual stresses, observed in the die-casting die, are released, leading to the tensile residual stresses. This phenomenon could accelerate the formation of a large number of heat-checking cracks.
en-copyright=
kn-copyright=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimazuJunya
en-aut-sei=Shimazu
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mechanical Systems Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mechanical Systems Engineering, Okayama University
kn-affil=
en-keyword=die-casting
kn-keyword=die-casting
en-keyword=die
kn-keyword=die
en-keyword=heat-checking
kn-keyword=heat-checking
en-keyword=hydrogen embrittlement
kn-keyword=hydrogen embrittlement
en-keyword=mechanical property
kn-keyword=mechanical property
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=1305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery and Functional Characterization of Novel Aquaporins in Tomato (Solanum lycopersicum): Implications for Ion Transport and Salinity Tolerance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to its economic importance and cultivation under moderate salinity conditions in Japan. A swelling assay using X. laevis oocyte confirmed that all five examined tomato SlPIP2 isoforms showed water transport activity. Among them, two-electrode voltage clamp (TEVC) experiments showed that only SlPIP2;1, SlPIP2;4, and SlPIP2;8 transport Na+ and K+, with no transport activity for Cs+, Rb+, Li+, or Cl?. CaCl2 (1.8 mM) reduced ionic currents by approximately 45% compared to 30 ?M free-Ca2+. These isoforms function as very low-affinity Na+ and K+ transporters. Expression analysis showed that SlPIP2;4 and SlPIP2;8 had low, stable expression, while SlPIP2;1 was strongly upregulated in roots NaCl treatment (200 mM, 17days), suggesting distinct physiological roles for these ion-conducting AQPs (icAQPs). These data hypothesized that tomato icAQPs play a critical role in ion homeostasis, particularly under salinity stress. In conclusion, the first icAQPs have been identified in the dicotyledonous crop. These icAQPs are essential for plant resilience under salt stress.
en-copyright=
kn-copyright=
en-aut-name=PaulNewton Chandra
en-aut-sei=Paul
en-aut-mei=Newton Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImranShahin
en-aut-sei=Imran
en-aut-mei=Shahin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsumotoAnri
en-aut-sei=Mitsumoto
en-aut-mei=Anri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Aquaporin (AQP)
kn-keyword=Aquaporin (AQP)
en-keyword=ion transport
kn-keyword=ion transport
en-keyword=plasma membrane intrinsic proteins (PIPs)
kn-keyword=plasma membrane intrinsic proteins (PIPs)
en-keyword=tomato
kn-keyword=tomato
en-keyword=oocytes
kn-keyword=oocytes
en-keyword=water transport
kn-keyword=water transport
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113260
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Helical X-ray tube trajectory estimation via image noise analysis for enhanced CT dosimetry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Information on the helical trajectory of the X-ray tube is necessary for accurate dose evaluation during computed tomography (CT). We aimed to propose a methodology for analyzing the trajectory of the X-ray tube. The novelty of this paper is that the incident direction of X-rays is estimated from the standard deviation (SD) distribution. The X-ray incident direction for each slice was analyzed using a distribution function of SD values, in which the analysis regions were placed in the air region. Then, the helical trajectory of the CT scan was estimated by fitting a three-dimensional helical function to the analyzed data. The robustness of our algorithm was verified through phantom studies: the analyzed X-ray incident directions were compared with instrumental log data, in which cylindrical polyoxymethylene resin phantoms and a whole-body phantom were scanned. Chest CT scanning was mimicked, in which the field of view (FOV) was set at the lung region. The procedure for analyzing the X-ray incident direction was applicable to cylindrical phantoms regardless of the phantom size. In contrast, in the case of the whole-body phantom, although it was possible to apply our procedure to the chest and abdomen regions, the shoulder slices were inappropriate to analyze. Therefore, the helical trajectory was determined based on chest and abdominal CT images. The accuracy in X-ray incident direction analysis was evaluated to be 7.5°. In conclusion, we have developed an algorithm to estimate a three-dimensional helical trajectory that can be used for dose measurements and simulations.
en-copyright=
kn-copyright=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaKazuta
en-aut-sei=Yamashita
en-aut-mei=Kazuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HigashinoKosaku
en-aut-sei=Higashino
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorimotoShinichi
en-aut-sei=Morimoto
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KonishiTakeshi
en-aut-sei=Konishi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MakiMotochika
en-aut-sei=Maki
en-aut-mei=Motochika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=6
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Orthopedics, School of Medicine, Tokushima University
kn-affil=
affil-num=9
en-affil=Shikoku Medical Center for Children and Adults
kn-affil=
affil-num=10
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=11
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=12
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=13
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=X-ray medical diagnosis
kn-keyword=X-ray medical diagnosis
en-keyword=Helical CT scan
kn-keyword=Helical CT scan
en-keyword=CT image
kn-keyword=CT image
en-keyword=X-ray incident direction
kn-keyword=X-ray incident direction
en-keyword=Helical trajectory
kn-keyword=Helical trajectory
en-keyword=Radiation dose measurement
kn-keyword=Radiation dose measurement
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p?0.05) were noted during infection to Int407 cell-line. Additionally, LF-EIEC exhibited extensive colonization of the mouse intestine and expressed severe keratoconjunctivitis in guinea pigs. Together, our findings highlight LF-EIEC as an emerging pathogenic variant warranting heightened surveillance and comprehensive investigation to better understand its epidemiological and clinical significance.
en-copyright=
kn-copyright=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HalderProlay
en-aut-sei=Halder
en-aut-mei=Prolay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SamantaProsenjit
en-aut-sei=Samanta
en-aut-mei=Prosenjit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShawSreeja
en-aut-sei=Shaw
en-aut-mei=Sreeja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BosePuja
en-aut-sei=Bose
en-aut-mei=Puja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RoyDeboleena
en-aut-sei=Roy
en-aut-mei=Deboleena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RoyNivedita
en-aut-sei=Roy
en-aut-mei=Nivedita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RamamurthyThandavarayan
en-aut-sei=Ramamurthy
en-aut-mei=Thandavarayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoleyHemanta
en-aut-sei=Koley
en-aut-mei=Hemanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MukhopadhyayAsish Kumar
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=2
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=3
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=4
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=6
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=7
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=8
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=9
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=10
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=11
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=12
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=14
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
en-keyword=Antibiotic resistance
kn-keyword=Antibiotic resistance
en-keyword=Bacterial infections
kn-keyword=Bacterial infections
en-keyword=Diarrhoea
kn-keyword=Diarrhoea
en-keyword=Enteroinvasive Escherichia coli
kn-keyword=Enteroinvasive Escherichia coli
en-keyword=Keratoconjunctivitis
kn-keyword=Keratoconjunctivitis
en-keyword=Pathogenesis
kn-keyword=Pathogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bioengineered chondrocyte-products from human induced pluripotent stem cells are useful for repairing articular cartilage injury in minipig model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The capacity of articular cartilage for self-repair is limited. Therefore, wide-ranging cartilage damage rarely resolves spontaneously, leading to the development of osteoarthritis. Previously, we developed human-induced pluripotent stem cell (hiPSC)-derived expandable human limb-bud-like mesenchymal (ExpLBM) cells with stable expansion and high chondrogenic capacity. In this study, various forms of articular cartilage-like tissue were fabricated using ExpLBM technology and evaluated to examine their potential as biomaterials. ExpLBM cells derived from hiPSCs were used to produce particle-like cartilage tissue and plate-like cartilage tissue. The cartilaginous particles and cartilaginous plates were transplanted into a minipig osteochondral defect model, and cartilage engraftment was histologically evaluated. For both transplanted cartilaginous particles and cartilaginous plates, good Safranin O staining and integration with the surrounding tissue were observed. Cartilaginous particles and cartilaginous plates made using hiPSCs-derived ExpLBM cells are effective for the regeneration of cartilage after injury.
en-copyright=
kn-copyright=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisawaYuki
en-aut-sei=Fujisawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HanakiShojiro
en-aut-sei=Hanaki
en-aut-mei=Shojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtakeShigeo
en-aut-sei=Otake
en-aut-mei=Shigeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyazawaShinichi
en-aut-sei=Miyazawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=5
article-no=
start-page=1302
end-page=1309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=X-ray fluorescence holography under high-pressure conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study reports the first application of X-ray fluorescence holography (XFH) under high-pressure conditions. We integrated XFH with a diamond anvil cell to investigate the local structure around Sr atoms in single-crystal SrTiO3 under high pressure. By utilizing nano-polycrystalline diamond anvils and a yttrium filter, we effectively eliminated significant background noise from both the anvils and the gasket. This optimized experimental configuration enabled the measurement of Sr?Kα holograms of the SrTiO3 sample at pressures up to 13.3?GPa. The variation of lattice constants with pressure was calculated by the shifts of Kossel lines, and real-space images of the atomic structures were reconstructed from the Sr?Kα holograms at different pressures. This work successfully demonstrates the feasibility of employing XFH under high-pressure conditions as a novel method for visualizing pressure-induced changes in the three-dimensional local structure around the specified element.
en-copyright=
kn-copyright=
en-aut-name=ZhanXinhui
en-aut-sei=Zhan
en-aut-mei=Xinhui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshimatsuNaoki
en-aut-sei=Ishimatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraKoji
en-aut-sei=Kimura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HappoNaohisa
en-aut-sei=Happo
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekharHalubai
en-aut-sei=Sekhar
en-aut-mei=Halubai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoTomoko
en-aut-sei=Sato
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakajimaNobuo
en-aut-sei=Nakajima
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawamuraNaomi
en-aut-sei=Kawamura
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HigashiKotaro
en-aut-sei=Higashi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SekizawaOki
en-aut-sei=Sekizawa
en-aut-mei=Oki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KadobayashiHirokazu
en-aut-sei=Kadobayashi
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiRitsuko
en-aut-sei=Eguchi
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubozonoYoshihiro
en-aut-sei=Kubozono
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TajiriHiroo
en-aut-sei=Tajiri
en-aut-mei=Hiroo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HosokawaShinya
en-aut-sei=Hosokawa
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsushitaTomohiro
en-aut-sei=Matsushita
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ShinmeiToru
en-aut-sei=Shinmei
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrifuneTetsuo
en-aut-sei=Irifune
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HayashiKoichi
en-aut-sei=Hayashi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=2
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=3
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Graduate School of Information Sciences, Hiroshima City University
kn-affil=
affil-num=5
en-affil=Institute of Industrial Nanomaterials, Kumamoto University
kn-affil=
affil-num=6
en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK
kn-affil=
affil-num=7
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=8
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=9
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=11
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=12
en-affil=Graduate School of Science, University of Hyogo
kn-affil=
affil-num=13
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=14
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=15
en-affil=Faculty of Materials for Energy, Shimane University
kn-affil=
affil-num=16
en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology
kn-affil=
affil-num=17
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=18
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=19
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
en-keyword=X-ray fluorescence holography
kn-keyword=X-ray fluorescence holography
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=SrTiO3
kn-keyword=SrTiO3
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=4
article-no=
start-page=401
end-page=409
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-Definition Topographic Archiving and Educational Applications in Regions Affected by the 2024 Noto Peninsula Earthquake
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The 2024 Noto Peninsula earthquake (Mw 7.5) caused extensive damage in Ishikawa Prefecture, Japan, and surrounding areas, with considerable coastal uplift and tsunami flooding. Past 100 years’ records show no earthquake above Mw 7.0 in the Noto Peninsula, so for everyone alive today, this event is truly without precedent. Therefore, we aimed to support disaster prevention education by developing teaching materials using unmanned aerial vehicles (UAVs) based on digitally archived topographic changes. High-definition topographic data collected from multiple UAV surveys were processed into digital and analog formats, including 3D models, spherical panorama images, and 3D printings. These materials were designed to provide detailed and intuitive representations of post-disaster landforms and were used as educational tools in schools. The learning materials were introduced during a workshop for disaster-affected teachers, featuring hands-on activities to help participants familiarize themselves with the materials, and explore their integration into geography and science classes. Feedback from participants indicated that these tools were highly effective in enhancing classroom learning. The results of this study are expected to contribute to preserving disaster records while enhancing disaster awareness in educational settings and local communities.
en-copyright=
kn-copyright=
en-aut-name=OguraTakuro
en-aut-sei=Ogura
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiHiroyuki
en-aut-sei=Yamauchi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiTatsuto
en-aut-sei=Aoki
en-aut-mei=Tatsuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MattaNobuhisa
en-aut-sei=Matta
en-aut-mei=Nobuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IizukaKotaro
en-aut-sei=Iizuka
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwasaYoshiya
en-aut-sei=Iwasa
en-aut-mei=Yoshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTakayuki
en-aut-sei=Takahashi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayashiKiyomi
en-aut-sei=Hayashi
en-aut-mei=Kiyomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HattanjiTsuyoshi
en-aut-sei=Hattanji
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OguchiTakashi
en-aut-sei=Oguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
affil-num=2
en-affil=Art Research Center, Ritsumeikan University
kn-affil=
affil-num=3
en-affil=Faculty of Regional Development Studies, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Spatial Information Science, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Faculty of Education, University of Teacher Education Fukuoka
kn-affil=
affil-num=7
en-affil=International Research Institute of Disaster Science, Tohoku University
kn-affil=
affil-num=8
en-affil=Faculty of Regional Development Studies, Kanazawa University
kn-affil=
affil-num=9
en-affil=Institute of Life and Environmental Sciences, University of Tsukuba
kn-affil=
affil-num=10
en-affil=Center for Spatial Information Science, The University of Tokyo
kn-affil=
en-keyword=disaster risk-reduction education
kn-keyword=disaster risk-reduction education
en-keyword=uplift area
kn-keyword=uplift area
en-keyword=UAV
kn-keyword=UAV
en-keyword=3D printing
kn-keyword=3D printing
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=4
article-no=
start-page=e70059
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=When Confidence in Institutions Backfires: Power‐Distance Orientation Moderates the Relationship Between Institutional Trust and Civic Honesty Across Eight Countries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Confidence in institutions is a key predictor of civic honesty, yet evidence shows that this relationship varies across contexts and individuals. This study examined whether power-distance orientation (PDO)?the extent to which individuals accept hierarchical power relations?moderates this association. High-PDO individuals tend to view institutional authorities as entitled to privilege, inclined to engage in patronage relationships and potentially corrupt. We hypothesised that for individuals high in PDO, confidence in institutions could backfire and be linked to the rejection of civic honesty. Using data from 2088 participants across eight countries, we found support for this hypothesis. Specifically, the positive link between institutional confidence and civic honesty was reversed among those who strongly endorse PDO. These findings suggest that individual-level variation in the link between confidence in institutions and civic honesty partly reflects broader beliefs about authorities. We discuss implications of this interaction and outline directions for future research.
en-copyright=
kn-copyright=
en-aut-name=D'OttoneSilvana
en-aut-sei=D'Ottone
en-aut-mei=Silvana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TravaglinoGiovanni A.
en-aut-sei=Travaglino
en-aut-mei=Giovanni A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BurgmerPascal
en-aut-sei=Burgmer
en-aut-mei=Pascal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GiammussoIsabella
en-aut-sei=Giammusso
en-aut-mei=Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImadaHirotaka
en-aut-sei=Imada
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaoYanhui
en-aut-sei=Mao
en-aut-mei=Yanhui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MirisolaAlberto
en-aut-sei=Mirisola
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoonChanki
en-aut-sei=Moon
en-aut-mei=Chanki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NawataKengo
en-aut-sei=Nawata
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzekiMiki
en-aut-sei=Ozeki
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Psychology, Pontificia Universidad Cat?lica de Chile
kn-affil=
affil-num=2
en-affil=Institute for the Study of Power, Crime and Society, Department of Law and Criminology, Royal Holloway University of London
kn-affil=
affil-num=3
en-affil=School of Psychology, University of Southampton
kn-affil=
affil-num=4
en-affil=Department of Psychology, Educational Science and Human Movement, University of Palermo
kn-affil=
affil-num=5
en-affil=Institute for the Study of Power, Crime and Society, Department of Law and Criminology, Royal Holloway University of London
kn-affil=
affil-num=6
en-affil=Institute of Applied Psychology, Psychological Research and Counseling Center, Southwest Jiaotong University
kn-affil=
affil-num=7
en-affil=Department of Psychology, Educational Science and Human Movement, University of Palermo
kn-affil=
affil-num=8
en-affil=Institute for the Study of Power, Crime and Society, Department of Law and Criminology, Royal Holloway University of London
kn-affil=
affil-num=9
en-affil=Faculty of Humanities, Fukuoka University
kn-affil=
affil-num=10
en-affil=Faculty of Humanities and Social Sciences, Okayama University
kn-affil=
en-keyword=civic honesty
kn-keyword=civic honesty
en-keyword=confidence in institutions
kn-keyword=confidence in institutions
en-keyword=corruption
kn-keyword=corruption
en-keyword=power-distance orientation
kn-keyword=power-distance orientation
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=103121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of pre-reconstruction filtering with butterworth filter on 111In-pentetreotide SPECT image quality and quantitative accuracy: A phantom study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: This study evaluates the image quality and quantitative accuracy of SPECT images with pre- and post-reconstruction smoothing filters in somatostatin receptor scintigraphy using phantom data.
Methods: We evaluated the spatial resolution, the contrast-to-noise ratio (CNR), and the quantitative accuracy using a NEMA IEC body phantom filled with a 111In solution. SPECT images were obtained with a Siemens Symbia T16 SPECT/CT system. Quantitative accuracy refers to the ability to accurately estimate the radioactive concentration of 111In in the phantom from the image. SPECT reconstructions were performed using three methods: post-reconstruction Gaussian filtering (post-G), pre-reconstruction Gaussian filtering (pre-G), and pre-reconstruction Butterworth filtering (pre-B). To verify each filtering method, the cut-off frequency of the Butterworth filter and the full width at half maximum (FWHM) of the Gaussian filter were each changed to eight different settings.
Results: FWHMs were 21.2, 19.8, and 18.0 mm for post-G, pre-G, and pre-B. CNRs (37-mm sphere) were 47.2, 63.8, and 69.5. Pre-B showed a 12.0 % error rate at 0.40 cycles/cm, while post-G and pre-G showed 20.2 % and 22.0 % at 7.2-mm FWHM. Pre-B outperformed other methods for resolution, CNR, and quantitative accuracy.
Conclusion: For 111In-pentetreotide SPECT images, image reconstruction with a Butterworth filter applied to the projection image before reconstruction was found to be superior to reconstruction with a Gaussian filter in terms of image quality and quantitative accuracy.
This method can be easily implemented in routine clinical SPECT imaging workflows and has the potential to improve diagnostic confidence.
Implications for practice: The proposed method with a pre-reconstruction Butterworth filter has great potential to improve the image quality and quantitative accuracy of 111In-SPECT images.
en-copyright=
kn-copyright=
en-aut-name=HasegawaD.
en-aut-sei=Hasegawa
en-aut-mei=D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiT.
en-aut-sei=Iguchi
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaM.
en-aut-sei=Nakashima
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshitomiK.
en-aut-sei=Yoshitomi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaiM.
en-aut-sei=Miyai
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaK.
en-aut-sei=Kojima
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaT.
en-aut-sei=Asahara
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=SPECT
kn-keyword=SPECT
en-keyword=Butterworth filter
kn-keyword=Butterworth filter
en-keyword=Gaussian filter
kn-keyword=Gaussian filter
en-keyword=111In-pentetreotide
kn-keyword=111In-pentetreotide
en-keyword=Quantification
kn-keyword=Quantification
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=3
article-no=
start-page=1025
end-page=1033
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Angiogenin-induced Osteoclastogenesis Mediates Bone Destruction in Oral Squamous Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Bone destruction caused by oral cancer severely impacts patient quality of life. This study aimed to clarify the role of angiogenin (ANG) in osteoclastogenesis and oral cancer-induced bone destruction.
Materials and Methods: Recombinant ANG was used to assess its effects on osteoclast formation and bone resorption activity in bone marrow cultures. ANG-knockdown oral squamous carcinoma HSC-2 cells (ANG-RNAi) were transplanted into intramedullary cavities of femurs. Bone destruction was radiologically analyzed, while angiogenesis and osteoclast induction in the surrounding area of the transplanted lesion were histologically examined.
Results: Recombinant ANG promoted osteoclast formation and bone resorption activity. Transplantation of ANG-RNAi cells significantly reduced tumor growth and bone destruction properties compared to transplantation of control cells. Histological analysis revealed lower angiogenesis and fewer osteoclast induction in the ANG-RNAi cells-transplanted group.
Conclusion: ANG mediates oral cancer-induced bone destruction by promoting osteoclast formation and resorption. These findings suggest that ANG could be a potential therapeutic target for suppressing tumor growth, angiogenesis, and bone destruction in oral cancer therapy.
en-copyright=
kn-copyright=
en-aut-name=AOKIKASUMI
en-aut-sei=AOKI
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHITANINANA
en-aut-sei=YOSHITANI
en-aut-mei=NANA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KURIONAITO
en-aut-sei=KURIO
en-aut-mei=NAITO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YOSHIOKANORIE
en-aut-sei=YOSHIOKA
en-aut-mei=NORIE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TERAMACHIJUMPEI
en-aut-sei=TERAMACHI
en-aut-mei=JUMPEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IKEGAMEMIKA
en-aut-sei=IKEGAME
en-aut-mei=MIKA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OKAMURAHIROHIKO
en-aut-sei=OKAMURA
en-aut-mei=HIROHIKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IBARAGISOICHIRO
en-aut-sei=IBARAGI
en-aut-mei=SOICHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Surgery, Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Function and Anatomy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Angiogeninoste
kn-keyword=Angiogeninoste
en-keyword=oclastogenesis
kn-keyword=oclastogenesis
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=osteoclasts
kn-keyword=osteoclasts
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=2
article-no=
start-page=58
end-page=64
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The process of left-hand writing improvement in patients with right hemiplegic stroke: Occupational therapists' observations
kn-title=脳卒中右片麻痺者における左手書字の上達過程を捉える作業療法士の観察内容
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This study explored the observations of occupational therapists regarding the early stages of left-hand writing improvement in patients with right hemiplegic stroke. Semi-structured interviews using interview guides were conducted with 12 occupational therapists, and the qualitative data were analyzed inductively. From 79 descriptive codes, 33 interpretive codes were generated and grouped into 12 subcategories. These were further classified into five main categories : ‘letter neatness,’ ‘tool operability, postural optimization,’ ‘practical utility of writing,’ and ‘autonomy in writing.’ These results revealed that the occupational therapists observed improvements in handwriting from a multifaceted perspective, including not only the patients' motor skills but also psychological and behavioral aspects. The findings of this study capture the contents of occupational therapists' observations regarding the process of the early improvement of left-hand writing, and the insights suggest that, in supporting left-hand writing for stroke patients with right hemiplegia ? among whom it is necessary to grasp changes within a limited intervention period ? these observations are potentially useful for occupational therapists to assess handwriting improvement and provide support, regardless of their years of experience.
en-copyright=
kn-copyright=
en-aut-name=DaitoMaki
en-aut-sei=Daito
en-aut-mei=Maki
kn-aut-name=大東真紀
kn-aut-sei=大東
kn-aut-mei=真紀
aut-affil-num=1
ORCID=
en-aut-name=MorimotoMichiko
en-aut-sei=Morimoto
en-aut-mei=Michiko
kn-aut-name=森本美智子
kn-aut-sei=森本
kn-aut-mei=美智子
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
affil-num=2
en-affil=Division of Nursing, Faculty of Health Sciences, Okayama University
kn-affil=岡山大学学術研究院保健学域 看護学
en-keyword=書字 (handwriting)
kn-keyword=書字 (handwriting)
en-keyword=脳卒中患者 (stroke patient)
kn-keyword=脳卒中患者 (stroke patient)
en-keyword=作業療法士 (occupational therapist)
kn-keyword=作業療法士 (occupational therapist)
en-keyword=観察 (observation)
kn-keyword=観察 (observation)
en-keyword=質的研究 (qualitative study)
kn-keyword=質的研究 (qualitative study)
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neutrophil-to-lymphocyte ratio affects the impact of proton pump inhibitors on efficacy of immune checkpoint inhibitors in patients with non?small-cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The neutrophil-to-lymphocyte ratio (NLR) at the initiation of immune checkpoint inhibitor (ICI) therapy is a known predictor of prognosis. Proton pump inhibitors (PPIs) reportedly attenuate the therapeutic efficacy of ICIs. However, the attenuation effects are not consistently observed across all patients. This study aimed to evaluate whether NLR serves as a stratification factor to determine the impact of PPI on the efficacy of ICI.
Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (??4) and lower NLR (4)). PPI use was defined as the administration of PPIs within 30 days before or after ICI initiation. The primary outcome was progression-free survival (PFS) and the secondary outcome was overall survival (OS).
Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n?=?61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p?0.01, median OS: 3.3 vs. 19.6 months; p?=?0.015). Conversely, in the lower NLR group (n?=?71), no significant difference in PFS and OS was observed between PPI users and non-PPI users (median PFS: 2.8 vs. 7.3 months, p?=?0.83, median OS: 17.6 vs. 24.4 months, p?=?0.40).
Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoTakefumi
en-aut-sei=Ito
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=Neutrophil-to-lymphocyte ratio
kn-keyword=Neutrophil-to-lymphocyte ratio
en-keyword=Non-small-cell lung cancer
kn-keyword=Non-small-cell lung cancer
en-keyword=Proton pump inhibitor
kn-keyword=Proton pump inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asymptomatic intracranial vascular lesions and cognitive function in a general population of Japanese men: Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Intracranial subclinical vessel diseases are considered important indicators of cognitive impairment. However, a comprehensive assessment of various types of vessel disease, particularly in Asian populations, is lacking. We aimed to compare multiple types of intracranial vessel disease in association with cognitive function among a community-based Japanese male population. Methods: The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) randomly recruited and examined a community-based cohort of Japanese men from Shiga, Japan. We analyzed those who underwent the Cognitive Abilities Screening Instrument (CASI) assessment and cranial magnetic resonance imaging/angiogram (MRI/MRA) in 2010?2015. Using MRI/MRA, we assessed lacunar infarction, microbleeds, periventricular hyperintensity (PVH), deep subcortical white matter hyperintensity (DSWMH), and intracranial artery stenosis (ICAS). We divided these subclinical cerebrovascular diseases (SCDs) into three categories according to severity. Using linear regression, we calculated the CASI score according to the grade of each vessel disease, adjusted for age and years of education. Results: In the adjusted models, CASI scores were significantly associated with both PVH and DSWMH. Specifically, multivariable-adjusted CASI scores declined across increasing severity categories of DSWMH (91.7, 91.2, and 90.4; p for trend = 0.011) and PVH (91.5, 90.4, and 89.7; p for trend = 0.006). Other SCDs did not show significant associations. In stratified analyses based on the presence or absence of each SCD, both DSWMH and PVH demonstrated significant inverse trends with CASI scores in the absence of lacunar infarcts and microbleeds and in the presence of ICAS. Additionally, among participants with PVH (+), ?moderate ICAS was significantly associated with lower CASI scores. Conclusion: PVH and DSWMH showed significant dose-response relationships with cognitive function among community-based Japanese men. These findings suggest that white matter lesions may be an important indicator of early cognitive impairment, and severe ICAS may also play a role in those with PVH.
en-copyright=
kn-copyright=
en-aut-name=ItoTakahiro
en-aut-sei=Ito
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiyoshiAkira
en-aut-sei=Fujiyoshi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhkuboTakayoshi
en-aut-sei=Ohkubo
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiinoAkihiko
en-aut-sei=Shiino
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShitaraSatoshi
en-aut-sei=Shitara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyagawaNaoko
en-aut-sei=Miyagawa
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToriiSayuki
en-aut-sei=Torii
en-aut-mei=Sayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SegawaHiroyoshi
en-aut-sei=Segawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KondoKeiko
en-aut-sei=Kondo
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KadotaAya
en-aut-sei=Kadota
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TooyamaIkuo
en-aut-sei=Tooyama
en-aut-mei=Ikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeYoshiyuki
en-aut-sei=Watanabe
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YoshidaKazumichi
en-aut-sei=Yoshida
en-aut-mei=Kazumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NozakiKazuhiko
en-aut-sei=Nozaki
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MiuraKatsuyuki
en-aut-sei=Miura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=The SESSA Research Group
en-aut-sei=The SESSA Research Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=2
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Hygiene and Public Health, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Department of Preventive Medicine and Public Health, Keio University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=10
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=11
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=12
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
affil-num=13
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=15
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=17
en-affil=
kn-affil=
en-keyword=Cognitive impairment
kn-keyword=Cognitive impairment
en-keyword=Cerebrovascular disease
kn-keyword=Cerebrovascular disease
en-keyword=Brain magnetic resonance imaging
kn-keyword=Brain magnetic resonance imaging
en-keyword=White matter lesion
kn-keyword=White matter lesion
en-keyword=Community-based population study
kn-keyword=Community-based population study
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=e72549
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimization of Preemptive Therapy for Cytomegalovirus Infections With Valganciclovir Based on Therapeutic Drug Monitoring: Protocol for a Phase II, Single-Center, Single-Arm Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Valganciclovir (VGCV) is the first-line drug for preemptive therapy of cytomegalovirus (CMV) infections. However, even when administered at the dose specified in the package insert, there is significant interindividual variability in the plasma concentrations of ganciclovir (GCV). In addition, correlations have been reported between the area under the concentration?time curve and therapeutic efficacy or adverse events. Therefore, therapeutic drug monitoring (TDM) can be used to improve the efficacy and safety of preemptive VGCV therapy.
Objective: This study aims to evaluate whether the dosage adjustment of VGCV based on TDM in patients undergoing preemptive therapy for CMV infections is associated with the successful completion rate of treatment without severe hematological adverse effects.
Methods: This phase II, single-center, single-arm trial aims to enroll 40 patients admitted at the Department of Rheumatology and Clinical Immunology, Kobe University Hospital, who will receive oral VGCV as preemptive therapy for CMV infections. Participants will begin treatment with VGCV at the dose recommended in the package insert, with subsequent dose adjustments based on weekly TDM results. The primary end point will be the proportion of patients who achieve CMV antigenemia negativity within 3 weeks without severe hematological adverse events. The secondary end points will include weekly changes in CMV antigen levels, total VGCV dose, and duration of preemptive therapy. For safety evaluation, the occurrence, type, and severity of VGCV-related adverse events will be analyzed. Additionally, this study will explore the correlations between the efficacy and safety of preemptive therapy and the pharmacokinetic parameters of GCV, CMV-polymerase chain reaction values, and nudix hydrolase 15 (NUDT15) genetic polymorphisms. The correlation between GCV plasma concentrations obtained from regular venous blood and blood concentrations will be examined using dried blood spots.
Results: This study began with patient recruitment in September 2024, with 5 participants enrolled as of June 16, 2025. The target enrollment is 40 participants, and the anticipated study completion is set for July 2027.
Conclusions: This is the first study to investigate the impact of TDM intervention in patients receiving VGCV as preemptive therapy. The findings are postulated to provide valuable evidence regarding the utility of TDM in patients receiving VGCV as preemptive therapy.
Trial Registration: Japan Registry of Clinical Trials jRCTs051240080; https://jrct.mhlw.go.jp/latest-detail/jRCTs051240080
International Registered Report Identifier (IRRID): DERR1-10.2196/72549
en-copyright=
kn-copyright=
en-aut-name=TamuraNaoki
en-aut-sei=Tamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoharaKotaro
en-aut-sei=Itohara
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaYo
en-aut-sei=Ueda
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaneToshiyasu
en-aut-sei=Sakane
en-aut-mei=Toshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SaegusaJun
en-aut-sei=Saegusa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=5
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, Kobe Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=valganciclovir
kn-keyword=valganciclovir
en-keyword=ganciclovir
kn-keyword=ganciclovir
en-keyword=cytomegalovirus
kn-keyword=cytomegalovirus
en-keyword=therapeutic drug monitoring
kn-keyword=therapeutic drug monitoring
en-keyword=preemptive therapy
kn-keyword=preemptive therapy
en-keyword=dried blood spots
kn-keyword=dried blood spots
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70104
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adequacy evaluation of 22‐gauge needle endoscopic ultrasound‐guided tissue acquisition samples and glass slides preparation for successful comprehensive genomic profiling testing: A single institute experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: This study aimed to evaluate the successful sequencing rate of Foundation One CDx (F1CDx) using small tissue samples obtained with a 22-gauge needle (22G) through endoscopic ultrasound-guided fine needle acquisition (EUS-TA) and to propose guidelines for tissue quantity evaluation criteria and proper slide preparation in clinical practice.
Methods: Between June 2019 and April 2024, 119 samples of 22G EUS-TA collected for F1CDx testing at Himeji Red Cross Hospital were retrospectively reviewed. Tissue adequacy was only assessed based on tumor cell percentage (?20%). The procedure stopped when white tissue fragments reached 20 mm during macroscopic on-site evaluation. The specimens were prepared using both ‘tissue preserving sectioning’ to retain tissue within formalin-fixed paraffin-embedded blocks and the ‘thin sectioning matched needle gauge and tissue length’ method with calculation to ensure minimal unstained slides for the 1 mm3 sample volume criterion. Tissue area from HE slides and sample volume were measured, and F1CDx reports were analyzed.
Results: Of 119 samples, 108 (90.8%) were suitable for F1CDx. Excluding the cases not submitted for testing, in the 45 cases where F1CDx was done using 22G EUS-TA samples, eight (17.8%) had a sum of tissue area tissue of 25 mm2 or greater in the HE-stained sample. However, all cases met the F1CDx 1 mm3 volume criterion by submitting > 30 unstained slides per sample. As a result, 43 of 45 cases (95.6%) were successfully analyzable.
Conclusions: The 22G EUS-TA needle is an effective tool for providing the sufficient tissue volume required for F1CDx.
en-copyright=
kn-copyright=
en-aut-name=NagataniTami
en-aut-sei=Nagatani
en-aut-mei=Tami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WaniYoji
en-aut-sei=Wani
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakataniMasahiro
en-aut-sei=Takatani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FushimiSoichiro
en-aut-sei=Fushimi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriShinichiro
en-aut-sei=Hori
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KaiKyohei
en-aut-sei=Kai
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiTetsuya
en-aut-sei=Okazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=5
en-affil=Division of Medical Support, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=12
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biliary tract cancer
kn-keyword=biliary tract cancer
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=endoscopic ultrasound-guided fine needle aspiration
kn-keyword=endoscopic ultrasound-guided fine needle aspiration
en-keyword=endoscopic ultrasound-guided fine needle biopsy
kn-keyword=endoscopic ultrasound-guided fine needle biopsy
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
END
start-ver=1.4
cd-journal=joma
no-vol=287
cd-vols=
no-issue=
article-no=
start-page=117674
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 μA mM?1 cm?2, a limit of detection of 100 μM, a detection range up to 60 mM, and a response time of 90 s at 100 μM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions.
en-copyright=
kn-copyright=
en-aut-name=WuShiqi
en-aut-sei=Wu
en-aut-mei=Shiqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakagawaWakutaka
en-aut-sei=Nakagawa
en-aut-mei=Wakutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriYuki
en-aut-sei=Mori
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=M?hesG?bor
en-aut-sei=M?hes
en-aut-mei=G?bor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawanoTomonori
en-aut-sei=Kawano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=4
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=8
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=Flexible wearable sensor
kn-keyword=Flexible wearable sensor
en-keyword=Plant monitoring
kn-keyword=Plant monitoring
en-keyword=Carbon fiber
kn-keyword=Carbon fiber
en-keyword=Multi-enzyme system
kn-keyword=Multi-enzyme system
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=8
article-no=
start-page=e91072
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Craniofacial Fibrous Dysplasia to Affect or Not the Optic Nerve in Long-Term Follow-Up of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibrous dysplasia of the bone is characterized by immature fibrous bones of trabeculae and fibrovascular proliferation in the medulla. In this study, we report three consecutive patients with craniofacial fibrous dysplasia with or without optic nerve involvement. In Case 1, a 43-year-old man with blurred vision in the right eye at the first visit was well until the age of 54 years, when he came back with symptoms suggestive of paranasal sinusitis. Computed tomography scans disclosed a mucocele in the right sphenoid sinus and thickened bilateral ethmoid, sphenoid, and frontal bones. He underwent an emergency nasal endoscopic surgery to make a drainage opening to the sphenoid and ethmoid sinuses on the right side with incomplete success. The pathology of the resected tissue confirmed fibrous dysplasia. With intravenous antibiotics, he recovered from blepharoptosis, complete ophthalmoplegia, and visual acuity decrease on the right side. He was well until the age of 71 years when he had a self-limiting episode of visual field cloudiness caused by the right sphenoid sinus mucocele. At the age of 75 years, he developed abrupt vision loss to no light perception in the right eye. He underwent an open skull surgery to extirpate the sphenoid mucocele on the right side and died of an unknown cause two years later. In Case 2, a 29-year-old man had a two-week-long headache, and computed tomography scans revealed fibrous dysplasia in the bilateral sphenoid bones. Nasal biopsy at the spheno-ethmoid recess proved a pathological diagnosis of fibrous dysplasia. Goldmann perimetry showed normal visual fields in both eyes. He was followed every year by magnetic resonance imaging to maintain normal visual fields until the latest visit at the age of 41 years. In Case 3, a 12-year-old girl was referred to an ophthalmologist to check her vision. She had been diagnosed with fibrous dysplasia of the left maxillary bone at the age of six years by a dentist. She had a gingival resection on the left maxilla at the age of 15 years and had a left maxillary bone resection at 18 years at another hospital. One month after the resection, Goldmann perimetry showed superior peripheral field depression in the left eye, in contrast with the normal visual field in the right eye. She maintained the visual acuity of 1.5 in both eyes until the last visit at the age of 21 years. In fibrous dysplasia as a rare disease, functional and cosmetic problems, including vision problems, should be considered in a case-based approach.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKiyoshi
en-aut-sei=Yamada
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoMitsuhiro
en-aut-sei=Okano
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Otorhinolaryngology, School of Medicine, International University of Health and Welfare
kn-affil=
en-keyword=computed tomography (ct) scan
kn-keyword=computed tomography (ct) scan
en-keyword=craniofacial bone
kn-keyword=craniofacial bone
en-keyword=fibrous dysplasia
kn-keyword=fibrous dysplasia
en-keyword=goldmann perimetry
kn-keyword=goldmann perimetry
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=monostotic
kn-keyword=monostotic
en-keyword=optic nerve
kn-keyword=optic nerve
en-keyword=pathology
kn-keyword=pathology
en-keyword=visual acuity
kn-keyword=visual acuity
en-keyword=visual field
kn-keyword=visual field
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=473
end-page=479.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus?like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth?not only in neonates with type I interferonopathy but also in other IEIs, including CGD.
en-copyright=
kn-copyright=
en-aut-name=NihiraHiroshi
en-aut-sei=Nihira
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaDaisuke
en-aut-sei=Nakajima
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IzawaKazushi
en-aut-sei=Izawa
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawashimaYusuke
en-aut-sei=Kawashima
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShibataHirofumi
en-aut-sei=Shibata
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonnoRyo
en-aut-sei=Konno
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiguchiMotoko
en-aut-sei=Higashiguchi
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoTakayuki
en-aut-sei=Miyamoto
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nishitani-IsaMasahiko
en-aut-sei=Nishitani-Isa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiejimaEitaro
en-aut-sei=Hiejima
en-aut-mei=Eitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HondaYoshitaka
en-aut-sei=Honda
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsubayashiTadashi
en-aut-sei=Matsubayashi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaTakashi
en-aut-sei=Ishihara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwataNaomi
en-aut-sei=Iwata
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhwadaYoko
en-aut-sei=Ohwada
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TomotakiSeiichi
en-aut-sei=Tomotaki
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawaiMasahiko
en-aut-sei=Kawai
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MurakamiKosaku
en-aut-sei=Murakami
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhnishiHidenori
en-aut-sei=Ohnishi
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IshimuraMasataka
en-aut-sei=Ishimura
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=OkadaSatoshi
en-aut-sei=Okada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YamashitaMotoi
en-aut-sei=Yamashita
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MorioTomohiro
en-aut-sei=Morio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HoshinoAkihiro
en-aut-sei=Hoshino
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KaneganeHirokazu
en-aut-sei=Kanegane
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ImaiKohsuke
en-aut-sei=Imai
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakamuraYasuko
en-aut-sei=Nakamura
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=NonoyamaShigeaki
en-aut-sei=Nonoyama
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UchiyamaToru
en-aut-sei=Uchiyama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=OnoderaMasafumi
en-aut-sei=Onodera
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=IshikawaTakashi
en-aut-sei=Ishikawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawaiToshinao
en-aut-sei=Kawai
en-aut-mei=Toshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=TakitaJunko
en-aut-sei=Takita
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NishikomoriRyuta
en-aut-sei=Nishikomori
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OharaOsamu
en-aut-sei=Ohara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=YasumiTakahiro
en-aut-sei=Yasumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Nara Medical University
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Infection and Immunology, Aichi Children’s Health and Medical Center
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=22
en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=23
en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=24
en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=25
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=26
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=27
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=28
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=29
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=30
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=31
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=32
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=33
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=34
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=37
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=Inborn errors of immunity
kn-keyword=Inborn errors of immunity
en-keyword=interferonopathy
kn-keyword=interferonopathy
en-keyword=signature
kn-keyword=signature
en-keyword=proteome
kn-keyword=proteome
en-keyword=dried blood spot
kn-keyword=dried blood spot
en-keyword=CGD
kn-keyword=CGD
en-keyword=WAS
kn-keyword=WAS
en-keyword=newborn
kn-keyword=newborn
en-keyword=neonate
kn-keyword=neonate
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=roaf042
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis ? secondary publication
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making.
en-copyright=
kn-copyright=
en-aut-name=MiyamaeTakako
en-aut-sei=Miyamae
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoNami
en-aut-sei=Okamoto
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYuzaburo
en-aut-sei=Inoue
en-aut-mei=Yuzaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaTomohiro
en-aut-sei=Kubota
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EbatoTakasuke
en-aut-sei=Ebato
en-aut-mei=Takasuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IrabuHitoshi
en-aut-sei=Irabu
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamedaHideto
en-aut-sei=Kameda
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoYuko
en-aut-sei=Kaneko
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuboHiroshi
en-aut-sei=Kubo
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MitsunagaKanako
en-aut-sei=Mitsunaga
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MoriMasaaki
en-aut-sei=Mori
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaAyako
en-aut-sei=Nakajima
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimuraKenichi
en-aut-sei=Nishimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhkuboNaoaki
en-aut-sei=Ohkubo
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoTomomi
en-aut-sei=Sato
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugitaYuko
en-aut-sei=Sugita
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakanashiSatoshi
en-aut-sei=Takanashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaTakayuki
en-aut-sei=Tanaka
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UmebayashiHiroaki
en-aut-sei=Umebayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamanishiShingo
en-aut-sei=Yamanishi
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FusamaMie
en-aut-sei=Fusama
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=HirataShintaro
en-aut-sei=Hirata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KishimotoMitsumasa
en-aut-sei=Kishimoto
en-aut-mei=Mitsumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KohnoMasataka
en-aut-sei=Kohno
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KojimaMasayo
en-aut-sei=Kojima
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MorinobuAkio
en-aut-sei=Morinobu
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=SugiharaTakahiko
en-aut-sei=Sugihara
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YanaiRyo
en-aut-sei=Yanai
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HarigaiMasayoshi
en-aut-sei=Harigai
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety
kn-affil=
affil-num=3
en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kitasato University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
kn-affil=
affil-num=7
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University
kn-affil=
affil-num=8
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=10
en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital
kn-affil=
affil-num=11
en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University
kn-affil=
affil-num=12
en-affil=Center for Rheumatic Diseases, Mie University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Iizuka Hospital
kn-affil=
affil-num=15
en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=17
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital
kn-affil=
affil-num=19
en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Children’s Hospital
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Nippon Medical School
kn-affil=
affil-num=22
en-affil=Health Sciences Department of Nursing, Kansai University of International Studies
kn-affil=
affil-num=23
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=24
en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine
kn-affil=
affil-num=25
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=26
en-affil=Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=27
en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=28
en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=29
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
kn-affil=
affil-num=30
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
affil-num=31
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=32
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=33
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=34
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
en-keyword=Clinical practice guidelines
kn-keyword=Clinical practice guidelines
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
en-keyword=juvenile idiopathic arthritis
kn-keyword=juvenile idiopathic arthritis
en-keyword=systematic review
kn-keyword=systematic review
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=
article-no=
start-page=244
end-page=256
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Brain function
kn-keyword=Brain function
en-keyword=Neuroplasticity
kn-keyword=Neuroplasticity
en-keyword=Neuroprotection
kn-keyword=Neuroprotection
en-keyword=Cognitive decline
kn-keyword=Cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Age-related behavioural abnormalities in C57BL/6.KOR?Apoe shl mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer’s disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiTetsuji
en-aut-sei=Miyazaki
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=age
kn-keyword=age
en-keyword=apolipoprotein
kn-keyword=apolipoprotein
en-keyword=behavioural test
kn-keyword=behavioural test
en-keyword=central nervous system
kn-keyword=central nervous system
en-keyword=mouse
kn-keyword=mouse
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rearing in an envy-like environment increases anxiety-like behaviour in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Interest in the societal and psychological harm caused by widespread envy and social comparison is increasing. Envy is associated with anxiety and depression, though the mechanism by which envy affects neuropsychiatric disorders, such as depression, remains unclear. Clarifying the neurobiological basis of envy’s effects on behaviour and emotion regulation in experimental mice is essential for developing disease-prevention and treatment strategies. As mice recognize other mice in neighbouring cages, this study investigated whether they recognize neighbouring cages housed in environmentally enriched cages and suffer psychological stress due to envy. After being raised in an envy-like environment for 3 weeks, we revealed changes in the behaviour of the mice through a series of behavioural experiments. Mice raised in an envious environment showed increased body weight and anxiety-like behaviour but decreased social behaviour and serum corticosterone levels compared to control mice. Thus, mice recognize their neighbouring cages and experience psychological stress due to envy. This study revealed a part of the scientific basis for why envy increased anxiety. Using this novel experimental breeding environment, it may be possible to create an experimental animal model of anxiety disorders.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=behaviour
kn-keyword=behaviour
en-keyword=anxiety
kn-keyword=anxiety
en-keyword=mouse
kn-keyword=mouse
en-keyword=envy
kn-keyword=envy
en-keyword=rodent
kn-keyword=rodent
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=1399
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ?50 Years: A Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ?50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399?2.351), age (ORs = 0.969; 95% CIs: 0.948?0.991), body mass index (?25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467?2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002?1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087?1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD.
en-copyright=
kn-copyright=
en-aut-name=IwaiKomei
en-aut-sei=Iwai
en-aut-mei=Komei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AzumaTetsuji
en-aut-sei=Azuma
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YonenagaTakatoshi
en-aut-sei=Yonenaga
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TabataKoichiro
en-aut-sei=Tabata
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=4
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=5
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
en-keyword=oral health
kn-keyword=oral health
en-keyword=liver diseases
kn-keyword=liver diseases
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=mastication
kn-keyword=mastication
en-keyword=physical examination
kn-keyword=physical examination
en-keyword=surveys and questionnaires
kn-keyword=surveys and questionnaires
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=292
end-page=296
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Computed tomography findings of idiopathic multicentric Castleman disease subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study retrospectively evaluated the computed tomography (CT) findings of idiopathic multicentric Castleman disease (iMCD) at a single center and compared the CT findings of iMCD-TAFRO with those of iMCD-non-TAFRO. CT images obtained within 30 days before diagnostic confirmation were reviewed for 20 patients with iMCD (8 men and 12 women, mean age 52.8 ± 12.3 years, range 25?74 years). Twelve patients were diagnosed with iMCD-TAFRO, five with iMCD-idiopathic plasmacytic lymphadenopathy, and three with iMCD-not otherwise specified. CT images revealed anasarca and lymphadenopathy in all 20 patients. The iMCD-TAFRO group showed significantly higher frequencies of ascites (100% vs. 37.5%, P = 0.004), gallbladder wall edema (75.0% vs. 12.5%, P = 0.020), periportal collar (91.7% vs. 25.0%, P = 0.004), and anterior mediastinal lesions (non-mass-forming infiltrative lesions) (66.7% vs. 12.5%, P = 0.028). Para-aortic edema tended to be more frequent in patients with the iMCD-TAFRO group (83.3% vs. 37.5%, P = 0.062), while the absence of anterior mediastinal lesions tended to be more frequent in the iMCD-non-TAFRO group (16.7% vs. 62.5%, P = 0.062). These CT findings may have clinical implications for improving the accuracy and speed of iMCD diagnosis and differentiating iMCD-TAFRO from other subtypes.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwakiNoriko
en-aut-sei=Iwaki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology, National Cancer Center Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=TAFRO syndrome
kn-keyword=TAFRO syndrome
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=156
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metaverse Support Groups for LGBTQ+ Youth: An Observational Study on Safety, Self-Expression, and Early Intervention
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study explored whether metaverse-based support groups could address social isolation and suicide risks among LGBTQ+ youths by providing enhanced anonymity, avatar-based self-expression, and improved accessibility. Over one year, 53 individuals aged 14?23 participated in regular online sessions facilitated via the "cluster" metaverse platform by a non-profit LGBTQ+ organization. Each 90-minute session included voice and text-based interactions within a specially designed single-floor virtual space featuring conversation areas and a designated "safe area" for emotional regulation. Post-session questionnaires (5-point Likert scales) captured demographics, avatar preferences, self-confidence, and perceived safety, self-expression, and accessibility; responses were analyzed with Pearson's chi-squared test and Mann?Whitney U tests (α=0.05). Results indicated that 79.2% of participants selected avatars aligned with their gender identity, reporting high satisfaction (mean = 4.10/5) and minimal discomfort (mean = 1.79/5). Social confidence was significantly higher in the metaverse compared with real-world settings (p<0.001), particularly among those with lower real-world confidence, who exhibited an average gain of 2.08 points. Approximately half of all first-time participants were aged 16 years or younger, which suggested the platform’s value for early intervention. Additionally, the metaverse environment was rated significantly higher in safety/privacy (3.94/5), self-expression (4.02/5), and accessibility (4.21/5) compared with the real-world baseline, and 73.6% reported they felt more accepted virtually. However, some participants who had high confidence offline experienced mild adaptation challenges (mean decrease of 0.58 points), which highlighted that metaverse-based support may be more effective as a complement to in-person services rather than a replacement. Overall, these findings demonstrate that metaverse-based support groups can reduce psychological barriers for LGBTQ+ youth by facilitating safe and affirming virtual environments. The metaverse may help alleviate emotional distress and prevent further severe outcomes, such as suicidal ideation by providing early intervention, especially for adolescents unable to access conventional in-person services. Further research should examine its integration with existing clinical, community, and educational resources to ensure comprehensive, long-term support.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceu-tical Sciences, Okayama University
kn-affil=
en-keyword=LGBTQ+ Youth
kn-keyword=LGBTQ+ Youth
en-keyword=Social Isolation
kn-keyword=Social Isolation
en-keyword=Suicide Prevention
kn-keyword=Suicide Prevention
en-keyword=Avatar-Based Interventions
kn-keyword=Avatar-Based Interventions
END
start-ver=1.4
cd-journal=joma
no-vol=410
cd-vols=
no-issue=1
article-no=
start-page=20
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An effective surgical educational system in the era of robotic surgery: “Double-Surgeon Technique” in robotic gastrectomy for minimally invasive surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Gastric cancer (GC) remains a major malignancy. Robotic gastrectomy (RG) has gained popularity due to various advantages. Despite those advantages, many hospitals lack the necessary equipment for RG and are still performing laparoscopic gastrectomy (LG) due to its established minimal invasiveness and safety.
Methods This study assessed the effectiveness of the “Double-Surgeon Technique” (DST) for improving surgical education and proficiency with LG. The DST involves both a console-side surgeon and a patient-side surgeon working actively in RG, enhancing the skill acquisition needed for LG and potentially reducing surgical time. Assessment of this method was performed by surgical time, and cases were divided into three groups: first half (Phase 1: P1) and second half (P2) before the introduction of DST, and after the introduction of DST (P3).
Results Two surgical trainees were trained using the DST. The learning curve in both reached a plateau in P2, but descended again in P3. For one trainee, surgical time for P3 was significantly reduced compared to P1 (p?=?0.001) and P2 (p?=?0.0027) despite the intervals between laparoscopic distal gastrectomy as the main surgeon in P3 being significantly longer than in P2 (p?=?0.0094). Other surgical results in both trainees did not differ significantly. Further, no difference in induction phase results of RG were evident between surgeons and trainees with or without DST experience.
Conclusion Surgical education using the DST could be effective in the current context of the need for RG and LG.
en-copyright=
kn-copyright=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KashimaHajime
en-aut-sei=Kashima
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Surgical education
kn-keyword=Surgical education
en-keyword=Gastrectomy
kn-keyword=Gastrectomy
en-keyword=Minimally invasive surgery
kn-keyword=Minimally invasive surgery
en-keyword=Robotic gastrectomy
kn-keyword=Robotic gastrectomy
en-keyword=Endoscopic surgical skill qualification system qualification
kn-keyword=Endoscopic surgical skill qualification system qualification
END
start-ver=1.4
cd-journal=joma
no-vol=2892
cd-vols=
no-issue=
article-no=
start-page=012002
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal Grain Rotation during Tensile Test of Polycrystalline Pure Titanium Thin Sheet Based on Surface Height and Crystal Orientation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin sheets and wires of polycrystalline pure titanium are important materials for various devices used in electrical, mechanical, dental, and medical fields. Since pure titanium shows strong anisotropy in elastic and plastic deformation, and the individual grains comprising a polycrystalline body have different orientations and geometries, inhomogeneous deformation always occurs on the microscopic scale. This inhomogeneity is more significant in thin films than in bulk materials. It is therefore important to investigate the inhomogeneous deformation of pure titanium thin sheets to ensure the reliability of various titanium devices. In this study, thin-sheet specimens made of polycrystalline pure titanium were subjected to tensile testing. Inhomogeneous deformation was evaluated on the basis of two kinds of crystal grain rotations based on surface height and crystal orientation. The results under elastic and plastic tensile conditions were compared.
en-copyright=
kn-copyright=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhashiHiroaki
en-aut-sei=Ohashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=9
article-no=
start-page=4310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=2
en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SLC transporter
kn-keyword=SLC transporter
en-keyword=ABC transporter
kn-keyword=ABC transporter
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26737
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coronary cross-sectional area stenosis severity determined using coronary CT highly correlated with coronary functional flow reserve: a pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fractional flow reserve (FFR) is the gold standard for assessing the physiological significance of coronary stenosis. We examined the potential correlation between digitally measured coronary cross-sectional area stenosis using coronary computed tomography (CT) angiography and FFR. We analyzed data of 32 consecutive patients with stenoses who underwent invasive FFR determination. The cross-sectional area was assessed using 128-slice coronary detector-based spectral CT angiography. Power analysis revealed that the sample size enabled the detection of an area under the receiver operating characteristic (ROC) curve (AUC) of 0.90. FFR???0.8 and?>?0.8 were defined as FFR-positive and FFR-negative, respectively. Intra- and interobserver differences were negligible. Percentage cross-sectional area stenosis was calculated as 100?×?(A?B)/A, where A is the cross-sectional area at non-stenotic pre-stenotic segment and B is the cross-sectional area of the most severe stenotic lesion. AUC indicated that percentage cross-sectional area stenosis effectively discriminated between FFR-positive and FFR-negative cases, yielding a sensitivity of 0.882 and specificity of 0.933 at a cutoff of 50% area reduction, with an AUC of 0.976. Lesions with less than 45% cross-sectional area stenosis on coronary CT angiography were not FFR-positive. When ROC analysis was conducted for lesion characteristics, AUC did not significantly improve. In conclusion, the percent coronary cross-sectional area stenosis measured using coronary CT angiography distinguished between FFR-positive and FFR-negative lesions with high accuracy. The severity of coronary cross-sectional area stenosis determined using CT angiography is clinically useful for predicting FFR.
en-copyright=
kn-copyright=
en-aut-name=KoumotoTakuto
en-aut-sei=Koumoto
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KusachiShozo
en-aut-sei=Kusachi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiyaTakumi
en-aut-sei=Tomiya
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiTakuya
en-aut-sei=Akagi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawamuraHiroshi
en-aut-sei=Kawamura
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamajiHirosuke
en-aut-sei=Yamaji
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurakamiTakashi
en-aut-sei=Murakami
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamikawaShigeshi
en-aut-sei=Kamikawa
en-aut-mei=Shigeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurakamiMasaaki
en-aut-sei=Murakami
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Radiation, Okayama Heart Clinic
kn-affil=
affil-num=2
en-affil=Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=4
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=5
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=8
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=9
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=10
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
en-keyword=Ischemic heart disease
kn-keyword=Ischemic heart disease
en-keyword=Reversible ischemia
kn-keyword=Reversible ischemia
en-keyword=Coronary pressure
kn-keyword=Coronary pressure
en-keyword=Multi-slice CT
kn-keyword=Multi-slice CT
en-keyword=Coronary hemodynamics
kn-keyword=Coronary hemodynamics
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-α?induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-α
kn-keyword=tumor necrosis factor-α
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=S1
article-no=
start-page=7
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Basic biology is not just “for the birds”: how avian studies have informed us about vertebrate reproduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Avian reproductive physiology has been studied for centuries, largely because of the importance of birds as food animals. It is likely that the ubiquity and ease of access to domesticated chickens led to them being used in some of the first experiments on transplantation of endocrine structures?in this case, the testes. Since then, study of seasonal changes in reproductive physiology (photoperiodism) in different orders of bird species has led to advances in the understanding of endocrine regulation of reproductive physiology and behavior. These include mechanisms of adult neuroplasticity, sexual selection, sperm competition, stress physiology, and circadian physiology. Here, we focus mainly on the discovery in birds of a neuropeptide named gonadotropin-inhibitory hormone that mostly has inhibitory effects on reproduction. This hormone has since been shown to exist in all mammals studied to date, including humans (it is known as RFamide-related peptide in mammals). We discuss the history and implications of avian studies on gonadotropin-inhibitory hormone/RFamide-related peptide for human reproductive biology.
en-copyright=
kn-copyright=
en-aut-name=BentleyGeorge E.
en-aut-sei=Bentley
en-aut-mei=George E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=GnIH
kn-keyword=GnIH
en-keyword=RFamide
kn-keyword=RFamide
END
start-ver=1.4
cd-journal=joma
no-vol=189
cd-vols=
no-issue=
article-no=
start-page=123
end-page=132
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The Development Process and Practical Challenges of the Educational Support System in a High School Implementing Resource Room Program: An Autoethnographic Case Study
kn-title=高校通級実践校における教育支援体制の整備過程と実践課題 ─オートエスノグラフィーによる学校事例の検討─
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 本研究の目的は,通級による指導の運用に伴う教育支援体制の整備過程に焦点をあて,必要とされた取組とその対応策を学校事例に基づいて明らかにすることである。第一に必要とされた取組は,@個別の教育支援計画を活用可能にする体制,A合理的配慮の運用手続き,B特別支援教育委員会を活用する体制,C支援の必要な生徒の進路決定過程,D支援の引継ぎのための体制であった。第二に教育支援体制の整備を進めるにあたり,各部署への対応策として5点が効果的だということが示された。通級による指導を円滑に運用するには,教育支援体制の整備を進めること,その際に既存の体制を活用したり,各部署の取組に組み込んだり,各部署の業務との違いを明確化したり,場合によっては校内組織を混乱させないように教育支援体制を修正したりするなど,既存の各部署の体制への対応策を検討することの重要性が示唆された。
en-copyright=
kn-copyright=
en-aut-name=MORIFutoshi
en-aut-sei=MORI
en-aut-mei=Futoshi
kn-aut-name=森太
kn-aut-sei=森
kn-aut-mei=太
aut-affil-num=1
ORCID=
en-aut-name=YOSHITOSHIMunehisa
en-aut-sei=YOSHITOSHI
en-aut-mei=Munehisa
kn-aut-name=吉利宗久
kn-aut-sei=吉利
kn-aut-mei=宗久
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Wadayama School for students with special needs
kn-affil=兵庫県立和田山特別支援学校
affil-num=2
en-affil=Okayama University
kn-affil=岡山大学
en-keyword=高等学校
kn-keyword=高等学校
en-keyword=通級による指導
kn-keyword=通級による指導
en-keyword=教育支援体制
kn-keyword=教育支援体制
en-keyword=オートエスノグラフィー
kn-keyword=オートエスノグラフィー
END
start-ver=1.4
cd-journal=joma
no-vol=189
cd-vols=
no-issue=
article-no=
start-page=75
end-page=85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Case Study of Graduate Students Reflecting on Their Own Formative Activities: Autoethnography for Learning as a Childcare Worker
kn-title=大学院生が自らの造形行為を省察する事例研究 ─保育者としての学びをつくるオートエスノグラフィー─
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 本研究では,造形行為と,その造形行為の記録を振り返ることによって「自己省察」する学びの過程をオートエスノグラフィーとし,保育者を目指す大学院生である第3 筆者,及び現職の保育者の大学院生である第2 筆者と第4 筆者にもたらしたオートエスノグラフィーの学びの作用を検討した。第1 筆者,第2 筆者,第3 筆者,第4 筆者が協働した造形行為では,個々の造形物が自ずと繋がり合い1 つになっていく過程がビデオ記録された。また,造形行為の過程で見たり,感じたり,気付いたりしたことと,ビデオ記録を振り返ることで見たり,感じたり,気付いたりしたことの差異を学びとして第2 筆者,第3 筆者,第4 筆者が「自己省察」した。この「自己省察」は,保育者にとっての新たな視点を導き出す契機となり,保育における省察の在り方とも深く共通する点で,保育者養成にて経験する意義がある。
en-copyright=
kn-copyright=
en-aut-name=OHIRAShuya
en-aut-sei=OHIRA
en-aut-mei=Shuya
kn-aut-name=大平修也
kn-aut-sei=大平
kn-aut-mei=修也
aut-affil-num=1
ORCID=
en-aut-name=SEGIRISayaka
en-aut-sei=SEGIRI
en-aut-mei=Sayaka
kn-aut-name=瀬切さやか
kn-aut-sei=瀬切
kn-aut-mei=さやか
aut-affil-num=2
ORCID=
en-aut-name=KURIHARAKyogo
en-aut-sei=KURIHARA
en-aut-mei=Kyogo
kn-aut-name=栗原匡虎
kn-aut-sei=栗原
kn-aut-mei=匡虎
aut-affil-num=3
ORCID=
en-aut-name=AOEMiho
en-aut-sei=AOE
en-aut-mei=Miho
kn-aut-name=青江美穂
kn-aut-sei=青江
kn-aut-mei=美穂
aut-affil-num=4
ORCID=
en-aut-name=TSURUMIAkiko
en-aut-sei=TSURUMI
en-aut-mei=Akiko
kn-aut-name=鶴海明子
kn-aut-sei=鶴海
kn-aut-mei=明子
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Education,Okayama University
kn-affil=岡山大学学術研究院教育学域
affil-num=2
en-affil=Okayama University Graduate School of Education Master's Course
kn-affil=岡山大学大学院教育学研究科修士課程
affil-num=3
en-affil=Menoto childcare center
kn-affil=学校法人女の都こども園
affil-num=4
en-affil=Okayama University Graduate School of Education Master's Course
kn-affil=岡山大学大学院教育学研究科修士課程
affil-num=5
en-affil=Okayama University Kindergarten
kn-affil=岡山大学附属幼稚園
en-keyword=保育者養成
kn-keyword=保育者養成
en-keyword=造形行為
kn-keyword=造形行為
en-keyword=自己省察
kn-keyword=自己省察
en-keyword=相互行為分析
kn-keyword=相互行為分析
en-keyword=ビデオ記録
kn-keyword=ビデオ記録
END
start-ver=1.4
cd-journal=joma
no-vol=1863
cd-vols=
no-issue=
article-no=
start-page=149752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Amyloid-beta
kn-keyword=Amyloid-beta
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Neumentix
kn-keyword=Neumentix
en-keyword=Phagocytosis
kn-keyword=Phagocytosis
en-keyword=Survival rate
kn-keyword=Survival rate
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=8
article-no=
start-page=1217
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly γ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoKazunari
en-aut-sei=Ito
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaninoYuka
en-aut-sei=Tanino
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiHayato
en-aut-sei=Takeuchi
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=5
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=6
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amino acid
kn-keyword=Amino acid
en-keyword=GABA
kn-keyword=GABA
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=rice koji
kn-keyword=rice koji
en-keyword=Thai-colored rice
kn-keyword=Thai-colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=6
article-no=
start-page=uoaf044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry.
en-copyright=
kn-copyright=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMomo
en-aut-sei=Kondo
en-aut-mei=Momo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItakuraShoko
en-aut-sei=Itakura
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoshinoYujiro
en-aut-sei=Hoshino
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaMakiya
en-aut-sei=Nishikawa
en-aut-mei=Makiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusamoriKosuke
en-aut-sei=Kusamori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment and Information Sciences, Yokohama National University
kn-affil=
affil-num=6
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=photoredox catalysis
kn-keyword=photoredox catalysis
en-keyword=[2 + 2] cycloaddition
kn-keyword=[2 + 2] cycloaddition
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The stress?strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films.
en-copyright=
kn-copyright=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=raduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=390
cd-vols=
no-issue=
article-no=
start-page=116594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extension’s pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadachiKazuma
en-aut-sei=Tadachi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Soft robot
kn-keyword=Soft robot
en-keyword=Extension soft actuator
kn-keyword=Extension soft actuator
en-keyword=Link mechanism
kn-keyword=Link mechanism
en-keyword=Pantograph
kn-keyword=Pantograph
en-keyword=Attitude control
kn-keyword=Attitude control
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japan’s current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japan’s position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japan’s goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide.
en-copyright=
kn-copyright=
en-aut-name=NguyenThu Huong
en-aut-sei=Nguyen
en-aut-mei=Thu Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTaku
en-aut-sei=Fujiwara
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaHiromasa
en-aut-sei=Yamashita
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogawaHironori
en-aut-sei=Togawa
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHaruo
en-aut-sei=Miyake
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoMasako
en-aut-sei=Goto
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMasato
en-aut-sei=Nakamura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OritateFumiko
en-aut-sei=Oritate
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IharaHirotaka
en-aut-sei=Ihara
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=4
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=5
en-affil=R & D Department, Japan Sewage Works Agency
kn-affil=
affil-num=6
en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=9
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=10
en-affil=Institute for Agro-Environmental Sciences, NARO
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Japan
kn-keyword=Japan
en-keyword=Sewage sludge
kn-keyword=Sewage sludge
en-keyword=Agriculture
kn-keyword=Agriculture
en-keyword=Sludge fertilizers
kn-keyword=Sludge fertilizers
en-keyword=Governmental initiatives
kn-keyword=Governmental initiatives
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250810
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the relationship between solid‐state photoluminescence and crystal structures in 2,6‐substituted naphthalene derivatives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials.
en-copyright=
kn-copyright=
en-aut-name=YamajiMinoru
en-aut-sei=Yamaji
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshikawaIsao
en-aut-sei=Yoshikawa
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MutaiToshiki
en-aut-sei=Mutai
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoujouHirohiko
en-aut-sei=Houjou
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoKenta
en-aut-sei=Goto
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniFumito
en-aut-sei=Tani
en-aut-mei=Fumito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiKengo
en-aut-sei=Suzuki
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoHideki
en-aut-sei=Okamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University
kn-affil=
affil-num=2
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Technology Transfer Service Corporation
kn-affil=
affil-num=4
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=6
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=7
en-affil=Hamamatsu Photonics K.K
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University
kn-affil=
en-keyword=herringbone
kn-keyword=herringbone
en-keyword=polycyclic aromatic hydrocarbon
kn-keyword=polycyclic aromatic hydrocarbon
en-keyword=solid-state emission
kn-keyword=solid-state emission
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=2
article-no=
start-page=71
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300?nm) and plasma emission UV sheet (347 ± 52?nm, hereafter 350?nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600?mJ/cm2), and 350?nm (14,400?mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350?nm, but at other wavelengths (i.e., 265, 280, and 300?nm) the removals were more than 64%. Therefore, UV radiation at 350?nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design.
en-copyright=
kn-copyright=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaShiho
en-aut-sei=Yoshida
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EchigoShinya
en-aut-sei=Echigo
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiRyohei
en-aut-sei=Takanami
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Shimane University
kn-affil=
affil-num=3
en-affil=Graduate School of Global Environmental Studies, Kyoto University
kn-affil=
affil-num=4
en-affil=Faculty of Design Technology, Osaka Sangyo University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=trichloramine
kn-keyword=trichloramine
en-keyword=disinfection byproducts
kn-keyword=disinfection byproducts
en-keyword=drinking water
kn-keyword=drinking water
en-keyword=ultraviolet light
kn-keyword=ultraviolet light
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyaHirosato
en-aut-sei=Yokoya
en-aut-mei=Hirosato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiomiShun
en-aut-sei=Shiomi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakenori
en-aut-sei=Uehara
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fan-shaped pneumatic soft actuator
kn-keyword=fan-shaped pneumatic soft actuator
en-keyword=ankle-joint rehabilitation device
kn-keyword=ankle-joint rehabilitation device
en-keyword=hysteresis
kn-keyword=hysteresis
en-keyword=range of motion
kn-keyword=range of motion
END
start-ver=1.4
cd-journal=joma
no-vol=329
cd-vols=
no-issue=1
article-no=
start-page=L183
end-page=L196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=ImakiireSatomi
en-aut-sei=Imakiire
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuroKeiji
en-aut-sei=Kimuro
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeimei
en-aut-sei=Yoshida
en-aut-mei=Keimei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKohei
en-aut-sei=Masaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiRyo
en-aut-sei=Izumi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImabayashiMisaki
en-aut-sei=Imabayashi
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTakanori
en-aut-sei=Watanabe
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshikawaTomohito
en-aut-sei=Ishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosokawaKazuya
en-aut-sei=Hosokawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushimaShouji
en-aut-sei=Matsushima
en-aut-mei=Shouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HashimotoToru
en-aut-sei=Hashimoto
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShinoharaKeisuke
en-aut-sei=Shinohara
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsukiShunsuke
en-aut-sei=Katsuki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatobaTetsuya
en-aut-sei=Matoba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HiranoKatsuya
en-aut-sei=Hirano
en-aut-mei=Katsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsutsuiHiroyuki
en-aut-sei=Tsutsui
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AbeKohtaro
en-aut-sei=Abe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
en-keyword=factor Xa
kn-keyword=factor Xa
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=proteinase-activated receptor
kn-keyword=proteinase-activated receptor
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary hypertension
kn-keyword=pulmonary hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70090
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in body mass index during early childhood on school‐age asthma prevalence classified by phenotypes and sex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Few studies have explored the relationship between changes in body mass index(BMI) during early childhood and asthma prevalence divided by phenotypes and sex, and the limited results are conflicting. This study assessed the impact of BMI changes during early childhood on school-age asthma, classified by phenotypes and sex, using a nationwide longitudinal survey in Japan.
Methods: From children born in 2001 (n =?47,015), we divided participants into BMI quartiles (Q1, Q2, Q3, and Q4) and the following BMI categories: Q1Q1 (i.e., Q1 at birth and Q1 at age 7), Q1Q4, Q4Q1, Q4Q4, and others. Asthma history from ages 7 to 8 was analyzed, with bronchial asthma (BA) further categorized as allergic asthma (AA) or nonallergic asthma (NA) based on the presence of other allergic diseases. Using logistic regression, we estimated the asthma odds ratio (OR) and 95% confidence intervals (CIs) for each BMI category.
Results: Q1Q4 showed significantly higher risks of BA, AA, and NA. In boys, BA and NA risks were significantly higher in Q1Q4 (adjusted OR: 1.47 [95% CI: 1.17?1.85], at 1.56 [95% CI: 1.16?2.1]), with no significant difference in AA risk. In girls, no increased asthma risk was observed in Q1Q4, but AA risk was significantly higher in Q4Q4 (adjusted OR: 1.78 [95% CI: 1.21?2.6]).
Conclusion: Our results demonstrated that BMI changes during early childhood impact asthma risks, particularly that the risk of NA in boys increases with BMI changes during early childhood, and the risk of AA in girls increases with consistently high BMI.
en-copyright=
kn-copyright=
en-aut-name=YabuuchiToshihiko
en-aut-sei=Yabuuchi
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaMasanori
en-aut-sei=Ikeda
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=asthma
kn-keyword=asthma
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=child
kn-keyword=child
en-keyword=phenotypes
kn-keyword=phenotypes
en-keyword=sex
kn-keyword=sex
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=19206
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between cesarean delivery and childhood allergic diseases in a longitudinal population-based birth cohort from Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The association between cesarean delivery and childhood allergic diseases, such as atopic dermatitis, food allergy, and bronchial asthma, remains unclear, with limited evidence from Asian populations. We analyzed population-based data of 2,114 children born in Japan in 2010 from the Longitudinal Survey of Babies in the 21st Century, linked to the Perinatal Research Network Database. Comparisons were made between children born by cesarean delivery and those born vaginally. Longitudinal outcomes were atopic dermatitis, food allergy, and bronchial asthma during childhood for each age group up to 9 years of age. We performed Poisson regression analyses with robust variance, and adjusted for child and parent variables, followed by supplementary analyses using generalized estimating equations (GEE). Children born by cesarean delivery did not have a higher risk of most outcomes compared to those born vaginally. GEE analysis found no association between cesarean delivery and atopic dermatitis (adjusted risk ratio [aRR] 0.8, 95% confidence interval [CI] 0.5?1.2), food allergy (aRR 1.1, 95% CI 0.7?1.7), bronchial asthma (aRR 1.0, 95% CI 0.8?1.4), or allergic rhinoconjunctivitis (aRR 0.9, 95% CI 0.8?1.1). This study shows no clear evidence of an association between delivery mode and childhood allergic diseases in Japan.
en-copyright=
kn-copyright=
en-aut-name=TamaiKei
en-aut-sei=Tamai
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiTakashi
en-aut-sei=Mitsui
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=2
article-no=
start-page=1334
end-page=1336
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hemodynamic Assessment Using SPY Laser Fluorescence Imaging During Pancreatoduodenectomy with Common Hepatic Artery Resection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. Pancreatectomies combined with arterial resection can be indicated for pancreatic cancer. In a pancreatectomy with arterial resection, intraoperative confirmation of blood flow through reconstructed vessels is crucial. This study highlights the usefulness of SPY laser fluorescence imaging during a pancreatoduodenectomy with common hepatic artery resection (PD-CHAR).
Patient and Methods. A 55-year-old man with borderline resectable pancreatic head cancer underwent a PD-CHAR. After confirming tumor resectability, reconstruction of the CHA to the proper hepatic artery was performed. Subsequently, the superior mesenteric vein was reconstructed.
Results. SPY laser fluorescence imaging demonstrated arterial blood perfusion to the liver through the reconstructed hepatic artery, followed by perfusion from the portal vein. The operation lasted 493 min, with an estimated blood loss of 400 mL. The postoperative course was uneventful with good arterial blood flow.
Conclusion. The SPY Portable Handheld Imager could be valuable for visualizing blood flow in reconstructed vessels and assessing tissue perfusion during a pancreatectomy combined with vascular reconstruction.
en-copyright=
kn-copyright=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanehiraNoriyuki
en-aut-sei=Kanehira
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Pancreatectomy
kn-keyword=Pancreatectomy
en-keyword=Pancreatic cancer
kn-keyword=Pancreatic cancer
en-keyword=Artery resection
kn-keyword=Artery resection
en-keyword=indocyanine green
kn-keyword=indocyanine green
en-keyword=Laser fluorescence imaging
kn-keyword=Laser fluorescence imaging
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=
article-no=
start-page=110673
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rare internal hernia following pancreatoduodenectomy: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Pancreatoduodenectomy (PD) is a complex procedure with a high morbidity rate. Internal hernia following PD is a rare but potentially life-threatening complication. Herein, we describe a rare case of internal hernia after PD.
Presentation of case: A 76-year-old man who underwent subtotal stomach-preserving PD 7 years ago presented with vomiting and abdominal pain. Abdominal computed tomography revealed an internal hernia. Because conservative treatment failed, surgical intervention was performed. Intraoperative findings revealed efferent loop herniation in the space between the afferent loop near the Braun anastomosis and transverse mesocolon. The hernia was repositioned and the mesenteric defect was closed.
Discussion: This is an extremely rare case of an internal hernia that developed 7 years after PD. As conservative management provides a little chance for improvement, precise diagnosis and prompt re-intervention are essential for the management of internal hernia. In this case, the hernial orifice developed in the space between the afferent and efferent loops and the transverse mesocolon. Internal hernia could be a differential diagnosis in patients with ileus after PD.
Conclusion: This study provided a detailed description of an extremely rare case of internal hernia following PD. Therefore, internal hernias should be considered in patients undergoing PD.
en-copyright=
kn-copyright=
en-aut-name=TsujiiTeruyuki
en-aut-sei=Tsujii
en-aut-mei=Teruyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Pancreatoduodenectomy
kn-keyword=Pancreatoduodenectomy
en-keyword=Hernia
kn-keyword=Hernia
en-keyword=Abdominal
kn-keyword=Abdominal
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=13
article-no=
start-page=8741
end-page=8743
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240927
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Robot-Assisted Pancreaticoduodenectomy Using the Anterior Superior Mesenteric Artery-First Approach for Pancreatic Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. The superior mesenteric artery (SMA)-first approach for pancreatic cancer (PC) is common surgical technique in pancreaticoduodenectomy. To date, few studies have reported SMA-first approach in robot-assisted pancreaticoduodenectomy (RPD). Herein, we present the anterior SMA-first approach for PC during RPD.
Patient and Method. A 75-year-old man with resectable PC underwent RPD after neoadjuvant chemotherapy. As pancreatic head tumor contacted with the superior mesenteric vein (SMV), the anterior SMA approach was applied. After the mesenteric Kocher maneuver, the jejunum was divided and the left side of the SMA was dissected. Subsequently, the anterior plane of the SMA was dissected. Following the division of branches from the mesenteric vessels, the SMA was taped, and the circumferential dissection around the SMA was performed to detach the pancreatic neck from the SMA completely. Finally, the dissection between the SMV and the tumor was performed under vascular control to remove the specimen.
Conclusions. The anterior SMA-first approach can be optional in patients with PC undergoing RPD. This unique approach allows for the circumferential dissection around the SMA during RPD.
en-copyright=
kn-copyright=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanehiraNoriyuki
en-aut-sei=Kanehira
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Robotic pancreaticoduodenectomy
kn-keyword=Robotic pancreaticoduodenectomy
en-keyword=Superior mesenteric artery approach
kn-keyword=Superior mesenteric artery approach
en-keyword=Pancreatic cancer
kn-keyword=Pancreatic cancer
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=2
article-no=
start-page=282
end-page=289
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240917
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port? MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period (30 days).
Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6?±?13.1 years; range, 18?85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2?±?10.9 min (range 15?112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n?=?8) and subcutaneous bleeding (n?=?1), Grade II arrhythmia (n?=?1), and Grade IIIa pneumothorax (n?=?1). Furthermore, 496 patients were followed up for???30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n?=?4), catheter occlusion (n?=?1), and skin necrosis due to subcutaneous leakage of trabectedin (n?=?1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Central venous catheters
kn-keyword=Central venous catheters
en-keyword=Vascular access device
kn-keyword=Vascular access device
en-keyword=Treatment outcome
kn-keyword=Treatment outcome
en-keyword=Safety
kn-keyword=Safety
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design.
en-copyright=
kn-copyright=
en-aut-name=ImDohyun
en-aut-sei=Im
en-aut-mei=Dohyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JormakkaMika
en-aut-sei=Jormakka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JugeNarinobu
en-aut-sei=Juge
en-aut-mei=Narinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KishikawaJun-ichi
en-aut-sei=Kishikawa
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugitaYukihiko
en-aut-sei=Sugita
en-aut-mei=Yukihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NodaTakeshi
en-aut-sei=Noda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UemuraTomoko
en-aut-sei=Uemura
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShiimuraYuki
en-aut-sei=Shiimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaHidetsugu
en-aut-sei=Asada
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Applied Biology, Kyoto Institute of Technology
kn-affil=
affil-num=5
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=6
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=7
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=e240601
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Is subclinical hypothyroidism associated with cardiovascular disease in the elderly?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subclinical hypothyroidism (SCH) is diagnosed when thyroid function tests show that the serum thyrotropin (TSH) level is elevated and the serum free thyroxine (FT4) level is normal. SCH is mainly caused by Hashimoto’s thyroiditis, the prevalence of which increases with aging. Recently, it has been revealed that SCH is associated with risk factors for cardiovascular diseases (CVDs), including atherosclerosis, dyslipidemia and hypertension, leading to cardiovascular morbidity and mortality. However, there are still controversies regarding the diagnosis and treatment of SCH in elderly patients. In this review, we present recent evidence regarding the relationship between SCH and CVD and treatment recommendations for SCH, especially in elderly patients. Studies have shown that SCH is associated with CVD and all-cause mortality. Patients aged less than 65 years showed significant associations of SCH with CVD risk and all-cause mortality, whereas patients aged 65 or older did not show such associations. It was shown that levothyroxine therapy was associated with lower all-cause mortality and cardiovascular mortality in younger SCH patients (<65?70 years) but not in SCH patients aged 65?70 years or older. In elderly SCH patients, levothyroxine treatment should be considered individually according to the patient’s age, serum TSH level, hypothyroid symptoms, CVD risk and other comorbidities. To further elucidate the impact of SCH on CVD in elderly patients, studies should be conducted using age-specific reference ranges of results of thyroid function tests, focusing on elderly patients, specific serum TSH levels, thyroid antibody status and cardiovascular risk factors.
en-copyright=
kn-copyright=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuyamaAtsuhito
en-aut-sei=Suyama
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaKou
en-aut-sei=Hasegawa
en-aut-mei=Kou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cardiovascular disease
kn-keyword=cardiovascular disease
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=subclinical hypothyroidism
kn-keyword=subclinical hypothyroidism
en-keyword=thyroid disease
kn-keyword=thyroid disease
END
start-ver=1.4
cd-journal=joma
no-vol=487
cd-vols=
no-issue=
article-no=
start-page=137307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
en-copyright=
kn-copyright=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium detoxification
kn-keyword=Cadmium detoxification
en-keyword=Coprecipitation
kn-keyword=Coprecipitation
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Gastrointestinal tract
kn-keyword=Gastrointestinal tract
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2503029
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polyglycerol‐Grafted Graphene Oxide with pH‐Responsive Charge‐Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=charge conversion
kn-keyword=charge conversion
en-keyword=in vivo tumor internalization
kn-keyword=in vivo tumor internalization
en-keyword=non-specific interaction
kn-keyword=non-specific interaction
en-keyword=pH-responsiveness
kn-keyword=pH-responsiveness
en-keyword=polyglycerol-grafted graphene oxide
kn-keyword=polyglycerol-grafted graphene oxide
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N?=?205) or arm B (N?=?202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69?1.07, one-sided p?=?0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33?0.53, p?0.0001). There were no treatment-related deaths.
Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151).
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraFumikata
en-aut-sei=Hara
en-aut-mei=Fumikata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YanagidaYasuhiro
en-aut-sei=Yanagida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuneizumiMichiko
en-aut-sei=Tsuneizumi
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoNaohito
en-aut-sei=Yamamoto
en-aut-mei=Naohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHiroshi
en-aut-sei=Matsumoto
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SutoAkihiko
en-aut-sei=Suto
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeKenichi
en-aut-sei=Watanabe
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraoMichiko
en-aut-sei=Harao
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KanbayashiChizuko
en-aut-sei=Kanbayashi
en-aut-mei=Chizuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ItohMitsuya
en-aut-sei=Itoh
en-aut-mei=Mitsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KadoyaTakayuki
en-aut-sei=Kadoya
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AnanKeisei
en-aut-sei=Anan
en-aut-mei=Keisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaShigeto
en-aut-sei=Maeda
en-aut-mei=Shigeto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiKeita
en-aut-sei=Sasaki
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OgawaGakuto
en-aut-sei=Ogawa
en-aut-mei=Gakuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SajiShigehira
en-aut-sei=Saji
en-aut-mei=Shigehira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaHaruhiko
en-aut-sei=Fukuda
en-aut-mei=Haruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IwataHiroji
en-aut-sei=Iwata
en-aut-mei=Hiroji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Cancer Institute Hospital
kn-affil=
affil-num=3
en-affil=National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Shizuoka General Hospital
kn-affil=
affil-num=5
en-affil=Gunma Prefectural Cancer Center
kn-affil=
affil-num=6
en-affil=Chiba Prefectural Cancer Center
kn-affil=
affil-num=7
en-affil=Saitama Prefectural Cancer Center
kn-affil=
affil-num=8
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Jichi Medical University Hospital
kn-affil=
affil-num=11
en-affil=Niigata Prefectural Cancer Center
kn-affil=
affil-num=12
en-affil=Hiroshima City Hiroshima Citizen’s Hospital
kn-affil=
affil-num=13
en-affil=Hiroshima University Hospital
kn-affil=
affil-num=14
en-affil=Kitakyushu Municipal Medical Center
kn-affil=
affil-num=15
en-affil=Nagasaki Municipal Medical Center
kn-affil=
affil-num=16
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=17
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Fukushima Medical University
kn-affil=
affil-num=19
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Aichi Cancer Center Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=2
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE?2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE?2H2O (1?100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE?2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE?2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE?2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiyamaChiharu
en-aut-sei=Nishiyama
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagoshiTakeru
en-aut-sei=Nagoshi
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakoAkane
en-aut-sei=Miyako
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoSuzuka
en-aut-sei=Ono
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=7
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=BADGE
kn-keyword=BADGE
en-keyword=neurite outgrowth
kn-keyword=neurite outgrowth
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=GPER
kn-keyword=GPER
en-keyword=Hes1
kn-keyword=Hes1
en-keyword=neurogenin-3
kn-keyword=neurogenin-3
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e003250
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM?defined as LVEF of ?45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ?14/mm?, including ?4 monocytes/mm?, with CD3+ T lymphocytes of?7/mm?. Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan?Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm? (low); 13 of 13.1?23.9/mm? (moderate); and T lymphocytes of ?24?/mm? (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ?5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakafumi
en-aut-sei=Nakayama
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgoKeiko Ohta
en-aut-sei=Ogo
en-aut-mei=Keiko Ohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuganoYasuo
en-aut-sei=Sugano
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokokawaTetsuro
en-aut-sei=Yokokawa
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaYoshihiko
en-aut-sei=Ikeda
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroeMichiaki
en-aut-sei=Hiroe
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatakeyamaKinta
en-aut-sei=Hatakeyama
en-aut-mei=Kinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Ishibashi-UedaHatsue
en-aut-sei=Ishibashi-Ueda
en-aut-mei=Hatsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DohiKaoru
en-aut-sei=Dohi
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AnzaiToshihisa
en-aut-sei=Anzai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SeoYoshihiro
en-aut-sei=Seo
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Imanaka-YoshidaKyoko
en-aut-sei=Imanaka-Yoshida
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keiyu Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiology, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=10
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating a discretized data acquisition method for couch modeling to streamline the commissioning process of radiological instruments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The commissioning of radiotherapy treatment planning system (RTPS) involves many time-consuming tests to maintain consistency between actual and planned dose. As the number of new technologies and peripheral devices increases year by year, there is a need for time-efficient and accurate commissioning of radiation therapy equipment. Couch modeling is one type of commissioning, and there are no recommended values for CT due to differences in equipment calibration between facilities. This study evaluated the optimal electron density (ED) for the couch using discretized gantry angles.
Results All discrete-angle groups showed a high correlation between the surface ED and dose difference between the actual and planned doses (|r|>?0.9). AcurosXB did not demonstrate a significant correlation between dose differences and each energy. For a small number of discretized gantry groups, the optimal couch modeling results revealed several combinations of surface and interior ED with the same score. Upon adding all couch thickness scores, all energy scores, and both algorithm scores, the optimal surface and interior EDs with the highest score across all couch thicknesses were 0.4 and 0.07, respectively.
Conclusions The optimal couch surface ED dose difference trend was identified, and the effectiveness indicated using the dose difference score from discrete-angle couch modeling. Using this method, couch modeling can be evaluated in a highly precise and quick manner, which helps in the commissioning of complicated linear accelerator and radiological treatment plans.
en-copyright=
kn-copyright=
en-aut-name=TomimotoSyouta
en-aut-sei=Tomimoto
en-aut-mei=Syouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaekiYusuke
en-aut-sei=Saeki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotodaOkihiro
en-aut-sei=Motoda
en-aut-mei=Okihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsumotoSyouki
en-aut-sei=Tsumoto
en-aut-mei=Syouki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaHana
en-aut-sei=Nishikawa
en-aut-mei=Hana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyashimaYuki
en-aut-sei=Miyashima
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiMakiko
en-aut-sei=Higuchi
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniTadashi
en-aut-sei=Tani
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatsuiKuniaki
en-aut-sei=Katsui
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Couch modeling
kn-keyword=Couch modeling
en-keyword=Commissioning
kn-keyword=Commissioning
en-keyword=Attenuation of couch
kn-keyword=Attenuation of couch
en-keyword=Linear accelerator
kn-keyword=Linear accelerator
en-keyword=Radiotherapy planning system
kn-keyword=Radiotherapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen Embrittlement Characteristics of Austenitic Stainless Steels After Punching Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates the influence of microstructural characteristics on the hydrogen embrittlement of SUS304 austenitic stainless steel. The investigation utilized SUS304 sheets with a thickness of 1.5 mm, which were processed by punching with an 8 mm diameter to make specimens. Severe plastic deformation was localized near the punching edge, with the extent of deformation determined by the punching speed. Slower punching speeds induced more pronounced plastic strain, which was closely associated with work hardening and strain-induced martensitic (SIM) transformation. The SIM phase was predominantly observed within a depth of approximately 0.1 mm from the punched edge when processed at a punching speed of 0.25 mm/s, corresponding to roughly 10% of the cross-sectional area of the sample. These microstructural changes led to a significant reduction in tensile and fatigue strength, thereby exacerbating susceptibility to severe hydrogen embrittlement, despite the limited extent of microstructural alteration. Based on these findings, a modified Goodman diagram for SUS304 austenitic stainless steel, incorporating mechanical properties and hydrogen embrittlement behavior, was proposed.
en-copyright=
kn-copyright=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiXichang
en-aut-sei=Li
en-aut-mei=Xichang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawakamiTomohisa
en-aut-sei=Kawakami
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=SHOYO SANGYO Co., Ltd.
kn-affil=
en-keyword= Hydrogen embrittlement
kn-keyword= Hydrogen embrittlement
en-keyword=Stainless steel
kn-keyword=Stainless steel
en-keyword=Punching process
kn-keyword=Punching process
en-keyword=Fatigue
kn-keyword=Fatigue
en-keyword=Tensile strength
kn-keyword=Tensile strength
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=15
article-no=
start-page=2290
end-page=2294
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HinoRimi
en-aut-sei=Hino
en-aut-mei=Rimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujinoGo
en-aut-sei=Fujino
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaiYuto
en-aut-sei=Sakai
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=K. IwataNobue
en-aut-sei=K. Iwata
en-aut-mei=Nobue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=6
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=9
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=spastic paraparesis
kn-keyword=spastic paraparesis
en-keyword=whole-exome sequence analysis
kn-keyword=whole-exome sequence analysis
en-keyword=SPG7
kn-keyword=SPG7
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=151
end-page=159.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The greater palatine nerve and artery both supply the maxillary teeth
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery. The authors aimed to investigate the palatal innervation and blood supply of the maxillary teeth.
Methods. Eight cadaveric maxillae containing most teeth or alveolar sockets were selected. The mean age at the time of death was 82.4 years. The samples were examined with colored water injection, latex injection, microcomputed tomography with contrast dye, gross anatomic dissection, and histologic observation.
Results. Through both injection studies and microcomputed tomographic analysis, the authors found that the small foramina on and around the greater palatine groove connected to the alveolar process and tooth sockets. The small foramina in the greater palatine and incisive canal also continued inside the alveolar process and the tooth sockets.
Conclusions. The alveolar branches of the greater palatine nerve and artery as well as the nasopalatine nerve and sphenopalatine artery supply maxillary teeth, alveolar bone, and periodontal tissue via the palatal alveolar foramina with superior alveolar nerves and arteries.
Practical Implications. This knowledge is essential for dentists when administering local anesthetic to the maxillary teeth and performing an osteotomy. Anatomic and dental textbooks should be updated with this new knowledge for better patient care.
en-copyright=
kn-copyright=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnbalaganMuralidharan
en-aut-sei=Anbalagan
en-aut-mei=Muralidharan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZouBinghao
en-aut-sei=Zou
en-aut-mei=Binghao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToriumiTaku
en-aut-sei=Toriumi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, School of Medicine, Kurume University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=4
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=5
en-affil=Department of Anatomy, School of Life Dentistry at Niigata, The Nippon Dental University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=University of Queensland
kn-affil=
en-keyword=Maxillary teeth
kn-keyword=Maxillary teeth
en-keyword=dental pulp
kn-keyword=dental pulp
en-keyword=anatomy
kn-keyword=anatomy
en-keyword=nerve block
kn-keyword=nerve block
en-keyword=root canal treatment
kn-keyword=root canal treatment
en-keyword=cadaver
kn-keyword=cadaver
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Asia-Pacific Body Mass Index Classification and New-Onset Chronic Kidney Disease in Non-Diabetic Japanese Adults: A Community-Based Longitudinal Study from 1998 to 2023
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Obesity is a risk factor for chronic kidney disease (CKD) in Asians. The Asia-Pacific body mass index (BMI) classification sets lower obesity cutoffs than the conventional BMI classification for all races, generally reflecting the lower BMIs in Asians. This longitudinal study evaluated the association between BMI, as classified by the Asia-Pacific BMI system, and CKD development in non-diabetic Asian adults. Methods: A population-based longitudinal study (1998?2023) was conducted in non-diabetic Japanese adults (hemoglobin A1c < 6.5%) in Zentsuji City (Kagawa Prefecture, Japan). The generalized gamma model was used to assess the relationship between time-varying BMI categories and CKD development, stratified by sex. CKD was defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2. BMI was calculated as weight (kg) divided by the square of height (m2) and categorized per the Asia-Pacific classification as overweight (23.0?24.9 kg/m2), obesity class I (25.0?29.9 kg/m2), and obesity class II (?30.0 kg/m2). Results: CKD developed in 34.2% of 3098 men and 34.8% of 4391 women. The mean follow-up times were 7.41 years for men and 8.25 years for women. During follow-up, the BMI distributions for men were 5.0% underweight, 43.3% normal weight, 25.6% overweight, 24.1% obesity class I, and 2.0% obesity class II; those for women were 7.7%, 50.5%, 20.5%, 18.3%, and 2.9%, respectively. Compared with normal weight, obesity class I was associated with a 6% (95% confidence interval [CI]: 2?10%) shorter time to CKD onset in men and 5% (95% CI: 2?7%) in women. In both sexes, obesity class II showed shorter survival times than normal weight by point estimates, although all 95% CIs crossed the null value. Conclusions: Obesity, as classified by the Asia-Pacific BMI system, shortened the time to CKD onset in non-diabetic Asians. The conventional BMI cutoff for obesity (?30.0 kg/m2) may be too high to identify CKD risk in this population. The findings of this study may be useful for public health professionals in designing interventions to prevent CKD.
en-copyright=
kn-copyright=
en-aut-name=OkawaYukari
en-aut-sei=Okawa
en-aut-mei=Yukari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaToshihide
en-aut-sei=Tsuda
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Public Health and Welfare, Zentsuji City Hall
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=East Asian
kn-keyword=East Asian
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=risk factors
kn-keyword=risk factors
END
start-ver=1.4
cd-journal=joma
no-vol=472
cd-vols=
no-issue=
article-no=
start-page=123486
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs.
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChoTakusei
en-aut-sei=Cho
en-aut-mei=Takusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakiyamaYoshio
en-aut-sei=Sakiyama
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumiKensho
en-aut-sei=Sumi
en-aut-mei=Kensho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchioNaohiro
en-aut-sei=Uchio
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatakeAkane
en-aut-sei=Satake
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakiyamaYoshihisa
en-aut-sei=Takiyama
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsushitaTakuya
en-aut-sei=Matsushita
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Neurology, Kochi Medical School, Kochi University
kn-affil=
affil-num=12
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=13
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=14
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=15
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Leukodystrophy
kn-keyword=Leukodystrophy
en-keyword=CC2L
kn-keyword=CC2L
en-keyword=CLCN2
kn-keyword=CLCN2
en-keyword=MCP sign
kn-keyword=MCP sign
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
en-copyright=
kn-copyright=
en-aut-name=KatadaChikatoshi
en-aut-sei=Katada
en-aut-mei=Chikatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaTetsuji
en-aut-sei=Yokoyama
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoTomonori
en-aut-sei=Yano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHaruhisa
en-aut-sei=Suzuki
en-aut-mei=Haruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurueYasuaki
en-aut-sei=Furue
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoyamaHisashi
en-aut-sei=Doyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoikeTomoyuki
en-aut-sei=Koike
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaokiMasashi
en-aut-sei=Tamaoki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawataNoboru
en-aut-sei=Kawata
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraoMotohiro
en-aut-sei=Hirao
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgataTakashi
en-aut-sei=Ogata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatagiriAtsushi
en-aut-sei=Katagiri
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamanouchiTakenori
en-aut-sei=Yamanouchi
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KiyokawaHirofumi
en-aut-sei=Kiyokawa
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakuboHirofumi
en-aut-sei=Kawakubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KonnoMaki
en-aut-sei=Konno
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhashiShinya
en-aut-sei=Ohashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KishimotoYo
en-aut-sei=Kishimoto
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KanoKoichi
en-aut-sei=Kano
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MureKanae
en-aut-sei=Mure
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HayashiRyuichi
en-aut-sei=Hayashi
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IshikawaHideki
en-aut-sei=Ishikawa
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MutoManabu
en-aut-sei=Muto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Health and Promotion, National Institute of Public Health
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Endoscopy, Hokkaido University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Endoscopy, Shizuoka Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Tochigi Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=22
en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital
kn-affil=
affil-num=23
en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Public Health, Wakayama Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East
kn-affil=
affil-num=26
en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=27
en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center
kn-affil=
affil-num=28
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=alcohol
kn-keyword=alcohol
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=field cancerization
kn-keyword=field cancerization
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=JEC study
kn-keyword=JEC study
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=8
article-no=
start-page=e18026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Commissioning of respiratory‐gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%?50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0?10.0 mm (10.0?20.0 mm target motions) and periods of 3?6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a ± 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 ± 0.2% and 98.2 ± 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of ±10% and both spill and gate time delays of ±0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within ±5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps.
en-copyright=
kn-copyright=
en-aut-name=TominagaYuki
en-aut-sei=Tominaga
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakisakaYushi
en-aut-sei=Wakisaka
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakahiro
en-aut-sei=Kato
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaMasaya
en-aut-sei=Ichihara
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YasuiKeisuke
en-aut-sei=Yasui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiMotoharu
en-aut-sei=Sasaki
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishioTeiji
en-aut-sei=Nishio
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=2
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=3
en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
kn-affil=
affil-num=4
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
affil-num=5
en-affil=School of Medical Sciences, Fujita Health University
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
en-keyword=4D dynamic dose
kn-keyword=4D dynamic dose
en-keyword=interplay effect
kn-keyword=interplay effect
en-keyword=pencil beam scanning
kn-keyword=pencil beam scanning
en-keyword=proton therapy
kn-keyword=proton therapy
en-keyword=respiratory gating
kn-keyword=respiratory gating
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=113243
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays ? An application of an energy-resolving photon-counting detector (ERPCD)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30?40 keV) and high (40?60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5?20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5?20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast.
en-copyright=
kn-copyright=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HabaTomonobu
en-aut-sei=Haba
en-aut-mei=Tomonobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=6
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University
kn-affil=
affil-num=8
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Medical X-ray diagnosis
kn-keyword=Medical X-ray diagnosis
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=High contrast image
kn-keyword=High contrast image
en-keyword=Virtual monochromatic image
kn-keyword=Virtual monochromatic image
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
en-keyword=Ultra-low energy image
kn-keyword=Ultra-low energy image
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects.
en-copyright=
kn-copyright=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsumataAkitoshi
en-aut-sei=Katsumata
en-aut-mei=Akitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Health Science, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=8
en-affil=Oral Radiology and Artificial Intelligence, Asahi University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=Pulse pile-up
kn-keyword=Pulse pile-up
en-keyword=Dead time
kn-keyword=Dead time
en-keyword=Counting-loss correction
kn-keyword=Counting-loss correction
en-keyword=Charge-sharing effect
kn-keyword=Charge-sharing effect
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=77
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of amyloid and tau positivity on longitudinal brain atrophy in cognitively normal individuals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Individuals on the preclinical Alzheimer's continuum, particularly those with both amyloid and tau positivity (A?+?T?+), display a rapid cognitive decline and elevated disease progression risk. However, limited studies exist on brain atrophy trajectories within this continuum over extended periods.
Methods This study involved 367 ADNI participants grouped based on combinations of amyloid and tau statuses determined through cerebrospinal fluid tests. Using longitudinal MRI scans, brain atrophy was determined according to the whole brain, lateral ventricle, and hippocampal volumes and cortical thickness in AD-signature regions. Cognitive performance was evaluated with the Preclinical Alzheimer's Cognitive Composite (PACC). A generalized linear mixed-effects model was used to examine group?×?time interactions for these measures. In addition, progression risks to mild cognitive impairment (MCI) or dementia were compared among the groups using Cox proportional hazards models.
Results A total of 367 participants (48 A?+?T?+?, 86 A?+?T???, 63 A???T?+?, and 170 A???T???; mean age 73.8 years, mean follow-up 5.1 years, and 47.4% men) were included. For the lateral ventricle and PACC score, the A?+?T???and A?+?T?+?groups demonstrated statistically significantly greater volume expansion and cognitive decline over time than the A???T???group (lateral ventricle: β?=?0.757 cm3/year [95% confidence interval 0.463 to 1.050], P?.001 for A?+?T???, and β?=?0.889 cm3/year [0.523 to 1.255], P?.001 for A?+?T?+?; PACC: β?=????0.19 /year [??0.36 to???0.02], P?=?.029 for A?+?T???, and β?=????0.59 /year [??0.80 to???0.37], P?.001 for A?+?T?+). Notably, the A?+?T?+?group exhibited additional brain atrophy including the whole brain (β?=????2.782 cm3/year [??4.060 to???1.504], P?.001), hippocampus (β?=????0.057 cm3/year [??0.085 to???0.029], P?.001), and AD-signature regions (β?=????0.02 mm/year [??0.03 to???0.01], P?.001). Cox proportional hazards models suggested an increased risk of progressing to MCI or dementia in the A?+?T?+?group versus the A???T???group (adjusted hazard ratio?=?3.35 [1.76 to 6.39]).
Conclusions In cognitively normal individuals, A?+?T?+?compounds brain atrophy and cognitive deterioration, amplifying the likelihood of disease progression. Therapeutic interventions targeting A?+?T?+?individuals could be pivotal in curbing brain atrophy, cognitive decline, and disease progression.
en-copyright=
kn-copyright=
en-aut-name=FujishimaMotonobu
en-aut-sei=Fujishima
en-aut-mei=Motonobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawasakiYohei
en-aut-sei=Kawasaki
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsudaHiroshi
en-aut-sei=Matsuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Radiology, Kumagaya General Hospital
kn-affil=
affil-num=2
en-affil=Department of Biostatistics, Graduate School of Medicine, Saitama Medical University
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Biofunctional Imaging, Fukushima Medical University
kn-affil=
en-keyword=Preclinical
kn-keyword=Preclinical
en-keyword=Alzheimer’s disease
kn-keyword=Alzheimer’s disease
en-keyword=Longitudinal MRI
kn-keyword=Longitudinal MRI
en-keyword=Tau
kn-keyword=Tau
en-keyword=Amyloid-β
kn-keyword=Amyloid-β
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=1094
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A cross-sectional interventional study on the effects of periodontal treatment on periodontal inflamed surface area and masticatory efficiency values according to the 2018 periodontal status classification
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Periodontal inflamed surface area (PISA) and masticatory efficiency have been used to evaluate the relationship between systemic diseases and oral diseases. However, clear standards for PISA values and masticatory efficiency in relation to the severity of periodontitis are lacking. This study aims to evaluate PISA values and masticatory efficiency based on the 2018 periodontal status classification system.
Methods In total, 153 healthy participants diagnosed with periodontitis were included in the study. The diagnosis was based on the 2018 periodontal status classification. PISA values and masticatory efficiency were measured at baseline and after initial periodontal therapy.
Results PISA demonstrated a higher area under the curve for Stage III (0.815) and Grade B (0.85). At baseline, PISA was showed significant negative correlation with masticatory efficiency (B coefficient [95% CI]: -0.02 [-0.03, -0.006], p?0.01). Following periodontal therapy, both PISA values and masticatory efficiency showed significant improvements, with median PISA values changing from 856 at baseline to 277.5 after treatment, and mean masticatory efficiency increasing from 153.3 to 166.9. After initial periodontal therapy, PISA values were significantly higher in patients classified as Stage IV and Grade C compared to those with other stages and grades. Age exhibited a significant negative correlation with changes in PISA (B coefficient [95%CI]: -11.8 [-20.3, -3.19]), and change in PISA value was significantly positively related to the increase in masticatory efficiency (B coefficient [95%CI], 0.02 [(0.0002, 0.03]). In patients with periodontitis, changes in periodontitis classification were associated with increased PISA values and decreased masticatory efficiency.
Conclusion Periodontal therapy improved PISA and masticatory efficiency values. However, the extent of improvement was less pronounced in patients with higher stages and grades of periodontitis. It is essential to consider the interplay between increased PISA and decreased masticatory efficiency when treating patients with severe periodontitis.
en-copyright=
kn-copyright=
en-aut-name=MatsudaShinji
en-aut-sei=Matsuda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YumotoHiromichi
en-aut-sei=Yumoto
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KomatsuYasutaka
en-aut-sei=Komatsu
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DewakeNanae
en-aut-sei=Dewake
en-aut-mei=Nanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwataTakanori
en-aut-sei=Iwata
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaganoTakatoshi
en-aut-sei=Nagano
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorozumiToshiya
en-aut-sei=Morozumi
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GotoRyoma
en-aut-sei=Goto
en-aut-mei=Ryoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatoSatsuki
en-aut-sei=Kato
en-aut-mei=Satsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamashitaMotozo
en-aut-sei=Yamashita
en-aut-mei=Motozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiJoichiro
en-aut-sei=Hayashi
en-aut-mei=Joichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SekinoSatoshi
en-aut-sei=Sekino
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaAkiko
en-aut-sei=Yamashita
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaKeiko
en-aut-sei=Yamashita
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YoshimuraAtsutoshi
en-aut-sei=Yoshimura
en-aut-mei=Atsutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugayaTsutomu
en-aut-sei=Sugaya
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TaguchiYoichiro
en-aut-sei=Taguchi
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NemotoEiji
en-aut-sei=Nemoto
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ShintaniTomoaki
en-aut-sei=Shintani
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MiyagawaTsuyoshi
en-aut-sei=Miyagawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NishiHiromi
en-aut-sei=Nishi
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MizunoNoriyoshi
en-aut-sei=Mizuno
en-aut-mei=Noriyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NumabeYukihiro
en-aut-sei=Numabe
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KawaguchiHiroyuki
en-aut-sei=Kawaguchi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=2
en-affil=Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=3
en-affil=Periodontal Clinic, Medical and Dental Hospital, Niigata University
kn-affil=
affil-num=4
en-affil=Department of Operative Dentistry, Endodontology and Periodontology, School of Dentistry, Matsumoto Dental University
kn-affil=
affil-num=5
en-affil=Department of Periodontology, Tokyo Medical and Dental University
kn-affil=
affil-num=6
en-affil=Department of Periodontology, Tsurumi University School of Dental Medicine
kn-affil=
affil-num=7
en-affil=Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University
kn-affil=
affil-num=8
en-affil=Department of Periodontology, School of Dentistry, Aichi Gakuin University
kn-affil=
affil-num=9
en-affil=School of Dentistry, Division of Periodontology and Endodontology, Department of Oral Rehabilitation, Health Sciences University of Hokkaido
kn-affil=
affil-num=10
en-affil=Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=11
en-affil=Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Meikai University School of Dentistry
kn-affil=
affil-num=12
en-affil=School of Life Dentistry Department of Periodontology, The Nippon Dental University
kn-affil=
affil-num=13
en-affil=Section of Periodontology, Division of Oral Rehabilitation Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Periodontology, Tokyo Dental College
kn-affil=
affil-num=15
en-affil=Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=16
en-affil=Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=17
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Faculty of Dentistry, Department of Periodontology, Osaka Dental University
kn-affil=
affil-num=19
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=20
en-affil=Center of Oral Clinical Examination, Hiroshima University Hospital
kn-affil=
affil-num=21
en-affil=Clinical Research Center in Hiroshima, Hiroshima University Hospital
kn-affil=
affil-num=22
en-affil=Department of General Dentistry, Hiroshima University Hospital,
kn-affil=
affil-num=23
en-affil=Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=24
en-affil=Department of Periodontology, Tokyo Dental College
kn-affil=
affil-num=25
en-affil=Department of General Dentistry, Hiroshima University Hospital,
kn-affil=
en-keyword=Periodontal diseases
kn-keyword=Periodontal diseases
en-keyword=Masticatory system
kn-keyword=Masticatory system
en-keyword=Nonsurgical periodontal debridement
kn-keyword=Nonsurgical periodontal debridement
END
start-ver=1.4
cd-journal=joma
no-vol=207
cd-vols=
no-issue=
article-no=
start-page=108683
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracranial activity of sotorasib vs docetaxel in pretreated KRAS G12C-mutated advanced non-small cell lung cancer from a global, phase 3, randomized controlled trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To assess the efficacy and safety of sotorasib in patients with brain metastases using data from the phase 3 CodeBreaK 200 study, which evaluated sotorasib in adults with pretreated advanced or metastatic KRAS G12C-mutated non-small cell lung cancer (NSCLC).
Materials and methods: Patients with KRAS G12C-mutated NSCLC who progressed after platinum-based chemotherapy and checkpoint inhibitor therapy were randomized 1:1 to sotorasib or docetaxel. An exploratory post-hoc analysis evaluated central nervous system (CNS) progression-free survival (PFS) and time to CNS progression in patients with treated and stable brain metastases at baseline. Measures were assessed by blinded independent central review per study-modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
Results: Of the patients randomly assigned to receive sotorasib (n=171) or docetaxel (n=174), baseline CNS metastases were present in 40 (23%) and 29 (17%) patients, respectively. With a median follow-up of 20.0 months for this patient subgroup, median CNS PFS was longer with sotorasib compared with docetaxel (9.6 vs 4.5 months; hazard ratio, 0.43 [95% CI, 0.20?0.92]; P=0.02). Among patients with baseline treated CNS lesions of ?10 mm, the percentage of patients who achieved CNS tumor shrinkage of ?30% was two-fold higher with sotorasib than docetaxel (33.3% vs 15.4%). Treatment-related adverse events among patients with CNS lesions at baseline were consistent with those of the overall study population.
Conclusions: These results suggest intracranial activity with sotorasib complements the overall PFS benefit observed with sotorasib vs docetaxel, with safety outcomes similar to those in the general CodeBreaK 200 population.
Clinical trials registration number: NCT04303780.
en-copyright=
kn-copyright=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyrigosKonstantinos
en-aut-sei=Syrigos
en-aut-mei=Konstantinos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiviLorenzo
en-aut-sei=Livi
en-aut-mei=Lorenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PaulusAstrid
en-aut-sei=Paulus
en-aut-mei=Astrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimSang-We
en-aut-sei=Kim
en-aut-mei=Sang-We
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYuanbin
en-aut-sei=Chen
en-aut-mei=Yuanbin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GriesingerFrank
en-aut-sei=Griesinger
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZalcmanGerard
en-aut-sei=Zalcman
en-aut-mei=Gerard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HughesBrett G.M.
en-aut-sei=Hughes
en-aut-mei=Brett G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=S?rensenJens Benn
en-aut-sei=S?rensen
en-aut-mei=Jens Benn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlaisNormand
en-aut-sei=Blais
en-aut-mei=Normand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FerreiraCarlos G.M.
en-aut-sei=Ferreira
en-aut-mei=Carlos G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LindsayColin R.
en-aut-sei=Lindsay
en-aut-mei=Colin R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WardPatrick J.
en-aut-sei=Ward
en-aut-mei=Patrick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ObiozorCynthia Chinedu
en-aut-sei=Obiozor
en-aut-mei=Cynthia Chinedu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WangYang
en-aut-sei=Wang
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PetersSolange
en-aut-sei=Peters
en-aut-mei=Solange
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Erasmus MC Cancer Institute, University Medical Center
kn-affil=
affil-num=2
en-affil=Sotiria General Hospital
kn-affil=
affil-num=3
en-affil=Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence
kn-affil=
affil-num=4
en-affil=Centre Hospitalier Universitaire de Li?ge
kn-affil=
affil-num=5
en-affil=Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine
kn-affil=
affil-num=6
en-affil=The Cancer & Hematology Centers of Western Michigan
kn-affil=
affil-num=7
en-affil=Medical Oncology Department, Vall d’Hebron University Hospital
kn-affil=
affil-num=8
en-affil=Pius-Hospital Oldenburg
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Hospital Bichat-Claude Bernard
kn-affil=
affil-num=11
en-affil=The Prince Charles Hospital, University of Queensland
kn-affil=
affil-num=12
en-affil=Rigshospitalet
kn-affil=
affil-num=13
en-affil=Department of Medicine, Centre Hospitalier de l’Universit? de Montr?al
kn-affil=
affil-num=14
en-affil=Oncoclinicas
kn-affil=
affil-num=15
en-affil=Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust
kn-affil=
affil-num=16
en-affil=University Clinical Centre, Medical University of Gdansk
kn-affil=
affil-num=17
en-affil=SCRI at OHC
kn-affil=
affil-num=18
en-affil=Amgen Inc.
kn-affil=
affil-num=19
en-affil=Amgen Inc.
kn-affil=
affil-num=20
en-affil=Lausanne University Hospital
kn-affil=
en-keyword=Brain metastases
kn-keyword=Brain metastases
en-keyword=KRAS G12C-mutated
kn-keyword=KRAS G12C-mutated
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=NSCLC
kn-keyword=NSCLC
en-keyword=Randomized controlled trial
kn-keyword=Randomized controlled trial
en-keyword=Sotorasib
kn-keyword=Sotorasib
en-keyword=Survival
kn-keyword=Survival
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien?Dindo classification grade II?V on postoperative day (POD) 3?5. EM was defined as achieving an ICU Mobility Scale (IMS) ?7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE.
en-copyright=
kn-copyright=
en-aut-name=NOZAWAYasuaki
en-aut-sei=NOZAWA
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HARADAKazuhiro
en-aut-sei=HARADA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NOMAKazuhiro
en-aut-sei=NOMA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KATAYAMAYoshimi
en-aut-sei=KATAYAMA
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HAMADAMasanori
en-aut-sei=HAMADA
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OZAKIToshifumi
en-aut-sei=OZAKI
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Graduate School of Health Science Studies, Kibi International University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
en-keyword=Early mobilization
kn-keyword=Early mobilization
en-keyword=Postoperative pneumonia
kn-keyword=Postoperative pneumonia
en-keyword=Orthostatic intolerance
kn-keyword=Orthostatic intolerance
en-keyword=Thoracic esophageal squamous cell carcinoma
kn-keyword=Thoracic esophageal squamous cell carcinoma
en-keyword=Robot-assisted minimally invasive esophagectomy
kn-keyword=Robot-assisted minimally invasive esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berberine Prevents NSAID-Induced Small Intestinal Injury by Protecting Intestinal Barrier and Inhibiting Inflammasome-Associated Activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Nonsteroidal anti-inflammatory drugs (NSAID), which are commonly used to manage pain and inflammation, often cause gastrointestinal injuries, including small intestinal damage. Berberine (BBR) is a traditional Chinese medicine that protects against these injuries. However, the mechanism of action is not fully understood.
Aims This study aimed to evaluate the protective effects of BBR against NSAID-induced intestinal injury and elucidate the underlying molecular mechanisms.
Methods We evaluated the effects of BBR on NSAID-induced intestinal injury using a combination of mouse models and human gut organoids. Mice were treated with indomethacin with or without BBR to induce small intestinal injury. Human gut organoids were exposed to NSAID, with or without BBR, to assess their direct epithelial effects. Histological analyses, cytokine measurements, and Western blotting were performed to evaluate intestinal damage, tight junction integrity, and inflammasome-associated activation.
Results In NSAID-treated mice, BBR markedly reduced ulcers and adhesions and preserved ileal Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1) levels. BBR inhibited both NOD-like receptor family pyrin domain-containing 6 and NOD-like receptor family caspase recruitment domain?containing protein 4 inflammasome activation, reducing Caspase-1 maturation and downstream interleukin-1β and tumor necrosis factor-α release. In human gut organoids, BBR demonstrated comparable protective effects by directly mitigating NSAID-induced epithelial barrier disruption caused by Claudin-1 and Occludin downregulation, although it did not restore ZO-1 expression.
Conclusions BBR effectively prevented NSAID-induced small intestinal injury by maintaining tight junction integrity and inhibiting inflammasome-associated activation, indicating its potential as a therapeutic agent against such damage.
en-copyright=
kn-copyright=
en-aut-name=IshiguroMikako
en-aut-sei=Ishiguro
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyosawaJyunki
en-aut-sei=Toyosawa
en-aut-mei=Jyunki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
kn-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
en-keyword=Berberine
kn-keyword=Berberine
en-keyword=Tight junction protein
kn-keyword=Tight junction protein
en-keyword=Inflammasomes
kn-keyword=Inflammasomes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250714
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-na?ve and 156 biologic-non-na?ve) were included. Significantly more biologic-na?ve than biologic-non-na?ve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05?1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30?4.48; P=0.0052; biologic-na?ve patients: OR, 2.40; 95% CI, 1.10?5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=434
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A study on the timing of small-bowel capsule endoscopy and its impact on the detection rate of bleeding sources
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Small-bowel capsule endoscopy (SBCE) is an essential diagnostic tool for obscure gastrointestinal bleeding, particularly for identifying bleeding sources in the small intestine. The timing of SBCE is thought to affect its diagnostic yield; however, the optimal timing remains unknown.
Methods This retrospective study analyzed 131 patients with overt gastrointestinal bleeding managed with SBCE at our institution between May 2015 and December 2022. Patients were categorized into four groups based on the interval between their last bleeding episode and SBCE: 1?7, 8?14, 15?28, and ??29 days.
Results Positive findings were observed in approximately 50% of the cases across all intervals, with no statistically significant differences in the detection rates. Vascular lesions were detected primarily within 1?14 days, whereas inflammatory lesions, tumors, and diverticula were identified across all intervals. Notably, 25% of the patients with negative SBCE findings were later diagnosed with sources of non-small bowel bleeding, highlighting the value of follow-up endoscopic evaluations.
Conclusions Our findings suggest that SBCE can be effective regardless of the time after a bleeding event, contrary to previous recommendations emphasizing its early use. Clinicians should consider performing SBCE whenever feasible to improve the diagnostic outcomes for gastrointestinal bleeding, irrespective of the elapsed time since the last episode.
en-copyright=
kn-copyright=
en-aut-name=KametakaDaisuke
en-aut-sei=Kametaka
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Diagnostic yield
kn-keyword=Diagnostic yield
en-keyword=Obscure Gastrointestinal bleeding
kn-keyword=Obscure Gastrointestinal bleeding
en-keyword=Retrospective study
kn-keyword=Retrospective study
en-keyword=Small-bowel capsule endoscopy
kn-keyword=Small-bowel capsule endoscopy
en-keyword=Timing of endoscopy
kn-keyword=Timing of endoscopy
en-keyword=Vascular lesions
kn-keyword=Vascular lesions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The duration of prior anti-tumor necrosis factor agents is associated with the effectiveness of vedolizumab in patients with ulcerative colitis: a real-world multicenter retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Previous literature suggests that the response of patients with ulcerative colitis to vedolizumab may be affected by previous biologic therapy exposure. This real-world study evaluated vedolizumab treatment effectiveness in biologicnon-na?ve patients.
Methods This was a multicenter, retrospective, observational chart review of records from 16 hospitals in Japan (December 1, 2018, to February 29, 2020). Included patients who had ulcerative colitis, were aged ? 20 years, and received at least 1 dose of vedolizumab. Outcomes included clinical remission rates from weeks 2 to 54 according to prior biologic exposure status and factors associated with clinical remission up to week 54.
Results A total of 370 eligible patients were included. Clinical remission rates were significantly higher in biologic-na?ve (n=197) than in biologic-non-na?ve (n=173) patients for weeks 2 to 54 of vedolizumab treatment. Higher clinical remission rates up to week 54 were significantly associated with lower disease severity (partial Mayo score ? 4, P= 0.001; albumin ? 3.0, P= 0.019) and the duration of prior anti-tumor necrosis factor α (anti-TNFα) therapy (P= 0.026). Patients with anti-TNFα therapy durations of < 3 months, 3 to < 12 months, and ? 12 months had clinical remission rates of 28.1%, 32.7%, and 60.0%, respectively (P= 0.001 across groups).
Conclusions The effectiveness of vedolizumab in biologic-non-na?ve patients was significantly influenced by duration of prior anti-TNFα therapy. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Tumor necrosis factor-alpha
kn-keyword=Tumor necrosis factor-alpha
en-keyword=Real-world evidence
kn-keyword=Real-world evidence
en-keyword=Colitis
kn-keyword=Colitis
en-keyword=ulcerative
kn-keyword=ulcerative
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Sequencing
kn-keyword=Sequencing
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=6
article-no=
start-page=1435
end-page=1445
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-World Effectiveness and Safety of Vedolizumab in Patients ??70 Versus 70?Years With Ulcerative Colitis: Multicenter Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: Vedolizumab (VDZ) is often used in older patients with ulcerative colitis (UC) in clinical practice; however, real-world evidence is still limited, including in those with late-onset UC.
Methods: This post hoc analysis of a multicenter, retrospective, observational chart review, enrolling 370 patients with UC receiving VDZ between December 2018 and February 2020, compared effectiveness and safety of VDZ among patients ??70 (n?=?40) versus 70?years (n?=?330), and among patients ??70?years with and without late-onset UC (age at disease onset: ??70 [n?=?13] versus 70?years [n?=?26]).
Results: There were no differences between patients ??70 and 70?years in clinical remission rates (week 6: 57.5% vs. 47.6%, p?=?0.9174; week 14: 62.5% vs. 54.8%, p?=?0.1317; week 54: 47.5% vs. 46.4%, p?=?0.8149), primary nonresponse (10.0% vs. 15.5%, p?=?0.6248), loss of response (12.5% vs. 9.4%, p?=?0.5675), or overall safety. Among patients ??70?years, the incidence of adverse drug reactions was numerically greater in those with concomitant corticosteroids than in those without. For older patients with and without late-onset UC, week 54 remission rates were 23.1% versus 57.7% (p?=?0.0544); surgery was reported in 3/13 versus 2/26 patients and hospitalization in 5/13 versus 6/26 patients. One death was reported in patients with late-onset UC.
Conclusions: VDZ effectiveness and safety were similar in patients ??70 and 70?years; VDZ may be a suitable treatment option for patients ??70?years with UC. Patients with late-onset UC tended to have more frequent surgery/hospitalization and lower effectiveness than those without, possibly necessitating greater caution when using VDZ.
Trial Registration: Japanese Registry of Clinical Trials registration number: jRCT-1080225363
en-copyright=
kn-copyright=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FernandezJovelle?L.
en-aut-sei=Fernandez
en-aut-mei=Jovelle?L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HiroseLisa
en-aut-sei=Hirose
en-aut-mei=Lisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=2
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=22
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=elderly
kn-keyword=elderly
en-keyword=inflammatory bowel diseases
kn-keyword=inflammatory bowel diseases
en-keyword=onset age
kn-keyword=onset age
en-keyword=vedolizumab
kn-keyword=vedolizumab
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ? 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00?7.62; P= 0.050) and shorter disease duration (OR for median duration ? 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13?0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence.
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FernandezJovelle L.
en-aut-sei=Fernandez
en-aut-mei=Jovelle L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=DeguchiHisato
en-aut-sei=Deguchi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=22
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Medication persistence
kn-keyword=Medication persistence
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ? 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ? 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ? 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ? 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangZhezhou
en-aut-sei=Huang
en-aut-mei=Zhezhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=QinFei
en-aut-sei=Qin
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Nathan ArokianathanFatima Megala
en-aut-sei=Nathan Arokianathan
en-aut-mei=Fatima Megala
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Dav?Kiran
en-aut-sei=Dav?
en-aut-mei=Kiran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShahShweta
en-aut-sei=Shah
en-aut-mei=Shweta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHyunchung
en-aut-sei=Kim
en-aut-mei=Hyunchung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University
kn-affil=
affil-num=2
en-affil=Cerner Enviza
kn-affil=
affil-num=3
en-affil=Cerner Enviza
kn-affil=
affil-num=4
en-affil=Oracle Life Sciences
kn-affil=
affil-num=5
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=6
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=7
en-affil=Bristol Myers Squibb
kn-affil=
en-keyword=Quality of life
kn-keyword=Quality of life
en-keyword=Presenteeism
kn-keyword=Presenteeism
en-keyword=Absenteeism
kn-keyword=Absenteeism
en-keyword=Ulcerative colitis
kn-keyword=Ulcerative colitis
en-keyword=Japan
kn-keyword=Japan
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=7
article-no=
start-page=920
end-page=927
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The association of fasting triglyceride variability with renal dysfunction and proteinuria in medical checkup participants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The association between the variability of triglyceride (TG) and chronic kidney disease (CKD) progression remains unclear. We examined whether intraindividual variability in fasting TG was associated with the exacerbation of CKD.
Methods We conducted a retrospective and observational study. 18,339 participants, who went through medical checkups and had checked their estimated glomerular filtration rate (eGFR) and semi-quantitative proteinuria by urine dipstick every year since 2017 for 4 years were registered. Variability in fasting TG was determined using the standard deviation (SD), and maximum minus minimum difference (MMD) between 2017 and 2021. The primary end point for the analysis of eGFR decline was eGFR?60 mL/min/1.73 m2. The secondary end point for the analysis of proteinuria was the incidence of proteinuria???(?±) by urine dipstick.
Results The renal survival was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p?0.001, and?0.001, respectively). Lower SD and lower MMD were significantly associated with renal survival in the adjusted model (hazard ratio (HR), 1.12; 95% confidence intervals (CI), 1.04?1.21, and HR, 1.13; 95% CI 1.05?1.23, respectively). The non-incidence of proteinuria was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p?0.001 and?0.001, respectively).
Conclusion Fasting TG variability was associated with CKD progression in participants who went through medical checkups.
en-copyright=
kn-copyright=
en-aut-name=Matsuoka-UchiyamaNatsumi
en-aut-sei=Matsuoka-Uchiyama
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakawaTomohiko
en-aut-sei=Asakawa
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakurabuYoshimasa
en-aut-sei=Sakurabu
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaKatsuyoshi
en-aut-sei=Katayama
en-aut-mei=Katsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoRika
en-aut-sei=Takemoto
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UmebayashiRyoko
en-aut-sei=Umebayashi
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=eGFR decline
kn-keyword=eGFR decline
en-keyword=Proteinuria
kn-keyword=Proteinuria
en-keyword=Renal dysfunction
kn-keyword=Renal dysfunction
en-keyword=Triglyceride variability
kn-keyword=Triglyceride variability
en-keyword=Fasting triglyceride
kn-keyword=Fasting triglyceride
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=245
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Favorable clinical outcomes are achieved in both male and female following medial meniscus posterior root repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose In recent years, medial meniscus (MM) posterior root tears (PRT) have received increasing attention due to their association with rapidly progressive knee osteoarthritis. MM posterior root (PR) repair has been reported to yield good clinical outcomes, but no study has yet to compare the postoperative outcomes after MMPR repair between sexes. The purpose of this study is evaluating the postoperative clinical outcomes following MMPR pullout repair by sex.
Methods Eighty-six patients who underwent pullout repair for isolated MMPRTs at our institution between October 2016 and November 2019 were evaluated. Patients were divided into two groups according to sex, and their clinical outcomes were compared preoperatively and at 2 years postoperatively.
Results The cohort was comprised of 21 male and 65 female patients. Three factors related to physical status (height (p?0.01), body weight (p?0.01), and BMI (p?=?0.02)) were significantly higher in male patients. No significant differences were observed in preoperative clinical scores between male and female. All clinical scores significantly improved at 2 years postoperatively in both sexes. In the clinical scores, the KOOS-symptom (p?=?0.03), KOOS-QOL (p?=?0.03), and Tegner activity scores (p?0.01) showed significantly better scores in male patients.
Conclusion Following MMPR pullout repair, the clinical outcomes significantly improved in both sexes. These results indicate that MMPR pullout repair is a universally effective technique regardless of the disadvantages of females in morphological characteristics.
en-copyright=
kn-copyright=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KoharaToshiki
en-aut-sei=Kohara
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Okayama Red Cross General Hospital
kn-affil=
affil-num=3
en-affil=Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Okayama University Hospital
kn-affil=
en-keyword=Clinical outcome
kn-keyword=Clinical outcome
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Sex difference
kn-keyword=Sex difference
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=e70139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progression of patellofemoral joint cartilage degeneration within 1 year after medial meniscus posterior root repair: A retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To assess postoperative progression of patellofemoral (PF) cartilage degeneration after medial meniscus posterior root (MMPR) repair and identify potential risk factors.
Methods: Data from patients who underwent transtibial pullout repair for complete radial MMPR tears between April 2018 and October 2021 were retrospectively investigated. Patients with severe chondral lesions of the PF joint at primary surgery were excluded. All patients underwent second-look arthroscopy at 12 months postoperatively. Postoperative changes using the International Cartilage Repair Society (ICRS) grade were evaluated. Associated open magnetic resonance imaging (MRI) findings were assessed.
Results: In total, 40 patients (30 women, 10 men; mean age: 64.0 years) were evaluated. PF joint cartilage degeneration progressed significantly postoperatively. Abnormal signal intensity (ASI) of the infrapatellar fat pad (IPFP) was observed in 15 (37.5%) patients. Arthroscopic findings in groups between IPFP with and without ASI were compared. The incidence of postoperative ICRS grade worsening (?2 grades) on the patella or trochlea was significantly higher among patients with ASI (53%) than among those without (20%, p?=?0.04). ICRS grade worsening in the medial femorotibial compartment and meniscus-healing status were comparable between the groups. Patients with ASI of the IPFP showed greater decrease in the distance between the patellar and anterior cruciate ligament insertions on knee flexion MRI (?1.5?±?0.7?mm) than that in those without (?0.2?±?0.3?mm, p?0.01). A delayed rehabilitation protocol was a risk factor according to the logistic regression analysis (p?=?0.01).
Conclusions: Progressive PF cartilage degeneration occurred following MMPR repair, highlighting the need for diligent postoperative PF joint management.
Level of Evidence: Level IV case series.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=pullout repair
kn-keyword=pullout repair
en-keyword=rehabilitation
kn-keyword=rehabilitation
en-keyword=second‐look arthroscopy
kn-keyword=second‐look arthroscopy
END
start-ver=1.4
cd-journal=joma
no-vol=145
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241218
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Medial meniscus posterior root tears with advanced osteoarthritis or subchondral insufficiency fracture are good indications for unicompartmental knee arthroplasty at a minimum 2-year follow-up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction The outcomes of unicompartmental knee arthroplasty (UKA) in the presence and absence of medial meniscus posterior root tears (MMPRTs) have not been compared. This study compared the characteristics and clinical outcomes of patients undergoing UKA with and without MMPRTs.
Materials and methods This study analyzed 68 patients. The presence or absence of MMPRTs was evaluated using preoperative magnetic resonance imaging. Patient characteristics, clinical scores before surgery and at the final evaluation, and imaging findings were compared between patients with and without MMPRTs. Multiple regression analysis was conducted on postoperative visual analog scale (VAS)-pain scores.
Results MMPRTs were present in 64.7% (44/68) of patients. Patients with MMPRTs were significantly younger (67.8?±?8.2 vs. 75.0?±?7.1 years, p?0.001) and had a shorter duration from the development of symptoms to the time of surgery than those without (6.8?±?8.4 vs. 36.1?±?38.9 months, p?0.001). Component placement or lower-limb alignment did not significantly differ between the groups. Preoperative clinical scores were not significantly different between the groups; however, patients with MMPRTs showed significantly better postoperative VAS-pain scores than those without (10.0?±?9.0 vs. 28.2?±?26.0 points, p?= 0.026). Multiple regression analysis of postoperative VAS-pain scores revealed the significant effect of duration from the development of symptoms to the time of surgery (p?=?0.038).
Conclusions Patients undergoing UKA with MMPRTs were younger with less radiographic osteoarthritic changes compared to those without MMPRTs, and their postoperative VAS-pain scores were significantly superior. The duration from the development of symptoms to the time of surgery significantly influenced postoperative pain in patients undergoing UKA.
en-copyright=
kn-copyright=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Unicompartmental knee arthroplasty
kn-keyword=Unicompartmental knee arthroplasty
en-keyword=Meniscus
kn-keyword=Meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Subchondral insufficiency fracture
kn-keyword=Subchondral insufficiency fracture
en-keyword=Osteoarthritis
kn-keyword=Osteoarthritis
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=40
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between lower limb muscle strength and musculoskeletal ambulation disability symptom complex in patients with medial meniscus posterior root tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose In this study, we aimed to evaluate the changes in and the relationship between lower limb muscle strength and physical function before and after medial meniscus posterior root (MMPR) repair.
Methods Thirty-three patients who underwent MMPR repair were evaluated. Pain was evaluated with the numerical rating scale (NRS), and knee flexor/extensor muscle strength was assessed using a handheld dynamometer. Physical function was evaluated using a timed up and go (TUG) test. The NRS, knee flexor/extensor muscle strength, and TUG were compared preoperatively and 1 year postoperatively using the Wilcoxon signed-rank test. The correlation of patient characteristics, NRS score, knee flexor/extensor muscle strength, and preoperative TUG with the postoperative TUG was analyzed using Spearman’s correlation coefficient.
Results NRS (3.5?±?2.1 to 0.1?±?0.5 points), knee flexor strength (111.9?±?50.2 to 146.7?±?51.5 Nm), knee extensor strength (181.9?±?92.8 to 256.9?±?107.1 Nm), and TUG (12.3?±?5.7 to 9.2?±?2.2 s) all improved significantly from preoperatively to 1 year postoperatively (p?0.001). The postoperative TUG was negatively correlated with the preoperative TUG (r?=?0.578, p?0.001), preoperative knee flexor muscle strength (r?=???0.355, p?=?0.042), preoperative knee extensor muscle strength (r?=???0.437, p?=?0.010), and postoperative knee extensor muscle strength (r?=???0.478, p?=?0.004).
Conclusion In patients undergoing MMPR repair, surgery and rehabilitation significantly improve lower limb muscle strength and physical function. There was a significant correlation between lower limb muscle strength and TUG, and further strengthening of the lower limb muscles from the preoperative level is desirable to improve patients’ physical function further.
Level of evidence IV.
en-copyright=
kn-copyright=
en-aut-name=FukubaMikao
en-aut-sei=Fukuba
en-aut-mei=Mikao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Musculoskeletal ambulation disability symptom complex
kn-keyword=Musculoskeletal ambulation disability symptom complex
en-keyword=Meniscus
kn-keyword=Meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Physical therapy
kn-keyword=Physical therapy
en-keyword=Rehabilitation
kn-keyword=Rehabilitation
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=30
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transtibial pullout repair improved short-term clinical outcomes in patients with oblique medial meniscus posterior root tear comparable to radial root tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Medial meniscus (MM) posterior root tears (PRT) can lead to excessive knee loading and unsatisfactory clinical outcomes after non-operative treatment or meniscectomy. Although favourable clinical outcomes after MM posterior root (PR) repair have been reported, no study has specifically investigated the outcomes of different types of MMPRT. This study aimed to compare the clinical outcomes of patients with complete radial and oblique MMPRT following MMPR repair.
Methods Forty patients who had undergone MMPR repair were retrospectively investigated. Patients with type 2 (20 knees) and 4 MMPRT (20 knees) were included in this study. The MMPRT type was classified according to the LaPrade classification. Plain radiographs, magnetic resonance images, arthroscopic findings, and pre- and postoperative clinical outcomes were evaluated.
Results At 1 year postoperatively, clinical outcomes notably improved in patients with type 2 and 4 MMPRT. No significant differences were observed in any of the evaluations between these patients, both before and after the surgery.
Conclusion Patients with type 2 and type 4 MMPRT exhibited significantly improved clinical outcomes. MMPR repair is beneficial in treating type 2 and type 4 MMPRT.
Level of evidence IV
en-copyright=
kn-copyright=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoharaToshiki
en-aut-sei=Kohara
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Clinical outcomes
kn-keyword=Clinical outcomes
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Oblique tear
kn-keyword=Oblique tear
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Radial tear
kn-keyword=Radial tear
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=299
end-page=303
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Calcium Phosphate Cement Embolism After Percutaneous Vertebroplasty for Thoracic Vertebrae Fractures
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary cement embolism (PCE) is a rare but severe complication following percutaneous vertebroplasty (PVP). Calcium phosphate cement (CPC) has emerged as an alternative to traditional materials for vertebral augmentation. There appear to be no established guidelines for managing symptomatic PCE, and there is scarce literature on CPC embolisms. This is a first report of a case of pulmonary CPC embolism following PVP. The patient, a 63-year-old Chinese female, was administered anticoagulant treatment and achieved a satisfactory outcome. Her case highlights the severe potential morbidity associated with CPC leakage and emphasizes the efficacy of anticoagulant treatment for managing pulmonary CPC embolisms.
en-copyright=
kn-copyright=
en-aut-name=FengRuibin
en-aut-sei=Feng
en-aut-mei=Ruibin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuBikang
en-aut-sei=Zhu
en-aut-mei=Bikang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WeiDanyun
en-aut-sei=Wei
en-aut-mei=Danyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuDingjiao
en-aut-sei=Zhu
en-aut-mei=Dingjiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChenCairu
en-aut-sei=Chen
en-aut-mei=Cairu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=2
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=3
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=4
en-affil=Department of Radiology, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=5
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
en-keyword=percutaneous vertebroplasty
kn-keyword=percutaneous vertebroplasty
en-keyword=thoracic vertebrae fracture
kn-keyword=thoracic vertebrae fracture
en-keyword=calcium phosphate cement
kn-keyword=calcium phosphate cement
en-keyword=pulmonary embolism
kn-keyword=pulmonary embolism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=287
end-page=292
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Parieto-Occipital Disconnection for Drug-Resistant Parieto-Occipital Lobe Epilepsy: A Case Report and Surgical Technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a case of drug-resistant parieto-occipital lobe epilepsy successfully treated with parieto-occipital disconnection (POD). An 18-year-old left-handed female, who had undergone surgery for an acute subdural hematoma at 10 months of age, developed drug-resistant epilepsy at age 15. Despite antiepileptic drug treatment, her seizures remained uncontrolled, and at age 18 she was referred to our hospital for evaluation. Magnetic resonance imaging (MRI) revealed atrophy in the left occipital and parietal lobes. Ictal electroencephalography (EEG) confirmed occipital onset of seizures without temporal lobe involvement. She had pre-existing homonymous hemianopsia. POD surgery was performed, carefully preserving the temporal lobe structures. Postoperatively, she experienced transient right-sided paresis, which fully resolved, and achieved complete seizure control at 3 years without memory loss. This case demonstrates that POD, a rare surgical approach, is a viable option for parieto-occipital lobe epilepsy, effectively controlling seizures while minimizing functional impairment in the absence of temporal lobe involvement.
en-copyright=
kn-copyright=
en-aut-name=TanimotoShun
en-aut-sei=Tanimoto
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SasakiTatsuya
en-aut-sei=Sasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiKoji
en-aut-sei=Kawai
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaijoTomoya
en-aut-sei=Saijo
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=parieto-occipital lobe epilepsy
kn-keyword=parieto-occipital lobe epilepsy
en-keyword=parieto-occipital disconnection (POD)
kn-keyword=parieto-occipital disconnection (POD)
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=283
end-page=286
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC.
en-copyright=
kn-copyright=
en-aut-name=ImamuraYuta
en-aut-sei=Imamura
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KindoHiroya
en-aut-sei=Kindo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MuraiAya
en-aut-sei=Murai
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anterior uveitis
kn-keyword=anterior uveitis
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=maxillary sinus
kn-keyword=maxillary sinus
en-keyword=postoperative maxillary cyst
kn-keyword=postoperative maxillary cyst
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=269
end-page=278
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Femoral and Global Femoral Offset, but not Anteroposterior Offset, to Improve Postoperative Outcomes Following Total Hip Arthroplasty: Considerations Independent of the Contralateral Side
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The global femoral offset (the sum of the acetabular and femoral offsets) influences outcomes after total hip arthroplasty (THA). The optimal offset using plain radiographs has been reported, but internal and external rotations of the hip affect the offset value, producing unclear results when the nonsurgical side is not intact. We investigated the relationship between a functional hip score, i.e., the Harris Hip Score (HHS) and its effect on the post-THA anteroposterior and lateral offsets, and we sought to identify the optimal offset value. The cases of 158 patients with hemilateral hip osteoarthritis who underwent THA at a single center were retrospectively analyzed in this cross-sectional study. Three-dimensional pelvic and femoral models generated from computed tomography were used to examine several parameters, and the results revealed a significant binomial correlation among the modified HHS and femoral and global femoral offsets, with maximum values of 21.3 mm and 40 mm/100 cm body height, respectively. Pelvic and femoral parameters were measured and evaluated via alignment with a specific coordinate system. Our findings indicate that preoperative planning using these parameters may improve postoperative hip function, even when the nonoperative side is unsuitable for use as a reference, as in bilateral hip osteoarthritis cases.
en-copyright=
kn-copyright=
en-aut-name=ImaiNorio
en-aut-sei=Imai
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranoYuki
en-aut-sei=Hirano
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HommaDaisuke
en-aut-sei=Homma
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EndoYuki
en-aut-sei=Endo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HorigomeYoji
en-aut-sei=Horigome
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiHayato
en-aut-sei=Suzuki
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawashimaHiroyuki
en-aut-sei=Kawashima
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=2
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=3
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=4
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=5
en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=6
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=7
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
en-keyword=total hip arthroplasty
kn-keyword=total hip arthroplasty
en-keyword=global femoral offset
kn-keyword=global femoral offset
en-keyword=postoperative outcome
kn-keyword=postoperative outcome
en-keyword=three-dimensional analysis
kn-keyword=three-dimensional analysis
en-keyword=anteroposterior offset
kn-keyword=anteroposterior offset
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=261
end-page=267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcome of Decompression Surgery Following Rapid Neurological Deterioration in Patients with Spinal Cord Injury Without Radiographic Evidence of Trauma (SCIWORET)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cervical spondylotic myelopathy (CSM) and ossification of the posterior longitudinal ligament (OPLL) increase the likelihood of spinal cord injury without radiographic evidence of trauma (SCIWORET). Opinions regarding the optimal timing for surgery in such cases vary, however. We retrospectively investigated the demographics and outcomes of patients with SCIWORET who underwent surgery shortly after experiencing rapid neurological deterioration, and we matched patients who underwent standby surgery for CSM or OPLL. Although the optimal timing of surgery for SCIWORET remains unclear, our findings suggest that early stage surgery for SCIWORET may yield favorable neurological improvements.
en-copyright=
kn-copyright=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=spinal trauma
kn-keyword=spinal trauma
en-keyword=SCIWORET
kn-keyword=SCIWORET
en-keyword=timing of surgery
kn-keyword=timing of surgery
en-keyword=cervical spondylotic myelopathy
kn-keyword=cervical spondylotic myelopathy
en-keyword=ossification of the posterior longitudinal ligament
kn-keyword=ossification of the posterior longitudinal ligament
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=253
end-page=259
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Study of Periprosthetic Femoral Stem Fractures in Hip Arthroplasty for Femoral Neck Fracture
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the risk factors for bone fragility and perioperative periprosthetic femoral stem fractures in patients undergoing hip arthroplasty for femoral neck fractures. The records of 215 patients (42 male, 173 female; mean age, 84.4 years) were analyzed to assess correlations among periprosthetic fracture rates and sex, age, body mass index (BMI), Dorr classification, femoral stem fixation type (cemented/cementless), and bone mineral density (BMD) of the contralateral proximal femur. The overall prevalence of perioperative periprosthetic fractures was 4.7%. All patients with periprosthetic fractures were female, and all but one were ? 80 years of age. Fracture rates were higher in patients with lower BMI, although this difference was not significant. The fracture rates were 0%, 4.7%, and 7.9% for Dorr types A, B, and C, respectively, and 0% and 5.3% for patients who received cemented and cementless stems, respectively. The findings indicated that female patients, those of advanced age, those with lower BMI, and those with Dorr type C had lower BMDs. Although BMD was significantly lower in patients who received cemented stems compared to those who received cementless stems, no fractures were observed in the former group, suggesting that the use of cemented stems is safe for this high-risk population.
en-copyright=
kn-copyright=
en-aut-name=MiyakeYoshiaki
en-aut-sei=Miyake
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiToru
en-aut-sei=Takagi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonishiikeTaizo
en-aut-sei=Konishiike
en-aut-mei=Taizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
en-keyword=bone mineral density
kn-keyword=bone mineral density
en-keyword=cemented stem
kn-keyword=cemented stem
en-keyword=Dorr classification
kn-keyword=Dorr classification
en-keyword=femoral neck fracture
kn-keyword=femoral neck fracture
en-keyword=periprosthetic femoral stem fracture
kn-keyword=periprosthetic femoral stem fracture
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=243
end-page=251
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Work Productivity of Cancer-survivor and Non-cancer-survivor Workers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the work productivity levels of employed cancer survivors and non-cancer-survivor workers by conducting a cross-sectional study in Japan between February and March 2019, using an online survey. A total of 561 employed individuals aged 20-64 years were analyzed. Work productivity was assessed using the Work Productivity and Activity Impairment-General Health questionnaire which evaluates absenteeism, presenteeism, and overall work productivity loss. The questionnaire responses demonstrated that the cancer survivors within 1 year of diagnosis had significantly higher absenteeism compared to the non-cancer workers (p=0.048). Although presenteeism and overall work productivity loss were also higher in the non-cancer-survivor group, the differences were not significant. Cancer survivors within 1 year of diagnosis exhibited higher absenteeism, but their work productivity appeared to recover to levels comparable to those of the non-cancer workers over time. These findings may contribute to workplace policies supporting cancer survivors’ return to work.
en-copyright=
kn-copyright=
en-aut-name=KamanoMika
en-aut-sei=Kamano
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KandaKanae
en-aut-sei=Kanda
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NgatuNlandu Roger
en-aut-sei=Ngatu
en-aut-mei=Nlandu Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiAkitsu
en-aut-sei=Murakami
en-aut-mei=Akitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadoriYusuke
en-aut-sei=Yamadori
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraoTomohiro
en-aut-sei=Hirao
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=3
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=4
en-affil=Cancer Center, Kagawa University Hospital
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=6
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
en-keyword=cancer survivor
kn-keyword=cancer survivor
en-keyword=work productivity
kn-keyword=work productivity
en-keyword=absenteeism
kn-keyword=absenteeism
en-keyword=presenteeism
kn-keyword=presenteeism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=231
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ? 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ? 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ? 2 nm/ml.
en-copyright=
kn-copyright=
en-aut-name=KardanM Enes
en-aut-sei=Kardan
en-aut-mei=M Enes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ErdemIlknur
en-aut-sei=Erdem
en-aut-mei=Ilknur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YildizEmre
en-aut-sei=Yildiz
en-aut-mei=Emre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KirazNuri
en-aut-sei=Kiraz
en-aut-mei=Nuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=?elikkolAliye
en-aut-sei=?elikkol
en-aut-mei=Aliye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=4
en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=5
en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University
kn-affil=
en-keyword=geriatrics
kn-keyword=geriatrics
en-keyword=gram-negative bacteria
kn-keyword=gram-negative bacteria
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=221
end-page=229
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation: Clinical and Ethical Perspectives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Extracorporeal cardiopulmonary resuscitation (ECPR) has evolved into a life-saving therapy for select cardiac arrest patients, yet a growing body of evidence suggests it also holds promise as a bridge to organ donation in non-survivors. This review explores the clinical outcomes, ethical complexities, and evolving policies surrounding organ donation after ECPR. We summarize recent international and Japanese data demonstrating favorable graft function from ECPR donors, with the exception of lung transplantation. The ethical challenges ? particularly those involving brain death determination on extracorporeal membrane oxygenation and adherence to the dead donor rule ? are discussed in the context of Japan’s recent regulatory reforms. Additionally, we highlight the importance of structured end-of-life communication through multidisciplinary team meetings in facilitating ethically sound transitions from rescue efforts to donation pathways. Moving forward, improvements in donor management, standardized legal frameworks, and public and professional education are essential to optimizing the life-saving and life-giving potential of ECPR.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KosakiYoshinori
en-aut-sei=Kosaki
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AgetaKohei
en-aut-sei=Ageta
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain death
kn-keyword=brain death
en-keyword=end-of-life care
kn-keyword=end-of-life care
en-keyword=ethical dilemmas
kn-keyword=ethical dilemmas
en-keyword=extracorporeal cardiopulmonary resuscitation
kn-keyword=extracorporeal cardiopulmonary resuscitation
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=4
article-no=
start-page=e70057
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quadriceps muscle strength of the affected limb in medial meniscus posterior root tears is negatively correlated with the progression of postoperative medial joint space narrowing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: The effect of quadriceps muscle strength on medial joint space (MJS) narrowing after repair for medial meniscus (MM) posterior root tears (MMPRTs) has not yet been determined. This study aimed to evaluate the effect of preoperative and postoperative quadriceps muscle strength on the change in MJS (ΔMJS) in MMPRTs.
Methods: Thirty patients who underwent pullout repair for MMPRTs were retrospectively evaluated. The MJS width using fixed-flexion view radiographs, MM extrusion (MME) using magnetic resonance imaging, quadriceps muscle strength using the Locomo Scan-II and clinical scores were measured and compared preoperatively and 1 year postoperatively. Correlations between the ΔMJS, change in MME (ΔMME), and preoperative and postoperative quadriceps muscle strength were evaluated using Spearman's rank correlation coefficient.
Results: MJS narrowing and MME progressed significantly at 1 year postoperatively (p?0.001). Quadriceps muscle strength in MMPRT knees and all clinical scores significantly improved at 1 year postoperatively (p?0.001). ΔMJS and ΔMME showed a significant positive correlation (0.50?±?0.70 and 1.22?±?0.92?mm, respectively; r = 0.516, p?=?0.004). Both preoperative and postoperative quadriceps muscle strength in MMPRT knees showed significant negative correlations with ΔMJS (preoperative: r?=??0.529, p?=?0.003; postoperative: r =??0.477, p?=?0.008) and ΔMME (preoperative: r?=??0.431, p?=?0.018; postoperative: r?=??0.443, p?=?0.014).
Conclusions: In pullout repair for MMPRTs, preoperative and postoperative quadriceps muscle strength in MMPRT knees was negatively correlated with the progression of MJS narrowing and MME. Rehabilitation with a focus on quadriceps muscle strengthening, including preoperative rehabilitation, may delay knee-osteoarthritis progression after pullout repair for MMPRTs.
Level of Evidence: Level IV.
en-copyright=
kn-copyright=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukubaMikao
en-aut-sei=Fukuba
en-aut-mei=Mikao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=meniscus extrusion
kn-keyword=meniscus extrusion
en-keyword=medial joint space
kn-keyword=medial joint space
en-keyword=muscle strength
kn-keyword=muscle strength
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=quadriceps
kn-keyword=quadriceps
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 ?g/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 ?g/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10× MIC, with killing rates during the first 3 h ranging from 4.04 ± 0.01 to 4.31 ± 0.03 h?1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 ?g/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 ?g/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=272
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EsakiKayoko
en-aut-sei=Esaki
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GreimelPeter
en-aut-sei=Greimel
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShingaiNanoka
en-aut-sei=Shingai
en-aut-mei=Nanoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OyaYasushi
en-aut-sei=Oya
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaTakeo
en-aut-sei=Yoshikawa
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences
kn-affil=
affil-num=10
en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=12
en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Juvenile amyotrophic lateral sclerosis
kn-keyword=Juvenile amyotrophic lateral sclerosis
en-keyword=SPTLC1
kn-keyword=SPTLC1
en-keyword=Sphingolipids
kn-keyword=Sphingolipids
en-keyword=Mosaicism
kn-keyword=Mosaicism
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=15
article-no=
start-page=e71098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real‐World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA?RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA?RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA?RNA panel identified more histology-specific fusion genes than DNA panels (p?=?0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p?=?0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA?RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimoiTatsunori
en-aut-sei=Shimoi
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TabataMasahiro
en-aut-sei=Tabata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology, National Cancer Center Hospital
kn-affil=
affil-num=13
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=genotype-matched therapy
kn-keyword=genotype-matched therapy
en-keyword=multiplex gene panel test
kn-keyword=multiplex gene panel test
en-keyword=sarcoma
kn-keyword=sarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distinct age-related effects of homologous recombination deficiency on genomic profiling and treatment efficacy in gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The incidence of gastric cancer among younger patients is increasing globally, with growing attention being paid to the role of homologous recombination deficiency (HRD). However, the effect of HRD on treatment outcomes and prognosis in this population remains unclear.
Methods We analyzed clinical and genomic data from the Center for Cancer Genomics and Advanced Therapeutics database. Younger patients (??39 years, n?=?140) were compared with older patients (??65 years, n?=?1118) diagnosed with gastric cancer. This study focused on mutations in homologous recombination repair (HRR) genes and their association with tumor mutation burden (TMB), microsatellite instability (MSI), and treatment outcomes.
Results In older patients, HRD was associated with higher TMB and microsatellite instability-high (MSI-H) status, whereas no such correlations were observed in younger patients. Notably, MSI-H status was not observed in the younger group. Younger patients with HRD had a significantly shorter time to treatment failure (TTF) and overall survival (OS) than those without HRD. Conversely, in older patients, there was no significant difference in TTF or OS based on HRD status.
Conclusion HRR gene mutations influence genomic profiling, TMB, and MSI differently depending on the age of gastric cancer onset, suggesting potential effects on treatment efficacy and prognosis.
en-copyright=
kn-copyright=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Department of Practical Gastrointestinal Endoscopy, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Homologous recombination repair gene
kn-keyword=Homologous recombination repair gene
en-keyword=Early-onset gastric cancer
kn-keyword=Early-onset gastric cancer
en-keyword=Comprehensive genomic profiling
kn-keyword=Comprehensive genomic profiling
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=
article-no=
start-page=1477
end-page=1486
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predictive Value of Tumor ERCC1 Expression for Treatment Outcomes After Adjuvant Chemotherapy in Patients with Completely Resected Non-Small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To evaluate the predictive value of tumor expression of the excision repair cross-complementation group 1 gene (ERCC1) for the treatment outcomes after platinum-based adjuvant chemotherapy in patients with completely resected non-small cell lung cancer (NSCLC).
Methods: In this study, we conducted immunohistochemical analysis using a mouse monoclonal anti-ERCC1 antibody (clone 8F1) of operative specimens obtained from 238 patients enrolled in the SLCG0401 study which compared paclitaxel plus carboplatin (CBDCA+PTX) with uracil-tegafur (UFT) as adjuvant chemotherapy for stage IB-IIIA NSCLC. The overall survival (OS) of the patients was compared according to the ERCC1 expression status and adjuvant chemotherapy employed.
Results: Of the 238 specimens, 102 (42.9%) showed a positive result for ERCC1 expression. There were no significant differences in the patient characteristics or OS between the tumor ERCC1-positive and -negative patient groups. Among the patients with ERCC1-negative tumors, there was no significant difference in the survival between patient groups treated with CBDCA+PTX and UFT (HR=0.932, 95% CI: 0.52? 1.67, p=0.814). However, among the patients with ERCC1-positive tumors, CBDCA+PTX treatment tended to yield an inferior outcome, in terms of the OS, as compared with UFT treatment (HR=1.852, 95% CI: 0.92? 3.73, p=0.080). Multivariate analysis showed that ERCC1 expression was not an independent predictor of the OS following CBDCA+PTX treatment in completely resected NSCLC patients.
Conclusion: In completely resected NSCLC patients with positive tumor ERCC1 expression, adjuvant CBDCA+PTX treatment tended to yield an inferior outcome as compared with UFT treatment in terms of the OS. However, immunohistochemical analysis with the 8F1 antibody cannot be used for clinical decision making at this point.
en-copyright=
kn-copyright=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaishoShinsuke
en-aut-sei=Saisho
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=postoperative adjuvant chemotherapy
kn-keyword=postoperative adjuvant chemotherapy
en-keyword=platinum-based chemotherapy
kn-keyword=platinum-based chemotherapy
en-keyword=excision repair crosscomplementation group 1 gene
kn-keyword=excision repair crosscomplementation group 1 gene
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=409
cd-vols=
no-issue=1
article-no=
start-page=356
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Subjective global assessment for nutritional screening and its impact on surgical outcomes: A prospective study in older patients with colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Our perioperative management center provides preoperative intervention and functional and nutritional assessments for colorectal cancer patients aged over 75 years. This study evaluated the associations of preoperative nutritional status with postoperative outcomes and prognosis in colorectal cancer patients aged 75 years or older.
Methods This was a prospective, observational study of 71 colorectal cancer patients aged 75 years or older who underwent surgery between July 2020 and September 2022. The Subjective Global Assessment (SGA) was evaluated as a nutritional index. The patients were classified into three groups: SGA-A (well nourished), B (moderately malnourished), and C (severely malnourished), and the correlations with postoperative outcomes and prognosis were examined.
Results The median age of the 71 patients (34 males, 37 females) was 78 (75?92) years, and their median body mass index (BMI) was 22.3 (13.4?31.9) kg/m2. Forty-eight patients had colon cancer, and 23 had rectal cancer. On the SGA, 28 patients were SGA-A, 25 SGA-B, and 18 SGA-C. The SGA-B/C group had significantly higher BMI (p?0.01) and more ICU admissions (p?=?0.02). The G8 score was significantly lower (p?=?0.03) in the SGA-B/C group, suggesting coexisting functional decline. In terms of postoperative outcomes, the SGA-B/C group had a significantly longer postoperative hospital stay (p?=?0.04). The 3-year OS rates for all stages were 100% in the SGA-A group and 49.7% in the SGA-B/C group (p?=?0.03), while the 3-year OS rates for patients excluding Stage IV were 100% in the SGA-A group and 68.5% in the SGA-B/C group, not significantly different (p?=?0.14). The 3-year RFS rate was 95.5% in the SGA-A group and 65.3% in the SGA-B/C group (p?=?0.15).
Conclusion The SGA is a promising nutritional index associated with short-term outcomes in older patients undergoing colorectal cancer surgery. The SGA can be assessed in a few minutes during an outpatient visit, making it useful for routine clinical use.
en-copyright=
kn-copyright=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamuraRie
en-aut-sei=Tamura
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuokaYoshikazu
en-aut-sei=Matsuoka
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Subjective global assessment
kn-keyword=Subjective global assessment
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
en-keyword=Older patients
kn-keyword=Older patients
en-keyword=Surgical outcome
kn-keyword=Surgical outcome
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=1008
end-page=1016
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High risk of multiple gastric cancers in Japanese individuals with Lynch syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.
Methods: Data on Japanese individuals with LS were retrospectively collected from a single institution. The clinical features of GC, including the cumulative risk of multiple GCs, were analyzed.
Results: Among 96 individuals with LS (MLH1/MSH2/MSH6, 75:20:1), 32 GC lesions were detected in 15 individuals with LS (male/female, 11:4). The median age at initial GC diagnosis was 52.7?y (range: 28?71). Histological examination revealed a predominance of intestinal type (19/24: 87.5%). Moreover, the majority of the GC lesions (82%) were determined to have high-frequency of microsatellite instability. The cumulative risk of individuals with LS developing GC at 70?y was 31.3% (MLH1 36.1%, MSH2 18.0%). Notably, the cumulative risk of individuals with LS developing metachronous and/or synchronous GCs at 0, 10 and 20?y after initial diagnosis of GC was 26.7%, 40.7%, and 59.4%, respectively.
Conclusion: Due to a higher risk of developing multiple GCs, intensive surveillance might be especially recommended for Japanese individuals with LS associated initial GC.
en-copyright=
kn-copyright=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=van SchaikThijs A.
en-aut-sei=van Schaik
en-aut-mei=Thijs A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYumiko
en-aut-sei=Sato
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuganoKokichi
en-aut-sei=Sugano
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiKiwamu
en-aut-sei=Akagi
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHideyuki
en-aut-sei=Ishida
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=5
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Kyoundo Hospital, SSasaki Foundation
kn-affil=
affil-num=8
en-affil=Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
en-keyword=cumulative risk
kn-keyword=cumulative risk
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=Japanese individuals
kn-keyword=Japanese individuals
en-keyword=Lynch syndrome
kn-keyword=Lynch syndrome
en-keyword=multiple gastric cancers
kn-keyword=multiple gastric cancers
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=
article-no=
start-page=155
end-page=162
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effectiveness of exercise therapy on chemotherapy-induced peripheral neuropathy in patients with ovarian cancer: A scoping review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background & aims. Exercise therapy is a potentially beneficial treatment option for chemotherapy-induced peripheral neuropathy (CIPN). However, there is a lack of consensus on the management of CIPN in patients with ovarian cancer. The purpose of this scoping review was to evaluate the evidence on the effectiveness of exercise therapy in patients with ovarian cancer and explore key physical fitness parameters.
Methods. A systematic electronic search was conducted using the MEDLINE, CINAHL, Web of Science, PEDro, and ClinicalTrials.gov databases. Two independent reviewers summarized the features and data from the literature regarding the effectiveness of exercise therapy for CIPN and the association between CIPN and physical fitness parameters.
Results. Ten articles involving 3402 participants were reviewed. The study design included one randomized controlled trial, one single-arm trial, one prospective cohort study, five retrospective cohort studies, and two cross-sectional studies. The mean patient age was >60 years in three studies and 50?60 years in six studies. The mean body mass index was >25.0 kg/m2 in six studies and not stated in four studies. In six references, patients received platinum and taxane-based chemotherapy. The effectiveness of an exercise therapy program for CIPN was reported in a randomized controlled trial. Two cross-sectional studies highlighted the association between daily physical inactivity and CIPN; two retrospective cohort studies showed an association between low skeletal muscle density and CIPN; one article demonstrated an association between physical dysfunction and CIPN.
Conclusion. This scoping review indicates that although evidence is lacking, exercise intervention programs for CIPN in patients with ovarian cancer have potential benefits, especially when focused on daily physical activity, skeletal muscle density, and physical function.
en-copyright=
kn-copyright=
en-aut-name=KonumaMasanori
en-aut-sei=Konuma
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaTomohiro
en-aut-sei=Ikeda
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShirakawaShinsuke
en-aut-sei=Shirakawa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoShoji
en-aut-sei=Nagao
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
en-keyword=Ovarian cancer
kn-keyword=Ovarian cancer
en-keyword=Peripheral neuropathy
kn-keyword=Peripheral neuropathy
en-keyword=Sarcopenia
kn-keyword=Sarcopenia
en-keyword=Physical activity
kn-keyword=Physical activity
en-keyword=Exercise therapy
kn-keyword=Exercise therapy
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=5
article-no=
start-page=271
end-page=277
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240329
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12?months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6?months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2?years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5?years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches.
en-copyright=
kn-copyright=
en-aut-name=ChikadaAyaka
en-aut-sei=Chikada
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiYuji
en-aut-sei=Takahashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatsunoMasahisa
en-aut-sei=Katsuno
en-aut-mei=Masahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraKazuhiro
en-aut-sei=Hara
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoderaOsamu
en-aut-sei=Onodera
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshiharaTomohiko
en-aut-sei=Ishihara
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TadaMasayoshi
en-aut-sei=Tada
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuwabaraSatoshi
en-aut-sei=Kuwabara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugiyamaAtsuhiko
en-aut-sei=Sugiyama
en-aut-mei=Atsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamanakaYoshitaka
en-aut-sei=Yamanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakahashiRyosuke
en-aut-sei=Takahashi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SawamotoNobukatsu
en-aut-sei=Sawamoto
en-aut-mei=Nobukatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SakatoYusuke
en-aut-sei=Sakato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IshimotoTomoyuki
en-aut-sei=Ishimoto
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HanajimaRitsuko
en-aut-sei=Hanajima
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeYasuhiro
en-aut-sei=Watanabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakigawaHiroshi
en-aut-sei=Takigawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AdachiTadashi
en-aut-sei=Adachi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HigashiKeiko
en-aut-sei=Higashi
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KiraJunichi
en-aut-sei=Kira
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=YabeIchiro
en-aut-sei=Yabe
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=MatsushimaMasaaki
en-aut-sei=Matsushima
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OgataKatsuhisa
en-aut-sei=Ogata
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IshikawaKinya
en-aut-sei=Ishikawa
en-aut-mei=Kinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=NishidaYoichiro
en-aut-sei=Nishida
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=IshiguroTaro
en-aut-sei=Ishiguro
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OzakiKokoro
en-aut-sei=Ozaki
en-aut-mei=Kokoro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NagataTetsuya
en-aut-sei=Nagata
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=17
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=22
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=23
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=24
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=25
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=26
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=27
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=28
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=29
en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=30
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=31
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=32
en-affil=Department of Neurology, Higashi-Saitama National Hospital
kn-affil=
affil-num=33
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=34
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=35
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=36
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=37
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=38
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=multicenter cohort study
kn-keyword=multicenter cohort study
en-keyword=multiple system atrophy
kn-keyword=multiple system atrophy
en-keyword=natural history
kn-keyword=natural history
en-keyword=patient registry
kn-keyword=patient registry
END
start-ver=1.4
cd-journal=joma
no-vol=508
cd-vols=
no-issue=
article-no=
start-page=111242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced aboveground biomass density estimation in Central Vietnamese forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74?7.04 % in R2, 8.73?10.91 % in RMSE, and 13.62?15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=4
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Forest aboveground biomass density
kn-keyword=Forest aboveground biomass density
en-keyword=Random forest
kn-keyword=Random forest
en-keyword=Ordinary kriging
kn-keyword=Ordinary kriging
en-keyword=Co-kriging
kn-keyword=Co-kriging
en-keyword=Multispectral
kn-keyword=Multispectral
en-keyword=Multi-frequency synthetic aperture radar
kn-keyword=Multi-frequency synthetic aperture radar
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=5
article-no=
start-page=1554
end-page=1577
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Understanding the spatial variability of soil organic carbon density (SOCD) in tropical forests is necessary for efficient climate change mitigation initiatives. However, accurately modeling SOCD in these landscapes is challenging due to low-density sampling efforts and the limited availability of in-situ data caused by constrained accessibility. In this study, we aimed to explore the most suitable modeling technique for SOCD estimation in the context of tropical forest ecosystems.
Methods To support the research, thirty predictor covariates derived from remote sensing data, topographic attributes, climatic factors, and geographic positions were utilized, along with 104 soil samples collected from the top 30 cm of soil in Central Vietnamese tropical forests. We compared the effectiveness of geostatistics (ordinary kriging, universal kriging, and kriging with external drift), machine learning (ML) algorithms (random forest and boosted regression tree), and their hybrid approaches (random forest regression kriging and boosted regression tree regression kriging) for the prediction of SOCD. Prediction accuracy was evaluated using the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE) obtained from leave-one-out cross-validation.
Results The study results indicated that hybrid approaches performed best in predicting forest SOCD with the greatest values of R2 and the lowest values of MAE and RMSE, and the ML algorithms were more accurate than geostatistics. Additionally, the prediction maps produced by the hybridization showed the most realistic SOCD pattern, whereas the kriged maps were prone to have smoother patterns, and ML-based maps were inclined to possess more detailed patterns. The result also revealed the superiority of the ML plus residual kriging approaches over the ML models in reducing the underestimation of large SOCD values in high-altitude mountain areas and the overestimation of low SOCD values in low-lying terrain areas.
Conclusion Our findings suggest that the hybrid approaches of geostatistics and ML models are most suitable for modeling SOCD in tropical forests.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NguyenThi Thuong
en-aut-sei=Nguyen
en-aut-mei=Thi Thuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=5
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Digital soil mapping
kn-keyword=Digital soil mapping
en-keyword=Hybrid approaches
kn-keyword=Hybrid approaches
en-keyword=Kriging
kn-keyword=Kriging
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Soil organic carbon density
kn-keyword=Soil organic carbon density
en-keyword=Tropical forests
kn-keyword=Tropical forests
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=12
article-no=
start-page=613
end-page=621
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P?p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 ? 7.76, p = 0.0400).
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasaki
en-aut-sei=Tanaka
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomotoJunko
en-aut-sei=Nomoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NCBN Controls WGS Consortium
en-aut-sei=NCBN Controls WGS Consortium
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=9
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=10
en-affil=
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=4
article-no=
start-page=244
end-page=254
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A novel brief questionnaire using a face rating scale to assess dental anxiety and fear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=PURPOSE This study aimed to evaluate the reliability and validity of a four-item questionnaire using a face rating scale to measure dental trait anxiety (DTA), dental trait fear (DTF), dental state anxiety (DSA), and dental state fear (DSF).
MATERIALS AND METHODS Participants were consecutively selected from patients undergoing scaling (S-group; n = 47) and implant placement (I-group; n = 25). The S-group completed the questionnaire both before initial and second scaling, whereas the I-group responded on the pre-surgery day (Pre-day), the day of implant placement (Imp-day), and the day of suture removal (Post-day).
RESULTS The reliability in the S-group was evaluated using the test-retest method, showing a weighted kappa value of DTA, 0.61; DTF, 0.46; DSA, 0.67; DSF, 0.52. Criterion-related validity, assessed using the State-Trait Anxiety Inventory’s trait anxiety and state anxiety, revealed positive correlations between trait anxiety and DTA/DTF (DTA, ρ = 0.30; DTF, ρ = 0.27, ρ: correlation coefficient) and between state anxiety and all four items (DTA, ρ = 0.41; DTF, ρ = 0.32; DSA, ρ = 0.25; DSF, ρ = 0.25). Known-group validity was assessed using the initial data and Imp-day data from the S-group and I-group, respectively, revealing significantly higher DSA and DSF scores in the I-group than in the S-group. Responsiveness was gauged using I-group data, showing significantly lower DSA and DSF scores on post-day compared to other days.
CONCLUSION The newly developed questionnaire has acceptable reliability and validity for clinical use, suggesting its usefulness for research on dental anxiety and fear and for providing patient-specific dental care.
en-copyright=
kn-copyright=
en-aut-name=MinoTakuya
en-aut-sei=Mino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Kimura-OnoAya
en-aut-sei=Kimura-Ono
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArakawaHikaru
en-aut-sei=Arakawa
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokumotoKana
en-aut-sei=Tokumoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurosakiYoko
en-aut-sei=Kurosaki
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsukaYoshizo
en-aut-sei=Matsuka
en-aut-mei=Yoshizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaekawaKenji
en-aut-sei=Maekawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Department of Removable Prosthodontics and Occlusion, Osaka Dental University
kn-affil=
affil-num=8
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Dental anxiety
kn-keyword=Dental anxiety
en-keyword=Anxiety disorders
kn-keyword=Anxiety disorders
en-keyword=Surveys
kn-keyword=Surveys
en-keyword=Questionnaires
kn-keyword=Questionnaires
en-keyword=Validation study
kn-keyword=Validation study
en-keyword=Phobia
kn-keyword=Phobia
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=9
article-no=
start-page=1398
end-page=1405
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240823
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Morphological Features of Patent Foramen Ovale Compared Between Older and Young Patients With Cryptogenic Ischemic Stroke
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The morphology of a patent foramen ovale (PFO) with a high-risk for cryptogenic ischemic stroke (CS) is an important factor in the selection of patients for transcatheter closure, but the morphological features of PFO in older patients with a history of CS are less known because the most data are obtained from younger patients.
Methods and Results: The study included 169 patients who had a history of CS and PFO. The prevalence of high-risk morphologies of PFO assessed by transesophageal echocardiography was compared between patients aged ?60 years and patients aged <60 years. We also assessed the presence of septal malalignment of PFO on the aortic wall. The probability of CS due to PFO was evaluated using the PFO-Associated Stroke Causal Likelihood classification system. Patients aged ?60 years had a significantly higher prevalence of atrial septal aneurysm than patients aged <60 years. The prevalence of large right-to-left shunt, long-tunnel of PFO, or Eustachian valve or Chiari’s network was similar between patients aged ?60 years and <60 years. Septal malalignment was observed more frequently in patients aged ?60 years than in those <60 years old. Nearly 90% of patients aged ?60 years were classified as ‘possible’ in the PFO-Associated Stroke Causal Likelihood classification system.
Conclusions: High-risk morphologies of PFO are common in older patients with a history of CS, as well as in younger patients.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsujiMasahiro
en-aut-sei=Tsuji
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkagiTeiji
en-aut-sei=Akagi
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cryptogenic ischemic stroke
kn-keyword=Cryptogenic ischemic stroke
en-keyword=Older patients
kn-keyword=Older patients
en-keyword=Patent foramen ovale
kn-keyword=Patent foramen ovale
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non?small cell lung cancer
kn-keyword=non?small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S?1
kn-keyword=S?1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparable Clinical Outcomes Between Segmentectomy and Lobectomy for NSCLC With Unsuspected N1/N2: A Multicenter Real-World Data Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Segmentectomy for lung cancer has been increasingly performed. However, evidence regarding the necessity of additional surgical resection after the diagnosis of unsuspected N1 or N2 lymph node metastasis is limited.
Methods We conducted a multicenter, real-world data study of patients with any clinical T and N0 non-small cell lung cancer (NSCLC) who underwent lobectomy or segmentectomy between 2012 and 2021 and who subsequently received a diagnosis of pathologic N1 or N2 lymph node metastasis. Patients were categorized into lobectomy and segmentectomy groups. We analyzed overall survival (OS), recurrence-free survival (RFS), cumulative recurrence rates, and recurrence patterns using both unadjusted and propensity score?adjusted cohorts.
Results A total of 736 patients were in the lobectomy group, and 70 were in the segmentectomy group. In the unadjusted cohort, segmentectomy-treated patients were older, had a lower preoperative percentage of vital capacity, had smaller tumors, and received less postoperative adjuvant chemotherapy. The 5-year OS was significantly worse in the segmentectomy group (P = .011), with no significant differences in 5-year RFS or cumulative recurrence rates. In the propensity score?adjusted cohort, there were no significant differences in OS, RFS, or recurrence rates; however, the segmentectomy group had a higher rate of local recurrence.
Conclusions In patients with unsuspected N1 or N2 NSCLC, analysis using a cohort adjusted for patient background with propensity scores revealed no differences in OS, RFS, or cumulative recurrence rates between segmentectomy and lobectomy. This finding suggests that additional resection of the remaining segments may not be necessary for these patients. However, the higher rate of local recurrence in the segmentectomy group warrants careful consideration.
en-copyright=
kn-copyright=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UenoTsuyoshi
en-aut-sei=Ueno
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMototsugu
en-aut-sei=Watanabe
en-aut-mei=Mototsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MisaoTakahiko
en-aut-sei=Misao
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WashioKazuhiro
en-aut-sei=Washio
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkutaniDaisuke
en-aut-sei=Okutani
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayamaMakio
en-aut-sei=Hayama
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UomotoMasashi
en-aut-sei=Uomoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaEiji
en-aut-sei=Yamada
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KurosakiTakeshi
en-aut-sei=Kurosaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YaginumaYuji
en-aut-sei=Yaginuma
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamataOsamu
en-aut-sei=Kawamata
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NishikawaHitoshi
en-aut-sei=Nishikawa
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OtsukaTomoaki
en-aut-sei=Otsuka
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaTakeshi
en-aut-sei=Yoshikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=HayashiTatsuro
en-aut-sei=Hayashi
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=7
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=8
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=9
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=10
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=11
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=12
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=13
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=14
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=15
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=16
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=17
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=18
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=19
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=20
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=21
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=22
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=23
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=24
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=25
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=26
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=27
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=e70262
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical outcomes following medial meniscus posterior root repairs: A minimum of 5‐year follow‐up study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: This study assessed the clinical outcomes of the FasT-Fix dependent modified Mason-Allen suture (F-MMA) and two simple stitches (TSS) on mid-term postoperative outcomes following medial meniscus (MM) posterior root repair.
Methods: Forty-three patients who underwent transtibial pullout repair for MM posterior root tear (PRT) between November 2016 and September 2018 were initially enrolled. Patients with a femorotibial angle ? 180°, Kellgren?Lawrence grade of 0?2, and modified Outerbridge grade I or II cartilage lesions were included. The Lysholm, Tegner activity, International Knee Documentation Committee score, pain visual analogue scale and Knee injury and Osteoarthritis Outcome scores were assessed as clinical outcomes. Conversion surgery to knee arthroplasty was considered as the endpoint. Surgeries other than second-look arthroscopy and plate or screw removal were also recorded.
Results: The mean follow-up period was 5.9 years. All evaluated 5-year postoperative clinical outcomes were significantly improved compared to the preoperative outcomes (p?0.001). Both the F-MMA and TSS significantly improved all clinical scores at 5 years postoperatively in patients with MMPRT, whereas the F-MMA and TSS groups showed no significant differences in the pre- and postoperative clinical scores. None of the patients required ipsilateral knee arthroplasty during the follow-up, and the survival rate after pullout repair was 100%. However, the progression of osteoarthritis could not be completely suppressed, although there were no Kellgren?Lawrence grade 4 cases. The rate of subsequent knee-related surgical treatment was 11.6% in pullout-repaired knees, including arthroscopic debridement for arthrofibrosis with a limited range of motion, an additional all-inside suture repair and partial meniscectomy.
Conclusion: Both F-MMA and TSS pullout repairs yielded satisfactory clinical outcomes in patients with MMPRT with a mean follow-up of 5.9 years, and no conversion to knee arthroplasty was required. Further follow-up is warranted to assess long-term survival rates.
Level of Evidence: Level III.
en-copyright=
kn-copyright=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugiuKazuhisa
en-aut-sei=Sugiu
en-aut-mei=Kazuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamatsukiYusuke
en-aut-sei=Kamatsuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Saiseikai General Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=clinical outcome
kn-keyword=clinical outcome
en-keyword=medial meniscus posterior root tear
kn-keyword=medial meniscus posterior root tear
en-keyword=mid‐term follow‐up
kn-keyword=mid‐term follow‐up
en-keyword=survival rate
kn-keyword=survival rate
en-keyword=transtibial pullout repair
kn-keyword=transtibial pullout repair
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1892
end-page=1893
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessing the Proportion of Clinical Trial Eligibility Criteria Expressible with Standard EHR Data Elements
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Patient recruitment for clinical trials often requires substantial human effort and experiences delays, leading to increased drug development costs. Leveraging electronic health records (EHRs) may improve the accuracy of estimates of potentially recruitable patients. We evaluated the feasibility of using EHRs by analyzing the proportion of computable eligibility criteria.
en-copyright=
kn-copyright=
en-aut-name=OkazakiRisa
en-aut-sei=Okazaki
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamikawaKunihisa
en-aut-sei=Kamikawa
en-aut-mei=Kunihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnoHideki
en-aut-sei=Uno
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkudaHiroto
en-aut-sei=Okuda
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NambaShihoko
en-aut-sei=Namba
en-aut-mei=Shihoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanoMitsunobu
en-aut-sei=Kano
en-aut-mei=Mitsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=
article-no=
start-page=1319
end-page=1323
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Method for predicting crack size using amplitude change in titanium alloy under bending vibration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The natural frequency of a material decreases owing to the presence of cracks. Thus, when a crack initiates in a material under vibration, the amplitude of the vibration changes with the crack propagation. In this study, we investigated a method for predicting crack size using the amplitude change in a plate specimen of a titanium alloy under bending vibration. The bending displacement amplitudes were measured using high-speed camera images of the specimens. The crack sizes were measured using optical microscopy images of plastic replicas of the specimen surfaces that were obtained after interrupting tests at specified intervals. By using the relationship between the total area of the cracks and bending displacement amplitude for tests at two different vibration frequencies as well as the relationship between the vibration frequency and bending displacement amplitude for an undamaged specimen, the bending displacement amplitude at any vibration frequency can be monitored to predict the total area of the cracks.
en-copyright=
kn-copyright=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vibration
kn-keyword=Vibration
en-keyword=Fatigue crack propagation
kn-keyword=Fatigue crack propagation
en-keyword=Non-destructive inspection
kn-keyword=Non-destructive inspection
en-keyword=Titanium alloy
kn-keyword=Titanium alloy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between maternal body composition changes and heavy for date infants in pregnant women with diabetes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims/Introduction: Maternal hyperglycemia is associated with heavy for date (HFD) infants. Considering the association between body composition and hyperglycemia, we investigated the changes in maternal body composition and their relationship with HFD infants in pregnant women with diabetes.
Materials and Methods: Body composition was measured during pregnancy using a bioelectrical impedance analysis system. This retrospective study included 151 pregnant women; 27 women had type 1 diabetes mellitus (DM), 21 had type 2 DM, 101 were diagnosed with gestational DM, and 2 had overt DM. The number of HFD infants was 40.
Results: In the non-type 1 DM group, change in fat mass (ΔFM) (P?0.01) and pre-pregnancy BMI (P?0.05) were risk factors for HFD. In the insulin group, ΔFM, pre-pregnancy BMI, and age (all P?0.05) were risk factors for HFD. The area under the curve was 0.813 for the predictive model combined with ΔFM and pre-pregnancy BMI in the non-type 1 DM group and 0.818 for the model combined with ΔFM, pre-pregnancy BMI, and age in the insulin group.
Conclusions: The combination of body composition parameters and clinical data may predict HFD in pregnant women with diabetes.
en-copyright=
kn-copyright=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoMasakazu
en-aut-sei=Kato
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KirinoSatoe
en-aut-sei=Kirino
en-aut-mei=Satoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuriyamaChiaki
en-aut-sei=Kuriyama
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakataSyujiro
en-aut-sei=Sakata
en-aut-mei=Syujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatoHikari
en-aut-sei=Nakato
en-aut-mei=Hikari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MishimaSakurako
en-aut-sei=Mishima
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Fat mass gain
kn-keyword=Fat mass gain
en-keyword=Heavy for date
kn-keyword=Heavy for date
en-keyword=Maternal body composition
kn-keyword=Maternal body composition
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology.
en-copyright=
kn-copyright=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaOsamu
en-aut-sei=Yokota
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiTakashi
en-aut-sei=Haraguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawanoTomohito
en-aut-sei=Kawano
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nakashima-YasudaHanae
en-aut-sei=Nakashima-Yasuda
en-aut-mei=Hanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HasegawaMasato
en-aut-sei=Hasegawa
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HosonoYasuyuki
en-aut-sei=Hosono
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TeradaSeishi
en-aut-sei=Terada
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Zikei Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Amyotrophic lateral sclerosis
kn-keyword=Amyotrophic lateral sclerosis
en-keyword=Heat shock protein
kn-keyword=Heat shock protein
en-keyword=DNAJC7
kn-keyword=DNAJC7
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=Live-cell imaging
kn-keyword=Live-cell imaging
en-keyword=Zebrafish disease model
kn-keyword=Zebrafish disease model
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression???50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p?=?0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=MoriTakeru
en-aut-sei=Mori
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaMio
en-aut-sei=Kitagawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaTomokazu
en-aut-sei=Hasegawa
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomeyaMasanori
en-aut-sei=Someya
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuchiyaTakaaki
en-aut-sei=Tsuchiya
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GochoToshio
en-aut-sei=Gocho
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateMirei
en-aut-sei=Date
en-aut-mei=Mirei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriiMariko
en-aut-sei=Morii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Autoantibodies
kn-keyword=Autoantibodies
en-keyword=PACIFIC regimen
kn-keyword=PACIFIC regimen
en-keyword=ICIs
kn-keyword=ICIs
en-keyword=Immune monitoring
kn-keyword=Immune monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=e00110-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)?1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroyuki
en-aut-sei=Yamada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotozonoChihiro
en-aut-sei=Motozono
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiSho
en-aut-sei=Yamasaki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TorrellesJordi B.
en-aut-sei=Torrelles
en-aut-mei=Jordi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TurnerJoanne
en-aut-sei=Turner
en-aut-mei=Joanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=3
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=5
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=6
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=7
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=8
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=Mycobacterium tuberculosis
kn-keyword=Mycobacterium tuberculosis
en-keyword=pyroptosis
kn-keyword=pyroptosis
en-keyword=caspase
kn-keyword=caspase
en-keyword=RNA-Seq
kn-keyword=RNA-Seq
en-keyword=cytokine
kn-keyword=cytokine
en-keyword=fibroblasts
kn-keyword=fibroblasts
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=57
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Implant-supported fixed prostheses with cantilever: a systematic review and meta-analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This systematic review (SR) aimed to investigate whether the presence of a cantilever affects the results of implant treatment for partial edentulism, including an analysis of the anterior and posterior regions of the dental arches.
Methods An electronic search was performed, and original articles published between 1995 and November 2023 were included. The outcomes were the implant survival rate, patient satisfaction, occurrence of mechanical complications, and marginal bone loss around the implants. Two SR members independently examined the validity of the studies, extracted evidence from the included studies, and performed risk of bias assessment, comprehensive evidence evaluation, and meta-analysis.
Results Nine studies met our inclusion criteria. Implant survival rate tended to be lower in the cantilever group, and marginal bone loss tended to be higher in the cantilever group; however, there was no significant difference. There was no significant difference in patient satisfaction based on the presence or absence of a cantilever. Moreover, the incidence of mechanical complications was significantly higher in the cantilever group. According to the analysis of anterior and posterior regions, implant survival rate tended to be lower in the cantilever group of the posterior region, and marginal bone loss around the implants tended to be higher in the cantilever group of the anterior region.
Conclusion Implant-supported fixed prostheses with cantilevers did not negatively affect implant survival rate, marginal bone loss, or patient satisfaction. However, the incidence of mechanical complications significantly increased in the cantilever group.
en-copyright=
kn-copyright=
en-aut-name=KondoYusuke
en-aut-sei=Kondo
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaiKiyoshi
en-aut-sei=Sakai
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinakuchiHajime
en-aut-sei=Minakuchi
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HorimaiTakuya
en-aut-sei=Horimai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JSOI Clinical Guideline Working Group collaborators
en-aut-sei=JSOI Clinical Guideline Working Group collaborators
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Clinical Guideline Task-Force Members (2018-), Japanese Society of Oral Implantology (JSOI)
kn-affil=
affil-num=2
en-affil=Clinical Guideline Task-Force Members (2018-), Japanese Society of Oral Implantology (JSOI)
kn-affil=
affil-num=3
en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=The Library, School of Dentistry, Nihon University
kn-affil=
affil-num=5
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=Cantilever
kn-keyword=Cantilever
en-keyword=Fixed prostheses
kn-keyword=Fixed prostheses
en-keyword=Implants
kn-keyword=Implants
en-keyword=Partial edentulism
kn-keyword=Partial edentulism
en-keyword=Systematic review
kn-keyword=Systematic review
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=3
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Characteristic Magnetic Resonance Imaging Finding to Identify Morton Neuroma: The Slug Sign
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Morton neuroma is a common cause of forefoot pain and sensory disturbances, but it is difficult to identify on magnetic resonance imaging (MRI). The aim of this study was to verify the usefulness of a characteristic MRI finding (slug sign) for identifying Morton neuroma and to clarify the relationship between excised neuroma characteristics and preoperative MRI findings.
Methods: Twenty-two web spaces were retrospectively assessed from the second and third intermetatarsal spaces of 11 feet of 10 patients (7 women and 3 men, aged average 59.5?years) who underwent surgical excision of Morton neuroma between 2017 and 2022. Asymptomatic web spaces were used as control. Neuromas with 2 branches of the plantar digital nerves on axial T1-weighted MRI (MRI-T1WI) were considered the slug sign. We investigated the preoperative presence of the slug sign in Morton neuroma and asymptomatic control web spaces. We also investigated the relationship between the maximum transverse diameter of the excised specimen and that estimated on coronal MRI-T1WI.
Results: A total of 15 Morton neuromas were excised and assessed. The slug signs were present in 10 intermetatarsal spaces in 15 web spaces with Morton neuroma whereas the sign was found in 1 intermetatarsal space in 7 asymptomatic web spaces. The sensitivity and specificity for the slug sign to diagnose Morton neuroma was 66.7% and 85.7%, respectively. The positive and negative predictive values were 90.9% and 54.5%, respectively. The mean maximum transverse diameter of excised neuromas was 4.7?mm. The mean maximum transverse diameter of neuromas on coronal MRI-T1WI was 3.4?mm. A significant positive correlation was found between the maximum transverse diameters of excised specimens and diameters estimated on coronal MRI-T1WI (r?=?0.799, P?.001).
Conclusion: The slug sign may be a useful indicator of Morton neuroma on MRI to confirm nerve involvement after bifurcation.
Level of Evidence: Level IV, retrospective series.
en-copyright=
kn-copyright=
en-aut-name=HoritaMasahiro
en-aut-sei=Horita
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaigaKenta
en-aut-sei=Saiga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Sports Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Morton neuroma
kn-keyword=Morton neuroma
en-keyword=T1-weighted MRI
kn-keyword=T1-weighted MRI
en-keyword=forefoot pain
kn-keyword=forefoot pain
en-keyword=slug sign
kn-keyword=slug sign
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250811
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study of the Mechanical Properties of Al?Mg ADC6 Aluminum Alloy Produced by Unidirectional Casting Under Various Cooling Rates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To create the high strength and high ductility of Al?Mg-based aluminum alloy (JIS?ADC6), ADC6 samples were produced by the unidirectional continuous casting (HMC). The HMC process was conducted with direct water cooling to melt ADC6, which can make fine microstructures and control crystal orientation. The cast samples were prepared under various cooling rates (CRs): 6.3, 34, and 62 K/s. The microstructure and crystal orientation of the samples were altered with CR. At CRs of 34 K/s and 62 K/s, the α-Al phases and intermetallic compounds, e.g., Mg2Si and Al15(Fe, Mn)3Si2, became finer and more spherical. The secondary dendrite arm spacing for the sample at 62 K/s was 8.7 ?m?more than 70% smaller than the ADC6 sample (ingot) made by a gravity casting process. Notably, at a CR of 34 K/s, the crystal orientation was predominantly arranged with the (101) plane. Tensile properties?ultimate tensile strength (σUTS), 0.2% proof stress (σ0.2), and failure strain (εf)?varied with the CR. The tensile strength (σUTS and σ0.2) consistently increased with increasing the CR. The improvement in the tensile strength resulted from the refined microstructures, such as the α-Al phase and intermetallic compounds. Similarly, the failure strain also increased with increasing CR, which was severely affected by the finer and more spherical intermetallic compounds. In this case, the εf value of the sample at 34 K/s was, however, slightly higher than that at 62 K/s, due to more uniformly organized crystal orientation, while their ductility was much higher than that of the gravity cast sample. The tensile properties in detail were further analyzed using their failure characteristics.
en-copyright=
kn-copyright=
en-aut-name=TakeuchiS.
en-aut-sei=Takeuchi
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkayasuM.
en-aut-sei=Okayasu
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=Al-Mg alloy
kn-keyword=Al-Mg alloy
en-keyword=heated mold continuous casting
kn-keyword=heated mold continuous casting
en-keyword=mechanical property
kn-keyword=mechanical property
en-keyword=microstructural characteristics
kn-keyword=microstructural characteristics
en-keyword=crystal orientation
kn-keyword=crystal orientation
en-keyword=fractography
kn-keyword=fractography
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=391
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trend of Digital Biomarkers (dBM) as Endpoints in Clinical Trials: Secondary Analysis of Open Data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study examined clinical trial trends to guide digital biomarker (dBM) guideline development. Analysis of 2005?2023 data was conducted to assess the frequency and types of dBM used as endpoints (dEP) in these trials and the associated target diseases. Clinical trials using dEP increased from 0?7 per year (2005?2019) to 15?20 annually from 2020. Endocrine and metabolic conditions were the most common targets, showing a distinct disease distribution compared to overall trials. Most measurements used actigraphy devices or blood glucose sensors, with glucose sensors focusing on metabolic conditions while actigraphy covered broader applications. Additionally, 42.4% of trials used dEP as primary endpoints. While dEP use is growing, it remains limited in disease scope and device variety. Expanding both would enhance their utility in clinical research.
en-copyright=
kn-copyright=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonjohMina
en-aut-sei=Honjoh
en-aut-mei=Mina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Health Sciences, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Clinical endpoint,
kn-keyword=Clinical endpoint,
en-keyword=clinical outcomes
kn-keyword=clinical outcomes
en-keyword=wearable devices
kn-keyword=wearable devices
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=
article-no=
start-page=107913
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recurrent diffuse panbronchiolitis after lung transplantation: Off-label use of inhaled tobramycin for Pseudomonas aeruginosa control in a transplant recipient
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: This report highlights a clinical case of recurrent diffuse panbronchiolitis (DPB) after bilateral lung transplantation (LTx), with a focus on the therapeutic impact of off-label inhaled tobramycin solution for inhalation (TSI) in managing Pseudomonas aeruginosa colonization.
Methods: A Japanese woman with a history of DPB experienced disease recurrence following bilateral LTx. Persistent colonization by P. aeruginosa and recurrent respiratory symptoms were observed. Off-label TSI therapy, commonly used in cystic fibrosis, was introduced. Clinical response was assessed through radiologic imaging, bronchoscopy, and microbiological cultures.
Results: TSI administration led to significant clinical and radiological improvement. P. aeruginosa was eradicated from sputum cultures within one month and remained absent throughout six months of follow-up. No hospitalizations or adverse events were reported during therapy.
Conclusion: This case suggests the potential of TSI as a therapeutic approach for managing recurrent DPB and indicates its role in stabilizing post-transplant outcomes. Further studies may clarify its efficacy and expand its application in broader DPB management strategies.
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RyukoTuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Inhaled tobramycin
kn-keyword=Inhaled tobramycin
en-keyword=Lung transplantation
kn-keyword=Lung transplantation
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
en-keyword=Recurrent diffuse panbronchiolitis
kn-keyword=Recurrent diffuse panbronchiolitis
END
start-ver=1.4
cd-journal=joma
no-vol=779
cd-vols=
no-issue=
article-no=
start-page=152453
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1,2-naphthoquinone enhances IFN-γ-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-γ-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-γ production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-γ-induced activation of dendritic cells and promotes the activation of CD8 T cells.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazatoKanon
en-aut-sei=Miyazato
en-aut-mei=Kanon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobataKai
en-aut-sei=Kobata
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=1,2-Napthoquinone
kn-keyword=1,2-Napthoquinone
en-keyword=Dendritic cell
kn-keyword=Dendritic cell
en-keyword=IFN-γ
kn-keyword=IFN-γ
en-keyword=MHC-I
kn-keyword=MHC-I
en-keyword=CD8 T cell
kn-keyword=CD8 T cell
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=32
article-no=
start-page=e2501933122
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250805
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions?a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues?K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12?creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species.
en-copyright=
kn-copyright=
en-aut-name=Nguyen ThaoTran
en-aut-sei=Nguyen Thao
en-aut-mei=Tran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UranoRyo
en-aut-sei=Urano
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangPeitong
en-aut-sei=Wang
en-aut-mei=Peitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShinodaWataru
en-aut-sei=Shinoda
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=10
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=aluminum resistance
kn-keyword=aluminum resistance
en-keyword=membrane protein structure
kn-keyword=membrane protein structure
en-keyword=citrate transporter
kn-keyword=citrate transporter
en-keyword=MATE transporter
kn-keyword=MATE transporter
END
start-ver=1.4
cd-journal=joma
no-vol=90
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the phylogenetic relationships among <i>Alpinia</i> species native to the Nansei Islands, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Alpinia species (A. intermedia, A. zerumbet, A. formosana, A. uraiensis, and unidentified strains native to the Daito Islands), which are native to the Nansei Islands, Japan are ornamental plants that can be used as resources to produce seasonings and antibacterial and antiviral substances. Despite the usefulness of these plants, little scientific research has been conducted on their phylogenetic relationships. In this study, their phylogenetic relationships were examined based on genomic and chloroplast DNA polymorphisms, repetitive sequence abundance, and cytogenetic perspectives. The results indicated that A. formosana is most likely the outcome of a hybrid of A. zerumbet and A. intermedia, and the unidentified strains native to the Daito Islands are the outcomes of a hybrid of A. zerumbet and A. uraiensis. Immunostaining with a newly produced anti-centromere-specific histone H3 (CENH3) antibody revealed that the number of chromosomes in these species was 2n=48.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NarusakaMari
en-aut-sei=Narusaka
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NarusakaYoshihiro
en-aut-sei=Narusaka
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
affil-num=3
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
en-keyword=Alpinia
kn-keyword=Alpinia
en-keyword=Nansei Islands
kn-keyword=Nansei Islands
en-keyword=Chromosome number
kn-keyword=Chromosome number
en-keyword=CENH3 (centromere-specific histone H3)
kn-keyword=CENH3 (centromere-specific histone H3)
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=12
article-no=
start-page=e202402802
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90?92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
en-copyright=
kn-copyright=
en-aut-name=TekAhmet L
en-aut-sei=Tek
en-aut-mei=Ahmet L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Y?ld?z Akkam??H?meyra
en-aut-sei=Y?ld?z Akkam??
en-aut-mei=H?meyra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=4
article-no=
start-page=715
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Telemedicine as an alternative to in-person care in the field of rheumatic diseases: A systematic scoping review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The COVID-19 pandemic prompted the widespread adoption of telemedicine as an alternative to in-person care. This systematic scoping review evaluated the effectiveness, cost-efficiency, and challenges of telemedicine for patients with rheumatic diseases.
Methods: A comprehensive search of the MEDLINE database was conducted using specific terms related to rheumatoid or juvenile arthritis, and telemedicine. The literature search included studies published up to March, 2024. In this review, we only considered studies assessing telemedicine as an alternative to in-person care.
Results: The search, conducted on 15 March 2024, generated 258 references. Eight reports from three randomized controlled trials and three observational studies were included. Randomized controlled trials have shown that the outcomes of telemedicine intervention are comparable to those of in-person care in terms of disease activity, functional status, and quality of life, while enabling fewer outpatient visits and cost-effectiveness. However, the high dropout rates highlight the importance of patient preferences and comprehensive education. Observational studies revealed similar findings but were limited by a high confounding bias.
Conclusion: Telemedicine offers economic advantages and maintains clinical outcomes comparable to those of in-person care. Its success depends on structured patient education and alignment with patient preferences. Further research is required, particularly in the context of healthcare in Japan.
en-copyright=
kn-copyright=
en-aut-name=SadaKen-ei
en-aut-sei=Sada
en-aut-mei=Ken-ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwataShigeru
en-aut-sei=Iwata
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYuzaburo
en-aut-sei=Inoue
en-aut-mei=Yuzaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AbeAsami
en-aut-sei=Abe
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawakamiAtsushi
en-aut-sei=Kawakami
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyamaeTakako
en-aut-sei=Miyamae
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Clinical Epidemiology, Kochi Medical School
kn-affil=
affil-num=2
en-affil=Department of Rheumatology and Clinical Immunology, Wakayama Medical University
kn-affil=
affil-num=3
en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Rheumatology, Tokyo Women’s Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=7
en-affil=Department of Rheumatology, Niigata Rheumatic Center
kn-affil=
affil-num=8
en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=9
en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University
kn-affil=
en-keyword=Digital health
kn-keyword=Digital health
en-keyword=telemedicine
kn-keyword=telemedicine
en-keyword=remote care
kn-keyword=remote care
en-keyword=rheumatic disease
kn-keyword=rheumatic disease
en-keyword=scoping review
kn-keyword=scoping review
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=
article-no=
start-page=31
end-page=42
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Incidence, Management, and Prevention of Gynecomastia and Breast Pain in Patients with Prostate Cancer Undergoing Antiandrogen Therapy: A Systematic Review and Meta-analysis of Randomized Controlled Trials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objective: In patients with prostate cancer treated with antiandrogen monotherapy, gynecomastia and breast pain are relatively common. In the setting of androgen receptor pathway inhibitors (ARPIs), the incidence of these adverse events (AEs) remains unclear. In addition, the effect of prophylactic treatment on gynecomastia remains uncertain. We aimed to evaluate the incidence of gynecomastia and breast pain in prostate cancer patients treated with ARPIs compared with androgen deprivation therapy (ADT) and the effect of prophylactic treatment for these AEs due to antiandrogen therapy.
Methods: In June 2024, we queried four databases?PubMed, Scopus, Web of Science, and Embase?for randomized controlled trials (RCTs) investigating prostate cancer treatments involving antiandrogen therapy. The endpoints of interest were the incidence of these AEs due to ARPIs and the effect of prophylactic treatment for these.
Key findings and limitations: Eighteen RCTs, comprising 5036 patients, were included in the systematic review and meta-analysis. ARPIs included enzalutamide, darolutamide, and apalutamide. The results indicated that patients who received ARPI monotherapy had a significantly higher incidence of gynecomastia than those who received ADT monotherapy (risk ratio [RR]: 5.19, 95% confidence interval [CI]: 3.58?7.51, p < 0.001). There was no significant difference in the incidence of gynecomastia between ARPI plus ADT therapy and ADT monotherapy (RR: 1.27, 95% CI: 0.84?1.93, p = 0.2). Prophylactic tamoxifen or radiotherapy reduced significantly the incidence of gynecomastia and breast pain caused by bicalutamide monotherapy.
Conclusions and clinical implications: We found that ARPI monotherapy increases the incidence of these AEs significantly compared with ADT. In contrast, ARPI plus ADT therapy did not result in a higher incidence of AEs. The use of either tamoxifen or radiotherapy was effective in reducing the incidence of these AEs due to bicalutamide monotherapy. These prophylactic treatments could reduce the incidence of AEs due to ARPI monotherapy. However, further studies are needed to clarify their efficacy.
Patient summary: Although androgen deprivation therapy (ADT) improves overall survival in patients with prostate cancer, it is associated with several complications. Androgen receptor pathway inhibitor (ARPI) monotherapy has emerged as a promising strategy for improving oncological outcomes in these patients. However, ARPI monotherapy increases gynecomastia and breast pain in prostate cancer patients compared with ADT, while ARPI plus ADT did not result in a higher incidence of adverse events.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SchulzRobert J.
en-aut-sei=Schulz
en-aut-mei=Robert J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LaukhtinaEkaterina
en-aut-sei=Laukhtina
en-aut-mei=Ekaterina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Antiandrogen therapy
kn-keyword=Antiandrogen therapy
en-keyword=Androgen deprivation therapy
kn-keyword=Androgen deprivation therapy
en-keyword=Androgen receptor pathway inhibitors
kn-keyword=Androgen receptor pathway inhibitors
en-keyword=Breast pain
kn-keyword=Breast pain
en-keyword=Gynecomastia
kn-keyword=Gynecomastia
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=3332
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Experience of High Tibial Osteotomy for Patients with Rheumatoid Arthritis Treated with Recent Medication: A Case Series
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: High tibial osteotomy (HTO) was generally not indicated in patients with rheumatoid arthritis (RA) because synovial inflammation may exacerbate joint damage postoperatively. Recently, joint destruction in RA has dramatically changed with the introduction of methotrexate (MTX) and biological disease-modifying antirheumatic drugs (bDMARDs). This study aimed to investigate the clinical outcomes of HTO for patients with RA treated with recent medication. Methods: In this study, patients with RA who underwent HTO between 2016 and 2020 were retrospectively reviewed. Patients whose follow-up period was <2 years and those whose onset of RA occurred after HTO were excluded. Clinical outcomes were investigated using the Japanese orthopedic Association (JOA) and visual analog scale (VAS) scores. Results: Seven patients (two males and five females, mean age 72.0 ± 6.2 years, mean body mass index 24.0 ± 2.9 kg/m2) were included in this study. The mean follow-up period was 62.1 ± 21.4 months. Open-wedge and hybrid closed-wedge HTO were performed in two and five cases, respectively. MTX was used for all cases. The bDMARDs were used in six cases (golimumab and tocilizumab in four and two cases, respectively). JOA scores significantly improved from 63.6 ± 10.7 preoperatively to 90.7 ± 5.3 postoperatively (p = 0.0167 Wilcoxon rank test). VAS scores significantly decreased from 48.6 ± 12.2 preoperatively to 11.4 ± 6.9 postoperatively (p = 0.017 Wilcoxon rank test). None of the patients underwent total knee arthroplasty. Conclusions: This study showed seven RA patients who underwent HTO treated with recent medication. The prognosis of RA, including joint destruction, has dramatically improved with induction of MTX and bDMARDs. HTO may be one of effective joint preservation surgeries even for patients with RA. To achieve the favorable outcomes, surgeons should pay attention to timing and indication of surgery.
en-copyright=
kn-copyright=
en-aut-name=TakaharaYasuhiro
en-aut-sei=Takahara
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakashimaHirotaka
en-aut-sei=Nakashima
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchidaYoichiro
en-aut-sei=Uchida
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoHisayoshi
en-aut-sei=Kato
en-aut-mei=Hisayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItaniSatoru
en-aut-sei=Itani
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwasakiYuichi
en-aut-sei=Iwasaki
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Nippon Kokan Fukuyama Hospital
kn-affil=
en-keyword=high tibial osteotomy
kn-keyword=high tibial osteotomy
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
en-keyword=methotrexate
kn-keyword=methotrexate
en-keyword=biologic diseasemodifying antirheumatic drugs
kn-keyword=biologic diseasemodifying antirheumatic drugs
en-keyword=knee surgery
kn-keyword=knee surgery
en-keyword=joint preservation
kn-keyword=joint preservation
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=3
article-no=
start-page=99
end-page=117
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Golli?myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli?myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli?myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli?myelin basic protein knockout through the generation of conditional knockout mice (Golli?myelin basic proteinsfl/fl; E3CreN), in which Golli?myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli?myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli?myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli?myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli?myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli?myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaSaki
en-aut-sei=Nishioka
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTomoyuki
en-aut-sei=Yamanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeManabu
en-aut-sei=Abe
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImamuraYukio
en-aut-sei=Imamura
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyasakaTomohiro
en-aut-sei=Miyasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KakudaNobuto
en-aut-sei=Kakuda
en-aut-mei=Nobuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimogoriTomomi
en-aut-sei=Shimogori
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamakawaKazuhiro
en-aut-sei=Yamakawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IkawaMasahito
en-aut-sei=Ikawa
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NukinaNobuyuki
en-aut-sei=Nukina
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=3
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=4
en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University
kn-affil=
affil-num=5
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=6
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=7
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science
kn-affil=
affil-num=10
en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science
kn-affil=
affil-num=11
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=12
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
en-keyword=Golli-MBP
kn-keyword=Golli-MBP
en-keyword=Cerebellar granule neuron
kn-keyword=Cerebellar granule neuron
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Conditional knockout
kn-keyword=Conditional knockout
END
start-ver=1.4
cd-journal=joma
no-vol=218
cd-vols=
no-issue=
article-no=
start-page=104922
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alteration of perineuronal nets and parvalbumin interneurons in prefrontal cortex and hippocampus, and correlation with blood corticosterone in activity-based anorexia model mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anorexia nervosa (AN) is an eating disorder characterized by restricted energy intake, severely underweight status, and frequent hyperactivity. Previous research has shown structural and functional alterations in the medial prefrontal cortex (mPFC) and hippocampus of AN patients. To investigate the pathological mechanism of AN, we analyzed the expression and distribution of parvalbumin (PV) interneurons and perineuronal nets (PNNs), which are implicated in the pathology of neuropsychiatric disorders, in the mPFC and hippocampus dorsal (HPCd) and ventral (HPCv) using an activity-based anorexia (ABA) mouse model. We found that PNN expression and density increased in the mPFC, with minor alterations in the HPCd and HPCv of ABA mice. The expression and distribution of PV neurons were unchanged in the brains of ABA mice, except for a regional decrease in PV-expressing neuron density in the HPCd. Co-localization analysis showed an increased number of PNNs enwrapping PV-negative neurons in the mPFC of ABA mice. Furthermore, the upregulation of PNN expression in the mPFC was positively correlated with elevated blood corticosterone levels, a well-known stress indicator, in ABA mice. Our findings suggest that the increased expression and distribution of PNNs surrounding PV-negative neurons in the mPFC may indicate the pathological mechanisms of AN.
en-copyright=
kn-copyright=
en-aut-name=NguyenHoang Duy
en-aut-sei=Nguyen
en-aut-mei=Hoang Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=activity-based anorexia
kn-keyword=activity-based anorexia
en-keyword=perineuronal nets
kn-keyword=perineuronal nets
en-keyword=parvalbumin
kn-keyword=parvalbumin
en-keyword=corticosterone
kn-keyword=corticosterone
en-keyword=prefrontal cortex
kn-keyword=prefrontal cortex
en-keyword=hippocampus
kn-keyword=hippocampus
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=1
article-no=
start-page=62
end-page=68
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=What is the identity of Gerota fascia? Histological study with cadavers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: The advancement of laparoscopic surgery has allowed surgeons to see finer anatomical structures during surgery. As a result, several issues have arisen regarding Gerota fascia that cannot be explained by previous interpretations, such as its various forms observed during surgery. To address these issues, we histologically examined the structure of Gerota fascia.
Methods: Specimens for study were prepared from kidneys with Gerota fascia from four cadavers, and the structure was studied histologically. Its thickness and collagen fiber area ratios were measured using ImageJ and compared to those of the epimysium of the rectus abdominis muscle.
Results: Connective tissue that appeared to be Gerota fascia was observed in 26 specimens. Histologically, the basic structure of Gerota fascia was a sandwich-like structure with a thin layer of thick, long collagen fibers in the central layer, and small granular collagen fibers scattered at the edges. However, not all areas observed had a similar structure; eight specimens were composed only of small granular collagen fibers. The average thickness of the Gerota fascia was 466?μm, and the area ratio of collagen was 27.1%. In contrast, the epimysium was much thicker than Gerota fascia, and its collagen fibers were much thicker and denser.
Conclusions: Gerota fascia, unlike the epimysium, was a very thin and fragile layer of collagen fibers, and its structure was diverse. This explains why Gerota fascia was observed in various states during surgery. It is important for surgeons to understand the properties of Gerota fascia and to treat it appropriately.
en-copyright=
kn-copyright=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KomiyamaTakaaki
en-aut-sei=Komiyama
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MomotaRyusuke
en-aut-sei=Momota
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Minimally Invasive Therapy Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=collagen fiber
kn-keyword=collagen fiber
en-keyword=connective tissue
kn-keyword=connective tissue
en-keyword=fusion fascia
kn-keyword=fusion fascia
en-keyword=Gerota fascia
kn-keyword=Gerota fascia
en-keyword=renal fascia
kn-keyword=renal fascia
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tailoring Mechanical Properties and Ionic Conductivity of Poly(ionic liquid)-Based Ion Gels by Tuning Anion Compositions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Poly(ionic liquid) (PIL)-based ion gels have emerged as promising materials for advanced electrochemical applications because of their excellent miscibility with ionic liquids (IL), tunable mechanical properties, and high ionic conductivity. Despite extensive studies on PIL-based ion gels, a comprehensive understanding of how different anion combinations in the system affect physicochemical properties is lacking. In this study, we systematically investigate the effect of different anion species, such as bis(trifluoromethanesulfonyl)imide (TFSI) and hexafluorophosphate (PF6), on the mechanical, viscoelastic, and ion conductive behaviors of PIL-based ion gels. We investigate the interplay between anion size, packing density, and polymer segmental dynamics by varying the anion composition in both the PIL network and IL component. Rheological analysis and uniaxial tensile testing results indicate that PF6-containing ion gels exhibit enhanced higher Young’s modulus because of their restricted chain mobility resulting in higher glass transition temperature (Tg). In addition, we confirm the anion exchange between PIL and IL during gel preparation and find that the mechanical and ion conductive properties of the gels are governed by the total molar ratio of anions in the gels. Our findings highlight that tuning the anion composition in PIL-based ion gels provides an effective strategy to tailor their performance, with potential applications for flexible electronics and solid-state electrochemical devices.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTakaichi
en-aut-sei=Watanabe
en-aut-mei=Takaichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MizutaniYuna
en-aut-sei=Mizutani
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LopezCarlos G.
en-aut-sei=Lopez
en-aut-mei=Carlos G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnoTsutomu
en-aut-sei=Ono
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Material Science and Engineering Department, The Pennsylvania State University, 80 Pollock Road, State College
kn-affil=
affil-num=4
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=poly(ionic liquid)
kn-keyword=poly(ionic liquid)
en-keyword=anion exchange
kn-keyword=anion exchange
en-keyword=gel
kn-keyword=gel
en-keyword=conductivity
kn-keyword=conductivity
en-keyword=toughness
kn-keyword=toughness
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=24
article-no=
start-page=3299
end-page=3306
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Preliminary Survey of Rheumatologists on the Management of Late-onset Rheumatoid Arthritis in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective We investigated the current perspectives regarding the management of late-onset rheumatoid arthritis (LORA) among rheumatologists in clinical practice.
Methods This study was performed in October 2021, and included 65 rheumatologists certified by the Japan College of Rheumatology, who were administered questionnaires (including multiple choice and descriptive formulae) regarding the management of LORA. We aggregated and analyzed the responses.
Results All 65 rheumatologists responded to the survey; 47 (72%) answered that >50% of newly diagnosed patients were aged ?65 years, 42 (65%) answered that achievement of remission or low disease activity was the treatment goal, and 40 (62%) considered patient safety to be the highest priority. Most rheumatologists are concerned about the management of conditions other than RA, such as comorbidities, financial constraints, and life circumstances that interfere with standard or recommended treatment implementation.
Conclusion This preliminary survey highlighted various rheumatologists' perspectives regarding the management of LORA.
en-copyright=
kn-copyright=
en-aut-name=TakanashiSatoshi
en-aut-sei=Takanashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanekoYuko
en-aut-sei=Kaneko
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KidaTakashi
en-aut-sei=Kida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugiharaTakahiko
en-aut-sei=Sugihara
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaradaRyozo
en-aut-sei=Harada
en-aut-mei=Ryozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshitokuMichinori
en-aut-sei=Ishitoku
en-aut-mei=Michinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirataShintaro
en-aut-sei=Hirata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HashimotoMotomu
en-aut-sei=Hashimoto
en-aut-mei=Motomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HidakaToshihiko
en-aut-sei=Hidaka
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AbeAsami
en-aut-sei=Abe
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshikawaHajime
en-aut-sei=Ishikawa
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ItoHiromu
en-aut-sei=Ito
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KishimotoMitsumasa
en-aut-sei=Kishimoto
en-aut-mei=Mitsumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsuiKazuo
en-aut-sei=Matsui
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsuiToshihiro
en-aut-sei=Matsui
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MatsushitaIsao
en-aut-sei=Matsushita
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OnishiAkira
en-aut-sei=Onishi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MorinobuAkio
en-aut-sei=Morinobu
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AsaiShuji
en-aut-sei=Asai
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HarigaiMasayoshi
en-aut-sei=Harigai
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KojimaMasayo
en-aut-sei=Kojima
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=4
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=5
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
kn-affil=
affil-num=6
en-affil=National Hospital Organization Nagoya Medical Center, Orthopaedic Surgery and Rheumatology
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Kurashiki Sweet Hospital
kn-affil=
affil-num=8
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=10
en-affil=Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Miyazaki-Zenjinkai Hospital
kn-affil=
affil-num=12
en-affil=Department of Rheumatology, Niigata Rheumatic Center
kn-affil=
affil-num=13
en-affil=Department of Rheumatology, Niigata Rheumatic Center
kn-affil=
affil-num=14
en-affil=Kurashiki Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Rheumatology, Teine Keijinkai Hospital
kn-affil=
affil-num=17
en-affil=Department of Rheumatology Research, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital
kn-affil=
affil-num=18
en-affil=Department of Rehabilitation Medicine, Kanazawa Medical University
kn-affil=
affil-num=19
en-affil=Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=22
en-affil=Department of Orthopaedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=23
en-affil=Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine
kn-affil=
affil-num=24
en-affil=Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Public Health, Nagoya City University Graduate School of Medical Sciences
kn-affil=
en-keyword=late-onset rheumatoid arthritis
kn-keyword=late-onset rheumatoid arthritis
en-keyword=ageing society
kn-keyword=ageing society
en-keyword=questionnaire
kn-keyword=questionnaire
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=9
article-no=
start-page=e70105
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ultrahigh‐Field MR‐Compatible Mechanical Tactile Stimulator for Investigating Somatosensory Processing in Small‐Bodied Animals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Common marmosets (Callithrix jacchus), small-bodied New World primates that share similar sensory processing pathways with human beings, have gained great interests. Their small body size allows imaging of brain activity with high spatial resolution and on a whole-brain scale using ultrahigh-field (UHF) magnetic resonance imaging (MRI) scanners. However, the strong magnetic field and the small size of the hand and forearm pose challenges in delivering tactile stimulation during fMRI experiments. In the present study, we developed an MR-compatible tactile dual-point stimulator to provide high-precision mechanical stimulation for exploring somatosensory processing in small-bodied animals. The study population consisted of a water phantom and three male common marmosets. Cerebral blood volume (CBV) weighted fMRI data were obtained with a gradient echo (GE), echo-planar imaging (EPI) sequence at 7T scanner. The output performance of the device was tested by a pressure sensor. The MR compatibility of the device was verified by measuring the temporal signal-to-noise ratio (tSNR) of a water phantom. To test the effectiveness of tactile stimulation, we conducted block designed tactile stimulation experiments on marmosets. A one-way repeated measures ANOVA was conducted for comparing the tSNR results. We performed one-sample t-tests to investigate the negative response of the forearm and hand stimulation with a threshold of t > 1.96 (p < 0.05). Performance tests revealed that mechanical stimulation (averaged force: 31.69?g) was applied with a delay of 12?ms. Phantom experiments confirmed that there was no significant difference in the tSNR among three (10?Hz, 1?Hz, and no-stimulus) conditions (F (2, 798) = 0.71, p = 0.49). The CBV activity results showed that the stimulator successfully elicited hand and forearm somatosensory activations in primary somatosensory areas. These results indicated that the device is well suited for small-bodied animal somatosensory studies.
en-copyright=
kn-copyright=
en-aut-name=WangChenyu
en-aut-sei=Wang
en-aut-mei=Chenyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImaiHirohiko
en-aut-sei=Imai
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukunagaMasaki
en-aut-sei=Fukunaga
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoHiroki
en-aut-sei=Yamamoto
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekiKazuhiko
en-aut-sei=Seki
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HanakawaTakashi
en-aut-sei=Hanakawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmedaTatsuya
en-aut-sei=Umeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Innovation Research Center for Quantum Medicine, Gifu University School of Medicine
kn-affil=
affil-num=3
en-affil=Section of Brain Function Information, National Institute for Physiological Sciences
kn-affil=
affil-num=4
en-affil=Graduate School of Human and Environmental Studies, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurophysiology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=7
en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=primary somatosensory cortex
kn-keyword=primary somatosensory cortex
en-keyword=small-bodied animals
kn-keyword=small-bodied animals
en-keyword=tactile stimulation device
kn-keyword=tactile stimulation device
en-keyword=ultrahigh-field magnetic resonance imaging
kn-keyword=ultrahigh-field magnetic resonance imaging
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=kwaf146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250711
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immortal time bias from selection: a principal stratification perspective
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immortal time bias due to post-treatment definition of eligibility criteria can affect experimental and observational studies, and yet, in contrast to the extensive literature on the classical form of immortal time bias, it has seldom been the focus of methodological discussions. Here, we propose an account of eligibility-related immortal time bias that uses the principal stratification framework to explain the noncomparability of treatment arms (or exposure groups) conditional on selection. In particular, we show that the statistical estimand that conditions on observed eligibility after time zero of follow-up can be interpreted using partially overlapping principal strata. Furthermore, we show that, under this perspective, as the timing of eligibility approaches time zero of follow-up, the probabilities of the outcome for eligible individuals monotonically approach the corresponding unconditional (in absence of selection) expected potential outcomes under different treatment levels. Our study provides a potential outcomes-based explanation of eligibility-related immortal time bias, and indicates that, in addition to the target trial emulation framework, principal effects might, for some studies, be useful causal estimands.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P
en-aut-sei=Gon?alves
en-aut-mei=Bronner P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=immortal time bias
kn-keyword=immortal time bias
en-keyword=principal stratification
kn-keyword=principal stratification
en-keyword=potential outcomes
kn-keyword=potential outcomes
en-keyword=causal inference
kn-keyword=causal inference
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=e60943
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Usefulness of Interventions Using a Smartphone Cognitive Behavior Therapy Application for Children With Mental Health Disorders: Prospective, Single-Arm, Uncontrolled Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The prevalence of mental health disorders among children in Japan has increased rapidly, and these children often show depressive symptoms and reduced quality of life (QOL). We previously developed a smartphone-based self-monitoring app to deliver cognitive behavioral therapy (CBT), implemented it in healthy children, and reported its effectiveness for health promotion.
Objective: This study aims to examine the usefulness of the CBT app for improvement in depressive symptoms and QOL in children with mental health disorders.
Methods: The participants were 115 children with mental health disorders (eg, school refusal, orthostatic hypotension, eating disorders, developmental disorders, among others) and aged 12‐18 years. The CBT app?based program comprised 1 week of psychoeducation followed by 1 week of self-monitoring. After reading story-like scenarios, participants created a self-monitoring sheet with 5 panels: events, thoughts, feelings, body responses, and actions. All participants received regular mental health care from physicians in addition to the app-based program. To evaluate the participants’ depressive symptoms and QOL, Patient Health Questionnaire for Adolescents (PHQ-9A), Depression Self-Rating Scale for Children (DSRS-C), and Pediatric Quality of Life Inventory (PedsQL) were measured at the beginning of the intervention, and at 2 and 6 months thereafter. Questionnaire for Triage and Assessment with 30 items (QTA30), and Rosenberg Self-Esteem Scale (RSES) were also used to measure their health and self-esteem. Participants were divided into 4 groups on the basis of the PHQ-9A score (above or below the cutoff; PHQ-9A?5 or PHQ-9A<5) and completion or noncompletion of the CBT app?based program (app [+] or app [-]). The primary outcome was improvement in the DSRS-C score, and secondary outcomes were improvement in other psychometric scales including PedsQL, QTA30, and RSE. A paired-samples t test was used for statistical analysis. The Medical Ethics Committee of Fukuoka University Faculty of Medicine (approval U22-05-002) approved the study design.
Results: There were 48, 18, 18, and 7 participants in the PHQ-9A?5 app (+), PHQ-9A?5 app (-), PHQ-9A<5 app (+), and PHQ-9A<5 app (-) groups, respectively. A total of 24 participants dropped out. No improvement in the DSRS-C score was observed in all groups. However, PedsQL scores improved significantly at 2 and 6 months in the PHQ-9A<5 app (+) group (t17=6.62; P<.001 and t17=6.11; P<.001, respectively). There was a significant positive correlation between the PHQ-9A scores and the number of self-monitoring sheets completed.
Conclusions: The CBT app was useful for improving PedsQL scores of children with mental health disorders. However, a higher-intensity CBT program is necessary for more severely depressed children.
Trial Registration: University Hospital Medical Information Network Clinical Trials Registry UMIN000046775; center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053360
en-copyright=
kn-copyright=
en-aut-name=NagamitsuShinichiro
en-aut-sei=Nagamitsu
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakutaRyoichi
en-aut-sei=Sakuta
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiRyuta
en-aut-sei=Ishii
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoyanagiKenshi
en-aut-sei=Koyanagi
en-aut-mei=Kenshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabukawaChizu
en-aut-sei=Habukawa
en-aut-mei=Chizu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaTakashi
en-aut-sei=Katayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoMasaya
en-aut-sei=Ito
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanieAyako
en-aut-sei=Kanie
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtaniRyoko
en-aut-sei=Otani
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitajimaTasuku
en-aut-sei=Kitajima
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsubaraNaoki
en-aut-sei=Matsubara
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaChie
en-aut-sei=Tanaka
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShigeyasuYoshie
en-aut-sei=Shigeyasu
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsuokaMichiko
en-aut-sei=Matsuoka
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KakumaTatsuyuki
en-aut-sei=Kakuma
en-aut-mei=Tatsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HorikoshiMasaru
en-aut-sei=Horikoshi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Faculty of Medicine, Fukuoka University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pediatrics & Child Health, Kurume University, School of Medicine
kn-affil=
affil-num=5
en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children
kn-affil=
affil-num=6
en-affil=Department of Pediatric Allergy, Minami Wakayama Medical Center
kn-affil=
affil-num=7
en-affil=L2B Inc
kn-affil=
affil-num=8
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=10
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=11
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=12
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=13
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neuropsychiatry, Kurume University School of Medicine
kn-affil=
affil-num=18
en-affil=Biostatistics Center, Kurume University
kn-affil=
affil-num=19
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=smartphone
kn-keyword=smartphone
en-keyword=cognitive behavioral therapy
kn-keyword=cognitive behavioral therapy
en-keyword=application
kn-keyword=application
en-keyword=adolescent
kn-keyword=adolescent
en-keyword=youth
kn-keyword=youth
en-keyword=teen
kn-keyword=teen
en-keyword=pediatric
kn-keyword=pediatric
en-keyword=mental health
kn-keyword=mental health
en-keyword=psychoeducation
kn-keyword=psychoeducation
en-keyword=self-monitoring
kn-keyword=self-monitoring
en-keyword=questionnaire
kn-keyword=questionnaire
en-keyword=depressive symptoms
kn-keyword=depressive symptoms
en-keyword=effectiveness
kn-keyword=effectiveness
en-keyword=Japan
kn-keyword=Japan
en-keyword=statistical analysis
kn-keyword=statistical analysis
en-keyword=single-arm uncontrolled study
kn-keyword=single-arm uncontrolled study
en-keyword=mobile phone
kn-keyword=mobile phone
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=6155
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia?resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric?differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SpirrettFiona
en-aut-sei=Spirrett
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiriharaSoshu
en-aut-sei=Kirihara
en-aut-mei=Soshu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=3
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuven
kn-affil=
affil-num=7
en-affil=Joining and Welding Research Institute, Osaka University
kn-affil=
en-keyword=additive manufacturing
kn-keyword=additive manufacturing
en-keyword=subtractive manufacturing
kn-keyword=subtractive manufacturing
en-keyword=dental prosthesis
kn-keyword=dental prosthesis
en-keyword=ceramic prosthesis
kn-keyword=ceramic prosthesis
en-keyword=zirconia laminates
kn-keyword=zirconia laminates
en-keyword=stereolithography
kn-keyword=stereolithography
en-keyword=thermogravimetry?differential thermal analysis
kn-keyword=thermogravimetry?differential thermal analysis
en-keyword=X-ray diffraction
kn-keyword=X-ray diffraction
en-keyword=scanning electron microscopy
kn-keyword=scanning electron microscopy
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ?12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 as a prognostic marker for patients with colorectal cancer and synchronous liver metastasis and a predictor of chemotherapy efficacy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes plays a role in cancer progression. However, its clinical significance in metastatic colorectal cancer (CRC) remains unclear. This study aimed to evaluate whether ADAR1 expression predicts prognosis and treatment response in colorectal cancer (CRC) with synchronous liver metastasis. This study included 40 patients with stage IV CRC and synchronous liver metastases. ADAR1 expression in tumor tissues was evaluated using immunohistochemistry. Expression levels were quantified using the immunoreactive score, and associations with clinicopathological features, overall survival (OS), and chemotherapy response were examined. High ADAR1 expression was significantly associated with multiple liver metastases (P?=?0.0206), lymph node metastasis (P = 0.0241), and reduced response to chemotherapy (P?=?0.0224). Significantly shorter OS was observed in patients with high ADAR1 expression in the nucleus (P?=?0.0458). ADAR1 expression was an independent prognostic factor comparable to the presence of extrahepatic metastases. Low ADAR1 expression was correlated with a higher likelihood of achieving a response to chemotherapy. ADAR1 expression can reflect tumor aggressiveness and chemotherapy resistance in patients with CRC and synchronous liver metastasis. ADAR1 has considerable potential as a dual-purpose biomarker for stratifying patients based on prognosis and optimizing treatment intensity.
en-copyright=
kn-copyright=
en-aut-name=NittaKaori
en-aut-sei=Nitta
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MiyakeEiki
en-aut-sei=Miyake
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA editing
kn-keyword=RNA editing
en-keyword=Liver metastasis
kn-keyword=Liver metastasis
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=199
cd-vols=
no-issue=
article-no=
start-page=108027
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan?Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy?61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group?42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group?37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era.
en-copyright=
kn-copyright=
en-aut-name=HorinouchiHidehito
en-aut-sei=Horinouchi
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHaruyasu
en-aut-sei=Murakami
en-aut-mei=Haruyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaHideyuki
en-aut-sei=Harada
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobueTomotaka
en-aut-sei=Sobue
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTomohiro
en-aut-sei=Kato
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AtagiShinji
en-aut-sei=Atagi
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokitoTakaaki
en-aut-sei=Tokito
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OizumiSatoshi
en-aut-sei=Oizumi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeMasahiro
en-aut-sei=Seike
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MioTadashi
en-aut-sei=Mio
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SoneTakashi
en-aut-sei=Sone
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwaoChikako
en-aut-sei=Iwao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwaneTakeshi
en-aut-sei=Iwane
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KotoRyo
en-aut-sei=Koto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsuboiMasahiro
en-aut-sei=Tsuboi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Radiation Therapy, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente
kn-affil=
affil-num=6
en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center
kn-affil=
affil-num=7
en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Kanazawa University Hospital
kn-affil=
affil-num=14
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=15
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=16
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East
kn-affil=
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Adjuvant therapy
kn-keyword=Adjuvant therapy
en-keyword=Neoadjuvant therapy
kn-keyword=Neoadjuvant therapy
en-keyword=Chemoradiotherapy
kn-keyword=Chemoradiotherapy
en-keyword=Observational study
kn-keyword=Observational study
en-keyword=Retrospective study
kn-keyword=Retrospective study
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24117
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250706
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Survival days of patients with metastatic spinal tumors of lung cancer requiring surgery: a prospective multicenter study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Surgery for metastatic spinal tumors has improved postoperative activities of daily living. A few studies reported on prognostic factors assessed in large multicenter prospective studies for metastatic spinal tumors of lung cancer origin. This study aimed to determine preoperative prognostic factors in patients undergoing surgery for metastatic spinal tumors associated with lung cancer. This prospective registry study included 74 patients diagnosed and operated with metastatic spine tumors derived from lung cancer in 39 high-volume cancer centers. We examined the postoperative survival period and the preoperative factors related to postoperative survival time. We conducted univariate and multivariate Cox regression analyses to determine preoperative prognostic factors. The mean postoperative survival period was 343 days. Multivariate Cox regression analysis revealed a higher feeding score of vitality index, indications for molecularly targeted therapy, and a higher mobility score of Barthel index as independent factors associated with postoperative survival time in metastatic spinal tumors derived from lung cancer. Patients with indications for molecular-targeted therapy and good vitality exhibited longer survival. These results may help in surgical selection for patients with metastatic spinal tumors derived from lung cancer.
en-copyright=
kn-copyright=
en-aut-name=TakahashiTakuya
en-aut-sei=Takahashi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakegamiNorihiko
en-aut-sei=Takegami
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiiToshitaka
en-aut-sei=Yoshii
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=8
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=12
en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic surgery, Kansai Medical University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=17
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=18
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=25
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=28
en-affil=Department of Orthopedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=32
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
en-keyword=Metastatic spinal tumor
kn-keyword=Metastatic spinal tumor
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Postoperative survival period
kn-keyword=Postoperative survival period
en-keyword=Barthel index
kn-keyword=Barthel index
en-keyword=Vitality index
kn-keyword=Vitality index
en-keyword=Molecularly targeted therapy
kn-keyword=Molecularly targeted therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=4
article-no=
start-page=2286
end-page=2299
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Palliative Surgical Treatment for Spinal Metastases on the Patient’s Quality of Life With a Focus on the Segment of the Metastasis: A Prospective Multicenter Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Study Design: Prospective multicenter study.
Objectives: Palliative surgery is crucial for maintaining the quality of life (QOL) in patients with spinal metastases. This study aimed to compare the short-term outcomes of QOL after palliative surgery between patients with metastatic spinal tumors at different segments.
Methods: We prospectively compared the data of 203 patients with spinal metastases at 2-3 consecutive segments who were divided into the following three groups: cervical, patients with cervical spine lesions; thoracic, patients with upper?middle thoracic spine lesions; and TL/L/S, patients with lesions at the thoracolumbar junction and lumbar and sacral regions. Preoperative and postoperative EuroQol 5-dimension (EQ5D) 5-level were compared.
Results: All groups exhibited improvement in the Frankel grade, performance status, pain, Barthel index, EQ5D health state utility value (HSUV), and EQ5D visual analog scale (VAS) postoperatively. Although preoperative EQ5D HSUVs did not significantly differ between the groups (cervical, 0.461 ± 0.291; thoracic, 0.321 ± 0.292; and TL/L/S, 0.376 ± 0.272), the thoracic group exhibited significantly lower postoperative EQ5D HSUVs than the other two groups (cervical, 0.653 ± 0.233; thoracic, 0.513 ± 0.252; and TL/L/S, 0.624 ± 0.232). However, postoperative EQ5D VAS was not significantly different between the groups (cervical, 63.4 ± 25.8; thoracic, 54.7 ± 24.5; and TL/L/S, 61.7 ± 21.9).
Conclusions: Palliative surgery for metastatic spinal tumors provided comparable QOL improvement, irrespective of the spinal segment involved. Patients with upper and middle thoracic spinal metastases had poorer QOL outcomes than those with metastases in other segments; however, sufficient QOL improvement was achieved.
en-copyright=
kn-copyright=
en-aut-name=SegiNaoki
en-aut-sei=Segi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoSadayuki
en-aut-sei=Ito
en-aut-mei=Sadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OuchidaJun
en-aut-sei=Ouchida
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuTakaki
en-aut-sei=Shimizu
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraiHidetomi
en-aut-sei=Terai
en-aut-mei=Hidetomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KandaYutaro
en-aut-sei=Kanda
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawamuraIchiro
en-aut-sei=Kawamura
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=PakuMasaaki
en-aut-sei=Paku
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakahashiYohei
en-aut-sei=Takahashi
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkedaKoji
en-aut-sei=Akeda
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FunaoHaruki
en-aut-sei=Funao
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=OtsukiBungo
en-aut-sei=Otsuki
en-aut-mei=Bungo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=ManabeHiroaki
en-aut-sei=Manabe
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IwaiChizuo
en-aut-sei=Iwai
en-aut-mei=Chizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HiyamaAkihiko
en-aut-sei=Hiyama
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=SekiShoji
en-aut-sei=Seki
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=GotoYuta
en-aut-sei=Goto
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=MiyazakiMasashi
en-aut-sei=Miyazaki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=16
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=18
en-affil=Department of Orthopaedics and Rehabilitation Medicine, University of Fukui Faculty of Medical Sciences
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Orthopedic Surgery, Tokyo Medical and Dental University
kn-affil=
affil-num=21
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Orthopaedic Surgery, Kyoto University Hospital
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=27
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=28
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=32
en-affil=Department of Orthopedics, Tokushima University
kn-affil=
affil-num=33
en-affil=Department of Orthopaedic Surgery, Gifu University Hospital
kn-affil=
affil-num=34
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=35
en-affil=Department of Orthopaedic Surgery, Tokai University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Orthopaedic Surgery, University of Toyama
kn-affil=
affil-num=37
en-affil=Department of Orthopaedic Surgery, Nagoya City University
kn-affil=
affil-num=38
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=39
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=40
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=41
en-affil=Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=42
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=43
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=44
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=45
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=46
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=47
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
en-keyword=spinal metastasis
kn-keyword=spinal metastasis
en-keyword=metastasis segment
kn-keyword=metastasis segment
en-keyword=palliative surgery
kn-keyword=palliative surgery
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=activities of daily living
kn-keyword=activities of daily living
en-keyword=pain
kn-keyword=pain
en-keyword=anxiety
kn-keyword=anxiety
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=23
article-no=
start-page=2715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predicting Surgical Site Infections in Spine Surgery: Association of Postoperative Lymphocyte Reduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Postoperative lymphopenia is reported as an excellent indicator to predict surgical-site infection (SSI) after spine surgery. However, there is still controversy concerning which serological markers can predict spinal SSI. This study aims to evaluate excellent and early indicators for detecting SSI, focusing on spine instrumented surgery. Materials and Methods: This study included 268 patients who underwent spinal instrumented surgery from January 2022 to December 2023 (159 female and 109 male, average 62.9 years). The SSI group included 20 patients, and the non-SSI group comprised 248 patients. Surgical time, intraoperative blood loss, and glycemic levels were measured in both groups. The complete blood cell counts, differential counts, albumin, and C-reactive protein (CRP) levels were measured pre-surgery and postoperative on Days 1, 3, and 7. In comparing the groups, the Mann?Whitney U test analysis was used for continuous variables, while the chi-squared test and Fisher’s exact test were used for dichotomous variables. Results: The incidence of SSI after spinal instrumentation was 7.46% and was relatively higher in scoliosis surgery. The SSI group had significantly longer surgical times (248 min vs. 180 min, p = 0.0004) and a higher intraoperative blood loss (772 mL vs. 372 mL, p < 0.0001) than the non-SSI group. In the SSI group, the Day 3 (10.5 ± 6.2% vs. 13.8 ± 6.0%, p = 0.012) and Day 7 (14.4 ± 4.8% vs. 18.8 ± 7.1%, p = 0.012) lymphocyte ratios were lower than the non-SSI group. Albumin levels on Day 1 in the SSI group were lower than in the non-SSI group (2.94 ± 0.30 mg/dL vs. 3.09 ± 0.38 mg/dL, p = 0.045). There is no difference in CRP and lymphocyte count between the two groups. Conclusions: SSI patients had lower lymphocyte percentages than non-SSI patients, which was a risk factor for SSI, with constant high inflammation. The Day 3 lymphocyte percentage may predict SSI after spinal instrumented surgery.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuDongwoo
en-aut-sei=Yu
en-aut-mei=Dongwoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JainMukul
en-aut-sei=Jain
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HengChristan
en-aut-sei=Heng
en-aut-mei=Christan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=instrumentation
kn-keyword=instrumentation
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=lymphocyte
kn-keyword=lymphocyte
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=4
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240322
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Retrospective Cohort Study of Early versus Delayed Ballon Kyphoplasty Intervention for Osteoporotic Vertebral Fracture Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To investigate the outcomes of early balloon kyphoplasty (BKP) intervention compared with late intervention for osteoporotic vertebral fracture (OVF). Background: Osteoporotic vertebral fracture can lead to kyphotic deformity, severe back pain, depression, and disturbances in activities of daily living (ADL). Balloon kyphoplasty has been widely utilized to treat symptomatic OVFs and has proven to be a very effective surgical option for this condition. Furthermore, BKP is relatively a safe and effective method due to its reduced acrylic cement leakage and greater kyphosis correction. Materials and Methods: A retrospective cohort study was conducted at our hospital for patients who underwent BKP for osteoporotic vertebral fractures in the time frame between January 2020 and December 2022. Ninety-nine patients were included in this study, and they were classified into two groups: in total, 36 patients underwent early BKP intervention (EI) at <4 weeks, and 63 patients underwent late BKP intervention (LI) at ?4 weeks. We performed a clinical, radiological and statistical comparative evaluation for the both groups with a mean follow-up of one year. Results: Adjacent segmental fractures were more frequently observed in the LI group compared to the EI group (33.3% vs. 13.9%, p = 0.034). There was a significant improvement in postoperative vertebral angles in both groups (p = 0.036). The cement volume injected was 7.42 mL in the EI, compared with 6.3 mL in the LI (p = 0.007). The mean surgery time was shorter in the EI, at 30.2 min, compared with 37.1 min for the LI, presenting a significant difference (p = 0.0004). There was no statistical difference in the pain visual analog scale (VAS) between the two groups (p = 0.711), and there was no statistical difference in cement leakage (p = 0.192). Conclusions/Level of Evidence: Early BKP for OVF treatment may achieve better outcomes and fewer adjacent segmental fractures than delayed intervention.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PariharUmesh
en-aut-sei=Parihar
en-aut-mei=Umesh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=El Kader Al AskarAbd
en-aut-sei=El Kader Al Askar
en-aut-mei=Abd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GunjotikarSharvari
en-aut-sei=Gunjotikar
en-aut-mei=Sharvari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaokaTakuya
en-aut-sei=Taoka
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraYoshihiro
en-aut-sei=Fujiwara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
en-keyword=ballon kyphoplasty
kn-keyword=ballon kyphoplasty
en-keyword=osteoporotic vertebral fractures
kn-keyword=osteoporotic vertebral fractures
en-keyword=kyphosis
kn-keyword=kyphosis
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=3381
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic Bridging Stent Placement Improves Bile Leaks After Hepatic Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Endoscopic treatment is one of the first-line treatments for bile leaks after hepatic surgery. However, detailed reports of endoscopic treatment for bile leaks after hepatic resection (HR) or liver transplantation (LT) are scarce. The outcomes of endoscopic treatment for bile leaks after hepatic surgery were examined, and factors related to successful treatment were identified. Methods: A total of 122 patients underwent endoscopic treatment for bile leaks after hepatic surgery. The diagnosis of a bile leak is based on the ISGLS criteria. The decision to perform endoscopic retrograde cholangiography (ERC) is made based on the amount of drainage output, laboratory data, clinical symptoms, and CT scan findings. In our study, the site of the bile leak was assessed using ERC. Endoscopic stents were placed to bridge across the bile leak site as much as possible. Otherwise, stents were placed near the leak site. Endoscopic stents were replaced every 2?3 months until an improvement in the bile leak was observed with or without biliary strictures. The outcomes of endoscopic treatment and the factors related to clinical success were evaluated. Results: Seventy-four patients with HR and forty-eight patients with LT were treated endoscopically. Technical and clinical success was achieved in 89% (109/122) and 82% (100/122) of patients, respectively. Three (2%) patients died from uncontrollable bile leaks. Bridging stent placement (p < 0.001), coexistent percutaneous drainage (p = 0.0025), and leak severity (p = 0.015) were identified as independent factors related to the clinical success of endoscopic treatment. During a median observation period of 1162 days after the achievement of clinical success, bile leak recurrence was observed in only three cases (3%). Conclusions: Endoscopic treatment is safe and effective for bile leaks after hepatic surgery. Bridging stent placement across the leak site is the most crucial factor for clinical success.
en-copyright=
kn-copyright=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TerasawaHiroyuki
en-aut-sei=Terasawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=bile leak
kn-keyword=bile leak
en-keyword=endoscopic treatment
kn-keyword=endoscopic treatment
en-keyword=bridging
kn-keyword=bridging
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Employment of artificial intelligence for an unbiased evaluation regarding the recovery of right ventricular function after mitral valve transcatheter edge-to-edge repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims Long-standing severe mitral regurgitation (MR) leads to left atrial (LA) enlargement, elevated pulmonary artery pressures, and ultimately right heart failure. While mitral valve transcatheter edge-to-edge repair (M-TEER) alleviates left-sided volume overload, its impact on right ventricular (RV) recovery is unclear. This study aims to use both conventional echocardiography and artificial intelligence to assess the recovery of RV function in patients undergoing M-TEER for severe MR.
Methods and results The change in RV function from baseline to 3-month follow-up was analysed in a dual-centre registry of patients undergoing M-TEER for severe MR. RV function was conventionally assessed by measuring the tricuspid annular plane systolic excursion (TAPSE). Additionally, RV function was evaluated using a deep learning model that predicts RV ejection fraction (RVEF) based on two-dimensional apical four-chamber view echocardiographic videos. Among the 851 patients who underwent M-TEER, the 1-year survival rate was 86.8%. M-TEER resulted in a significant reduction in both LA volume and estimated systolic pulmonary artery pressure (sPAP) levels (median LA volume: from 123?ml [interquartile range, IQR 92?169?ml] to 104?ml [IQR 78?142?ml], p?0.001; median sPAP: from 46?mmHg [IQR 35?58?mmHg] to 41?mmHg [IQR 32?54?mmHg], p?=?0.036). In contrast, TAPSE remained unchanged (median: from 17?mm [IQR 14?21?mm] to 18?mm [IQR 15?21?mm], p?=?0.603). The deep learning model confirmed this finding, showing no significant change in predicted RVEF after M-TEER (median: from 43.1% [IQR 39.1?47.4%] to 43.2% [IQR 39.2?47.2%], p?=?0.475).
Conclusions While M-TEER improves left-sided haemodynamics, it does not lead to significant RV function recovery, as confirmed by both conventional echocardiography and artificial intelligence. This finding underscores the importance of treating patients before irreversible right heart damage occurs.
en-copyright=
kn-copyright=
en-aut-name=FortmeierVera
en-aut-sei=Fortmeier
en-aut-mei=Vera
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HesseAmelie
en-aut-sei=Hesse
en-aut-mei=Amelie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TrenkwalderTeresa
en-aut-sei=Trenkwalder
en-aut-mei=Teresa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokodiM?rton
en-aut-sei=Tokodi
en-aut-mei=M?rton
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Kov?csAttila
en-aut-sei=Kov?cs
en-aut-mei=Attila
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RippenElena
en-aut-sei=Rippen
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TervoorenJule
en-aut-sei=Tervooren
en-aut-mei=Jule
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FettMichelle
en-aut-sei=Fett
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HarmsenGerhard
en-aut-sei=Harmsen
en-aut-mei=Gerhard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=K?hleinMoritz
en-aut-sei=K?hlein
en-aut-mei=Moritz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=CovarrubiasH?ctor Alfonso Alvarez
en-aut-sei=Covarrubias
en-aut-mei=H?ctor Alfonso Alvarez
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=von ScheidtMoritz
en-aut-sei=von Scheidt
en-aut-mei=Moritz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=RoskiFerdinand
en-aut-sei=Roski
en-aut-mei=Ferdinand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=Ger?ekMuhammed
en-aut-sei=Ger?ek
en-aut-mei=Muhammed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SchusterTibor
en-aut-sei=Schuster
en-aut-mei=Tibor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MayrN. Patrick
en-aut-sei=Mayr
en-aut-mei=N. Patrick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=XhepaErion
en-aut-sei=Xhepa
en-aut-mei=Erion
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=LaugwitzKarl‐Ludwig
en-aut-sei=Laugwitz
en-aut-mei=Karl‐Ludwig
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=JonerMichael
en-aut-sei=Joner
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RudolphVolker
en-aut-sei=Rudolph
en-aut-mei=Volker
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=LachmannMark
en-aut-sei=Lachmann
en-aut-mei=Mark
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=3
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=4
en-affil=Heart and Vascular Center, Semmelweis University
kn-affil=
affil-num=5
en-affil=Heart and Vascular Center, Semmelweis University
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=8
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=9
en-affil=Department of Physics, University of Johannesburg
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=13
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Diseases, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=15
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=16
en-affil=Department of Family Medicine, McGill University
kn-affil=
affil-num=17
en-affil=Institute of Anesthesiology, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich
kn-affil=
affil-num=18
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=19
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
affil-num=20
en-affil=DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance
kn-affil=
affil-num=21
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center Northrhine-Westfalia, Ruhr University Bochum
kn-affil=
affil-num=22
en-affil=Department of Internal Medicine I, Klinikum rechts der Isar, TUM University Hospital, School of Medicine and Health, Technical University of Munich
kn-affil=
en-keyword=Echocardiography
kn-keyword=Echocardiography
en-keyword=Mitral regurgitation
kn-keyword=Mitral regurgitation
en-keyword=Right ventricular dysfunction
kn-keyword=Right ventricular dysfunction
en-keyword=Deep learning
kn-keyword=Deep learning
en-keyword=Transcatheter edge-to-edge repair
kn-keyword=Transcatheter edge-to-edge repair
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=2
article-no=
start-page=euaf024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SCN5A variant type-dependent risk prediction in Brugada syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims The variant in SCN5A with the loss of function (LOF) effect in the cardiac Na+ channel (Nav1.5) is the definitive cause for Brugada syndrome (BrS), and the functional analysis data revealed that LOF variants are associated with poor prognosis. However, which variant types (e.g. missense or non-missense) affect the prognoses of those variant carriers remain unelucidated.
Methods and results We defined SCN5A LOF variants as all non-missense and missense variants that produce peak INa < 65% of wild-type previously confirmed by patch-clamp studies. The study population consisted of 76 Japanese BrS patients (74% patients were male and the median age [IQR] at diagnosis was 28 [14?45] years) with LOF type of SCN5A variants: 40 with missense and 36 with non-missense variants. Non-missense variant carriers presented significantly more severe cardiac conduction disorder compared to the missense variant carriers. During follow-up periods of 9.0 [5.0?14.0] years, compared to missense variants, non-missense variants were significant risk factors of lifetime lethal arrhythmia events (LAEs) (P = 0.023). When focusing only on the missense variants that produce no peak INa, these missense variant carriers exhibited the same clinical outcomes as those with non-missense (log-rank P = 0.325). After diagnosis, however, both variant types were comparable in risk of LAEs (P = 0.155).
Conclusion We identified, for the first time, that SCN5A non-missense variants were associated with higher probability of LAE than missense variants in BrS patients though it did not change significantly after diagnosis.
en-copyright=
kn-copyright=
en-aut-name=AizawaTakanori
en-aut-sei=Aizawa
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiyamaTakeru
en-aut-sei=Makiyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImamuraTomohiko
en-aut-sei=Imamura
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuyamaMegumi
en-aut-sei=Fukuyama
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SonodaKeiko
en-aut-sei=Sonoda
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatoKoichi
en-aut-sei=Kato
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HoshinoKenji
en-aut-sei=Hoshino
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzawaJunichi
en-aut-sei=Ozawa
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SuzukiHiroshi
en-aut-sei=Suzuki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YasudaKazushi
en-aut-sei=Yasuda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AokiHisaaki
en-aut-sei=Aoki
en-aut-mei=Hisaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KuritaTakashi
en-aut-sei=Kurita
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YoshidaYoko
en-aut-sei=Yoshida
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuzukiTsugutoshi
en-aut-sei=Suzuki
en-aut-mei=Tsugutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OgawaYoshiharu
en-aut-sei=Ogawa
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YamagamiShintaro
en-aut-sei=Yamagami
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FukudaMasakazu
en-aut-sei=Fukuda
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OnoMakoto
en-aut-sei=Ono
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHidekazu
en-aut-sei=Kondo
en-aut-mei=Hidekazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakahashiNaohiko
en-aut-sei=Takahashi
en-aut-mei=Naohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=OhnoSeiko
en-aut-sei=Ohno
en-aut-mei=Seiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakagawaYoshihisa
en-aut-sei=Nakagawa
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=OnoKoh
en-aut-sei=Ono
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HorieMinoru
en-aut-sei=Horie
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine , 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 ,
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Public Health, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Tsuchiura Kyodo General Hospital
kn-affil=
affil-num=10
en-affil=Department of Cardiology, Saitama Children’s Medical Center
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=12
en-affil=Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatric Cardiology, Aichi Children’s Health and Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatric Cardiology, Osaka Women’s and Children’s Hospital
kn-affil=
affil-num=15
en-affil=Division of Cardiovascular Center, Kindai University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=17
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=18
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=19
en-affil=Division of Cardiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=20
en-affil=Department of Cardiology, Tenri Hospital
kn-affil=
affil-num=21
en-affil=Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=22
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=24
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=26
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=27
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=28
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=29
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
en-keyword=Brugada syndrome
kn-keyword=Brugada syndrome
en-keyword=SCN5A
kn-keyword=SCN5A
en-keyword=Lethal arrhythmia event
kn-keyword=Lethal arrhythmia event
en-keyword=Variant type
kn-keyword=Variant type
en-keyword=Loss of function
kn-keyword=Loss of function
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=2
article-no=
start-page=101575
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Simplified Outcome Prediction in Patients Undergoing Transcatheter Tricuspid Valve Intervention by Survival Tree-Based Modelling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Patients with severe tricuspid regurgitation (TR) typically present with heterogeneity in the extent of cardiac dysfunction and extra-cardiac comorbidities, which play a decisive role for survival after transcatheter tricuspid valve intervention (TTVI).
Objectives This aim of this study was to create a survival tree-based model to determine the cardiac and extra-cardiac features associated with 2-year survival after TTVI.
Methods The study included 918 patients (derivation set, n = 631; validation set, n = 287) undergoing TTVI for severe TR. Supervised machine learning-derived survival tree-based modelling was applied to preprocedural clinical, laboratory, echocardiographic, and hemodynamic data.
Results Following univariate regression analysis to pre-select candidate variables for 2-year mortality prediction, a survival tree-based model was constructed using 4 key parameters. Three distinct cluster-related risk categories were identified, which differed significantly in survival after TTVI. Patients from the low-risk category (n = 261) were defined by mean pulmonary artery pressure ?28 mm Hg and N-terminal pro?B-type natriuretic peptide ?2,728 pg/mL, and they exhibited a 2-year survival rate of 85.5%. Patients from the high-risk category (n = 190) were defined by mean pulmonary artery pressure >28 mm Hg, right atrial area >32.5 cm2, and estimated glomerular filtration rate ?51 mL/min, and they showed a significantly worse 2-year survival of only 52.6% (HR for 2-year mortality: 4.3, P < 0.001). Net re-classification improvement analysis demonstrated that this model was comparable to the TRI-Score and outperformed the EuroScore II in identifying high-risk patients. The prognostic value of risk phenotypes was confirmed by external validation.
Conclusions This simple survival tree-based model effectively stratifies patients with severe TR into distinct risk categories, demonstrating significant differences in 2-year survival after TTVI.
en-copyright=
kn-copyright=
en-aut-name=FortmeierVera
en-aut-sei=Fortmeier
en-aut-mei=Vera
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LachmannMark
en-aut-sei=Lachmann
en-aut-mei=Mark
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=StolzLukas
en-aut-sei=Stolz
en-aut-mei=Lukas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=von SteinJennifer
en-aut-sei=von Stein
en-aut-mei=Jennifer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RommelKarl-Philipp
en-aut-sei=Rommel
en-aut-mei=Karl-Philipp
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KassarMohammad
en-aut-sei=Kassar
en-aut-mei=Mohammad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Ger?ekMuhammed
en-aut-sei=Ger?ek
en-aut-mei=Muhammed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Sch?berAnne R.
en-aut-sei=Sch?ber
en-aut-mei=Anne R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=StockerThomas J.
en-aut-sei=Stocker
en-aut-mei=Thomas J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmranHazem
en-aut-sei=Omran
en-aut-mei=Hazem
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FettMichelle
en-aut-sei=Fett
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TervoorenJule
en-aut-sei=Tervooren
en-aut-mei=Jule
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=K?rberMaria I.
en-aut-sei=K?rber
en-aut-mei=Maria I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HesseAmelie
en-aut-sei=Hesse
en-aut-mei=Amelie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HarmsenGerhard
en-aut-sei=Harmsen
en-aut-mei=Gerhard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FriedrichsKai Peter
en-aut-sei=Friedrichs
en-aut-mei=Kai Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=RudolphTanja K.
en-aut-sei=Rudolph
en-aut-mei=Tanja K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=JonerMichael
en-aut-sei=Joner
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PfisterRoman
en-aut-sei=Pfister
en-aut-mei=Roman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=BaldusStephan
en-aut-sei=Baldus
en-aut-mei=Stephan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=LaugwitzKarl-Ludwig
en-aut-sei=Laugwitz
en-aut-mei=Karl-Ludwig
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=WindeckerStephan
en-aut-sei=Windecker
en-aut-mei=Stephan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=PrazFabien
en-aut-sei=Praz
en-aut-mei=Fabien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=LurzPhilipp
en-aut-sei=Lurz
en-aut-mei=Philipp
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=HausleiterJ?rg
en-aut-sei=Hausleiter
en-aut-mei=J?rg
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=RudolphVolker
en-aut-sei=Rudolph
en-aut-mei=Volker
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=2
en-affil=First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich
kn-affil=
affil-num=3
en-affil=DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Heart Center, University of Cologne
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Heart Center Leipzig, University of Leipzig
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Inselspital Bern, Bern University Hospital
kn-affil=
affil-num=7
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=8
en-affil=Department of Cardiology, Heart Center Leipzig, University of Leipzig
kn-affil=
affil-num=9
en-affil=DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance
kn-affil=
affil-num=10
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=11
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=12
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Heart Center, University of Cologne
kn-affil=
affil-num=14
en-affil=First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich
kn-affil=
affil-num=15
en-affil=Department of Physics, University of Johannesburg
kn-affil=
affil-num=16
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=18
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
affil-num=19
en-affil=DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance
kn-affil=
affil-num=20
en-affil=Department of Cardiology, Heart Center, University of Cologne
kn-affil=
affil-num=21
en-affil=Department of Cardiology, Heart Center, University of Cologne
kn-affil=
affil-num=22
en-affil=First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich
kn-affil=
affil-num=23
en-affil=Department of Cardiology, Inselspital Bern, Bern University Hospital
kn-affil=
affil-num=24
en-affil=Department of Cardiology, Inselspital Bern, Bern University Hospital
kn-affil=
affil-num=25
en-affil=Department of Cardiology, Heart Center Leipzig, University of Leipzig
kn-affil=
affil-num=26
en-affil=DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance
kn-affil=
affil-num=27
en-affil=Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum
kn-affil=
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=transcatheter tricuspid valve intervention
kn-keyword=transcatheter tricuspid valve intervention
en-keyword=tricuspid regurgitation
kn-keyword=tricuspid regurgitation
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses.
en-copyright=
kn-copyright=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BallingerMatthew J.
en-aut-sei=Ballinger
en-aut-mei=Matthew J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BaoYiming
en-aut-sei=Bao
en-aut-mei=Yiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BlasdellKim R.
en-aut-sei=Blasdell
en-aut-mei=Kim R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BrieseThomas
en-aut-sei=Briese
en-aut-mei=Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrignoneJulia
en-aut-sei=Brignone
en-aut-mei=Julia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CarreraJean Paul
en-aut-sei=Carrera
en-aut-mei=Jean Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=De ConinckLander
en-aut-sei=De Coninck
en-aut-mei=Lander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=de SouzaWilliam Marciel
en-aut-sei=de Souza
en-aut-mei=William Marciel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=D?rrwaldRalf
en-aut-sei=D?rrwald
en-aut-mei=Ralf
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ErdinMert
en-aut-sei=Erdin
en-aut-mei=Mert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FooksAnthony R.
en-aut-sei=Fooks
en-aut-mei=Anthony R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ForbesKristian M.
en-aut-sei=Forbes
en-aut-mei=Kristian M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Freitas-Ast?aJuliana
en-aut-sei=Freitas-Ast?a
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=GarciaJorge B.
en-aut-sei=Garcia
en-aut-mei=Jorge B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GeogheganJemma L.
en-aut-sei=Geoghegan
en-aut-mei=Jemma L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GrimwoodRebecca M.
en-aut-sei=Grimwood
en-aut-mei=Rebecca M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HorieMasayuki
en-aut-sei=Horie
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HyndmanTimothy H.
en-aut-sei=Hyndman
en-aut-mei=Timothy H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohneReimar
en-aut-sei=Johne
en-aut-mei=Reimar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KlenaJohn D.
en-aut-sei=Klena
en-aut-mei=John D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KooninEugene V.
en-aut-sei=Koonin
en-aut-mei=Eugene V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KostygovAlexei Y.
en-aut-sei=Kostygov
en-aut-mei=Alexei Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=LetkoMichael
en-aut-sei=Letko
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LiJun-Min
en-aut-sei=Li
en-aut-mei=Jun-Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=LiuYiyun
en-aut-sei=Liu
en-aut-mei=Yiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=MartinMaria Laura
en-aut-sei=Martin
en-aut-mei=Maria Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MullNathaniel
en-aut-sei=Mull
en-aut-mei=Nathaniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NazarYael
en-aut-sei=Nazar
en-aut-mei=Yael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=NowotnyNorbert
en-aut-sei=Nowotny
en-aut-mei=Norbert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NunesM?rcio Roberto Teixeira
en-aut-sei=Nunes
en-aut-mei=M?rcio Roberto Teixeira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=?klandArnfinn Lodden
en-aut-sei=?kland
en-aut-mei=Arnfinn Lodden
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=RubbenstrothDennis
en-aut-sei=Rubbenstroth
en-aut-mei=Dennis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=RussellBrandy J.
en-aut-sei=Russell
en-aut-mei=Brandy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=SchottEric
en-aut-sei=Schott
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SeifertStephanie
en-aut-sei=Seifert
en-aut-mei=Stephanie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SenCarina
en-aut-sei=Sen
en-aut-mei=Carina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ShedroffElizabeth
en-aut-sei=Shedroff
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=SironenTarja
en-aut-sei=Sironen
en-aut-mei=Tarja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=SmuraTeemu
en-aut-sei=Smura
en-aut-mei=Teemu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=TavaresCamila Prestes Dos Santos
en-aut-sei=Tavares
en-aut-mei=Camila Prestes Dos Santos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=TeshRobert B.
en-aut-sei=Tesh
en-aut-mei=Robert B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=TilstonNatasha L.
en-aut-sei=Tilston
en-aut-mei=Natasha L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=TordoNo?l
en-aut-sei=Tordo
en-aut-mei=No?l
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=VasilakisNikos
en-aut-sei=Vasilakis
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WangFei
en-aut-sei=Wang
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=WhitmerShannon L.M.
en-aut-sei=Whitmer
en-aut-mei=Shannon L.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=WolfYuri I.
en-aut-sei=Wolf
en-aut-mei=Yuri I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=XiaHan
en-aut-sei=Xia
en-aut-mei=Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=YeGong-Yin
en-aut-sei=Ye
en-aut-mei=Gong-Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=YeZhuangxin
en-aut-sei=Ye
en-aut-mei=Zhuangxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=YurchenkoVyacheslav
en-aut-sei=Yurchenko
en-aut-mei=Vyacheslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=ZhaoMingli
en-aut-sei=Zhao
en-aut-mei=Mingli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
affil-num=1
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=2
en-affil=Biological Sciences, Mississippi State University
kn-affil=
affil-num=3
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=5
en-affil=CSIRO Health and Biosecurity
kn-affil=
affil-num=6
en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University
kn-affil=
affil-num=7
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=8
en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud
kn-affil=
affil-num=9
en-affil=Division of Clinical and Epidemiological Virology, KU Leuven
kn-affil=
affil-num=10
en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
kn-affil=
affil-num=11
en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=12
en-affil=QAAFI, The University of Queensland
kn-affil=
affil-num=13
en-affil=Robert Koch Institut
kn-affil=
affil-num=14
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=15
en-affil=Animal and Plant Health Agency (APHA)
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, University of Arkansas
kn-affil=
affil-num=17
en-affil=Embrapa Cassava and Fruits
kn-affil=
affil-num=18
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=19
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=20
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=21
en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University
kn-affil=
affil-num=22
en-affil=School of Veterinary Medicine, Murdoch University
kn-affil=
affil-num=23
en-affil=German Federal Institute for Risk Assessment
kn-affil=
affil-num=24
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=25
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=26
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=27
en-affil=University of Ostrava
kn-affil=
affil-num=28
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=29
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=30
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=31
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=32
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=33
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=34
en-affil=Department of Natural Sciences, Shawnee State University
kn-affil=
affil-num=35
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=36
en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health
kn-affil=
affil-num=37
en-affil=Universidade Federal do Par?
kn-affil=
affil-num=38
en-affil=Pharmaq Analytiq
kn-affil=
affil-num=39
en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut
kn-affil=
affil-num=40
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=41
en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science
kn-affil=
affil-num=42
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=43
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=44
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=45
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=46
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=47
en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran?
kn-affil=
affil-num=48
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=49
en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine
kn-affil=
affil-num=50
en-affil=Institut Pasteur
kn-affil=
affil-num=51
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=52
en-affil=University of Queensland
kn-affil=
affil-num=53
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=54
en-affil=North Carolina State University
kn-affil=
affil-num=55
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=56
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=57
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=58
en-affil=Institute of Insect Sciences, Zhejiang University
kn-affil=
affil-num=59
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=60
en-affil=University of Ostrava
kn-affil=
affil-num=61
en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Avoidant/restrictive food intake disorder prognosis and its relation with autism spectrum disorder in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: There is a lack of reported clinical factors associated with the outcomes of children and adolescents with avoidant/restrictive food intake disorder (ARFID) in Japan. This study aimed to identify these clinical factors and explore the relationship between ARFID and autism spectrum disorder (ASD).
Methods: This retrospective study analyzed data from 48 Japanese children and adolescents with ARFID who visited Okayama University Hospital between January 2011 and March 2022. Clinical characteristics were assessed using medical records and natural history questionnaires. The study compared patients with good and poor prognosis groups and used multiple logistic regression analysis to determine factors influencing prognosis.
Results: The study included 33 patients with good prognoses and 15 with poor prognoses. Comorbid ASD was more prevalent in the poor prognosis group (60%) compared to the good prognosis group (21%). Additionally, more than half of the ARFID patients with comorbid ASD were initially undiagnosed. Multivariate analysis revealed that older age at first visit (p?=?0.022) and comorbid ASD (p?=?0.022) were statistically significant factors associated with poor prognosis in ARFID patients. There were no significant differences in body mass index standard deviation score and maximal weight loss between the two groups.
Conclusions: The poor prognosis group had a higher prevalence of comorbid ASD diagnoses. Therefore, it is crucial to evaluate patient's developmental characteristics early in treatment and consider these characteristics throughout the course of care.
en-copyright=
kn-copyright=
en-aut-name=TanakaChie
en-aut-sei=Tanaka
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HanzawaMana
en-aut-sei=Hanzawa
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShigeyasuYoshie
en-aut-sei=Shigeyasu
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiharaAkiko
en-aut-sei=Sugihara
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HoriuchiMakiko
en-aut-sei=Horiuchi
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Clinical Psychology Section, Department of Medical Support, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=autism spectrum disorder
kn-keyword=autism spectrum disorder
en-keyword=avoidant/restrictive food intake disorder
kn-keyword=avoidant/restrictive food intake disorder
en-keyword=children
kn-keyword=children
en-keyword=feeding and eating disorders
kn-keyword=feeding and eating disorders
en-keyword=outcome
kn-keyword=outcome
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=551
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Body weight and eating attitudes influence improvement of depressive symptoms in children and pre-adolescents with eating disorders: a prospective multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pediatric patients with eating disorders in a multicenter joint study on 11 facilities were enrolled and prospectively investigated to determine whether improvement in body weight, eating attitudes, and psychosocial factors in children with eating disorders would also improve depressive symptoms.
Methods In this study, 91 patients were enrolled between April 2014 and March 2016. The severity of underweight was assessed using the body mass index-standard deviation score (BMI-SDS), eating behavior was assessed using the children's eating attitude test (ChEAT26), the outcome of childhood eating disorders was assessed using the childhood eating disorder outcome scale, and depressive symptoms were assessed using the Children's Depression Inventory (CDI) score.
Results After 12 months of treatment, depressive symptoms were evaluated in 62 of the 91 cases where it was evaluated at the initial phase. There was no difference in background characteristics between the included patients and the 29 patients who dropped out. A paired-sample t-test revealed a significant decrease in CDI scores after 12 months of treatment (p?0.001, 95% CI: 2.401?7.373) and a significant increase in the BMI-SDS (p?0.001, 95% CI:???2.41973?1.45321). Multiple regression analysis revealed that BMI-SDS and ChEAT26 scores at the initial phase were beneficial in CDI recovery. In addition, BMI-SDS at the initial phase was useful for predicting BMI-SDS recovery after 12 months of treatment.
Conclusions Depressive symptoms in children with eating disorders improved with therapeutic intervention on body weight and eating attitudes.
Trial registration The Clinical Trial Number for this study is UMIN000055004.
en-copyright=
kn-copyright=
en-aut-name=SuzukiYuichi
en-aut-sei=Suzuki
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagamitsuShinichiro
en-aut-sei=Nagamitsu
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EshimaNobuoki
en-aut-sei=Eshima
en-aut-mei=Nobuoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtaniRyoko
en-aut-sei=Otani
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakutaRyoichi
en-aut-sei=Sakuta
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IguchiToshiyuki
en-aut-sei=Iguchi
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiiRyuta
en-aut-sei=Ishii
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchidaSoh
en-aut-sei=Uchida
en-aut-mei=Soh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitayamaShinji
en-aut-sei=Kitayama
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KoyanagiKenshi
en-aut-sei=Koyanagi
en-aut-mei=Kenshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiYuki
en-aut-sei=Suzuki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SumiYoshino
en-aut-sei=Sumi
en-aut-mei=Yoshino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakamiyaShizuo
en-aut-sei=Takamiya
en-aut-mei=Shizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukaiYoshimitsu
en-aut-sei=Fukai
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Fukushima Medical University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Fukuoka University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kurume University School of Medicine
kn-affil=
affil-num=4
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=5
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=6
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Hoshigaoka Maternity Hospital
kn-affil=
affil-num=8
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=Karamun`S Forest Children`S Clinic
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Himeji City Center for the Disabled
kn-affil=
affil-num=12
en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, National Hospital Organization Mie National Hospital
kn-affil=
affil-num=14
en-affil=Mental and Developmental Clinic for Children “Elm Tree”
kn-affil=
affil-num=15
en-affil=Takamiya Psychiatry Clinic
kn-affil=
affil-num=16
en-affil=Department of Pediatrics/Child Psychosomatic Medicine, Okayama University Hospital
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, St. Luke’s International Hospital
kn-affil=
en-keyword=Eating disorders
kn-keyword=Eating disorders
en-keyword=Anorexia nervosa
kn-keyword=Anorexia nervosa
en-keyword=Body mass index-standard deviation score
kn-keyword=Body mass index-standard deviation score
en-keyword=Eating attitudes
kn-keyword=Eating attitudes
en-keyword=Children’s depression inventory
kn-keyword=Children’s depression inventory
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=9
article-no=
start-page=2604
end-page=2611
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA?PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
en-copyright=
kn-copyright=
en-aut-name=SchorrKathrin
en-aut-sei=Schorr
en-aut-mei=Kathrin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LangJohannes
en-aut-sei=Lang
en-aut-mei=Johannes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GoepferichAchim
en-aut-sei=Goepferich
en-aut-mei=Achim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=2
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital W?rzburg
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
en-keyword=polymer nanoparticles
kn-keyword=polymer nanoparticles
en-keyword=direct 99mTc-labeling
kn-keyword=direct 99mTc-labeling
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
en-keyword=radio-thin layer chromatography
kn-keyword=radio-thin layer chromatography
en-keyword=radiocolloids
kn-keyword=radiocolloids
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=2
article-no=
start-page=294
end-page=300
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating the Patterns of FAPI Uptake in the Shoulder Joint: a Preliminary Study Comparing with FDG Uptake in Oncological Studies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Fibroblast activation protein inhibitor (FAPI) targeting PET has been introduced as a novel molecular imaging modality for visualizing cancer-associated fibroblasts. There have also been reports suggesting incidental findings of localized accumulation in the shoulder joints. However, further characterization in a larger patient cohort is still lacking.
Methods 77 consecutive patients (28 females; mean age, 63.1?±?11.6) who underwent Ga-68 FAPI-04 PET/CT for diagnosis of solid tumors were included. The incidence and localization of tracer uptake in shoulder joints were investigated and compared with available F-18 FDG scans serving as reference.
Results Ga-68 FAPI-04 uptake was evaluated in 77 patients (154 shoulder joints), of whom 54 subjects (108 shoulder joints) also had available F-18 FDG scans for head-to-head comparison. On FAPI-targeted imaging, 67/154 shoulders (43.5%) demonstrated increased radiotracer accumulation in target lesions, which were distributed as follows: acromioclavicular (AC) joints in 25/67 (37.3%), followed by glenohumeral and subacromial (GH?+?SA) joints in 23/67 (34.3%), or both (AC and GH?+?SA joints) in the remaining 19/67 (28.4%). Ga-68 FAPI-04 correlated with quantified F-18 FDG uptake (r?=?0.69, p?0.0001). Relative to the latter radiotracer, however, in-vivo FAP expression in the shoulders was significantly increased (Ga-68 FAPI-04, 4.7?±?3.2 vs F-18 FDG, 3.6?±?1.3, p?0.001).
Conclusion Our study revealed focal accumulation of Ga-68 FAPI-04 in the shoulders, particularly in the AC joints, with higher uptake compared to the inflammatory-directed PET radiotracer F-18 FDG in oncological studies. As a result, further trials are warranted to investigate the potential of FAPI-directed molecular imaging in identifying chronic remodeling in shoulder joints. This could have implications for initiating anti-FAP targeted photodynamic therapy based on PET signal strength.
en-copyright=
kn-copyright=
en-aut-name=MatsusakaYohji
en-aut-sei=Matsusaka
en-aut-mei=Yohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WernerRudolf A.
en-aut-sei=Werner
en-aut-mei=Rudolf A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SerflingSebastian E.
en-aut-sei=Serfling
en-aut-mei=Sebastian E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BuckAndreas K.
en-aut-sei=Buck
en-aut-mei=Andreas K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KosmalaAleksander
en-aut-sei=Kosmala
en-aut-mei=Aleksander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WeichAlexander
en-aut-sei=Weich
en-aut-mei=Alexander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=2
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=3
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=5
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Fibroblast activation inhibitor
kn-keyword=Fibroblast activation inhibitor
en-keyword=Shoulder
kn-keyword=Shoulder
en-keyword=Acromioclavicular joints
kn-keyword=Acromioclavicular joints
en-keyword=F-18 fluorodeoxyglucose
kn-keyword=F-18 fluorodeoxyglucose
en-keyword=Positron emission tomography
kn-keyword=Positron emission tomography
en-keyword=FAP
kn-keyword=FAP
en-keyword=Ga-68 FAPI-04
kn-keyword=Ga-68 FAPI-04
en-keyword=Rheumatoid arthritis
kn-keyword=Rheumatoid arthritis
en-keyword=Osteoarthritis
kn-keyword=Osteoarthritis
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=8
article-no=
start-page=1621
end-page=1630
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Percutaneous cryoablation versus robot-assisted partial nephrectomy for small renal cell carcinoma: a retrospective cost analysis at Japanese single-institution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: No direct cost comparison has been conducted between percutaneous cryoablation (PCA) and robot-assisted partial nephrectomy (RAPN) for clinical T1a renal cell carcinoma (RCC) in Japan. This study aimed to compare their costs.
Methods: We retrospectively analyzed data from 212 PCAs (including 155 with transcatheter arterial embolization) and 119 RAPN cases performed between December 2017 and May 2022.
Results: PCA patients were older with higher American Society of Anesthesiologists scores, Charlson Comorbidity Index, and history of previous RCC treatment, cardiovascular disease, and antithrombotic drug use than RAPN patients. PCA was associated with a significantly shorter procedure time and hospitalization duration with fewer major complications than those associated with RAPN. While PCA incurred a slightly lower total cost (1,123,000 vs. 1,155,000 yen), it had a significantly higher procedural cost (739,000 vs. 693,000 yen) and markedly worse total (? 93,000 vs. 249,000 yen) and procedural income-expenditure balance (? 189,000 vs. 231,000 yen) than those of RAPN. After statistical adjustment, PCA demonstrated significantly higher total (difference: 114,000 yen) and procedural costs (difference: 72,000 yen), alongside significantly worse total (difference: ? 358,000 yen) and procedural income-expenditure balances (difference: ? 439,000 yen). The incremental cost-effectiveness ratio was more favorable for PCA than for RAPN.
Conclusion: For high- risk patients, PCA demonstrated a safer option with shorter hospitalization duration than those of RAPN. Although PCA was more cost-effective, its higher procedural cost and unfavorable income-expenditure balance require careful evaluation, especially for large tumors that require three or more needles.
en-copyright=
kn-copyright=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Renal cancer
kn-keyword=Renal cancer
en-keyword=Cryoablation
kn-keyword=Cryoablation
en-keyword=Robot-assisted partial nephrectomy
kn-keyword=Robot-assisted partial nephrectomy
en-keyword=Cost
kn-keyword=Cost
en-keyword=Cost effectiveness
kn-keyword=Cost effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27163
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade???3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade???3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of???2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23?4.54, p?=?0.01) and a low neutrophil/eosinophil ratio (NER) of???40.0 (OR: 2.78, 95% CI 1.39?5.53, p?=?0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade???3 TRAEs and help determine individualized treatment strategies in patients with mRCC.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KuroseKyohei
en-aut-sei=Kurose
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AzumaHaruhito
en-aut-sei=Azuma
en-aut-mei=Haruhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=28
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=30
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=32
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=ICI
kn-keyword=ICI
en-keyword=Eosinophil
kn-keyword=Eosinophil
en-keyword=Immune-related adverse event
kn-keyword=Immune-related adverse event
en-keyword=Treatment-related adverse event
kn-keyword=Treatment-related adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=13
article-no=
start-page=e172988
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LAG3 regulates antibody responses in a murine model of kidney transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3?/? recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3?/? recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3?/? recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3?/? recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment.
en-copyright=
kn-copyright=
en-aut-name=NicosiaMichael
en-aut-sei=Nicosia
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FanRan
en-aut-sei=Fan
en-aut-mei=Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeeJuyeun
en-aut-sei=Lee
en-aut-mei=Juyeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AllGabriella
en-aut-sei=All
en-aut-mei=Gabriella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GorbachevaVictoria
en-aut-sei=Gorbacheva
en-aut-mei=Victoria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ValenzuelaJos? I.
en-aut-sei=Valenzuela
en-aut-mei=Jos? I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoYosuke
en-aut-sei=Yamamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BeaversAshley
en-aut-sei=Beavers
en-aut-mei=Ashley
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DvorinaNina
en-aut-sei=Dvorina
en-aut-mei=Nina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BaldwinWilliam M.
en-aut-sei=Baldwin
en-aut-mei=William M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ChuluyanEduardo
en-aut-sei=Chuluyan
en-aut-mei=Eduardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GaudetteBrian T.
en-aut-sei=Gaudette
en-aut-mei=Brian T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FairchildRobert L.
en-aut-sei=Fairchild
en-aut-mei=Robert L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MinBooki
en-aut-sei=Min
en-aut-mei=Booki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ValujskikhAnna
en-aut-sei=Valujskikh
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=5
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=6
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=9
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=10
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=11
en-affil=Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cient?ficas y T?cnicas, Centro de Estudios Farmacol?gicos y Bot?nicos (CEFYBO), Facultad de Medicina
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=14
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=15
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=16
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=468
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Urinary tract infection (UTI) is predominantly caused by uropathogenic Escherichia coli (UPEC). Previous studies have reported that the fimbriae of UPEC are involved in virulence and antimicrobial resistance. We aimed to analyze the fimbrial gene profiles of UPEC and investigate the specificity of these expressions in symptomatic UTI, urinary device use, and levofloxacin (LVFX) resistance/extended-spectrum beta-lactamase (ESBL) production. Methods: A total of 120 UPEC strains were isolated by urine culture between 2019 and 2023 at our institution. They were subjected to an antimicrobial susceptibility test and polymerase chain reaction (PCR) to identify 14 fimbrial genes and their association with clinical outcomes or antimicrobial resistance. Results: The prevalence of the papG2 gene was significantly higher in the symptomatic UTI group by multivariate analyses (OR 5.850, 95% CI 1.390?24.70, p = 0.016). The prevalence of the c2395 gene tended to be lower in the symptomatic UTI group with urinary devices (all p < 0.05). In LVFX-resistant UPEC strains from both the asymptomatic bacteriuria (ABU) and the symptomatic UTI group, the expression of the papEF, papG3, c2395, and yadN genes tended to be lower (all p < 0.05). Conclusion: The fimbrial genes of UPEC are associated with virulence and LVFX resistance, suggesting that even UPEC with fewer motility factors may be more likely to ascend the urinary tract in the presence of the urinary devices. These findings may enhance not only the understanding of the virulence of UPEC but also the management of UTI.
en-copyright=
kn-copyright=
en-aut-name=MitsuiMasao
en-aut-sei=Mitsui
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruhashiMai
en-aut-sei=Maruhashi
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirakawaHidetada
en-aut-sei=Hirakawa
en-aut-mei=Hidetada
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fimbriae
kn-keyword=fimbriae
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=drug resistance
kn-keyword=drug resistance
en-keyword=virulence
kn-keyword=virulence
en-keyword=uropathogenic Escherichia coli
kn-keyword=uropathogenic Escherichia coli
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=107
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of concomitant medications on the oncologic efficacy of systemic therapy in patients with advanced or metastatic urothelial carcinoma: a systematic review and meta-analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Immune checkpoint inhibitors (ICI) and chemotherapy, including antibody-drug conjugates, are widely used for the treatment of patients with advanced unresectable or metastatic urothelial carcinoma (UC). The majority of elderly patients receive concomitant medications to address various comorbidities. We aimed to evaluate the impact of concomitant medications on oncological outcomes in patients with advanced unresectable or metastatic UC treated with systemic therapy.
Material & methods: In August 2024, three datasets were queried for studies evaluating concomitant medications in patients with advanced unresectable or metastatic UC. The review protocol was registered in PROSPERO (CRD42024547335). The primary outcome was overall survival (OS). A fixed- or random-effects model was used for meta-analysis depending on the heterogeneity.
Results: We identified 16 eligible studies (3 prospective and 13 retrospective) comprising 4,816 patients. Most reported concomitant medications included proton pump inhibitors (PPIs), antibiotics, steroids, and opioids. The use of concomitant PPIs, antibiotics, steroids or opioids during ICI therapy was associated with worsened OS (PPIs: HR: 1.43, 95% CI: 1.31?1.57, p?0.001; antibiotics: HR: 1.2, 95% CI: 1.04?1.38, p?=?0.01; steroids: HR: 1.45, 95% CI: 1.25?1.67, p?0.001; and opioids: HR: 1.74, 95% CI: 1.46?2.07, p?0.001). Concomitant use of antibiotics during chemotherapy did not impact OS (HR: 1.01, 95% CI: 0.67?1.51).
Conclusions: When treating advanced unresectable or metastatic UC with ICI therapy, we need to pay attention to concomitant medications, such as PPIs and antibiotics to avoid reducing the efficacy of ICI therapy. The mechanism of action of these drugs on ICI efficacy requires further examination.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PariziMehdi Kardoust
en-aut-sei=Parizi
en-aut-mei=Mehdi Kardoust
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiszczykMarcin
en-aut-sei=Miszczyk
en-aut-mei=Marcin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FazekasTam?s
en-aut-sei=Fazekas
en-aut-mei=Tam?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SchulzRobert J
en-aut-sei=Schulz
en-aut-mei=Robert J
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LaukhtinaEkaterina
en-aut-sei=Laukhtina
en-aut-mei=Ekaterina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RajwaPawel
en-aut-sei=Rajwa
en-aut-mei=Pawel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ObernederKatharina
en-aut-sei=Oberneder
en-aut-mei=Katharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ChlostaPiotr
en-aut-sei=Chlosta
en-aut-mei=Piotr
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=6
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=8
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=13
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=14
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=15
en-affil=Department of Urology, Medical College, Jagiellonian University
kn-affil=
affil-num=16
en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre
kn-affil=
affil-num=17
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Concomitant medications
kn-keyword=Concomitant medications
en-keyword=Proton pump inhibitors
kn-keyword=Proton pump inhibitors
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=steroids
kn-keyword=steroids
en-keyword=Opioids
kn-keyword=Opioids
en-keyword=Histamine type-2 receptor antagonists
kn-keyword=Histamine type-2 receptor antagonists
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
en-keyword=Urothelial carcinoma
kn-keyword=Urothelial carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=10
article-no=
start-page=1444
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Canine c-kit Novel Mutation Isolated from a Gastrointestinal Stromal Tumor (GIST) Retains the Ability to Form Dimers but Lacks Autophosphorylation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors that develop in the gastrointestinal tract; KIT mutations are present in both canine and human GISTs. In this study, genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) sections of 55 canine GIST cases, and mutation searches were performed for exons 8, 9, and 11. The results revealed novel mutations, A434T and F436S, in exon 8. In contrast to the A434T mutation without functional changes, the F436S mutant retained its dimerization ability, but lost its phosphorylation function and attenuated downstream Akt signaling, which is reflected in wound healing and migration activities. A comparison of the subcellular localization of WT KIT and the F436S mutant revealed no differences. In silico simulations indicated that the F436S mutation alters the structure of the near-membrane region and that its effects may extend to the transmembrane and intracellular domains compared to the WT. F436S is a point mutation that affects the entire molecule because co-mutation with the F436S mutation and the known autophosphorylation mutation reduces the autophosphorylation abilities.
en-copyright=
kn-copyright=
en-aut-name=ShimakawaKei
en-aut-sei=Shimakawa
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DogeSo
en-aut-sei=Doge
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MichishitaMasaki
en-aut-sei=Michishita
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanabeEri
en-aut-sei=Tanabe
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TajimaTsuyoshi
en-aut-sei=Tajima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiMasato
en-aut-sei=Kobayashi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonkobaraMakoto
en-aut-sei=Bonkobara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaYoshikazu
en-aut-sei=Tanaka
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=2
en-affil=Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=3
en-affil=Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=4
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=5
en-affil=Laboratory of Veterinary Pharmacology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=6
en-affil=Laboratory of Veterinary Reproduction, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=7
en-affil=Laboratory of Veterinary Clinical Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=8
en-affil=Laboratory of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=10
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
en-keyword=autophosphorylation
kn-keyword=autophosphorylation
en-keyword=canine
kn-keyword=canine
en-keyword=c-kit
kn-keyword=c-kit
en-keyword=GIST
kn-keyword=GIST
en-keyword=KIT
kn-keyword=KIT
en-keyword=loss-of-function mutation
kn-keyword=loss-of-function mutation
END
start-ver=1.4
cd-journal=joma
no-vol=144-145
cd-vols=
no-issue=
article-no=
start-page=109001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the fate of Zirconium-89 labelled antibody in cynomolgus macaques
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Preclinical pharmacokinetic studies of therapeutic antibodies in non-human primates are desired because of the difficulty in extrapolating ADME data from animal models to humans. We evaluated the pharmacokinetics of 89Zr (Zirconium-89) -labelled anti-KLH human IgG and its metabolites to confirm their non-specific/physiological accumulation in healthy cynomolgus macaques. The anti-KLH antibody was used as a negative control, ensuring that the observed distribution reflected general IgG behavior rather than antigen-specific accumulation. This provides a valuable reference for comparing the biodistribution of targeted antibodies.
Methods: Selected IgG was conjugated to desferrioxamine (DFO), labelled with 89Zr, and injected into healthy cynomolgus macaques. PET/CT images at the whole-body level were acquired at different time points, and standard uptake values (SUV) in regions of interest, such as the heart, liver, spleen, kidneys, bone, and muscles, were calculated. The distribution of a shortened antibody variant, 89Zr-labelled Fab, as well as that of [89Zr]Zr-DFO and [89Zr]Zr-oxalate, the expected metabolites of 89Zr- labelled IgG, was also assessed.
Results: After 89Zr-labelled IgG injection, the SUV in the heart, vertebral body, and muscle decreased, in line with the 89Zr concentration decrease in the circulation, whereas radioactivity increased over time in the kidneys and liver. Autoradiography of the renal sections indicated that most of the 89Zr- labelled IgG radioactivity accumulated in the renal cortex. Relatively high accumulation in the kidneys was also observed in 89Zr- labelled Fab-injected macaques, and renal autoradiographs of these animals showed that the renal cortex was the preferred accumulation site. However, [89Zr]Zr-DFO was rapidly excreted into the urine, whereas [89Zr]Zr-oxalate was highly accumulated in the epiphysis of the long bones and vertebral body.
Conclusion: In the non-human primate cynomolgus macaque, 89Zr- labelled IgG accumulated in the kidneys and the liver. However, [89Zr]Zr-DFO and 89Zr did not accumulate in these organs. This preclinical pharmacokinetic study performed with human IgG in a non-human primate model using PET is of great significance as it sheds light on the basic fate and distribution of 89Zr- labelled IgG.
en-copyright=
kn-copyright=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraSadaaki
en-aut-sei=Kimura
en-aut-mei=Sadaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NodaAkihiro
en-aut-sei=Noda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiYoshihiro
en-aut-sei=Murakami
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiSosuke
en-aut-sei=Miyoshi
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=3
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=4
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=5
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=PET imaging
kn-keyword=PET imaging
en-keyword=Zirconium-89
kn-keyword=Zirconium-89
en-keyword=Therapeutic antibodies
kn-keyword=Therapeutic antibodies
en-keyword=Non-human primates
kn-keyword=Non-human primates
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating Pericoronary Adipose Tissue?Attenuation to Predict Cardiovascular Events
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pericoronary adipose tissue attenuation (PCATA) is a novel imaging biomarker of pericoronary inflammation associated with coronary artery disease. Several studies have reported the usefulness of PCATA among people of European ethnicity; however, data are lacking concerning those of Asian ethnicity.
Objectives: This multicenter study aimed to evaluate the effect of PCATA on prognosis in East Asian patients.
Methods: Between August 2011 and December 2016, 2,172 patients underwent clinically indicated coronary computed tomography angiography (CTA) at 4 hospitals in Japan. Among them, 1,270 patients were analyzed. PCATA was evaluated using coronary CTA to measure pericoronary adipose tissue density surrounding the 3 major coronary arteries. The outcomes were composite cardiovascular events, including cardiovascular death and acute coronary syndrome; 33 cardiovascular events observed during a median follow-up of 6.0 years (Q1-Q3: 3.6-8.2 years).
Results: Right coronary artery (RCA)-PCATA was significantly higher in patients with cardiovascular events than in those without (?63.7 ± 8.9 HU vs ?67.4 ± 9.1 HU, respectively; P = 0.021). High RCA-PCATA was significantly associated with cardiovascular events in a model that included the Hisayama risk score and adverse coronary CTA findings (HR: 1.55; 95% CI: 1.07-2.24; P = 0.019).
Conclusions: High RCA-PCATA showed significant association with future cardiovascular events after adjusting conventional risk factors and adverse coronary CTA findings in East Asian patients who underwent clinically indicated coronary CTA.
en-copyright=
kn-copyright=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukeSoichiro
en-aut-sei=Fuke
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SeiyamaKousuke
en-aut-sei=Seiyama
en-aut-mei=Kousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoiMasayuki
en-aut-sei=Doi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=acute coronary syndrome(s)
kn-keyword=acute coronary syndrome(s)
en-keyword=coronary computed tomography angiography
kn-keyword=coronary computed tomography angiography
en-keyword=high-risk plaque
kn-keyword=high-risk plaque
en-keyword=obstructive stenosis
kn-keyword=obstructive stenosis
en-keyword=pericoronary adipose tissue attenuation
kn-keyword=pericoronary adipose tissue attenuation
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=1711
end-page=1720
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dotinurad Treatment for Patients With Hyperuricemia Complicating CKD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The management of hyperuricemia is important to reduce cardiovascular risk and the progression of renal injury in chronic kidney disease (CKD). This study aimed to assess the efficacy and safety of dotinurad, a novel urate transporter-1 inhibitor, in patients with hyperuricemia and CKD.
Methods: In a nonrandomized, parallel interventional study, patients were grouped based on their estimated glomerular filtration rate (eGFR) at baseline. The starting dotinurad dose was 0.5 mg/d and titrated to a final dose of 2 mg/d to 4 mg/d. The primary end point was the noninferiority of the change in serum uric acid (UA) levels between the G1/G2 and G3/G4 groups at week 24. The main secondary end points were changes in eGFR and UA clearance-to-creatinine clearance ratio (CUA/CCr). Reported adverse events were also investigated.
Results: Ninety-eight patients continued the dose titration. The mean percentage reduction in serum UA level at week 24 were 47.2% and 42.8% for the G1/G2 and G3/G4 groups, respectively; the between-group difference was ?4.3% (95% confidence interval [CI], ?9.5% to 0.9%, noninferiority P = 0.0321), validating the noninferiority of treatment in the G3/G4 group to the G1/G2 group. eGFR tended to increase slightly through to week 24, suggesting that spontaneous eGFR decline was counteracted. Mean CUA/CCr generally increased over time from week 4 to week 24. No new safety issues of particular concern were identified; and there were no marked changes in urinary pH.
Conclusion: Dotinurad therapy may be well-tolerated in patients with hyperuricemia and may have efficacy comparable with existing standard treatment in patients with CKD stages G3/G4. Randomized controlled trials in larger patient groups are needed.
en-copyright=
kn-copyright=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NunoueTomokazu
en-aut-sei=Nunoue
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItabashiNaoki
en-aut-sei=Itabashi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaAkihiro
en-aut-sei=Katayama
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraAkihiko
en-aut-sei=Nakamura
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhbayashiHiroyuki
en-aut-sei=Ohbayashi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeKyoko
en-aut-sei=Watanabe
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaKeisuke
en-aut-sei=Maruyama
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HosoyaTakeshi
en-aut-sei=Hosoya
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaShinichi
en-aut-sei=Okada
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Nunoue Clinic
kn-affil=
affil-num=3
en-affil=Itabashi Diabetes and Dermatology Medical Clinic
kn-affil=
affil-num=4
en-affil=NHO Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Osafune Clinic
kn-affil=
affil-num=6
en-affil=Tohno Chuo Clinic
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=9
en-affil=Okayama Saiseikai Outpatient Center Hospital
kn-affil=
affil-num=10
en-affil=Hosoya Clinic
kn-affil=
affil-num=11
en-affil=Okada Medical Clinic
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=dotinurad
kn-keyword=dotinurad
en-keyword=efficacy
kn-keyword=efficacy
en-keyword=hyperuricemia
kn-keyword=hyperuricemia
en-keyword=safety
kn-keyword=safety
en-keyword=serum uric acid
kn-keyword=serum uric acid
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=3
article-no=
start-page=444
end-page=451
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=More postoperative complications and revision surgery after occipitocervical fusion than after atlantoaxial fusion: a retrospective multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Study Design: A retrospective multicenter cohort study.
Purpose: We sought to determine whether occipitocervical (OC) fusion is followed by more postoperative complications and revision surgery than is atlantoaxial (AA) fusion. We aim to compare postoperative complications and revision surgery associated with OC fusion and AA fusion.
Overview of Literature: OC and AA fusion are established techniques for restoring upper cervical stability. However, the outcomes of the two methods have not been compared.
Methods: This study included 90 patients who underwent upper spinal fusion surgery for mechanical instability, performed by three surgeons in two hospitals from 2011 to 2023; OC fusion was indicated for irreducible AA subluxation, os odontoideum, and severe upper C1 fracture. Of the patients, 38 (mean age, 58.7 years) underwent OC fusion, and 52 (mean age, 62.8 years) underwent AA fusion. To evaluate surgical outcomes, we documented surgical time, intraoperative blood loss, postoperative complications, and the rate of revision surgery. Radiographs were obtained to identify screw malposition, rod breakage, and nonunion. To compare the outcomes of the two techniques, we used the Mann-Whitney U test for continuous variables and the chi-square or Fisher’s exact test for dichotomous variables.
Results: OC fusion took significantly longer (175.4 minutes) than AA fusion (150.7 minutes, p=0.020) and had a higher complication rate (39.5% vs. 11.5%, p<0.0001). The reoperation rate was 23.7% (9/38) after OC fusion and 3.8% (2/52) after AA fusion; the difference was statistically significant (p=0.0073). Average amounts of blood loss were 224 mL during OC fusion and 224 mL during AA fusion; the difference was not significant (p=0.947).
Conclusions: Although OC fusion is indispensable for certain conditions, particularly basilar invagination, it entails more risk than dose AA fusion; the choice of technique thus warrants careful consideration.
en-copyright=
kn-copyright=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EkadeShashank J
en-aut-sei=Ekade
en-aut-mei=Shashank J
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Occipitocervical fusion
kn-keyword=Occipitocervical fusion
en-keyword=Atlantoaxial fusion
kn-keyword=Atlantoaxial fusion
en-keyword=Upper cervical instability
kn-keyword=Upper cervical instability
en-keyword=Surgical complication
kn-keyword=Surgical complication
en-keyword=Reoperation
kn-keyword=Reoperation
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=7
article-no=
start-page=koaf142
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancentromere analysis of Allium species reveals diverse centromere positions in onion and gigantic centromeres in garlic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In eukaryotes, centromeres interact with the kinetochore for distribution of genetic information in cell division, yet their sequence and size are diverse among species. However, their position on chromosomes is considered to be conserved within a species. In this study, we analyzed the centromeres of 3 Allium species, namely, Welsh onion (Allium fistulosum), onion (Allium cepa), and garlic (Allium sativum) via pancentromere analysis and repetitive sequence analysis of centromeres and their neighborhoods and revealed their mobility, sequence organization, and size. Among the 3 species, Welsh onion and garlic had stable centromeres, but the onion centromere appeared to be polymorphic and frequently differed in position by up to 28.0?Mb among cultivars and between multiple individuals of the same cultivar. This mobility was stabilized by hybridization with Welsh onions. Furthermore, these 3 species have very different centromere sequence organization, including differences in the existence and maturity of centromeric satellites, and differences in centromere size, with Welsh onion having a centromere of 1.9?Mb, and garlic having a centromere of ?10.6?Mb, the largest of any organism with monocentric chromosomes analyzed to date. Our pancentromere analysis of these Allium species reveals the variation in sequence organization, size, and position of this important chromosomal region.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTakashi
en-aut-sei=Akagi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=1041
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Longitudinal changes and tracking of in-school physical activity in primary school children: four-year longitudinal study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background There is little evidence on the tracking of physical activity during school hours. In addition, tracking physical activity in schools provides important evidence for understanding children’s physical activity and conducting intervention studies. Therefore, this study examined longitudinal changes and tracking of in-school physical activity in primary school children.
Methods In this study, physical activity was investigated longitudinally in primary school children for 4 years. The baseline participants consisted of 103 second-grade students (7?8 years old) who participated. Step counts and moderate-to-vigorous physical activity (MVPA) in school and during first recess and lunch/second recess were examined using an accelerometer (Kenz Lifecorder GS 4-second version; Suzuken Co. Ltd, Nagoya, Japan).
Results After excluding missing data (moving school; n?=?8, physical activity; n?=?8), 87 (43 boys and 44 girls) of whom were included in the final analysis. Step counts and MVPA during school and physical education in boys did not decrease across the school years. By contrast, in girls, step counts during school did not decrease across the school years, however MVPA did decrease. In addition, for both sexes, step counts and MVPA during first recess decrease across the school years. During lunch/second recess, only step counts decrease across the school years in both sexes. In addition, the tracking coefficients for step counts and MVPA for boys in school and during first recess and lunch/second recess were found across many school years. Contrarily, girls had fewer significant tracking coefficients between school years than boys. There were also few significant tracking coefficients between grades for physical education step counts and MVPA for both boys and girls.
Conclusions Our results suggested that in-school step counts for both boys and girls does not decrease across the school years. However, given that girls demonstrated reduced levels of in-school MVPA across the school years, it is important to promote strategies to increase MVPA in this group.
en-copyright=
kn-copyright=
en-aut-name=SasayamaKensaku
en-aut-sei=Sasayama
en-aut-mei=Kensaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasunebeJin
en-aut-sei=Yasunebe
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AdachiMinoru
en-aut-sei=Adachi
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Education, Mie University
kn-affil=
affil-num=2
en-affil=Faculty of Education, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Education, Okayama University
kn-affil=
en-keyword=Physical activity
kn-keyword=Physical activity
en-keyword=Step counts
kn-keyword=Step counts
en-keyword=Moderate-to-vigorous physical activity
kn-keyword=Moderate-to-vigorous physical activity
en-keyword=Youth
kn-keyword=Youth
en-keyword=Recess
kn-keyword=Recess
en-keyword=Physical education
kn-keyword=Physical education
en-keyword=Longitudinal study
kn-keyword=Longitudinal study
en-keyword=Tracking
kn-keyword=Tracking
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie ? CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJos? L.
en-aut-sei=Jorcano
en-aut-mei=Jos? L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Mart?nCristina
en-aut-sei=Mart?n
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=e88945
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Six-Year Remission With No Relapse After Four-Time Weekly Rituximab Only for Bilateral Ocular Adnexal Follicular Lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Follicular lymphoma mostly takes an indolent course, and thus, observation with watchful waiting is a main therapeutic strategy. Recent long-term studies suggest earlier treatment with rituximab monotherapy may benefit patients by delaying the need for treatment in the later phase of exacerbation. In this study, we reported a patient with bilateral orbital follicular lymphoma who received four-time weekly rituximab monotherapy as an induction therapy only and maintained the remission for 5 years with no treatment. The patient was a 51-year-old woman who developed a right upper orbital mass and was diagnosed with follicular lymphoma grade 1 by the excisional biopsy. Two years later, at the age of 53 years, she developed a left lacrimal gland mass and underwent excision. The pathological diagnosis was follicular lymphoma grade 1. She did not have any other systemic lesions by fluorodeoxyglucose positron emission tomography. At the age of 54 years, she developed a new mass on the nasal side of the right orbit and underwent weekly rituximab monotherapy (375 mg/m2) four times a month, leading to the reduction of the mass in 3 months. Two high uptake sites on the temporal and nasal side of the right superior orbit by fluorodeoxyglucose positron emission tomography disappeared one year later at the age of 55 years. She was followed with no treatment for 6 years until the age of 60 years at the latest visit. In case of a local orbital relapse, local radiotherapy would be the standard, but rituximab monotherapy as an induction therapy only was chosen in the present patient. Rituximab monotherapy in place of local radiotherapy would be a treatment option for orbital follicular lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Transfusion and Cell Therapy, Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=claustrophobia
kn-keyword=claustrophobia
en-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
kn-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=follicular lymphoma
kn-keyword=follicular lymphoma
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
kn-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
en-keyword=ocular adnexa
kn-keyword=ocular adnexa
en-keyword=orbital mass
kn-keyword=orbital mass
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=rituximab
kn-keyword=rituximab
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=11
article-no=
start-page=uhae248
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies.
en-copyright=
kn-copyright=
en-aut-name=NagasakaKyoka
en-aut-sei=Nagasaka
en-aut-mei=Kyoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamagataKeigo
en-aut-sei=Yamagata
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaSoichiro
en-aut-sei=Nishiyama
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaneHisayo
en-aut-sei=Yamane
en-aut-mei=Hisayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaoRyutaro
en-aut-sei=Tao
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoRyohei
en-aut-sei=Nakano
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakazakiTetsuya
en-aut-sei=Nakazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=9
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25?cm; inner diameter, 9?cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7?cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=7
article-no=
start-page=001430
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic features of three major diarrhoeagenic Escherichia coli pathotypes in India
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. Diarrhoea remains a major threat to children in developing nations, with diarrhoeagenic Escherichia coli (DEC) being the primary causative agent. Characterizing prevalent DEC strains is crucial, yet comprehensive genomic analyses of major DEC strains, including enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC), are lacking in India.
Methods. We sequenced 24 EAEC and 23 EPEC strains from Indian patients with diarrhoea and conducted an extensive database search for DEC human isolates from India. Detailed phylogenetic analyses, virulence gene subtyping and examinations of accessory virulence and antimicrobial resistance (AMR) genes were performed.
Results. The analysed DEC strains included 32 EAEC, 25 EPEC, 32 ETEC and 1 each of the EPEC/ETEC-hybrid and ETEC/EAEC-hybrid pathotypes. These strains were predominantly classified into phylogroups A (35.2%) and B1 (41.8%) and dispersed within these phylogroups without pathotype-specific clustering. One ETEC strain was classified into cryptic clade 1. Subtypes of hallmark virulence genes varied substantially amongst strains in each pathotype, and 31 accessory virulence genes were detected either specifically within certain pathotypes or across multiple pathotypes at varying frequencies, indicating diversification of the virulence gene repertoire within each pathotype. Acquired AMR genes were found in 73.6% of the strains, with frequent identification of AMR genes for aminoglycosides (40.0%), β-lactams (64.8%), sulphonamides (49.5%) and trimethoprim (42.9%). Known quinolone-resistant mutations were found in 74.7% of the strains, whereas AMR genes for macrolide (30.8%), phenicol (11.0%) and tetracycline (27.4%) were less frequent.
Conclusions. The diverse virulence potential and trends in AMR gene prevalence amongst major DEC strains in India are highlighted in this study. Continuous monitoring of DEC strain characteristics is essential for the effective control and treatment of DEC infections in India.
en-copyright=
kn-copyright=
en-aut-name=HoshikoYuki
en-aut-sei=Hoshiko
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaganoDebora Satie
en-aut-sei=Nagano
en-aut-mei=Debora Satie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhnoAyumu
en-aut-sei=Ohno
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkunoMiki
en-aut-sei=Okuno
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoTakeshi
en-aut-sei=Yamamoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MukhopadhyayAsish K.
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OguraYoshitoshi
en-aut-sei=Ogura
en-aut-mei=Yoshitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=2
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=3
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=4
en-affil=Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=5
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=6
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=7
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=10
en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=11
en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=12
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=diarrhoeagenic Escherichia coli
kn-keyword=diarrhoeagenic Escherichia coli
en-keyword=genome
kn-keyword=genome
en-keyword=India
kn-keyword=India
en-keyword=virulence gene
kn-keyword=virulence gene
END
start-ver=1.4
cd-journal=joma
no-vol=94
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=72
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of an AI-based Image Analysis System to Calculate the Visit Duration of a Green Blow Fly on a Strawberry Flower
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pollinator insects are required to pollinate flowers in the production of some fruits and vegetables, and strawberries fall into this category. However, the function of pollinators has not been clarified by quantitative metrics such as the duration of pollinator visits needed by flowers. Due to the long activity time of pollinators (approximately 10-h), it is not easy to observe the visitation characteristics manually. Therefore, we developed software for evaluating pollinator performance using two types of artificial intelligence (AI), YOLOv4, which is an object detection AI, and VGG16, which is an image classifier AI. In this study, we used Phaenicia sericata Meigen (green blow fly) as the strawberry pollinator. The software program can automatically estimate the visit duration of a fly on a flower from video clips. First, the position of the flower is identified using YOLO, and the identified location is cropped. Next, the cropped image is classified by VGG16 to determine if the fly is on the flower. Finally, the results are saved in CSV and HTML format. The program processed 10 h of video (collected from 07:00 h to 17:00 h) taken under actual growing conditions to estimate the visit durations of flies on flowers. The recognition accuracy was approximately 97%, with an average difference of 550 s. The software was run on a small computer board (the Jetson Nano), indicating that it can easily be used without a complicated AI configuration. This means that the software can be used immediately by distributing pre-configured disk images. When the software was run on the Jetson Nano, it took approximately 11 min to estimate one day of 2-h video. It is therefore clear that the visit duration of a fly on a flower can be estimated much faster than by manually checking videos. Furthermore, this system can estimate the visit durations of pollinators to other flowers by changing the YOLO and VGG16 model files.
en-copyright=
kn-copyright=
en-aut-name=TaniguchiHiroki
en-aut-sei=Taniguchi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsukudaYuki
en-aut-sei=Tsukuda
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotoTanjuro
en-aut-sei=Goto
en-aut-mei=Tanjuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasubaKen-ichiro
en-aut-sei=Yasuba
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=School of Agriculture Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=deep learning
kn-keyword=deep learning
en-keyword=fly
kn-keyword=fly
en-keyword=microcomputer
kn-keyword=microcomputer
en-keyword=VGG16
kn-keyword=VGG16
en-keyword=YOLO
kn-keyword=YOLO
END
start-ver=1.4
cd-journal=joma
no-vol=93
cd-vols=
no-issue=4
article-no=
start-page=335
end-page=343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of Low-temperature Regulated Flavone Synthesis in Dahlia Variabilis and its Effects on Flower Color
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dahlia (Dahlia variabilis) flower colors are diverse and are determined by the accumulation of flavonoids. Cultivars with dark red flowers accumulate more anthocyanins in their petals. Flower color changes such as color fading often occur in some cultivars. In this study, low minimum temperature regulated flower color fading and flavonoid synthesis in dahlia ‘Nessho’ were investigated. The pigment contents and expression levels of flavonoid biosynthesis genes were investigated in detail under several growing environments in which color fading occurs. Flavones accumulate more in color-faded orange flowers than in dark red ray florets. The expression analysis of the anthocyanin synthesis pathway genes indicated that the upregulation of flavone synthase (DvFNS) gene expression correlated with the high accumulation of flavones in color-faded petals. DvFNS expression was also detected in young leaves, and the expression level was higher in winter than in summer. Seasonal changes in DvFNS expression in young leaves significantly correlated with color fading in petals. The change in DvFNS expression in young unexpanded leaves of relatively high-sensitive plants was significantly higher than that of low-sensitive plants before and after treatment under inductive conditions. In conclusion, low-temperature-inducible changes in the flavonoid accumulation in petals was suggested to reflect a change in DvFNS expression occurring in the meristem prior to flower bud formation. This temporal DvFNS expression in young unexpanded leaves of ‘Nessho’ dahlia could be an insight for the selection and breeding of non-color fading plants.
en-copyright=
kn-copyright=
en-aut-name=K. MuthamiaEdna
en-aut-sei=K. Muthamia
en-aut-mei=Edna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoKoji
en-aut-sei=Naito
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaHiromasa
en-aut-sei=Okada
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KarasawaYukino
en-aut-sei=Karasawa
en-aut-mei=Yukino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KikumuraTokuyu
en-aut-sei=Kikumura
en-aut-mei=Tokuyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaraTakuya
en-aut-sei=Nara
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamauzuYasunori
en-aut-sei=Hamauzu
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasubaKen-ichiro
en-aut-sei=Yasuba
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitamuraYoshikuni
en-aut-sei=Kitamura
en-aut-mei=Yoshikuni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GotoTanjuro
en-aut-sei=Goto
en-aut-mei=Tanjuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=6
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=anthocyanin
kn-keyword=anthocyanin
en-keyword=dahlia
kn-keyword=dahlia
en-keyword=flavone synthase
kn-keyword=flavone synthase
en-keyword=seasonal color fading
kn-keyword=seasonal color fading
en-keyword=young unexpanded leaves
kn-keyword=young unexpanded leaves
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=120296
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications.
en-copyright=
kn-copyright=
en-aut-name=KimuraRyota
en-aut-sei=Kimura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ferr?-PujolPilar
en-aut-sei=Ferr?-Pujol
en-aut-mei=Pilar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Virus adsorption
kn-keyword=Virus adsorption
en-keyword=Dye adsorption
kn-keyword=Dye adsorption
en-keyword=Cationic polymer composites
kn-keyword=Cationic polymer composites
en-keyword=Adsorbent
kn-keyword=Adsorbent
en-keyword=Aggregation
kn-keyword=Aggregation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and ??900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was?0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at ? 900 HU had a maximum difference between facilities of?>?5%, and the dose difference corresponding to an LN-300 lung CT value difference of?>?20 HU was?>?1% at a field size of 2?×?2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.
en-copyright=
kn-copyright=
en-aut-name=NomuraMia
en-aut-sei=Nomura
en-aut-mei=Mia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoShunsuke
en-aut-sei=Goto
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaMizuki
en-aut-sei=Yoshioka
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYuiko
en-aut-sei=Kato
en-aut-mei=Yuiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsunodaAyaka
en-aut-sei=Tsunoda
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiokaKunio
en-aut-sei=Nishioka
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Dose calculation
kn-keyword=Dose calculation
en-keyword=Inter-facility variation
kn-keyword=Inter-facility variation
en-keyword=Low-density regions
kn-keyword=Low-density regions
en-keyword=Percentage depth dose
kn-keyword=Percentage depth dose
en-keyword=Radiation therapy planning system
kn-keyword=Radiation therapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=213
end-page=231
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RKPM: Restricted Kernel Page Mechanism to?Mitigate Privilege Escalation Attacks
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Kernel memory corruption attacks against operating systems exploit kernel vulnerabilities to overwrite kernel data. Kernel address space layout randomization makes it difficult to identify kernel data by randomizing their virtual address space. Control flow integrity (CFI) prevents unauthorized kernel code execution by verifying kernel function calls. However, these countermeasures do not prohibit writing to kernel data. If the virtual address of privileged information is specified and CFI is circumvented, the privileged information can be modified by a kernel memory corruption attack. In this paper, we propose a restricted kernel page mechanism (RKPM) to mitigate kernel memory corruption attacks by introducing restricted kernel pages to protect the kernel data specified in the kernel. The RKPM focuses on the fact that kernel memory corruption attacks attempt to read the virtual addresses around the privileged information. The RKPM adopts page table mapping handling and a memory protection key to control the read and write restrictions of the restricted kernel pages. This allows us to mitigate kernel memory corruption attacks by capturing reads to the restricted kernel page before the privileged information is overwritten. As an evaluation of the RKPM, we confirmed that it can mitigate privilege escalation attacks on the latest Linux kernel. We also measured that there was a certain overhead in the kernel performance. This study enhances kernel security by mitigating privilege escalation attacks through the use of software or hardware based restricted kernel pages.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=66
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=kdMonitor: Kernel Data Monitor for Detecting Kernel Memory Corruption
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Privilege escalation attacks through memory corruption via kernel vulnerabilities pose significant threats to operating systems. Although the extended Berkley Packet Filter has been employed to trace kernel code execution by inserting interrupts before and after kernel code invocations, it does not track operations before and after kernel data writes, thus hindering effective kernel data monitoring. In this study, we introduce a kernel data monitor (kdMonitor), which is a novel security mechanism designed to detect unauthorized alterations in the monitored kernel data of a dedicated kernel page. The kdMonitor incorporates two distinct methods. The first is periodic monitoring which regularly outputs the monitored kernel data of the dedicated kernel pages. The second is dynamic monitoring, which restricts write access to a dedicated kernel page, supplements any write operations with page faults, and outputs the monitored kernel data of dedicated kernel pages. kdMonitor enables real-time tracking of specified kernel data of the dedicated kernel page residing in the kernel's virtual memory space from the separated machine. Using kdMonitor, we demonstrated its capability to pinpoint tampering with user process privileged information stemming from privilege escalation attacks on the kernel. Through an empirical evaluation, we validated the effectiveness of kdMonitor in detecting privilege escalation attacks by user processes on Linux. Performance assessments revealed that kdMonitor achieved an attack detection time of 0.83 seconds with an overhead of 0.726 %.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Okayama University,Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vulnerability countermeasure
kn-keyword=Vulnerability countermeasure
en-keyword=Operating system security
kn-keyword=Operating system security
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=222
end-page=234
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=vkTracer: Vulnerable Kernel Code Tracing to?Generate Profile of?Kernel Vulnerability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Vulnerable kernel codes are a threat to an operating system kernel. An adversary’s user process can forcefully invoke a vulnerable kernel code to cause privilege escalation or denial of service (DoS). Although service providers or security operators have to determine the effect of kernel vulnerabilities on their environment to decide the kernel updating, the list of vulnerable kernel codes are not provided from the common vulnerabilities and exposures (CVE) report. It is difficult to identify the vulnerable kernel codes from the exploitation result of the kernel which indicates the account information or the kernel suspension. To identify the details of kernel vulnerabilities, this study proposes a vulnerable kernel code tracer (vkTracer), which employs an alternative viewpoint using proof-of-concept (PoC) code to create a profile of kernel vulnerability. vkTracer traces the user process of the PoC code and the running kernel to hook the invocation of the vulnerable kernel codes. Moreover, vkTracer extracts the whole kernel component’s information using the running and static kernel image and debug section. The evaluation results indicated that vkTracer could trace PoC code executions (e.g., privilege escalation and DoS), identify vulnerable kernel codes, and generate kernel vulnerability profiles. Furthermore, the implementation of vkTracer revealed that the identification overhead ranged from 5.2683 s to 5.2728 s on the PoC codes and the acceptable system call latency was 3.7197 μs.
en-copyright=
kn-copyright=
en-aut-name=KuzunoHiroki
en-aut-sei=Kuzuno
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kobe University
kn-affil=
affil-num=2
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Kernel vulnerability
kn-keyword=Kernel vulnerability
en-keyword=Dynamic analysis
kn-keyword=Dynamic analysis
en-keyword=System security
kn-keyword=System security
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=63
end-page=69
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Case Study on Additional Tax for Non-Tax Return: On the subject of the Supreme Court's September 21, 2006 decision
kn-title=無申告加算税に関するケーススタディ―最高裁平成18 年9月21 日決定を題材に―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FukeHiroyuki
en-aut-sei=Fuke
en-aut-mei=Hiroyuki
kn-aut-name=普家弘行
kn-aut-sei=普家
kn-aut-mei=弘行
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=62
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Anticompetitive Exclusive Contracts with Complementary Inputs: A Case of Horizontally Differentiated Products
kn-title=補完財供給企業存在時の反競争的な排他条件付取引契約―水平的差別化財のケース―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This study constructs a model of anticompetitive exclusive dealing in the presence of complementary inputs. Kitamura, Matsushima, and Sato (2018) analyze the situation where a downstream firm transforms multiple complementary inputs into final products. When complementary input suppliers have market power, the inefficient incumbent supplier can deter socially efficient entry by using exclusive contracts. This study applies the analysis from Kitamura, Matsushima, and Sato (2018) to examine a situation where the potential entrant produces horizontally differentiated products and demonstrates the feasibility of anticompetitive exclusive dealing.
en-copyright=
kn-copyright=
en-aut-name=SatoMisato
en-aut-sei=Sato
en-aut-mei=Misato
kn-aut-name=佐藤美里
kn-aut-sei=佐藤
kn-aut-mei=美里
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学学術研究院社会文化科学学域(経済)
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=50
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=A New Approach to Economic Ripple Effects in Regional Input-Output Tables
kn-title=地域産業連関表における経済波及効果のNew Approach
en-subtitle=
kn-subtitle=
en-abstract= This paper first addresses the concept of economic ripple effects, highlighting that simulation results based on input-output tables often lead to overestimations. The primary reason for this overestimation lies in a misunderstanding of the underlying assumptions that generate ripple effects. Specifically, household consumption within a given region merely represents a transfer of money rather than a genuine economic impact. In principle, ripple effects should be understood as additional consumption resulting from increased income. In the absence of income growth, such effects largely represent consumption substitution or intertemporal shifts in spending. Furthermore, what is commonly referred to as “economic impact” is typically calculated as the cumulative total of sales revenue, which aggregates all monetary transactions indiscriminately. This approach differs from the concept of value-added effects, or income effects, which cannot exceed the initial inflow of money from outside the region. One of the factors contributing to these misinterpretations is the insufficient education on input-output analysis at universities. Additionally, computational tools provided by think tanks and public institutions for estimating ripple effects also present methodological issues. To address these challenges, this paper further refines a model previously proposed by the author that visualizes the ripple effect process. The study demonstrates, using real-world examples, the process of constructing ex-post input-output tables following exogenous impacts such as events. In particular, the paper introduces a “partially non-competitive import type” input structure as an alternative to the conventional competitive import-type input-output tables, which tend to overestimate the effects of changes in self-sufficiency rates. This new approach offers a more accurate framework for analyzing economic impacts.
kn-abstract= 本稿では,まず経済波及効果の考え方について,産業連関表を用いたシミュレーションの結果が,しばしば過大評価になっていることを述べる。その理由として,経済波及効果をもたらす前提条件の考え方にしばしば誤解があることを指摘する。域内の居住者の消費はマネーの移転であり,真の経済効果ではない。波及効果とは,本来,所得が増えた結果の追加消費であって,所得が増えない状況では,代替消費や消費の先取りに過ぎないのである。また,一般にいう経済効果とは,売上高の積み上げであって同じマネーが何でも加算されているものであり,付加価値効果すなわち所得効果とは異なる。付加価値効果は,当初の域外から入ってきたマネー以上にはならない。こういった解釈の誤謬をもたらしているのは,大学での産業連関分析の教育が十分でないことも原因の1つであるが,シンクタンクや公的機関などで提供されている波及効果の計算ツールにも問題がある。そこで本稿では,これまで筆者が提唱してきた波及効果プロセスを見える化するモデルを更に精緻化し,イベントなど外生的インパクトが発生した後の事後的な産業連関表を構築する流れに関して実例を用いて説明を行う。特に自給率の変化の効果については,これまでの競争移入型連関表では効果が過大傾向になる問題点を解消するべく,「部分非競争移入型」の投入構造を提案し,新たな分析方法を提案する。
en-copyright=
kn-copyright=
en-aut-name=NakamuraRyohei
en-aut-sei=Nakamura
en-aut-mei=Ryohei
kn-aut-name=中村良平
kn-aut-sei=中村
kn-aut-mei=良平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=33
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Market Reactions to Earnings Announcements in Profitable and Loss Firm-Quarters: Changes Around the Market Restructuring
kn-title=黒字企業と赤字企業における決算発表に対する市場の反応―市場区分変更前後における分析―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of this paper is to examine whether the market reaction to earnings announcements in each market segment (prime market segment, standard market segment, and growth market segment) differs between profitable and loss-making firms around the time of market restructuring. We have previously studied market reactions to quarterly earnings announcements in the context of the revision of market segmentation at the Tokyo Stock Exchange. However, we have not studied the differences between profitable firm quarters and loss firm quarters. Therefore, the analysis in this paper focuses on whether the net income attributable to owners of the parent is positive or negative. In the growth market segment, significant differences between profitable and loss-making firms were observed in the results of the analysis.
en-copyright=
kn-copyright=
en-aut-name=NakagawaToyotaka
en-aut-sei=Nakagawa
en-aut-mei=Toyotaka
kn-aut-name=中川豊隆
kn-aut-sei=中川
kn-aut-mei=豊隆
aut-affil-num=1
ORCID=
en-aut-name=YamanishiYuki
en-aut-sei=Yamanishi
en-aut-mei=Yuki
kn-aut-name=山西佑季
kn-aut-sei=山西
kn-aut-mei=佑季
aut-affil-num=2
ORCID=
en-aut-name=KobayashiHiroaki
en-aut-sei=Kobayashi
en-aut-mei=Hiroaki
kn-aut-name=小林裕明
kn-aut-sei=小林
kn-aut-mei=裕明
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=熊本県立大学総合管理学部
affil-num=3
en-affil=
kn-affil=青山学院大学大学院会計プロフェッション研究科
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Re-Thinking the Locus of Innovation
kn-title=イノベーションの発生源研究の再検討
en-subtitle=
kn-subtitle=
en-abstract= This study aims to theoretically examine prior research on the locus of innovation, with a particular focus on clarifying "when," "where," and "by whom" innovation is generated. The analysis reveals that in the context of B to B (Industrial Goods) , the shift of innovation sources toward enterprise users has been explained from the perspective of economic rationality, incorporating multiple factors such as transaction cost, expected innovation rents, sticky information, internal capabilities (Absorptive Capacity) , and external industrial structures (Product Architecture, Ecosystem) . In contrast, in the B to C context (Consumer Goods) , end users pursue innovation for a wide variety of reasons, including manufacturers' lack of responsiveness to niche markets, the enjoyment of creative activity, connection with user communities, and personal growth. Among these, the enjoyment derived from creative activity has deemed to be identified as one of the most fundamental motivational factors. However, the methodological articulation of such psychological factors is not enough. Leaving the psychological drivers behind innovation as a black box is not merely a matter of academic curiosity but presents a significant challenge for management studies as a social science. This is because management is always purposive attempts for directing and controlling the process of value creation and sometimes psychological exaltation, which may be recently called 'flow' experience, may conflict such attempts. In future research on the locus of innovation, it is essential to focus on these psychological aspects of individual innovator and to develop new research approaches. First, it has a room for further elucidation of the mechanisms by which positive emotions contribute to innovation, but this challenge is hardly easy to overcome. Since creativity is essentially a construct of the individual level and innovation is not, the argument of balancing the entrepreneurial motivational drivers and the managerial direction and control of creative destruction needs to be mediated by meso-level constructs. In our prospect, such concepts as underdeveloped ecosystem on the supply side and immature connoisseur on the side of consumers may be promising. Another concern is the generally limited sample size of creative minds. The existent research tactics that have been found in our neighboring disciplines sharing the same problem as ours, either qualitative or quantitative, may provide us with methodical benchmarks.
kn-abstract= 本論文は,イノベーションの発生源に関する先行研究を振り返り,「いつ」「どこで」「誰によって」イノベーションが生み出されるのかを理論的に考察することを目的とする。考察の結果,「B to B」の文脈においては,イノベーションの発生源が企業ユーザーへ移行するメカニズムとして,取引コスト理論,期待利益仮説,情報粘着性の仮説,企業内部の独自能力(吸収能力),および外部の産業構造(製品アーキテクチャ・エコシステム)といった複数の要素からなる経済的合理性の観点から分析されていることが明らかになった。一方,「B to C」の文脈では,エンドユーザーがイノベーションに向かう動機として,「ニッチ市場に対するメーカーの消極的な対応」「創造的活動の楽しさ」「ユーザーコミュニティとの繋がり」「知識・スキルの向上」など多種多様な要素が存在し,中でも創造的活動の楽しさが根源的な動機づけの1つであると確認された。一方で,イノベーターを突き動かす心理的要因をブラックボックス化したまま放置することは,単なる知的好奇心の問題に留まらず,社会科学としての経営学にとっても重要な問題であると考えられる。今後のイノベーションの発生源研究においては,起業家をはじめとするイノベーター個人の心理的側面にいかに目を向け,創造的活動におけるポジティブな感情が働くメカニズムをイノベーションの発生メカニズムにいかに位置づけるか,その研究アプローチの提示が求められる。
en-copyright=
kn-copyright=
en-aut-name=HuangQi
en-aut-sei=Huang
en-aut-mei=Qi
kn-aut-name=黄h
kn-aut-sei=黄
kn-aut-mei=h
aut-affil-num=1
ORCID=
en-aut-name=FujiiDaiji
en-aut-sei=Fujii
en-aut-mei=Daiji
kn-aut-name=藤井大児
kn-aut-sei=藤井
kn-aut-mei=大児
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
affil-num=2
en-affil=
kn-affil=岡山大学学術研究院ヘルスシステム統合科学学域
en-keyword=イノベーションの発生源 (Locus of Innovation)
kn-keyword=イノベーションの発生源 (Locus of Innovation)
en-keyword=ユーザーイノベーション (User Innovation)
kn-keyword=ユーザーイノベーション (User Innovation)
en-keyword=経済的合理性 (Economic Rationality)
kn-keyword=経済的合理性 (Economic Rationality)
en-keyword=内発的動機づけ (Intrinsic Motivation)
kn-keyword=内発的動機づけ (Intrinsic Motivation)
en-keyword=フロー体験 (Flow Experience)
kn-keyword=フロー体験 (Flow Experience)
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=14
article-no=
start-page=6927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling.
en-copyright=
kn-copyright=
en-aut-name=ItohYoshihiko
en-aut-sei=Itoh
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiKenichi
en-aut-sei=Inagaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TerasakaTomohiro
en-aut-sei=Terasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimotoEisaku
en-aut-sei=Morimoto
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakahiro
en-aut-sei=Ishii
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKimitomo
en-aut-sei=Yamaoka
en-aut-mei=Kimitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaSatoshi
en-aut-sei=Fujisawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tyrosine kinase inhibitor
kn-keyword=tyrosine kinase inhibitor
en-keyword=multiple endocrine neoplasia type 2
kn-keyword=multiple endocrine neoplasia type 2
en-keyword=paraganglioma
kn-keyword=paraganglioma
en-keyword=RET
kn-keyword=RET
en-keyword=ERK
kn-keyword=ERK
en-keyword=AKT
kn-keyword=AKT
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=7
article-no=
start-page=319
end-page=325
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nationwide Survey of Middle Meningeal Artery Embolization for Chronic Subdural Hematoma in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Middle meningeal artery embolization has increasingly been used to treat chronic subdural hematoma. However, the current state of its application and outcomes in Japan remains unclear. We conducted a multicenter observational study involving facilities affiliated with the Japanese Society for Neuroendovascular Therapy to assess current practices and clarify the usefulness and safety of middle meningeal artery embolization for chronic subdural hematoma. A total of 466 patients from 40 facilities were included. The mean age of the patients was 78.0 ± 10.5 years, and bleeding risks, including antithrombotic therapy or bleeding predisposition, were present in 36.1% of patients. The most common timing for middle meningeal artery embolization was after the second burr hole surgery, accounting for 34.8% of cases. N-butyl-2-cyanoacrylate was used as the embolic material in 67% of cases. The complication rate was 5.2%, with complication-related morbidity at 0.9%. Hematomas were stable in 91.5% of cases at 30 days post-middle meningeal artery embolization. The symptomatic recurrence rate was 8.9%. Cases that underwent middle meningeal artery embolization after the second or subsequent burr hole surgeries were significantly associated with symptomatic recurrence. This study is the first nationwide survey investigating the real-world clinical practice of middle meningeal artery embolization for chronic subdural hematoma in Japan. While it included many elderly patients, recurrent cases, and those with bleeding risks, the safety and usefulness of middle meningeal artery embolization were deemed acceptable. However, symptomatic recurrence was common even in cases with middle meningeal artery embolization when performed after the second or subsequent burr hole surgeries. A further prospective study will be warranted to clarify treatment indications, optimal timing, and treatment techniques of middle meningeal artery embolization.
en-copyright=
kn-copyright=
en-aut-name=MURAISatoshi
en-aut-sei=MURAI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EBISUDANIYuki
en-aut-sei=EBISUDANI
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HARUMAJun
en-aut-sei=HARUMA
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HIRAMATSUMasafumi
en-aut-sei=HIRAMATSU
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HISHIKAWATomohito
en-aut-sei=HISHIKAWA
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SATOWTetsu
en-aut-sei=SATOW
en-aut-mei=Tetsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SUGIUKenji
en-aut-sei=SUGIU
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery/Stroke Center, Kindai University Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic subdural hematoma
kn-keyword=chronic subdural hematoma
en-keyword=endovascular therapy
kn-keyword=endovascular therapy
en-keyword=middle meningeal artery
kn-keyword=middle meningeal artery
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=115
end-page=119
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Safety of Adenosine-assisted Clipping Surgery for Unruptured Cerebral Aneurysms: Interim Results of a Single-center, Single-arm Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this single-center, single-arm study was to evaluate the safety of adenosine-assisted clipping surgery for unruptured cerebral aneurysms. Five patients underwent aneurysmal clipping during adenosine-induced hypotension at ?60 mmHg. The mean age of patients was 63.4±8.5 years, and the mean aneurysm size was 5.3±1.1 mm. The prevalence of patients with modified Rankin Scale scores of zero 30 days after surgery was 100%. The degree of aneurysm obliteration was complete in 4 patients and residual dome in 1 patient. The mean total dosage of adenosine was 37.4±18.8 mg. The mean duration of systolic blood pressure at ?60 mmHg was 64.2±28.3 secs. No patients exhibited paroxysmal atrial fibrillation within 24 hours after adenosine administration or elevation of high-sensitivity cardiac troponin T on postoperative day 1. There was no reduction in either motor-evoked or somatosensory-evoked potential amplitude during surgery. Adenosine-induced hypotension is a safe procedure in clipping surgery for unruptured cerebral aneurysms.
en-copyright=
kn-copyright=
en-aut-name=HISHIKAWATomohito
en-aut-sei=HISHIKAWA
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MURAISatoshi
en-aut-sei=MURAI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HIRAMATSUMasafumi
en-aut-sei=HIRAMATSU
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HARUMAJun
en-aut-sei=HARUMA
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EBISUDANIYuki
en-aut-sei=EBISUDANI
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YASUHARATakao
en-aut-sei=YASUHARA
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SUGIUKenji
en-aut-sei=SUGIU
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SHIMIZUKazuyoshi
en-aut-sei=SHIMIZU
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NAKAGAWAKoji
en-aut-sei=NAKAGAWA
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KIMURA-ONOAya
en-aut-sei=KIMURA-ONO
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HOTTAKatsuyuki
en-aut-sei=HOTTA
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MORIMATSUHiroshi
en-aut-sei=MORIMATSU
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DATEIsao
en-aut-sei=DATE
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=adenosine
kn-keyword=adenosine
en-keyword=clipping
kn-keyword=clipping
en-keyword=safety
kn-keyword=safety
en-keyword=unruptured cerebral aneurysm
kn-keyword=unruptured cerebral aneurysm
END
start-ver=1.4
cd-journal=joma
no-vol=351
cd-vols=
no-issue=
article-no=
start-page=199522
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism.
en-copyright=
kn-copyright=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujitaMiki
en-aut-sei=Fujita
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TelengechPaul
en-aut-sei=Telengech
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamKazuyuki
en-aut-sei=Maruyam
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TassiAline Daniele
en-aut-sei=Tassi
en-aut-mei=Aline Daniele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchoaRonald
en-aut-sei=Ochoa
en-aut-mei=Ronald
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AndikaIda Bagus
en-aut-sei=Andika
en-aut-mei=Ida Bagus
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=6
en-affil=Tropical Research and Education Center, University of Florida
kn-affil=
affil-num=7
en-affil=Systematic Entomology Laboratory, USDA
kn-affil=
affil-num=8
en-affil=College of Plant Protection, Northwest A&F University
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhabdovirus
kn-keyword=Rhabdovirus
en-keyword=Plant
kn-keyword=Plant
en-keyword=Mite
kn-keyword=Mite
en-keyword=Vector
kn-keyword=Vector
en-keyword=Replication
kn-keyword=Replication
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Small RNA
kn-keyword=Small RNA
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=ncaf080
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy.
en-copyright=
kn-copyright=
en-aut-name=MaedaTakahiko
en-aut-sei=Maeda
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraMakoto
en-aut-sei=Hara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamasakiHiroyuki
en-aut-sei=Yamasaki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaMakoto
en-aut-sei=Nakahara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
END