start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=1
article-no=
start-page=46
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251009
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Highly efficient transgenesis mediated by Tip100 transposon system in medaka
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transgenesis mediated by transposon is an effective approach for introducing exogenous DNA into the nuclear genome and establishing stable transgenic strains that efficiently express genetic tools. Although the DNA transposon Tol2 is widely used for transgenesis in zebrafish, its endogenous transpositional activity can lead to unintended transgene mobilization, making it unsuitable for transgenesis in medaka (Oryzias latipes). Here, we demonstrated that the DNA transposon Tip100, originally identified in the common morning glory (Ipomoea purpurea), an ornamental plant, can serve as a useful tool for transgenesis in Japanese medaka. The GFP transgene cassette, when co-injected with Tip100 transposase mRNA, was expressed in significantly higher number of somatic cells in the injected fish. Furthermore, a transgene flanked by truncated recognition sequences (100 bp each) exhibited expression levels comparable to those of the original vector containing the full 2.2 kb recognition sequence. Injection of a transgene driven by a germline-specific promoter revealed that fish injected with Tip100 mRNA exhibited a significantly higher germline transmission rate (42/68; 62.7%) compared to those injected without the mRNA (13/62; 21.0%). We successfully established transgenic strains by outcrossing injected founders with GFP-positive germ cells (7/7; 100%) and demonstrated that the transgenes were randomly integrated into the medaka genome, generating 8-bp duplications at the insertional sites–an insertional signature of the hAT superfamily of transposons. Our findings indicate that the Tip100 system is a promising tool for generating stable transgenic strains that express various genetic tools in medaka and potentially other fish species.
en-copyright=
kn-copyright=
en-aut-name=TanakaYoshitaka
en-aut-sei=Tanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoshinoAtsushi
en-aut-sei=Hoshino
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
affil-num=2
en-affil=Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=National Institute for Basic Biology
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
en-keyword=Fish
kn-keyword=Fish
en-keyword=Medaka
kn-keyword=Medaka
en-keyword=Morning glory
kn-keyword=Morning glory
en-keyword=Transgenic
kn-keyword=Transgenic
en-keyword=Transposon
kn-keyword=Transposon
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=1
article-no=
start-page=468
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The safety and efficacy of finasteride for transgender men with androgenetic alopecia: a case series
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Testosterone replacement therapy is commonly used in transgender men for masculinization. One of the most common adverse effects of testosterone replacement therapy is androgenetic alopecia. In Japan, finasteride is approved exclusively for cisgender men and is not indicated for transgender men. The aim of this clinical trial was to evaluate the safety and efficacy of finasteride in transgender men with androgenetic alopecia.
Case presentation This study included three transgender men (assigned female at birth, identifying as male), aged 44, 43, and 29 years. All participants were of Asian ethnicity. A clinical trial was conducted from October 2021 to December 2023. Transgender men aged 20–60 years who had not undergone hysterectomy, were undergoing testosterone replacement therapy, and who had been diagnosed with stage ≥ II androgenetic alopecia on the basis of the Norwood–Hamilton scale were recruited. The participants initiated treatment with 0.2 mg of finasteride per day for 3 months (phase 1). If no adverse events above grade 2 occurred, the dose was increased to 1.0 mg per day for an additional 3 months (phase 2). The primary endpoints were the incidence of treatment-related adverse events at 1 week, 1 month, and 3 months, as well as the rate of participants continuing treatment at 3 months. None of the patients experienced serious adverse events at 3 months, and all the patients extended their treatment to a total of 6 months. Improvements of at least one stage on the N–H scale were observed, but two participants experienced resumption of menstruation.
Conclusion Finasteride appears to be a safe and effective treatment for androgenetic alopecia in transgender men undergoing testosterone replacement therapy. However, its potential for reducing some of the effects of testosterone replacement therapy warrants further investigation. Trial registration: jRCT, jRCTs061210040, registered 7 October 2021, https://jrct.mhlw.go.jp/latest-detail/jRCTs061210040.
en-copyright=
kn-copyright=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoYuko
en-aut-sei=Matsumoto
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakoTomoko
en-aut-sei=Sako
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriwakeTakatoshi
en-aut-sei=Moriwake
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriiSatoshi
en-aut-sei=Horii
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Center for Innovative Clinical Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Finasteride
kn-keyword=Finasteride
en-keyword=Dihydrotestosterone
kn-keyword=Dihydrotestosterone
en-keyword=Transgender men
kn-keyword=Transgender men
en-keyword= Androgenetic alopecia
kn-keyword= Androgenetic alopecia
en-keyword=Resumption of menstruation
kn-keyword=Resumption of menstruation
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=399
end-page=404
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Epstein-Barr Virus-Associated Early Gastric Carcinoma with Lymphoid Stroma Mimicking a Submucosal Tumor: A Typical Case Diagnosed by Endoscopic Resection and Treated by Local Resection with Sentinel Node Navigation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gastric cancer with lymphoid stroma (GCLS) accounts for 1%-7% of gastric cancers; ~80% are Epstein-Barr virus (EBV)-positive. The rate of lymph node metastasis is relatively low, even when an early GCLS has invaded the submucosa. We report an early GCLS with massive submucosal invasion mimicking a submucosal tumor (SMT), diagnosed by endoscopic submucosal resection (ESD) and treated with local resection and sentinel node navigation surgery (SNNS). The patient was a 40-year-old Japanese man. A protruding lesion on the greater curvature of the middle part of his stomach was detected by X-ray, and an endoscopic examination revealed a 2.5-cm protruding tumor covered with a normal mucosa and small ulcers at the apex. ESD was performed for a diagnosis. The pathological diagnosis was lymphoepithelioma-like gastric cancer (GCLS), pT1b(SM2), Ly0, V0, pHM1, pVM1. EBV infection in the cancer cells was confirmed pathologically by EBV-encoded RNA. The local resection was performed using SNNS. The patient has had no recurrence or post-gastrectomy syndrome 4 years postsurgery. EBV-associated early GCLS resembling an SMT is relatively rare, and clinicians need to be aware of this disease. Local resection using SNNS may be a surgical option for GCLS cases with a low rate of lymphatic metastasis.
en-copyright=
kn-copyright=
en-aut-name=IsozakiHiroshi
en-aut-sei=Isozaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoSasau
en-aut-sei=Matsumoto
en-aut-mei=Sasau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakamaTakehiro
en-aut-sei=Takama
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IsozakiYuka
en-aut-sei=Isozaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShigeki
en-aut-sei=Murakami
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=2
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=5
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=gastric cancer with lymphoid stroma
kn-keyword=gastric cancer with lymphoid stroma
en-keyword=lymphoepithelioma-like carcinoma
kn-keyword=lymphoepithelioma-like carcinoma
en-keyword=Epstein Barr virus
kn-keyword=Epstein Barr virus
en-keyword=sentinel node navigation surgery
kn-keyword=sentinel node navigation surgery
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=381
end-page=385
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immunoglobulin G4-related Disease Mimicking Portal Vein Tumor Thrombus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report the case of a 72-year-old Japanese man with an incidental portal vein mass that was surgically resected and diagnosed as immunoglobulin G4 (IgG4)-related disease. The mass was discovered during an atrial fibrillation examination. The patient had a history of gastric cancer and was also diagnosed with rectal cancer, raising concerns about metastasis. Due to technical challenges, a biopsy was not feasible. Imaging findings suggested portal vein tumor thrombosis, complicating the diagnosis. This case highlights a rare presentation of IgG4-related disease mimicking portal vein tumor thrombus.
en-copyright=
kn-copyright=
en-aut-name=SakuraiAtsunobu
en-aut-sei=Sakurai
en-aut-mei=Atsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YabukiTakayuki
en-aut-sei=Yabuki
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IsekiAkiko
en-aut-sei=Iseki
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Radiology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=2
en-affil=Department of Radiology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, NHO Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, NHO Iwakuni Clinical Center
kn-affil=
en-keyword=immunoglobulin G4-related disease
kn-keyword=immunoglobulin G4-related disease
en-keyword=inflammatory pseudotumor
kn-keyword=inflammatory pseudotumor
en-keyword=mass
kn-keyword=mass
en-keyword=portal vein
kn-keyword=portal vein
en-keyword=pericarditis
kn-keyword=pericarditis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=369
end-page=379
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Blood Pressure and Heart Rate Patterns Identified by Unsupervised Machine Learning and Their Associations with Subclinical Cerebral and Renal Damage in a Japanese Community: The Masuda Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We applied unsupervised machine learning to analyze blood pressure (BP) and resting heart rate (HR) patterns measured during a 1-year period to assess their cross-sectional relationships with subclinical cerebral and renal target damage. Dimension reduction via uniform manifold approximation and projection, followed by K-means++ clustering, was used to categorize 362 community-dwelling participants (mean age, 56.2 years; 54.9% women) into three groups: Low BP and Low HR (Lo-BP/Lo-HR), High BP and High HR (Hi-BP/Hi-HR), and Low BP and High HR (Lo-BP/Hi-HR). Cerebral vessel lesions were defined as the presence of at least one of the following magnetic resonance imaging findings: lacunar infarcts, white matter hyperintensities, cerebral microbleeds, or intracranial artery stenosis. A high urinary albumin-to-creatinine ratio (UACR) was defined as the top 10% (≥ 12 mg/g) of the mean value from ≥2 measurements. Poisson regression with robust error variance, adjusted for demographics, lifestyle, and medical history, showed that the Hi-BP/Hi-HR group had relative risks of 3.62 (95% confidence interval, 1.75-7.46) for cerebral vessel lesions and 3.58 (1.33-9.67) for high UACR, and the Lo-BP/Hi-HR group had a relative risk of 3.09 (1.12-8.57) for high UACR, compared with the Lo-BP/Lo-HR group. These findings demonstrate the utility of an unsupervised, data-driven approach for identifying physiological patterns associated with subclinical target organ damage.
en-copyright=
kn-copyright=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MunetomoSosuke
en-aut-sei=Munetomo
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniguchiKaori
en-aut-sei=Taniguchi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakahataNoriko
en-aut-sei=Nakahata
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine
kn-affil=
affil-num=7
en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition
kn-affil=
affil-num=8
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood pressure
kn-keyword=blood pressure
en-keyword=heart rate
kn-keyword=heart rate
en-keyword=subclinical disease
kn-keyword=subclinical disease
en-keyword=uniform manifold approximation and projection
kn-keyword=uniform manifold approximation and projection
en-keyword=unsupervised machine learning
kn-keyword=unsupervised machine learning
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=353
end-page=358
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of Extraocular Muscles in Patients with Exotropia and Healthy Participants Using Anterior Segment Optical Coherence Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To analyze and characterize the medial and lateral rectus muscles in patients with exotropia using anterior segment optical coherence tomography (AS-OCT). This study included 24 patients with exotropia (48 eyes) and 25 healthy individuals (50 eyes). Anterior segment optical coherence tomography was used to construct the en face images. The anterior chamber angle to the extraocular muscle insertion distance, muscle width, and muscle fiber angle from the muscle insertion sites were compared between the exotropia and the control groups. The correlation between these parameters and age or angle of deviation was evaluated. The mean ages were 13.2±4.1 years for the exotropia group and 17.6±7.2 years for the control group. The lateral rectus angle was significantly more inwardly rotated in the exotropia group than in the control group (1.6±6.3°, −1.4±4.0°, p=0.014). With increasing angle of deviation, the width of the lateral rectus increased (p=0.002). Our results indicate that the lateral rectus angle is significantly more inwardly rotated in patients with exotropia. These findings should contribute to a deeper understanding of the extraocular muscles in patients with this condition.
en-copyright=
kn-copyright=
en-aut-name=ChiharaYuki
en-aut-sei=Chihara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamasakiIchiro
en-aut-sei=Hamasaki
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataKiyo
en-aut-sei=Shibata
en-aut-mei=Kiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorisawaShin
en-aut-sei=Morisawa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonoReika
en-aut-sei=Kono
en-aut-mei=Reika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanenagaKeisuke
en-aut-sei=Kanenaga
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=exotropia
kn-keyword=exotropia
en-keyword=AS-OCT
kn-keyword=AS-OCT
en-keyword=anterior chamber angle to extraocular muscle insertion distance
kn-keyword=anterior chamber angle to extraocular muscle insertion distance
en-keyword=muscle width
kn-keyword=muscle width
en-keyword=muscle fiber angle
kn-keyword=muscle fiber angle
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=345
end-page=352
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibition of Air-Exposure Stress–Induced Autolysis in Clostridium perfringens by Zn2+
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Clostridium perfringens is a pathogenic anaerobe that causes gas gangrene and food poisoning. Although autolysin-mediated reorganization of the bacterial cell wall is crucial for cell division, excessive autolysin activity induced by stressors can lead to cell lysis. In C. perfringens, air exposure is a significant stressor that causes cell lysis, and Acp (N-acetylglucosaminidase) is known to be a major autolysin. To further facilitate C. perfringens research, a technology to prevent air-induced cell lysis must be developed. This study investigated the role of Acp in air-induced autolysis and explored potential inhibitors that would prevent cell lysis during experimental procedures. Morphological analyses confirmed that Acp functions as an autolysin in C. perfringens, as acpdeficient strains exhibited filamentous growth. The mutants exhibited negligible autolysis under air-exposure stress, confirming the involvement of Acp in the autolytic process. We also evaluated the effects of various divalent cations on Acp activity in vitro and identified Zn2+ as a potent inhibitor. Brief treatment with a Zn2+- containing buffer induced dose-dependent cell elongation and autolysis inhibition in C. perfringens. These findings demonstrate that simple Zn2+ treatment before experiments stabilizes C. perfringens cells, reducing autolysis under aerobic conditions and facilitating various biological studies, except morphological analyses.
en-copyright=
kn-copyright=
en-aut-name=MatsunagaNozomu
en-aut-sei=Matsunaga
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EgusaSeira
en-aut-sei=Egusa
en-aut-mei=Seira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AonoRiyo
en-aut-sei=Aono
en-aut-mei=Riyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamaiEiji
en-aut-sei=Tamai
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HitusmotoYasuo
en-aut-sei=Hitusmoto
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaSeiichi
en-aut-sei=Katayama
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=2
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=3
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University
kn-affil=
affil-num=5
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=6
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
en-keyword=Clostridium perfringens
kn-keyword=Clostridium perfringens
en-keyword=autolysin
kn-keyword=autolysin
en-keyword=zinc
kn-keyword=zinc
en-keyword=air-exposure autolysis
kn-keyword=air-exposure autolysis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=329
end-page=337
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Status of Extracorporeal Membrane Oxygenation as a Treatment Strategy for Primary Graft Dysfunction after Lung Transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary graft dysfunction (PGD) is one of the major risk factors affecting patients’ short- and long-term survival after lung transplantation. No particular management strategy has been established for PGD; supportive care is the mainstay of PGD treatment. When a supportive strategy fails, the patient may require the introduction of extracorporeal membrane oxygenation (ECMO) as the last-resort measure for severe PGD. A variety of study of ECMO as a PGD treatment was reported and the management of PGD patients developed so far. Early recognition of a patient’s need for ECMO and its prompt initiation are critical to improved outcomes. The use of venovenous-ECMO became the preferred procedure for PGD rather than venoarterial-ECMO. However, the current ECMO strategy has limitations, and using ECMO to manage patients with PGD is not sufficiently effective. Further studies are required to develop this promising technology.
en-copyright=
kn-copyright=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=primary graft dysfunction
kn-keyword=primary graft dysfunction
en-keyword=extracorporeal membrane oxygenation
kn-keyword=extracorporeal membrane oxygenation
en-keyword=ex vivo lung perfusion
kn-keyword=ex vivo lung perfusion
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk Factors for Perioperative Urinary Tract Infection After Living Donor Kidney Transplantation Characterized by High Prevalence of Desensitization Therapy: A Single-Center Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Limited research exists on risk factors for urinary tract infections (UTIs) in kidney transplant recipients, particularly in high-risk groups such as ABO-incompatible or donor-specific antibody (DSA)-positive cases. Early UTIs, especially within the first month post-transplant, impact on acute rejection and long-term graft outcomes, highlighting the need for risk factor identification and management. Methods: Among 157 living donor kidney transplant cases performed at our institution between 2009 and 2024, 128 patients were included after excluding cases with >72 h of perioperative prophylactic antibiotics or urological complications. UTI was defined as the presence of pyuria and a positive urine culture, accompanied by clinical symptoms requiring antibiotic treatment, occurring within one month post-transplantation. Results: The median onset of UTI was postoperative day 8 (interquartile range, IQR: 6.8–9.3). No subsequent acute rejection episodes were observed. The median serum creatinine at 1 month postoperatively was 1.3 mg/dL (IQR: 1.1–1.7), and this was not significantly different from those who did not develop UTI. In univariate analysis, low or high BMI (<20 or >25), longer dialysis duration (>2.5 years), desensitization therapy (plasmapheresis + rituximab), elevated preoperative neutrophil-to-lymphocyte ratio (NLR) (≥3), and longer warm ischemic time (WIT) (≥7.8 min) were significantly associated with an increased infection risk of UTI (p = 0.010, 0.036, 0.028, 0.015, and 0.038, respectively). Multivariate analyses revealed that abnormal BMI, longer dialysis duration, desensitization therapy, and longer WIT were independent risk factors for UTI (p = 0.012, 0.031, 0.008, and 0.033, respectively). The incidence of UTI increased with the number of risk factors: 0% (0/16) for zero, 10% (5/48) for one, 31% (16/51) for two, 45% (5/11) for three, and 100% (2/2) for four risk factors. Conclusions: Desensitization therapy, BMI, dialysis duration, and WIT were identified as independent risk factors for perioperative UTI. In patients with risk factors, additional preventive strategies should be considered, with extended antibiotic prophylaxis being one potential option.
en-copyright=
kn-copyright=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueShota
en-aut-sei=Inoue
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TokunagaMoto
en-aut-sei=Tokunaga
en-aut-mei=Moto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, NHO Okayama Medical Center
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=19
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=living donor kidney transplantation
kn-keyword=living donor kidney transplantation
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=perioperative
kn-keyword=perioperative
en-keyword=desensitization
kn-keyword=desensitization
en-keyword=rituximab
kn-keyword=rituximab
en-keyword=plasmapheresis
kn-keyword=plasmapheresis
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=dialysis duration
kn-keyword=dialysis duration
en-keyword=warm ischemic time
kn-keyword=warm ischemic time
en-keyword=prophylactic antimicrobials
kn-keyword=prophylactic antimicrobials
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=2
article-no=
start-page=1
end-page=13
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advancements in systemic therapy for muscle-invasive bladder cancer: A systematic review from the beginning to the latest updates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Context: Several phase III randomized controlled trials (RCTs) have shown the importance of perioperative systemic therapy, especially for the efficacy of immune checkpoint inhibitors (ICIs) in both neoadjuvant and adjuvant settings for muscle-invasive bladder cancer (MIBC).
Objective: To synthesize the growing evidence on the efficacy and safety of systemic therapies for MIBC utilizing the data from RCTs.
Evidence acquisition: Three databases and ClinicalTrials.gov were searched in October 2024 for eligible RCTs evaluating oncologic outcomes in MIBC patients treated with systemic therapy. We evaluated pathological complete response (pCR), disease-free survival (DFS), progression-free survival (PFS), event-free survival (EFS), overall survival (OS), and adverse events (AEs).
Evidence synthesis: Thirty-three RCTs (including 14 ongoing trials) were included in this systematic review. Neoadjuvant chemotherapy improved OS compared to radical cystectomy alone. Particularly, the VESPER trial demonstrated that dd-MVAC provided oncological benefits over GC alone in terms of pCR rates, OS (HR: 0.71), and PFS (HR: 0.70). Recently, the NIAGARA trial showed that perioperative durvalumab plus GC outperformed GC alone in terms of pCR rates, OS (HR: 0.75), and EFS (HR: 0.68). Despite the lack of data on overall AE rates in the VESPER trial, differential safety profiles in hematologic toxicity were reported between dd-MVAC and durvalumab plus GC regimens. In the adjuvant setting, no study provided the OS benefit from adjuvant chemotherapy. However, only adjuvant nivolumab had significant DFS and OS benefits compared to placebo.
Conclusions: Neoadjuvant chemotherapy remains the current standard of care for MIBC. Durvalumab shed light on the promising impact of ICIs added to neoadjuvant chemotherapy. Nivolumab is the only ICI recommended as adjuvant therapy in patients who harbored adverse pathologic outcomes. Ongoing trials will provide further information on the impact of combination therapy, including chemotherapy, ICIs, and enfortumab vedotin, in both neoadjuvant and adjuvant settings.
en-copyright=
kn-copyright=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeohJeremy Yuen-Chun
en-aut-sei=Teoh
en-aut-mei=Jeremy Yuen-Chun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RajwaPaweł
en-aut-sei=Rajwa
en-aut-mei=Paweł
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=QuhalFahad
en-aut-sei=Quhal
en-aut-mei=Fahad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=PradereBenjamin
en-aut-sei=Pradere
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MoschiniMarco
en-aut-sei=Moschini
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MikiJun
en-aut-sei=Miki
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=8
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=9
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=10
en-affil=Department of Urology, San Raffaele Hospital and Scientific Institute
kn-affil=
affil-num=11
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=12
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=urothelial carcinoma
kn-keyword=urothelial carcinoma
en-keyword=muscle-invasive
kn-keyword=muscle-invasive
en-keyword=neoadjuvant
kn-keyword=neoadjuvant
en-keyword=adjuvant
kn-keyword=adjuvant
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=2787
end-page=2793
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Accuracy of Contrast-enhanced CT in Diagnosing Small-sized cT3a Renal Cell Carcinoma and Analysis of Factors Predicting Downstaging to pT1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: This study assessed the accuracy of preoperative contrast-enhanced computed tomography (CECT) scans in staging small-sized, locally advanced (cT3a) renal cell carcinoma (RCC) and identified predictors of pathological downstaging following surgery.
Patients and Methods: Seventy-six patients who underwent radical nephrectomy for cT3aN0M0 RCC with tumors ≤7 cm were analyzed. Preoperative CECT evaluated features such as venous, peritumoral, or renal sinus fat, and urinary tract invasion, predictive values, and concordance index between radiological and pathological findings were calculated for these categories. The study also examined the impact of clinicopathologic factors on downstaging.
Results: Of 76 patients with cT3 RCC, 37% were down-staged to pT1. Down-staged cases had a higher proportion of male patients and non-clear cell carcinoma (86% vs. 58%, 32% vs. 6%; p=0.02, p=0.007, respectively). Multiple cT3a factors were less common in down-staged cases (4% vs. 23%, p=0.04). Non-clear cell carcinoma was significantly associated with downstaging compared to clear cell carcinoma (75% vs. 30%, p=0.006). Multivariate analysis confirmed non-clear cell carcinoma as an independent predictor (odds ratio=8.2, p=0.01). For venous invasion, CECT sensitivity and positive predictive value were high (73.5% and 83.3%, respectively) and the degree of agreement was substantial (κ=0.62).
Conclusion: The accuracy of preoperative CECT was acceptable for detecting venous invasion. The downstaging to pT1 occurred in 37% of cT3a RCC cases in the final pathology, with non-clear cell carcinoma being a significant predictor.
en-copyright=
kn-copyright=
en-aut-name=BEKKUKENSUKE
en-aut-sei=BEKKU
en-aut-mei=KENSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHINAGAKASUMI
en-aut-sei=YOSHINAGA
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=INOUESHOTA
en-aut-sei=INOUE
en-aut-mei=SHOTA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MITSUIYOSUKE
en-aut-sei=MITSUI
en-aut-mei=YOSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YAMANOITOMOAKI
en-aut-sei=YAMANOI
en-aut-mei=TOMOAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KAWADATATSUSHI
en-aut-sei=KAWADA
en-aut-mei=TATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOMINAGAYUSUKE
en-aut-sei=TOMINAGA
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SADAHIRATAKUYA
en-aut-sei=SADAHIRA
en-aut-mei=TAKUYA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KATAYAMASATOSHI
en-aut-sei=KATAYAMA
en-aut-mei=SATOSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IWATATAKEHIRO
en-aut-sei=IWATA
en-aut-mei=TAKEHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NISHIMURASHINGO
en-aut-sei=NISHIMURA
en-aut-mei=SHINGO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EDAMURAKOHEI
en-aut-sei=EDAMURA
en-aut-mei=KOHEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KOBAYASHITOMOKO
en-aut-sei=KOBAYASHI
en-aut-mei=TOMOKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ARAKIMOTOO
en-aut-sei=ARAKI
en-aut-mei=MOTOO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Contrast‑enhanced CT
kn-keyword=Contrast‑enhanced CT
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=staging
kn-keyword=staging
en-keyword=T3a
kn-keyword=T3a
en-keyword=downstaging
kn-keyword=downstaging
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=20
article-no=
start-page=2979
end-page=2984
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Two Cases of Esophageal Mucosal Damage Observed after Peroral Endoscopic Myotomy for Esophageal Motility Disorders
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This report presents two cases of esophageal mucosal damage following peroral endoscopic myotomy (POEM) for esophageal motility disorders. In the first case, delayed perforation and mediastinitis occurred on postoperative day 15 and the patient was treated with endoscopic clipping and antibiotics. In the second case, although no perforation was observed, extensive mucosal injury developed the day after POEM which was successfully managed by fasting and antibiotic therapy. These findings highlight the need for careful patient management to minimize the risks associated with POEM, while maximizing its therapeutic benefits.
en-copyright=
kn-copyright=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaeHiroyuki
en-aut-sei=Sakae
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ManabeNoriaki
en-aut-sei=Manabe
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=hypercontractile esophagus
kn-keyword=hypercontractile esophagus
en-keyword=jackhammer esophagus
kn-keyword=jackhammer esophagus
en-keyword=peroral endoscopic myotomy
kn-keyword=peroral endoscopic myotomy
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relay Node Selection Methods for UAV Navigation Route Constructions in Wireless Multi-Hop Network Using Smart Meter Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unmanned aerial vehicles (UAVs) offer solutions to issues like traffic congestion and labor shortages. We developed a distributed UAV management system inspired by virtual circuit and datagram methods in packet-switching networks. By installing houses with wireless terminals, UAVs navigate routes in a multi-hop network, communicating with ground nodes. UAVs are treated as network packets, ground devices are treated as routers, and their connections are treated as links. Activating all nodes as relays increases control message traffic and node load. To optimize connectivity, we minimize relay nodes, connecting non-relay nodes to the nearest relay. This study proposes four relay node selection methods: random selection, two adjacency-based methods, and our innovative approach using Multipoint Relay (MPR) from the Optimized Link State Routing Protocol (OLSR). We evaluated these methods according to their route construction success rates, relay node counts, route lengths, and so on. The MPR-based method proved most effective for UAV route construction. However, fewer relay nodes increase link collisions, and we identify the minimum relay density needed to balance efficiency and conflict reduction.
en-copyright=
kn-copyright=
en-aut-name=OhkawaShuto
en-aut-sei=Ohkawa
en-aut-mei=Shuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaKiyoshi
en-aut-sei=Ueda
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiTakumi
en-aut-sei=Miyoshi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamazakiTaku
en-aut-sei=Yamazaki
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoRyo
en-aut-sei=Yamamoto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Nihon University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Nihon University
kn-affil=
affil-num=3
en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology
kn-affil=
affil-num=4
en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology
kn-affil=
affil-num=5
en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=network of wireless devices
kn-keyword=network of wireless devices
en-keyword=UAV delivery
kn-keyword=UAV delivery
en-keyword=ad hoc network
kn-keyword=ad hoc network
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=9
article-no=
start-page=1117
end-page=1125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240622
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Solid-state cultivation of multiple industrial strains of koji mold on different Thai unpolished rice cultivars: biotransformation of phenolic compounds and their effects on antioxidant activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Colored rice is abundant in polyphenols, and koji molds have potential for biotransformation. This study aimed to produce Thai-colored rice koji to study its polyphenolic biotransformation. Four industrial koji mold strains: Aspergillus oryzae 6001, A. oryzae 6020, A. sojae 7009, and A. luchuensis 8035, were cultivated on unpolished Thai-colored rice (Riceberry and Sangyod), unpolished Thai white rice (RD43), and polished Japanese white rice (Koshihikari). We discovered that koji molds grew on all the rice varieties. Methanol extracts of all rice kojis exhibited an approximately 2-fold or greater increase in total phenolic content and DPPH antioxidant activity compared to those of steamed rice. Moreover, quercetin, quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, ferulic acid, caffeic acid, protocatechuic acid, vanillic acid, (+)-catechin, and (–)-epicatechin content increased in Riceberry and Sangyod koji samples. Consequently, Aspergillus solid-state cultivation on unpolished Thai-colored rice exhibited higher functionalization than the cultivation of unpolished Thai white rice and polished Japanese white rice.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=3
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=antioxidant activity
kn-keyword=antioxidant activity
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=polyphenols
kn-keyword=polyphenols
en-keyword=solid-state fermentation
kn-keyword=solid-state fermentation
en-keyword=Thai colored rice
kn-keyword=Thai colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=8
article-no=
start-page=709
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Phrase Fill-in-Blank Problem in a Client-Side Web Programming Assistant System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mastering client-side Web programming is essential for the development of responsive and interactive Web applications. To support novice students’ self-study, in this paper, we propose a novel exercise format called the phrase fill-in-blank problem (PFP) in the Web Programming Learning Assistant System (WPLAS). A PFP instance presents a source code with blanked phrases (a set of elements) and corresponding Web page screenshots. Then, it requests the user to fill in the blanks, and the answers are automatically evaluated through string matching with predefined correct answers. By increasing blanks, PFP can come close to writing a code from scratch. To facilitate scalable and context-aware question creation, we implemented the PFP instance generation algorithm in Python using regular expressions. This approach targets meaningful code segments in HTML, CSS, and JavaScript that reflect the interactive behavior of front-end development. For evaluations, we generated 10 PFP instances for basic Web programming topics and 5 instances for video games and assigned them to students at Okayama University, Japan, and the State Polytechnic of Malang, Indonesia. Their solution results show that most students could solve them correctly, indicating the effectiveness and accessibility of the generated instances. In addition, we investigated the ability of generative AI, specifically ChatGPT, to solve the PFP instances. The results show 86.7% accuracy for basic-topic PFP instances. Although it still cannot fully find answers, we must monitor progress carefully. In future work, we will enhance PFP in WPLAS to handle non-unique answers by improving answer validation for flexible recognition of equivalent responses.
en-copyright=
kn-copyright=
en-aut-name=QiHuiyu
en-aut-sei=Qi
en-aut-mei=Huiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiZhikang
en-aut-sei=Li
en-aut-mei=Zhikang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Sandi KyawHtoo Htoo
en-aut-sei=Sandi Kyaw
en-aut-mei=Htoo Htoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaoWen Chung
en-aut-sei=Kao
en-aut-mei=Wen Chung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Electrical Engineering, National Taiwan Normal University
kn-affil=
en-keyword=Web client programming
kn-keyword=Web client programming
en-keyword=Web game
kn-keyword=Web game
en-keyword=HTML
kn-keyword=HTML
en-keyword=CSS
kn-keyword=CSS
en-keyword=JavaScript
kn-keyword=JavaScript
en-keyword=phrase fill-in-blank problem
kn-keyword=phrase fill-in-blank problem
en-keyword=regular expression
kn-keyword=regular expression
en-keyword=generative AI
kn-keyword=generative AI
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=8
article-no=
start-page=333
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Verilog Programming Learning Assistant System Focused on Basic Verilog with a Guided Learning Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=With continuous advancements in semiconductor technology, mastering efficient designs of high-quality and advanced chips has become an important part of science and technology education. Chip performances will determine the futures of various aspects of societies. However, novice students often encounter difficulties in learning digital chip designs using Verilog programming, a common hardware design language. An efficient self-study system for supporting them that can offer various exercise problems, such that any answer is marked automatically, is in strong demand. In this paper, we design and implement a web-based Verilog programming learning assistant system (VPLAS), based on our previous works on software programming. Using a heuristic and guided learning method, VPLAS leads students to learn the basic circuit syntax step by step, until they acquire high-quality digital integrated circuit design abilities through self-study. For evaluation, we assign the proposal to 50 undergraduate students at the National Taipei University of Technology, Taiwan, who are taking the introductory chip-design course, and confirm that their learning outcomes using VPLAS together are far better than those obtained when following a traditional method. In our final statistics, students achieved an average initial accuracy rate of over 70% on their first attempts at answering questions after learning through our website’s tutorials. With the help of the system’s instant automated grading and rapid feedback, their average accuracy rate eventually exceeded 99%. This clearly demonstrates tha
en-copyright=
kn-copyright=
en-aut-name=HsiehPin-Chieh
en-aut-sei=Hsieh
en-aut-mei=Pin-Chieh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FangTzu-Lun
en-aut-sei=Fang
en-aut-mei=Tzu-Lun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JinShaobo
en-aut-sei=Jin
en-aut-mei=Shaobo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangYuyan
en-aut-sei=Wang
en-aut-mei=Yuyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FanYu-Cheng
en-aut-sei=Fan
en-aut-mei=Yu-Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Electronic Engineering, National Taipei University of Technology
kn-affil=
affil-num=2
en-affil=Department of Electronic Engineering, National Taipei University of Technology
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Engineering, National Taipei University of Technology
kn-affil=
en-keyword=Verilog
kn-keyword=Verilog
en-keyword=online learning
kn-keyword=online learning
en-keyword=guided learning
kn-keyword=guided learning
en-keyword=heuristic learning
kn-keyword=heuristic learning
en-keyword=programming learning assistant system
kn-keyword=programming learning assistant system
en-keyword=Verilog web-based
kn-keyword=Verilog web-based
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=34964
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Periodontitis associated with Porphyromonas gingivalis infection is a risk factor for infertility through uterine hypertrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontitis has recently been recognized as a potential risk factor for infertility due to its adverse effect on conception, although the underlying mechanisms remain unclear. This study investigated serum IgG antibody titers against periodontopathogenic bacteria in women with unexplained infertility and investigated how periodontal inflammation affects pregnancy and uterine function using a ligature-induced periodontitis mouse model infected with Porphyromonas gingivalis (Pg). IgG antibody titers against seven periodontopathogenic bacteria strains were measured by ELISA in 76 spontaneously pregnant women and 70 women undergoing infertility treatment. In the in vivo study, periodontitis mice were bred four weeks after periodontitis induction. Birth numbers, newborn weights, and gestation periods were assessed. To evaluate periodontal inflammation, alveolar bone, serum, and uterus was collected before mating. Uterine tissue was evaluated through histological and immunohistochemical staining. Women receiving infertility treatment were significantly older and had higher IgG titers against three Pg strains. Periodontitis mice had fewer births, lower newborn weights, and increased uterine cross-sectional areas. Additionally, elevated estrogen receptor α and progesterone receptor expression levels were observed in endometrial and stromal tissues. These results suggest that periodontitis may cause uterine hypertrophy and hormone receptor changes, potentially impairing pregnancy.
en-copyright=
kn-copyright=
en-aut-name=Kamei-NagataChiaki
en-aut-sei=Kamei-Nagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakoHidefumi
en-aut-sei=Sako
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaidaKyosuke
en-aut-sei=Sakaida
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakayamaMasa-aki
en-aut-sei=Nakayama
en-aut-mei=Masa-aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Kubota-TakamoriMoyuka
en-aut-sei=Kubota-Takamori
en-aut-mei=Moyuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KiyamaFumiko
en-aut-sei=Kiyama
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraiKimito
en-aut-sei=Hirai
en-aut-mei=Kimito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Takeuchi-HatanakaKazu
en-aut-sei=Takeuchi-Hatanaka
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=Tai-TokuzenMasako
en-aut-sei=Tai-Tokuzen
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakamotoAi
en-aut-sei=Sakamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KiyokawaMachiko
en-aut-sei=Kiyokawa
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YamanishiTomomi
en-aut-sei=Yamanishi
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OdaTakashi
en-aut-sei=Oda
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakigawaMasayuki
en-aut-sei=Takigawa
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MiyakeTakahito
en-aut-sei=Miyake
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=17
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=18
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=19
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=20
en-affil=Miyake Hello Dental Clinic, Pediatric Dentistry and Orthodontics
kn-affil=
affil-num=21
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=23
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Infertility
kn-keyword=Infertility
en-keyword=Periodontitis
kn-keyword=Periodontitis
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Chronic inflammation
kn-keyword=Chronic inflammation
en-keyword=Uterus
kn-keyword=Uterus
en-keyword=Sex hormone receptor
kn-keyword=Sex hormone receptor
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The response to thermospermine is fine-tuned by the balance between SAC51 and LHW family proteins in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine negatively regulates xylem formation. In Arabidopsis, SAC51 and SACL3, members of the SAC51 gene family encoding basic loop-helix-loop (bHLH) proteins play a key role in this regulation. These mRNAs contain an upstream open-reading-frame (uORF) that is highly conserved across species, and its inhibitory effect on the main ORF translation is alleviated by thermospermine. A double knockout of SAC51 and SACL3 results in thermospermine insensitivity at high concentrations that normally inhibit xylem formation and shoot growth in the wild type. Conversely, uORF mutants of SAC51, SACL3, and SACL1 suppress the excessive xylem formation and dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. In this study, we generated genome-edited uORF mutants of SACL2 and confirmed that they partially recover the acl5 phenotype. All uORF mutants exhibited increased sensitivity to thermospermine. SACL3 represses the function of LHW, a key bHLH transcription factor required for xylem proliferation, through direct interaction. We found that the lhw mutant is also hypersensitive to thermospermine, while this sensitivity was suppressed by the sac51 sacl3 double knockout. Yeast two-hybrid assays demonstrated that all four SAC51 family members interact with LHW and its family members. These findings suggest that overaccumulation of SAC51 family proteins leads to thermospermine hypersensitivity by repressing the function of LHW family proteins, whose activity must be fine-tuned to ensure proper xylem development.
en-copyright=
kn-copyright=
en-aut-name=XuYao
en-aut-sei=Xu
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaraumiMitsuru
en-aut-sei=Saraumi
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyoshimaTomohiko
en-aut-sei=Toyoshima
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=LHW family
kn-keyword=LHW family
en-keyword=SAC51 family
kn-keyword=SAC51 family
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=xylem
kn-keyword=xylem
END
start-ver=1.4
cd-journal=joma
no-vol=123
cd-vols=
no-issue=5
article-no=
start-page=e70476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RNA processing/modifying enzymes play key roles in the response to thermospermine in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine is involved in negative regulation of xylem differentiation by enhancing the translation of mRNAs of the SAC51 gene family in Arabidopsis (Arabidopsis thaliana). These mRNAs contain conserved upstream open reading frames (uORFs) that interfere with the translation of the main ORF. To investigate the mechanism by which thermospermine acts in this process, we isolated mutants insensitive to thermospermine, named ‘its’. We show that the four genes responsible for these mutants, its1 to its4, encode: (i) a homolog of SPOUT RNA methyltransferase, (ii) an rRNA pseudouridine synthase CBF5/NAP57, (iii) a putative spliceosome disassembly factor STIPL1/NTR1, and (iv) a plant-specific RNA-binding protein PHIP1. These four mutants were found to have much higher levels of thermospermine than the wild-type. While all these mutants except its1 appear almost normal, they enhance the dwarf phenotype of a mutant of ACL5, which encodes thermospermine synthase, resulting in tiny plants resembling a double knockout of ACL5 and SACL3, a member of the SAC51 family. Reporter assays revealed that GUS activity from the CaMV 35S promoter-SAC51 5′-GUS fusion construct was significantly reduced in its1 and its4 or not affected in its2 and its3, while it was slightly increased in its1, its3, and its4, or not changed in its2 by thermospermine. These findings underscore the critical role of RNA processing and modification in the thermospermine-dependent translational regulation of uORF-containing transcripts.
en-copyright=
kn-copyright=
en-aut-name=SaraumiMitsuru
en-aut-sei=Saraumi
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakahiro
en-aut-sei=Tanaka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoyamaDaiki
en-aut-sei=Koyama
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiYoshitaka
en-aut-sei=Nishi
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYoshihiro
en-aut-sei=Takahashi
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Engineering, Kyushu Sangyo University
kn-affil=
affil-num=5
en-affil=Department of Life Science, Faculty of Life Science, Kyushu Sangyo University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=uORF
kn-keyword=uORF
en-keyword=translation
kn-keyword=translation
en-keyword=xylem
kn-keyword=xylem
en-keyword=RNA methyltransferase
kn-keyword=RNA methyltransferase
en-keyword=pseudouridine synthase
kn-keyword=pseudouridine synthase
en-keyword=SPOUT domain
kn-keyword=SPOUT domain
en-keyword=spliceosome disassembly
kn-keyword=spliceosome disassembly
END
start-ver=1.4
cd-journal=joma
no-vol=105
cd-vols=
no-issue=4
article-no=
start-page=1157
end-page=1167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants.
en-copyright=
kn-copyright=
en-aut-name=NagaoKoki
en-aut-sei=Nagao
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaRyusuke
en-aut-sei=Yokoyama
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Cuscuta
kn-keyword=Cuscuta
en-keyword=Environmental conditions
kn-keyword=Environmental conditions
en-keyword=Germination
kn-keyword=Germination
en-keyword=Hormone responses
kn-keyword=Hormone responses
en-keyword=Seedling growth
kn-keyword=Seedling growth
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=34768
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251006
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous glucose monitoring reveals periodontitis-induced glucose variability, insulin resistance, and gut microbiota dysbiosis in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Diabetes mellitus (DM) management has advanced from self-monitoring blood glucose (SMBG) to continuous glucose monitoring (CGM), which better prevents complications. However, the influence of periodontitis—a common DM complication—on glucose variability is unclear. This study examined glucose variability in mice with periodontitis using CGM. Periodontitis was induced in 9-week-old male C57BL/6J mice via silk ligatures around the upper second molars. Glucose levels were monitored over 14 days with CGM, validated by SMBG. On day 14, samples were collected to assess alveolar bone resorption and serum levels of tumor necrosis factor-α (TNF-α), insulin, and amyloid A. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted to evaluate insulin resistance. Gut microbiota diversity was also analyzed. By day 10, mice with periodontitis exhibited higher mean glucose levels and time above range than controls. On day 14, serum insulin and amyloid A levels significantly increased, while TNF-α remained unchanged. GTT and ITT indicated insulin resistance. Microbiota analysis showed reduced alpha- and altered beta-diversity, with decreased Coprococcus spp. and increased Prevotella spp., linking dysbiosis to insulin resistance. Periodontitis disrupts glucose regulation by promoting insulin resistance and gut microbiota imbalance, leading to significant glucose variability.
en-copyright=
kn-copyright=
en-aut-name=Kubota-TakamoriMoyuka
en-aut-sei=Kubota-Takamori
en-aut-mei=Moyuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Kamei-NagataChiaki
en-aut-sei=Kamei-Nagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KiyamaFumiko
en-aut-sei=Kiyama
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiraiKimito
en-aut-sei=Hirai
en-aut-mei=Kimito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkuboKeisuke
en-aut-sei=Okubo
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraShin
en-aut-sei=Nakamura
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Continuous glucose monitoring
kn-keyword=Continuous glucose monitoring
en-keyword=Periodontal disease
kn-keyword=Periodontal disease
en-keyword=Insulin resistance
kn-keyword=Insulin resistance
en-keyword=Chronic inflammation
kn-keyword=Chronic inflammation
en-keyword=Gut flora
kn-keyword=Gut flora
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e94062
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refractive Error Correction With Glasses in Congenital Ocular Fundus Anomalies: A Retrospective Series of 18 Children With Different Disease Entities Followed Up for More Than 10 Years
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Children with congenital anomalies of the posterior segment of the eye are in the process of visual development, and thus, their refractive errors should be detected by cycloplegic refraction testing to prescribe full-correction glasses, if required, and to help their visual acuity develop with growth. This study aimed to review refractive correction in children with congenital ocular fundus anomalies.
Methods: A retrospective review was conducted on 18 consecutive children (11 female and seven male children) who were diagnosed with ocular fundus anomalies and followed for 10 years or more by a single ophthalmologist at a referral-based hospital. The age at the initial visit ranged from 10 days after birth to 11 years, with a median of one year and four months, and the age at the last visit ranged from 10 to 32 years, with a median of 15 years. The follow-up periods ranged from 10 to 21 years at a median of 15 years.
Results: The diagnoses were familial exudative vitreoretinopathy (FEVR) in eight children, persistent fetal vasculature (PFV) in five, morning glory disc anomaly in two, optic nerve and choroidal coloboma (CHARGE syndrome) in two, and Coats disease in one. Full-correction glasses were prescribed in eight children, while the remaining 10 children did not wear glasses. Among nine children with the uncorrected visual acuity of 1.0 or better in one eye and the visual acuity in the other eye ranging from light perception to 0.01, eight children did not wear glasses, and one child wore glasses with hyperopic correction. The diagnoses in these nine children were PFV in five children, morning glory disc anomaly in two, FEVR in one, and Coats disease in one. In seven children who wore full-correction glasses, the best corrected visual acuity in the better eye ranged from 0.2 to 0.9 at a median of 0.5. In contrast, the visual acuity in the other eye ranged from light perception to 0.1 at a median of 0.03. The diagnoses of these seven children were FEVR in five children and CHARGE syndrome in two. The five children with FEVR showed myopic astigmatism in both eyes, while the two children with CHARGE syndrome showed hyperopic astigmatism in both eyes.
Conclusion: Children with unilateral eye anomalies such as PFV and morning glory disc anomaly did not wear glasses since their healthy eyes had good uncorrected visual acuity. In contrast, children with involvement of both eyes in FEVR and CHARGE syndrome wore full-correction glasses. Rough information regarding full-correction glasses in each category would help clinicians cope with rare congenital eye diseases. However, this conclusion is generally applicable to the standard practice of pediatric ophthalmology.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=charge syndrome
kn-keyword=charge syndrome
en-keyword=choroidal coloboma
kn-keyword=choroidal coloboma
en-keyword=coats disease
kn-keyword=coats disease
en-keyword=congenital eye anomalies
kn-keyword=congenital eye anomalies
en-keyword=cycloplegic refraction
kn-keyword=cycloplegic refraction
en-keyword=familial exudative vitreoretinopathy (fevr)
kn-keyword=familial exudative vitreoretinopathy (fevr)
en-keyword=full-correction glasses
kn-keyword=full-correction glasses
en-keyword=morning glory disc anomaly
kn-keyword=morning glory disc anomaly
en-keyword=optic nerve coloboma
kn-keyword=optic nerve coloboma
en-keyword=persistent fetal vasculature (pfv)
kn-keyword=persistent fetal vasculature (pfv)
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=4
article-no=
start-page=51
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer-associated fibroblast-derived SOD3 enhances lymphangiogenesis to drive metastasis in lung adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite advancements in diagnostic and therapeutic strategies, lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality due to its aggressive metastatic potential. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme that regulates oxidative stress and is regarded as a tumor suppressor. However, studies have demonstrated that SOD3 can either promote or inhibit cell proliferation and survival in various cancers, and its molecular mechanisms within the tumor microenvironment are poorly understood. In this study, we report a breakthrough in uncovering the role of SOD3 derived from cancer-associated fibroblasts (CAFs) in LUAD. Using LUAD xenograft models co-implanted with SOD3-overexpressing CAFs (CAFSOD3), we observe an aggressive tumor phenotype characterized by increased lymphangiogenesis and lymphatic vessel invasion (LVI) of the tumor. Additionally, LUAD patients with elevated SOD3 levels exhibit a higher incidence of LVI and metastasis. Notably, RNA sequencing of CAFSOD3 reveals that SOD3-mediated VEGF-dependent tumor progression and lymphangiogenesis are up-regulated. Furthermore, single-cell transcriptomic analysis of LUAD clinical samples confirms a strong correlation between SOD3 expression in fibroblasts and characteristics of tumor exacerbation, such as lymphangiogenesis and metastasis. These findings underscore new insights into the role of CAF-derived SOD3 in LUAD progression and highlight its potential as a biomarker and therapeutic target.
en-copyright=
kn-copyright=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MashimaTomoha
en-aut-sei=Mashima
en-aut-mei=Tomoha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TorigataKosuke
en-aut-sei=Torigata
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabuTomohiro
en-aut-sei=Habu
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoSachio
en-aut-sei=Ito
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Medicine, Kobe University
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Thoracic Surgery, National Hospital Organization, Shikoku Cancer Center
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
en-keyword=Superoxide dismutase 3
kn-keyword=Superoxide dismutase 3
en-keyword=Lymphangiogenesis
kn-keyword=Lymphangiogenesis
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Metastasis
kn-keyword=Metastasis
en-keyword=Lung adenocarcinoma
kn-keyword=Lung adenocarcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=11
article-no=
start-page=102658
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pathophysiology and Therapeutic Needs in Nonobstructive Hypertrophic Cardiomyopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypertrophic cardiomyopathy (HCM) affects individuals worldwide with an estimated prevalence of over 1 in 500 individuals. Nonobstructive HCM accounts for approximately 30% to 70% of cases, is extremely heterogeneous, and is associated with a notable degree of morbidity, including daily life limitations, ventricular tachyarrhythmias, progression to heart failure, and atrial fibrillation. No approved pharmaceutical therapies target the pathophysiology of nonobstructive HCM, although several clinical trials are underway. This narrative review provides a comprehensive overview of nonobstructive HCM, focusing on epidemiology, natural history, genetics, pathophysiology, clinical manifestations, diagnosis, burden of disease, and current treatments and ongoing clinical trials.
en-copyright=
kn-copyright=
en-aut-name=DesaiMilind Y.
en-aut-sei=Desai
en-aut-mei=Milind Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MauriziNiccolo
en-aut-sei=Maurizi
en-aut-mei=Niccolo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BiaginiElena
en-aut-sei=Biagini
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CharronPhilippe
en-aut-sei=Charron
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FernandesFabio
en-aut-sei=Fernandes
en-aut-mei=Fabio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=González-LópezEsther
en-aut-sei=González-López
en-aut-mei=Esther
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=van HaelstPaul L.
en-aut-sei=van Haelst
en-aut-mei=Paul L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaugaaKristina Hermann
en-aut-sei=Haugaa
en-aut-mei=Kristina Hermann
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KramerChristopher M.
en-aut-sei=Kramer
en-aut-mei=Christopher M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MederBenjamin
en-aut-sei=Meder
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MichelsMichelle
en-aut-sei=Michels
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OwensAnjali
en-aut-sei=Owens
en-aut-mei=Anjali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ElliottPerry
en-aut-sei=Elliott
en-aut-mei=Perry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=HCM Center, Department of Cardiovascular Medicine, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Cardiomyopathy Unit, Careggi University Hospital
kn-affil=
affil-num=3
en-affil=Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
kn-affil=
affil-num=4
en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
kn-affil=
affil-num=5
en-affil=InCor, Faculdade de Medicina da Universidade de São Paulo
kn-affil=
affil-num=6
en-affil=Puerta de Hierro Majadahonda University Hospital, Health Research Institute of the Puerta de Hierro Majadahonda-Segovia de Arana University Hospital (IDIPHISA)
kn-affil=
affil-num=7
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=8
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=9
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=10
en-affil=Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg
kn-affil=
affil-num=11
en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
kn-affil=
affil-num=12
en-affil=Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=UCL Institute of Cardiovascular Science and St Bartholomew’s Hospital
kn-affil=
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=hypertrophic cardiomyopathy
kn-keyword=hypertrophic cardiomyopathy
en-keyword=nonobstructive
kn-keyword=nonobstructive
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=5
article-no=
start-page=650
end-page=661
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and validation of an algorithm for identifying patients undergoing dialysis from patients with advanced chronic kidney disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Identifying patients on dialysis among those with an estimated glomerular filtration rate (eGFR) < 15 mL/min/1.73 m2 remains challenging. To facilitate clinical research in advanced chronic kidney disease (CKD) using electronic health records, we aimed to develop algorithms to identify dialysis patients using laboratory data obtained in routine practice.
Methods We collected clinical data of patients with an eGFR < 15 mL/min/1.73 m2 from six clinical research core hospitals across Japan: four hospitals for the derivation cohort and two for the validation cohort. The candidate factors for the classification models were identified using logistic regression with stepwise backward selection. To ensure transplant patients were not included in the non-dialysis population, we excluded individuals with the disease code Z94.0.
Results We collected data from 1142 patients, with 640 (56%) currently undergoing hemodialysis or peritoneal dialysis (PD), including 426 of 763 patients in the derivation cohort and 214 of 379 patients in the validation cohort. The prescription of PD solutions perfectly identified patients undergoing dialysis. After excluding patients prescribed PD solutions, seven laboratory parameters were included in the algorithm. The areas under the receiver operation characteristic curve were 0.95 and 0.98 and the positive and negative predictive values were 90.9% and 91.4% in the derivation cohort and 96.2% and 94.6% in the validation cohort, respectively. The calibrations were almost linear.
Conclusions We identified patients on dialysis among those with an eGFR < 15 ml/min/1.73 m2. This study paves the way for database research in nephrology, especially for patients with non-dialysis-dependent advanced CKD.
en-copyright=
kn-copyright=
en-aut-name=ImaizumiTakahiro
en-aut-sei=Imaizumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaTakashi
en-aut-sei=Yokota
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FunakoshiKouta
en-aut-sei=Funakoshi
en-aut-mei=Kouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasudaKazushi
en-aut-sei=Yasuda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HattoriAkiko
en-aut-sei=Hattori
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorohashiAkemi
en-aut-sei=Morohashi
en-aut-mei=Akemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KusakabeTatsumi
en-aut-sei=Kusakabe
en-aut-mei=Tatsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShojimaMasumi
en-aut-sei=Shojima
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagamineSayoko
en-aut-sei=Nagamine
en-aut-mei=Sayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakanoToshiaki
en-aut-sei=Nakano
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HuangYong
en-aut-sei=Huang
en-aut-mei=Yong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhtaMiki
en-aut-sei=Ohta
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NagashimaSatomi
en-aut-sei=Nagashima
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=InoueRyusuke
en-aut-sei=Inoue
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraNaoki
en-aut-sei=Nakamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OtaHideki
en-aut-sei=Ota
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MaruyamaTatsuya
en-aut-sei=Maruyama
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=EndohAkira
en-aut-sei=Endoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AndoMasahiko
en-aut-sei=Ando
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShiratoriYoshimune
en-aut-sei=Shiratori
en-aut-mei=Yoshimune
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MaruyamaShoichi
en-aut-sei=Maruyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital
kn-affil=
affil-num=3
en-affil=Kyusyu University Hospital
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Advanced Medicine, Nagoya University Hospital
kn-affil=
affil-num=7
en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital
kn-affil=
affil-num=8
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Comprehensive Therapy for Chronic Kidney Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital
kn-affil=
affil-num=14
en-affil=Department of Healthcare Information Management, The University of Tokyo Hospital
kn-affil=
affil-num=15
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=16
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=17
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=18
en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital
kn-affil=
affil-num=19
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=20
en-affil=Department of Medical Informatics, Hokkaido University Hospital
kn-affil=
affil-num=21
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Medical IT Center, Nagoya University Hospital
kn-affil=
affil-num=23
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
en-keyword=Chronic kidney disease
kn-keyword=Chronic kidney disease
en-keyword=Algorithm
kn-keyword=Algorithm
en-keyword=Classification
kn-keyword=Classification
en-keyword=Dialysis
kn-keyword=Dialysis
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=1
article-no=
start-page=6
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optical bandgap tuning in SnO2–MoS2 nanocomposites: manipulating the mass of SnO2 and MoS2 using sonochemical solution mixing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates controlled optical bandgap tuning through precise adjustment of the SnO2 and MoS2 mass in nanocomposites. A sonochemical solution mixing method, coupled with bath sonication, is employed for the preparation of SnO2–MoS2 nanocomposite. This approach allows for comprehensive characterization using UV–Vis FTIR, XRD, EDX, Raman spectroscopies, and FESEM, providing insights into morphology, chemical, and optical properties. Increasing the SnO2 mass leads to a linear decrease in the optical bandgap energy, from 3.0 to 1.7 eV. Similarly, increasing the MoS2 mass also results in a decrease in the optical bandgap energy, with a limitation of around 2.01 eV. This work demonstrates superior control over optical bandgap by manipulating the SnO2 mass compared to MoS2, highlighting the complexities introduced by MoS2 2D nanosheets during sonication. These findings hold significant value for optoelectronic applications, emphasizing enhanced control of optical bandgap through systematic mass manipulation.
en-copyright=
kn-copyright=
en-aut-name=OngChinkhai
en-aut-sei=Ong
en-aut-mei=Chinkhai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeWeng Nam
en-aut-sei=Lee
en-aut-mei=Weng Nam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanYee Seng
en-aut-sei=Tan
en-aut-mei=Yee Seng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhbergPatrik
en-aut-sei=Ohberg
en-aut-mei=Patrik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayashiYasuhiko
en-aut-sei=Hayashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaTakeshi
en-aut-sei=Nishikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YapYuenkiat
en-aut-sei=Yap
en-aut-mei=Yuenkiat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia
kn-affil=
affil-num=2
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=3
en-affil=Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University
kn-affil=
affil-num=4
en-affil=School of Engineering and Physical Sciences, Institute of Photonics and Quantum Sciences, Heriot-Watt University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=196
end-page=212
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Influence of Dilution Upon the Ultraviolet-Visible Peak Absorbance and Optical Bandgap Estimation of Tin(IV) Oxide and Tin(IV) Oxide-Molybdenum(IV) Sulfide Solutions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The study investigated the constraints associated with the dilution technique in determining the optical bandgap of nanoparticle dispersion and modified nanocomposites, utilizing ultraviolet-visible absorbance spectra and Tauc plot analysis. A case study involving SnO2 dispersion and SnO2-MoS2 nanocomposite solutions, prepared through the direct solution mixing method, was conducted to assess the implications of dilution upon the absorbance spectra and bandgap estimation. The results emphasize the considerable impact of the dilution technique on the measured optical bandgap, demonstrating that higher dilution factors lead to shift in bandgap values. Furthermore, the study highlights that dilution can induce variations in the average nanoparticle sizes due to agglomeration, thereby influencing bandgap estimation. In the context of nanocomposites, the interaction between SnO2 nanoparticles and exfoliated MoS2 nanosheets diminishes with increasing dilution, leading to the estimated optical bandgap being primarily attributable to SnO2 nanoparticles alone. These observations underscore the necessity for caution when employing the dilution technique for bandgap estimation in nanoparticles dispersion and nanocomposites, offering valuable insights for researchers and practitioners in the field.
en-copyright=
kn-copyright=
en-aut-name=OngChin Khai
en-aut-sei=Ong
en-aut-mei=Chin Khai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeWeng Nam
en-aut-sei=Lee
en-aut-mei=Weng Nam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KhalidMohammad
en-aut-sei=Khalid
en-aut-mei=Mohammad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Mohd AbdahMuhammad Amirul Aizat
en-aut-sei=Mohd Abdah
en-aut-mei=Muhammad Amirul Aizat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhbergPatrik
en-aut-sei=Ohberg
en-aut-mei=Patrik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LimLing Hong
en-aut-sei=Lim
en-aut-mei=Ling Hong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HayashiYasuhiko
en-aut-sei=Hayashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishikawaTakeshi
en-aut-sei=Nishikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YapYuenkiat
en-aut-sei=Yap
en-aut-mei=Yuenkiat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia
kn-affil=
affil-num=2
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=3
en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University
kn-affil=
affil-num=4
en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University
kn-affil=
affil-num=5
en-affil=Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University
kn-affil=
affil-num=6
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=9
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
en-keyword=Colorimetry
kn-keyword=Colorimetry
en-keyword=nanocomposite
kn-keyword=nanocomposite
en-keyword=optical bandgap
kn-keyword=optical bandgap
en-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry
kn-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=9
article-no=
start-page=4815
end-page=4837
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal evolution of ecosystem carbon storage under land use/land cover dynamics in the coastal region of Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection scenario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model. The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land (5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt, 0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial distribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of carbon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in Danang city in the on-track pursuit of national net-zero carbon emissions by 2050.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
en-keyword=Carbon sequestration
kn-keyword=Carbon sequestration
en-keyword=Scenario-based modeling
kn-keyword=Scenario-based modeling
en-keyword=Remote sensing
kn-keyword=Remote sensing
en-keyword=Spatial autocorrelation analysis
kn-keyword=Spatial autocorrelation analysis
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=19
article-no=
start-page=9347
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiac Myosin Inhibitors in Hypertrophic Cardiomyopathy: From Sarcomere to Clinic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypertrophic cardiomyopathy (HCM) is a primary myocardial disease characterized by unexplained left ventricular hypertrophy, often resulting from pathogenic variants of sarcomeric protein genes. Conventional treatments, such as the use of beta blockers or calcium channel blockers, focus on symptomatic control but do not address the underlying hypercontractility at the sarcomere level. Recent advances in molecular understanding have led to the development of cardiac myosin inhibitors that directly modulate sarcomeric function by reducing myosin–actin cross-bridge formation and adenosine triphosphatase (ATPase) activity. Mavacamten and aficamten have shown promising results in phase 2 and 3 clinical trials, improving symptoms, exercise capacity, and left ventricular outflow tract gradients in patients with obstructive HCM. This review summarizes the current understanding of HCM pathophysiology, diagnostic strategies, and conventional treatments with a focus on the mechanisms of action of myosin inhibitors, clinical evidence supporting their use, and future directions for improvement. We also discuss their potential applications in non-obstructive HCM and the importance of precision medicine guided by genetic profiling.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkumuraTakahiro
en-aut-sei=Okumura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoSeiya
en-aut-sei=Kato
en-aut-mei=Seiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnoueKenji
en-aut-sei=Onoue
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuboToru
en-aut-sei=Kubo
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KouzuHidemichi
en-aut-sei=Kouzu
en-aut-mei=Hidemichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YanoToshiyuki
en-aut-sei=Yano
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InomataTakayuki
en-aut-sei=Inomata
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Pathology, Saiseikai Fukuoka General Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Nara Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
en-keyword=hypertrophic cardiomyopathy
kn-keyword=hypertrophic cardiomyopathy
en-keyword=myosin inhibitors
kn-keyword=myosin inhibitors
en-keyword=sarcomere
kn-keyword=sarcomere
en-keyword=mavacamten
kn-keyword=mavacamten
en-keyword=aficamten
kn-keyword=aficamten
en-keyword=heart failure
kn-keyword=heart failure
END
start-ver=1.4
cd-journal=joma
no-vol=1019
cd-vols=
no-issue=
article-no=
start-page=A22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250918
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Experimental and numerical study on the inertial migration of hydrogel particles suspended in square channel flows
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing through a square channel is studied both experimentally and numerically. Experimental results demonstrate significant differences in the focusing positions of the deformable and rigid particles, highlighting the role of particle deformability in inertial migration. At low Reynolds numbers (Re), hydrogel particles migrate towards the centre of the channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At finite Re, they focus at four points along the diagonals in the downstream cross-section, in contrast to the rigid particles which focus near the centre of the channel face at similar Re . Numerical simulations using viscous hyperelastic particles as a model for hydrogel particles reproduced the experimental results for the particle distribution with an appropriate Young’s modulus of the hyperelastic particles. Further numerical simulations over a broader range of Re and the capillary number (Ca) reveal various focusing patterns of the particles in the channel cross-section. The phase transitions between them are discussed in terms of the inertial lift and the lift due to particle deformation, which would act in the direction towards lower shear. The stability of the channel centre is analysed using an asymptotic expansion approach to the migration force at low Re and Ca. The theoretical analysis predicts the critical condition for the transition, which is consistent with the direct numerical simulation. These experimental, numerical and theoretical results contribute to a deeper understanding of inertial migration of deformable particles.
en-copyright=
kn-copyright=
en-aut-name=HirohataYuma
en-aut-sei=Hirohata
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaiKazusa
en-aut-sei=Sai
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TangeYuki
en-aut-sei=Tange
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiyamaTomohiro
en-aut-sei=Nishiyama
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MinatoHaruka
en-aut-sei=Minato
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTomoaki
en-aut-sei=Itano
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiyamaKazuyasu
en-aut-sei=Sugiyama
en-aut-mei=Kazuyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Sugihara-SekiMasako
en-aut-sei=Sugihara-Seki
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Engineering Science, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=3
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=8
en-affil=Graduate School of Engineering Science, The University of Osaka
kn-affil=
affil-num=9
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
en-keyword=flow-structure interactions
kn-keyword=flow-structure interactions
en-keyword=microfluidics
kn-keyword=microfluidics
en-keyword=particle/fluid flow
kn-keyword=particle/fluid flow
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250926
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific induction of right ventricular-like cardiomyocytes from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Applications employing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require well-characterized, chamber-specific hPSC-CMs. Distinct first heart field (FHF) and second heart field (SHF) cardiac progenitor populations give rise to the left ventricular (LV) and right ventricular (RV) cardiomyocytes, respectively. This developmental difference in cardiomyocyte origin suggests that chamber-specific cardiomyocytes have unique characteristics. Therefore, efficient strategies to differentiate human pluripotent stem cells (hPSCs) specifically to LV-like or RV-like cardiomyocytes are needed and it is still unknown whether there is a phenotypic difference between LV-like cardiomyocytes and RV-like cardiomyocytes derived from hPSCs.
Methods An established hPSC cardiac differentiation protocol employing sequential GSK3β inhibition followed by Wnt inhibition (GiWi) was modified by addition of insulin or BMP antagonists during mesoderm formation. Cardiac progenitor populations were evaluated for FHF and SHF markers, and differentiated hPSC-CMs were characterized for chamber-specific markers.
Results The GiWi protocol produced mainly FHF-like progenitor cells that gave rise to LV-like cardiomyocytes. Inhibition of endogenous BMP signaling during mesoderm induction using insulin or BMP antagonists reduced expression of FHF markers and increased expression of SHF markers in cardiac progenitor cells. hPSC-CMs arising from the SHF-like progenitor cells showed an RV-like gene expression pattern and exhibited phenotypic differences in spontaneous contraction rate, Ca2+ transients, and cell size compared to control LV-like cardiomyocytes.
Conclusion This study establishes methodology to generate RV-like hPSC-CMs to support the development of disease modeling research using chamber-specific hPSC-CMs.
en-copyright=
kn-copyright=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoRyushi
en-aut-sei=Sato
en-aut-mei=Ryushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AdachiRiki
en-aut-sei=Adachi
en-aut-mei=Riki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuSatoshi
en-aut-sei=Shimizu
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurokawaJunko
en-aut-sei=Kurokawa
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhangJianhua
en-aut-sei=Zhang
en-aut-mei=Jianhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KampTimothy J.
en-aut-sei=Kamp
en-aut-mei=Timothy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biomedical Informatics and Molecular Biology, The Sakaguchi Laboratory, Keio University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=7
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=8
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=9
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Human pluripotent stem cell-derived cardiomyocytes
kn-keyword=Human pluripotent stem cell-derived cardiomyocytes
en-keyword=Anterior second heart field
kn-keyword=Anterior second heart field
en-keyword=Right ventricle
kn-keyword=Right ventricle
en-keyword=Bone morphogenetic protein
kn-keyword=Bone morphogenetic protein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Establishment of a regenerative endodontic procedures model of mature mouse teeth and evaluation of the wound healing process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As the pulp regeneration for non-vital teeth is one of the ultimate clinical achievements, regenerative endodontic procedures (REPs) have become the most explored treatment modality. In this technique, periodontal tissue is guided from the apical region into the root canal and pulp chamber to promote attachment. It is well established that immature teeth are effective targets for treatment. However, the indications for this treatment have not yet expanded sufficiently to encompass mature teeth with closed apical apex. In the present study, a mouse model of REPs in mature teeth was established, employing the maxillary first molar mesial root. μCT analyses disclosed that the distance from the occlusal surface to the physiological apex of the maxillary first molar mesial root in mice is 2.14 mm ± 0.08 mm, and the distance from the occlusal surface to the periapical alveolar bone is 2.46 mm ± 0.10 mm. Mesial root canal was treated with several sizes of k-files, and 15# k-file was identified as the most suitable k-file for use (P = 0.0007). During the regenerative process, spindle-shaped fibroblast-like cells, fibrous tissue formation, and mineralized tissue formation were identified on days 14 and 28. This study demonstrated that it is feasible to use the maxillary first molar mesial root as a REPs model for mature teeth and provided a detailed protocol and analysis of the healing process.
en-copyright=
kn-copyright=
en-aut-name=WangXiuting
en-aut-sei=Wang
en-aut-mei=Xiuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiShigeki
en-aut-sei=Suzuki
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsaiShin-Ho
en-aut-sei=Tsai
en-aut-mei=Shin-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasakiKarin
en-aut-sei=Nagasaki
en-aut-mei=Karin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FahrezaRahmad Rifqi
en-aut-sei=Fahreza
en-aut-mei=Rahmad Rifqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriMasato
en-aut-sei=Omori
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamadaSatoru
en-aut-sei=Yamada
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=2
en-affil=Department of Operative Dentistry, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Operative Dentistry, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=5
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=6
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=7
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
en-keyword=Regenerative endodontic procedures
kn-keyword=Regenerative endodontic procedures
en-keyword=Establishment of protocols
kn-keyword=Establishment of protocols
en-keyword=Mouse experimental model
kn-keyword=Mouse experimental model
en-keyword=Mature teeth
kn-keyword=Mature teeth
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=18
article-no=
start-page=2927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250911
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lacticaseibacillus rhamnosus Probio-M9 Alters the Gut Microbiota and Mitigates Pulmonary Hypertension in a Rat Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Intestinal microbiota plays an important role in the progression of pulmonary hypertension (PH). Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown protective effects against inflammation and remodeling. We investigated whether Probio-M9 supplementation could improve the pathology of PH. Methods: The monocrotaline (MCT)-induced PH model rats are created followed by Probio-M9 treatment. Microbiota and pathological analyses were performed to investigate the therapeutic effects of Probio-M9. Results: Probio-M9 significantly suppressed cardiovascular remodeling and reduced mortality in rats. Analysis of the fecal microbiota revealed that Probio-M9 significantly altered the gut microbiota of MCT model rats. Specifically, Alistipes sp009774895 and Duncaniella muris populations increased, whereas Limosilactobacillus reuteri_D, Ligilactobacillus apodeme and Monoglobus sp900542675 decreased compared to those in the MCT group. Focusing on the expression of GPNMB in macrophages and the localization of CD44, we found that the number of these cells increased in the MCT group but significantly decreased with Probio-M9 treatment. In lung tissue from PH patients, more GPNMB-positive macrophages were found than non-PH lungs, and an increase in CD44-positive cells was confirmed in the vicinity of GPNMB. Conclusions: Probio-M9 had a significant impact on the intestinal microbiota and GPNMB/CD44 positive cells in the lungs of PH rats.
en-copyright=
kn-copyright=
en-aut-name=ZhaoZhixin
en-aut-sei=Zhao
en-aut-mei=Zhixin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiGaopeng
en-aut-sei=Li
en-aut-mei=Gaopeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhmichiKiyomi
en-aut-sei=Ohmichi
en-aut-mei=Kiyomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiXiaodong
en-aut-sei=Li
en-aut-mei=Xiaodong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZhaoFeiyan
en-aut-sei=Zhao
en-aut-mei=Feiyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshikawaKaori
en-aut-sei=Ishikawa
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshikawaRyou
en-aut-sei=Ishikawa
en-aut-mei=Ryou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YokotaNaoya
en-aut-sei=Yokota
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SunZhihong
en-aut-sei=Sun
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KuraharaLin Hai
en-aut-sei=Kurahara
en-aut-mei=Lin Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, Kagawa University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=5
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Kagawa University Hospital
kn-affil=
affil-num=7
en-affil=Department of Diagnostic Pathology, Kagawa University Hospital
kn-affil=
affil-num=8
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=10
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
en-keyword=pulmonary artery remodeling
kn-keyword=pulmonary artery remodeling
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=gut microbiota
kn-keyword=gut microbiota
en-keyword=macrophages
kn-keyword=macrophages
en-keyword=GPNMB
kn-keyword=GPNMB
en-keyword=CD44
kn-keyword=CD44
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=5
article-no=
start-page=939
end-page=948
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on an Effective Coolant Supply Method in the Side Plunge Grinding Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Grinding is widely used for finishing components with journal and thrust surfaces, such as crankshafts. Side-plunge grinding enables the simultaneous finishing of thrust and cylindrical surfaces in a single plunge. However, compared to cylindrical grinding, it involves a larger contact area between the grinding wheel and the workpiece, leading to increased heat generation. In particular, poor coolant penetration near internal corners can degrade surface quality, potentially causing stress concentrations and cracks. To enhance coolant effectiveness in side-plunge grinding, this study installs a high-pressure nozzle that supplies coolant from the side of the grinding wheel. The effectiveness of this setup is experimentally verified. Additionally, the distribution of coolant flow within the contact area between the grinding wheel and the workpiece is measured to determine the optimal nozzle position for efficient coolant delivery. The nozzle’s performance is evaluated by measuring the workpiece surface temperature using a wire/workpiece thermocouple, the amount of coolant discharged from the grinding wheel, and the residual stress distribution. The results show that coolant penetrates the grinding wheel and effectively reaches the grinding zone, enhancing the cooling effect. This study clarifies the relationship between effective coolant supply and the position of the side nozzle. Considering physical constraints, such as potential interference during grinding, the optimal nozzle location is as close as possible to both the edge of the grinding wheel and the workpiece. This positioning ensures maximum coolant delivery, reduces grinding temperature, and helps suppress drastic variations in residual stress.
en-copyright=
kn-copyright=
en-aut-name=GaoLingxiao
en-aut-sei=Gao
en-aut-mei=Lingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujimotoTaichi
en-aut-sei=Fujimoto
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaHiroyuki
en-aut-sei=Kodama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKazuhito
en-aut-sei=Ohashi
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=grinding
kn-keyword=grinding
en-keyword=thrust surface
kn-keyword=thrust surface
en-keyword=grinding temperature
kn-keyword=grinding temperature
en-keyword=coolant flow
kn-keyword=coolant flow
en-keyword=residual stress
kn-keyword=residual stress
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=7
article-no=
start-page=1044
end-page=1060
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxygen supply is a prerequisite for response to aluminum in cultured cells of tobacco (Nicotiana tabacum)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Responses to aluminum (Al) were investigated in tobacco cells (cell line SL) in a calcium-sucrose solution for up to 24 h under shaking (aerobic) condition. Microarray analysis of upregulated and downregulated genes under Al exposure and following Gene Ontology (GO) enrichment analysis of biological process category revealed only one GO term to be enriched for the upregulated genes, “response to chitin,” annotated with genes encoding transcription factors (NtERF1 and NtMYB3) and MAP kinase (WIPK), and nine GO terms for the downregulated genes, including “cell wall loosening” and “lipid transport,” annotated with genes encoding expansin (NtEXPA4) and lipid transfer protein (LTP)/LTP-like (NtLTP3 and NtEIG-C29), respectively. Al triggered the production of nitric oxide (NO) then reactive oxygen species (ROS). Addition of NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide decreased the levels of NO and a part of the transcriptional changes described above, but increased the levels of ROS and a loss of growth capacity, suggesting a role of the NO to induce the transcriptional changes partly and to repress these toxic responses under Al exposure. Under non-shaking (anaerobic) condition, the cells exhibited upregulation of several hypoxia-responsive genes. The cells exposed to Al exhibited the same level of Al accumulation but much lower levels of the Al responses including NO production, ROS production, a loss of growth capacity, citrate secretion, and a part of the transcriptional changes described above, compared with the cells under shaking condition. These results suggest that coexistence of oxygen with Al is necessary to trigger the Al responses related to toxicity and tolerance.
en-copyright=
kn-copyright=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakayuki
en-aut-sei=Sasaki
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoYoko
en-aut-sei=Yamamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=aluminum toxicity
kn-keyword=aluminum toxicity
en-keyword=aluminum-responsive genes
kn-keyword=aluminum-responsive genes
en-keyword=cell wall loosening
kn-keyword=cell wall loosening
en-keyword=chitin-responsive genes
kn-keyword=chitin-responsive genes
en-keyword=dioxygen
kn-keyword=dioxygen
en-keyword=hypoxia
kn-keyword=hypoxia
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=21
article-no=
start-page=11479
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dennd2c Negatively Controls Multinucleation and Differentiation in Osteoclasts by Regulating Actin Polymerization and Protrusion Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoclasts are bone-resorbing multinucleated giant cells formed by the fusion of monocyte/macrophage lineages. Various small GTPases are involved in the multinucleation and differentiation of osteoclasts. However, the roles of small GTPases regulatory molecules in osteoclast differentiation remain unclear. In the present study, we examined the role of Dennd2c, a putative guanine nucleotide exchange factor for Rab GTPases, in osteoclast differentiation. Knockdown of Dennd2c promoted osteoclast differentiation, resorption, and expression of osteoclast markers. Morphologically, Dennd2c knockdown induced the formation of larger osteoclasts with several protrusions. In contrast, overexpression of Dennd2c inhibited the multinucleation and differentiation of osteoclasts, bone resorption, and the expression of osteoclast markers. Dennd2c-overexpressing macrophages exhibited spindle-shaped mononuclear cells and long thin protrusions. Treatment of Dennd2c-overexpressing cells with the Cdc42 inhibitor ML-141 or the Rac1 inhibitor 6-thio-GTP prevented protrusion formation. Moreover, treatment of Dennd2c-overexpressing cells with the actin polymerization inhibitor latrunculin B restored multinucleated and TRAP-positive osteoclast formation. These results indicate that Dennd2c negatively regulates osteoclast differentiation and multinucleation by modulating protrusion formation in macrophages.
en-copyright=
kn-copyright=
en-aut-name=KoyanagiYu
en-aut-sei=Koyanagi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaiEiko
en-aut-sei=Sakai
en-aut-mei=Eiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaguchiYu
en-aut-sei=Yamaguchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FarhanaFatima
en-aut-sei=Farhana
en-aut-mei=Fatima
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TairaYohsuke
en-aut-sei=Taira
en-aut-mei=Yohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHiroshi
en-aut-sei=Murata
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsukubaTakayuki
en-aut-sei=Tsukuba
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=2
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=3
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=4
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=5
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=6
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=8
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
en-keyword=osteoclast
kn-keyword=osteoclast
en-keyword=actin polymerization
kn-keyword=actin polymerization
en-keyword=protrusion formation
kn-keyword=protrusion formation
en-keyword=Dennd2c
kn-keyword=Dennd2c
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=8226
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Persistent homology elucidates hierarchical structures responsible for mechanical properties in covalent amorphous solids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Understanding how atomic-level structures govern the mechanical properties of amorphous materials remains a fundamental challenge in solid-state physics. Under mechanical loading, amorphous materials exhibit simple affine and spatially inhomogeneous nonaffine displacements that contribute to the elastic modulus through the Born (affine) and nonaffine terms, respectively. The differences between soft local structures characterized by small Born terms or large nonaffine displacements have yet to be elucidated. This challenge is particularly complex in covalent amorphous materials such as silicon, where the medium-range order (MRO) plays a crucial role in the network structure. To address these issues, we combined molecular dynamics simulations with persistent homology analysis. Our results reveal that local structures with small Born terms are governed by short-range characteristics, whereas those with large nonaffine displacements exhibit hierarchical structures in which short-range disorder is embedded within the MRO. These hierarchical structures are also strongly correlated with low-energy localized vibrational excitations. Our findings demonstrate that the mechanical responses and dynamic properties of covalent amorphous materials are intrinsically linked to the MRO, providing a framework for understanding and tailoring their properties.
en-copyright=
kn-copyright=
en-aut-name=MinamitaniEmi
en-aut-sei=Minamitani
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraTakenobu
en-aut-sei=Nakamura
en-aut-mei=Takenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObayashiIppei
en-aut-sei=Obayashi
en-aut-mei=Ippei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizunoHideyuki
en-aut-sei=Mizuno
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=SANKEN, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Materials and Chemistry Materials DX Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=3
en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Arts and Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=20056
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials.
en-copyright=
kn-copyright=
en-aut-name=OshimaRisa
en-aut-sei=Oshima
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanishiKo
en-aut-sei=Nakanishi
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkasakaTsukasa
en-aut-sei=Akasaka
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimojiShinji
en-aut-sei=Shimoji
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraTeppei
en-aut-sei=Nakamura
en-aut-mei=Teppei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMariko
en-aut-sei=Nakamura
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TamadaIkkei
en-aut-sei=Tamada
en-aut-mei=Ikkei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugayaTsutomu
en-aut-sei=Sugaya
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=5
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University
kn-affil=
affil-num=7
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center
kn-affil=
affil-num=11
en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven
kn-affil=
affil-num=12
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=13
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
en-keyword=Phosphopullulan
kn-keyword=Phosphopullulan
en-keyword=Polysaccharide
kn-keyword=Polysaccharide
en-keyword=ADME
kn-keyword=ADME
en-keyword=Animal study
kn-keyword=Animal study
en-keyword=Endodontic sealer
kn-keyword=Endodontic sealer
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=5
article-no=
start-page=257
end-page=267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240920
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=New Catalytic Residues and Catalytic Mechanism of the RNase T1 Family
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ribonuclease T1 family, including RNase Po1 secreted by Pleurotus ostreatus, exhibits antitumor activity. Here, we resolved the Po1/guanosine-3′-monophosphate complex (3′GMP) structure at 1.75 Å. Structure comparison and fragment molecular orbital (FMO) calculation between the apo form and the Po1/3′GMP complex identified Phe38, Phe40, and Glu42 as the key binding residues. Two types of the RNase/3′GMP complex in RNasePo1 and RNase T1 were homologous to Po1, and FMO calculations elucidated that the biprotonated histidine on the β3 sheet (His36) on the β3 sheet and deprotonated Glu54 on the β4 sheet were advantageous to RNase activity. Moreover, tyrosine (Tyr34) on the β3 sheet was elucidated as a crucial catalytic residues. Mutation of Tyr34 with phenylalanine decreased RNase activity and diminished antitumor efficacy compared to that in the wild type. This suggests the importance of RNase activity in antitumor mechanisms.
en-copyright=
kn-copyright=
en-aut-name=TakebeKatsuki
en-aut-sei=Takebe
en-aut-mei=Katsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiMamoru
en-aut-sei=Suzuki
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaraYumiko
en-aut-sei=Hara
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsutaniTakuya
en-aut-sei=Katsutani
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoyoshiNaomi
en-aut-sei=Motoyoshi
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItagakiTadashi
en-aut-sei=Itagaki
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyakawaShuhei
en-aut-sei=Miyakawa
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FukuzawaKaori
en-aut-sei=Fukuzawa
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KobayashiHiroko
en-aut-sei=Kobayashi
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=3
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=4
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=5
en-affil=School of Pharmacy, Nihon University
kn-affil=
affil-num=6
en-affil=School of Pharmacy, Nihon University
kn-affil=
affil-num=7
en-affil=Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=10
en-affil=School of Pharmacy, Nihon University
kn-affil=
en-keyword=RNase
kn-keyword=RNase
en-keyword=crystal structure
kn-keyword=crystal structure
en-keyword=fragment molecular orbital method
kn-keyword=fragment molecular orbital method
en-keyword=interfragment interaction energy
kn-keyword=interfragment interaction energy
en-keyword=antitumor activity
kn-keyword=antitumor activity
en-keyword=RNase activity
kn-keyword=RNase activity
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=3643
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250417
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fully-gapped superconductivity with rotational symmetry breaking in pressurized kagome metal CsV3Sb5
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The discovery of the kagome metal CsV3Sb5 has generated significant interest in its complex physical properties, particularly its superconducting behavior under different pressures, though its nature remains debated. Here, we performed low-temperature, high-pressure 121/123Sb nuclear quadrupole resonance (NQR) measurements to explore the superconducting pairing symmetry in CsV3Sb5. At ambient pressure, we found that the spin-lattice relaxation rate 1/T1 exhibits a kink at T ~ 0.4 Tc within the superconducting state and follows a T3 variation as temperature further decreases. This suggests the presence of two superconducting gaps with line nodes in the smaller one. As pressure increases beyond Pc ~ 1.85 GPa, where the charge-density wave phase is completely suppressed, 1/T1 shows no Hebel-Slichter peak just below Tc, and decreases rapidly, even faster than T5, indicating that the gap is fully opened for pressures above Pc. In this high pressure region, the angular dependence of the in-plane upper critical magnetic field Hc2 breaks the C6 rotational symmetry. We propose the s + id pairing at P > Pc which explains both the 1/T1 and Hc2 behaviors. Our findings indicate that CsV3Sb5 is an unconventional superconductor and its superconducting state is even more exotic at high pressures.
en-copyright=
kn-copyright=
en-aut-name=FengX. Y.
en-aut-sei=Feng
en-aut-mei=X. Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhaoZ.
en-aut-sei=Zhao
en-aut-mei=Z.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LuoJ.
en-aut-sei=Luo
en-aut-mei=J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhouY. Z.
en-aut-sei=Zhou
en-aut-mei=Y. Z.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YangJ.
en-aut-sei=Yang
en-aut-mei=J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FangA. F.
en-aut-sei=Fang
en-aut-mei=A. F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YangH. T.
en-aut-sei=Yang
en-aut-mei=H. T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GaoH.-J.
en-aut-sei=Gao
en-aut-mei=H.-J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ZhouR.
en-aut-sei=Zhou
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZhengGuo-qing
en-aut-sei=Zheng
en-aut-mei=Guo-qing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=2
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=3
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=4
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=5
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=8
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=9
en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=38
article-no=
start-page=eadv9952
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250919
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polymeric microwave rectifiers enabled by monolayer-thick ionized donors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Solution processing of polymeric semiconductors provides a facile way to fabricate functional diodes. However, energy barriers at metal-semiconductor interfaces often limit their performance. Here, we report rectifying polymer diodes with markedly modified energy-level alignments. The gold electrode surface was treated with a dimeric metal complex, which resulted in a shallow work function of 3.7 eV by forming a monolayer-thick ionized donor layer. When a polymeric semiconductor was coated on the treated electrode, most of the ionized donors remained at the metal-semiconductor interface. The confined ionized donors with the ideal thickness enabled fabrication of a polymer diode with a forward current density of over 100 A cm−2. Furthermore, a power conversion efficiency of 7.9% was observed for rectification at a microwave frequency of 920 MHz, which is orders of magnitude higher than that reported for organic diodes. Our findings will pave a way to solution-processed high-frequency and high-power devices.
en-copyright=
kn-copyright=
en-aut-name=OsakabeNobutaka
en-aut-sei=Osakabe
en-aut-mei=Nobutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HerJeongeun
en-aut-sei=Her
en-aut-mei=Jeongeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakahiro
en-aut-sei=Kaneta
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TajimaAkiko
en-aut-sei=Tajima
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LonghiElena
en-aut-sei=Longhi
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TangKan
en-aut-sei=Tang
en-aut-mei=Kan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujimoriKazuhiro
en-aut-sei=Fujimori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BarlowStephen
en-aut-sei=Barlow
en-aut-mei=Stephen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MarderSeth R.
en-aut-sei=Marder
en-aut-mei=Seth R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeShun
en-aut-sei=Watanabe
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakeyaJun
en-aut-sei=Takeya
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamashitaYu
en-aut-sei=Yamashita
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=6
en-affil=Renewable and Sustainable Energy Institute, University of Colorado Boulder
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=9
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=10
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=ycaf092
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Methanol chemoreceptor MtpA- and flagellin protein FliC-dependent methylotaxis contributes to the spatial colonization of PPFM in the phyllosphere
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pink-pigmented facultative methylotrophs (PPFMs) capable of growth on methanol are dominant and versatile phyllosphere bacteria that provide positive effects on plant growth through symbiosis. However, the spatial behavior of PPFMs on plant surfaces and its molecular basis are unknown. Here, we show that Methylobacterium sp. strain OR01 inoculated onto red perilla seeds colonized across the entire plant surface in the phyllosphere concomitant with the plant growth. During its transmission, strain OR01 was found to be present on the entire leaf surface with a preference to sites around the periphery, vein, trichome, and stomata. We found that methanol-sensing chemoreceptor MtpA-dependent chemotaxis (methylotaxis; chemotaxis toward methanol) and flagellin protein FliC-dependent motility facilitated the bacterial entry into the stomatal cavity and their colonization in the phyllosphere.
en-copyright=
kn-copyright=
en-aut-name=KatayamaShiori
en-aut-sei=Katayama
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiraishiKosuke
en-aut-sei=Shiraishi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KajiKanae
en-aut-sei=Kaji
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawabataKazuya
en-aut-sei=Kawabata
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TamuraNaoki
en-aut-sei=Tamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniAkio
en-aut-sei=Tani
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YurimotoHiroya
en-aut-sei=Yurimoto
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaiYasuyoshi
en-aut-sei=Sakai
en-aut-mei=Yasuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Department of Anatomy and Histology, School of Medicine, Fukushima Medical University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
en-keyword=PPFM
kn-keyword=PPFM
en-keyword=methylotaxis
kn-keyword=methylotaxis
en-keyword=phyllosphere
kn-keyword=phyllosphere
en-keyword=fluorescenceimaging
kn-keyword=fluorescenceimaging
en-keyword=bacterialbehavior
kn-keyword=bacterialbehavior
en-keyword=plant-microbeinteraction
kn-keyword=plant-microbeinteraction
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=1333
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250816
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Phosphorylated pullulan as a local drug delivery matrix for cationic antibacterial chemicals to prevent oral biofilm
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Preventing oral infections, such as oral caries and periodontal disease, helps reduce the risks of various systemic diseases. In this study, the polysaccharide pullulan produced by the black yeast Aureobasidium pullulans was modified in combination with the cationic surfactant cetylpyridinium chloride (CPC) to create a local drug delivery system, and its antibacterial potential on oral bacteria was examined in vitro.
Methods Pullulan was phosphorylated at the CH2OH residue of α6 in the maltotriose structure and mixed with CPC. Bacterial attachment of cariogenic Streptococcus mutans on hydroxyapatite plates (HAPs) treated with the phosphorylated pullulan (PP) and CPC compound (0.01% PP and 0.001– 0.03% CPC, and vice versa) was assessed by observing bacteria using a field emission scanning electron microscope (FE-SEM) and quantified through 16 S rRNA amplification via real-time polymerase chain reaction (PCR). Additionally, the quartz crystal microbalance (QCM) method was employed to evaluate the sustained release of CPC.
Results PP-CPC compound maintained significant bactericidal activity even at 0.01%, which is one-fifth of the conventional applicable concentration of CPC. Additionally, a residual mixture was detected by the hydroxyapatite sensor of the crystal oscillator microbalance detector, suggesting an unknown molecular interaction that enables the sustained release of CPC after attachment to hydroxyapatite.
Conclusions The combination of PP and CPC may contribute to the low concentration and effective prevention of oral infections, such as dental caries.
en-copyright=
kn-copyright=
en-aut-name=Namba-KoideNaoko
en-aut-sei=Namba-Koide
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawataYusuke
en-aut-sei=Kawata
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoMasahiro
en-aut-sei=Ito
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoTakashi
en-aut-sei=Ito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takeuchi-HatanakaKazu
en-aut-sei=Takeuchi-Hatanaka
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=3
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Phosphorylated Pullulan
kn-keyword=Phosphorylated Pullulan
en-keyword=Local drug delivery system
kn-keyword=Local drug delivery system
en-keyword=Cationic antimicrobial agents
kn-keyword=Cationic antimicrobial agents
en-keyword=Cetylpyridinium chloride
kn-keyword=Cetylpyridinium chloride
en-keyword=Oral biofilm
kn-keyword=Oral biofilm
END
start-ver=1.4
cd-journal=joma
no-vol=130
cd-vols=
no-issue=1
article-no=
start-page=e2024JB030704
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reduced Thermal Conductivity of Hydrous Aluminous Silica and Calcium Ferrite‐Type Phase Promote Water Transportation to Earth's Deep Mantle
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subduction of oceanic slabs introduces chemical heterogeneities in the Earth's interior, which could further induce thermal, seismic, and geodynamical anomalies. Thermal conductivity of slab minerals crucially controls the thermal evolution and dynamics of the subducted slab and ambient mantle, while such an important transport property remains poorly constrained. Here we have precisely measured high pressure-temperature thermal conductivity of hydrous aluminous post-stishovite (ΛHy-Al-pSt) and aluminum-rich calcium ferrite-type phase (ΛCF), two important minerals in the subducted basaltic crust in the lower mantle. Compared to the dry aluminous stishovite and pure stishovite, hydration substantially reduces the ΛHy-Al-pSt, resulting in ∼9.7–13.3 W m−1 K−1 throughout the lower mantle. Surprisingly, the ΛCF remains at ∼3–3.8 W m−1 K−1 in the lower mantle, few-folds lower than previously assumed. Our data modeling offers better constraints on the thermal conductivity of the subducted oceanic crust from mantle transition zone to the lowermost mantle region, which is less thermally conductive than previously modeled. Our findings suggest that if the post-stishovite carries large amounts of water to the lower mantle, the poorer heat conduction through the basaltic crust reduces the slab's temperature, which not only allows the slab bringing more hydrous minerals to greater depth, but also increases slab's density and viscosity, potentially impacting the stability of heterogeneous structures at the lowermost mantle.
en-copyright=
kn-copyright=
en-aut-name=HsiehWen‐Pin
en-aut-sei=Hsieh
en-aut-mei=Wen‐Pin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DeschampsFrédéric
en-aut-sei=Deschamps
en-aut-mei=Frédéric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsaoYi‐Chi
en-aut-sei=Tsao
en-aut-mei=Yi‐Chi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJen‐Wei
en-aut-sei=Chang
en-aut-mei=Jen‐Wei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=CrinitiGiacomo
en-aut-sei=Criniti
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Earth Sciences, Academia Sinica
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Earth Sciences, Academia Sinica
kn-affil=
affil-num=4
en-affil=Institute of Earth Sciences, Academia Sinica
kn-affil=
affil-num=5
en-affil=Institute of Earth Sciences, Academia Sinica
kn-affil=
affil-num=6
en-affil=Earth and Planets Laboratory, Carnegie Institution for Science
kn-affil=
en-keyword=thermal conductivity
kn-keyword=thermal conductivity
en-keyword=post-stishovite
kn-keyword=post-stishovite
en-keyword=calcium ferrite-type phase
kn-keyword=calcium ferrite-type phase
en-keyword=basaltic crust
kn-keyword=basaltic crust
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=1
article-no=
start-page=e70055
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Presence of a Deletion Mutation of Myostatin (MSTN) Gene Associated With Double-Muscling Phenotype in Japanese Black Cattle Population
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mutations in the bovine myostatin (MSTN) gene have been identified as the causative factor for the double-muscling phenotype in several European cattle breeds, including Belgian Blue, Piedmontese, and Shorthorn. In Japan, following the Meiji Restoration, several European breeds, including Shorthorn, Brown Swiss, Devon, Simmental, and Ayrshire, were introduced and crossbred with native cattle to develop modern Japanese beef cattle breeds, such as Japanese Black cattle. Historical records regarding the breeding of Japanese Black cattle indicate that the double-muscling phenotype, referred to as “Butajiri,” occasionally appeared in Japanese Black cattle population. These historical observations suggest the potential presence of MSTN gene mutation in the Japanese Black cattle population. The aim of this study was, therefore, to investigate the presence of MSTN gene mutation in the current Japanese Black cattle population. Through screening 400 reproductive females, we identified one cow carrying an 11-bp deletion in the MSTN gene. While further investigation of the animals in the pedigree of this cow could not reveal any living animals with this mutation, this is the first report demonstrating the presence of the MSTN mutation in the Japanese Black cattle population.
en-copyright=
kn-copyright=
en-aut-name=LeNu Anh Thu
en-aut-sei=Le
en-aut-mei=Nu Anh Thu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuboRena
en-aut-sei=Kubo
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BorjiginLiushiqi
en-aut-sei=Borjigin
en-aut-mei=Liushiqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IbiTakayuki
en-aut-sei=Ibi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SasakiShinji
en-aut-sei=Sasaki
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuniedaTetsuo
en-aut-sei=Kunieda
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=2
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=3
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture Ryukyu University Nishihara
kn-affil=
affil-num=6
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
en-keyword=double muscle
kn-keyword=double muscle
en-keyword=Japanese Black cattle
kn-keyword=Japanese Black cattle
en-keyword=myostatin gene
kn-keyword=myostatin gene
END
start-ver=1.4
cd-journal=joma
no-vol=142
cd-vols=
no-issue=
article-no=
start-page=104967
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Fölster-HolstRegina
en-aut-sei=Fölster-Holst
en-aut-mei=Regina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BlömerSophia
en-aut-sei=Blömer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EbsenMichael
en-aut-sei=Ebsen
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RöckenChristoph
en-aut-sei=Röcken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=3
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=4
en-affil=Städtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Bacterial sialidase
kn-keyword=Bacterial sialidase
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Cytokines
kn-keyword=Cytokines
en-keyword=Infection
kn-keyword=Infection
en-keyword=Bifidobacteria
kn-keyword=Bifidobacteria
en-keyword=Phages
kn-keyword=Phages
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=35
article-no=
start-page=28887
end-page=28895
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thermally polymerizable phthalocyanine realizes a metal–nitrogen-doped carbon material featuring a defined single-atom catalyst motif with CO2RR activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metal–nitrogen-doped carbon materials (MNCs) exhibit good electrocatalytic performance owing to the intrinsic advantages of carbon-based materials and the presence of isolated and stabilized metal atoms coordinated by nitrogen sites. However, conventional high-temperature pyrolysis of precursor molecules make it difficult to control the coordination structure precisely. To address this issue, here we report a new synthesis strategy for MNCs. Specifically, we design and synthesize Ni-phthalocyanine functionalized with ethynyl groups as solid-state thermal polymerization points. After depositing the Ni-phthalocyanine precursor on a carbon support and performing a thermal treatment, the resultant carbon composite material features a Ni–N4 coordination structure derived from the precursor, and enhanced porosity. This material demonstrates high catalytic activity for the CO2 reduction reaction (CO2RR). Our synthetic approach is applicable to various precursor molecules and carbon supports, paving the way for the further development of MNC-based electrode catalysts.
en-copyright=
kn-copyright=
en-aut-name=SanoYuki
en-aut-sei=Sano
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaDaichi
en-aut-sei=Nakajima
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MannaBiplab
en-aut-sei=Manna
en-aut-mei=Biplab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChidaKoki
en-aut-sei=Chida
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyodaRyojun
en-aut-sei=Toyoda
en-aut-mei=Ryojun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakaishiShinya
en-aut-sei=Takaishi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwaseKazuyuki
en-aut-sei=Iwase
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaranoKoji
en-aut-sei=Harano
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshiiTakeharu
en-aut-sei=Yoshii
en-aut-mei=Takeharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakamotoRyota
en-aut-sei=Sakamoto
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Science, Tohoku University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Science, Tohoku University
kn-affil=
affil-num=3
en-affil=Center for Basic Research on Materials, National Institute for Materials Science
kn-affil=
affil-num=4
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Science, Tohoku University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Graduate School of Science, Tohoku University
kn-affil=
affil-num=7
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=8
en-affil=Center for Basic Research on Materials, National Institute for Materials Science
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Tohoku University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=4
article-no=
start-page=045010
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250911
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Covalent cross-linked graphene oxide aerogels for moisture adsorption
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Covalent cross-linking is an effective approach to enhance the hydrophilicity and water adsorption properties of graphene oxide (GO). We studied moisture absorption in GO cross-linked with poly(ethylene glycol) diamines. At relative humidity (RH) of 85%, the PEG-cross-linked GO exhibited a significantly enhanced water uptake capacity of 0.59 g of water per gram of GO (gg−1), compared to 0.37 for unmodified GO. This is attributed to the presence of alkoxy groups via cross-linking, resulting in the enhanced interaction between GO and water molecules. These findings highlight the potential of PEG-based covalent functionalisation for efficient moisture capture in GO-based materials.
en-copyright=
kn-copyright=
en-aut-name=CaoZhijian
en-aut-sei=Cao
en-aut-mei=Zhijian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RenXiaojun
en-aut-sei=Ren
en-aut-mei=Xiaojun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LinTongxi
en-aut-sei=Lin
en-aut-mei=Tongxi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshimuraMasamichi
en-aut-sei=Yoshimura
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JoshiRakesh
en-aut-sei=Joshi
en-aut-mei=Rakesh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=School of Materials Science and Engineering, University of New South Wales
kn-affil=
affil-num=2
en-affil=School of Materials Science and Engineering, University of New South Wales
kn-affil=
affil-num=3
en-affil=School of Materials Science and Engineering, University of New South Wales
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Engineering, Toyota Technological Institute
kn-affil=
affil-num=6
en-affil=School of Materials Science and Engineering, University of New South Wales
kn-affil=
en-keyword=graphene oxide (GO)
kn-keyword=graphene oxide (GO)
en-keyword=covalent cross-linking
kn-keyword=covalent cross-linking
en-keyword=poly(ethylene glycol) (PEG)
kn-keyword=poly(ethylene glycol) (PEG)
en-keyword=moisture adsorption
kn-keyword=moisture adsorption
en-keyword=hydrophilicity enhancement
kn-keyword=hydrophilicity enhancement
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=3
article-no=
start-page=e70004
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oregon Wolfe barley genetic stocks – Research and teaching tools for next generation scientists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Oregon Wolfe Barley (OWB) mapping population (Reg. no. MP-4, NSL 554937 MAP) is a resource for genetics research and instruction. The OWBs are a set of doubled haploid barley (Hordeum vulgare L.) lines developed at Oregon State University from the F1 of a cross between Dr. Robert Wolfe's dominant and recessive marker stocks. Exhibiting a high level of genetic and phenotypic diversity, the OWBs are used throughout the world as a research tool for barley genetics. To date, these endeavors have led to 56 peer-reviewed publications, as well as three reports in the Barley Genetics Newsletter. At the same time, the OWBs are widely used as an instructor resource at the K–12, undergraduate, graduate, and professional levels. They are currently used at universities and/or institutes in German, Italy, Norway, Spain, and the United States and are currently being developed further for educational use in other countries. Genotype and phenotype data, lesson plans, and seed availability information are available herein and online.
en-copyright=
kn-copyright=
en-aut-name=KrauseMargaret R.
en-aut-sei=Krause
en-aut-mei=Margaret R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArbelaezJuan David
en-aut-sei=Arbelaez
en-aut-mei=Juan David
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsdalÅsmund
en-aut-sei=Asdal
en-aut-mei=Åsmund
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BelkodjaRamzi
en-aut-sei=Belkodja
en-aut-mei=Ramzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BouryNancy
en-aut-sei=Boury
en-aut-mei=Nancy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BlakeVictoria C.
en-aut-sei=Blake
en-aut-mei=Victoria C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrownPatrick J.
en-aut-sei=Brown
en-aut-mei=Patrick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CasasAna
en-aut-sei=Casas
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CistuéLuis
en-aut-sei=Cistué
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Farré‐MartínezAlba
en-aut-sei=Farré‐Martínez
en-aut-mei=Alba
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FiskScott
en-aut-sei=Fisk
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FuerstGregory S.
en-aut-sei=Fuerst
en-aut-mei=Gregory S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GiménezEstela
en-aut-sei=Giménez
en-aut-mei=Estela
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Guijarro‐RealCarla
en-aut-sei=Guijarro‐Real
en-aut-mei=Carla
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=GuthrieKaty
en-aut-sei=Guthrie
en-aut-mei=Katy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HalsteadMargaret
en-aut-sei=Halstead
en-aut-mei=Margaret
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HelgersonLaura
en-aut-sei=Helgerson
en-aut-mei=Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IgartuaErnesto
en-aut-sei=Igartua
en-aut-mei=Ernesto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=LillemoMorten
en-aut-sei=Lillemo
en-aut-mei=Morten
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=Martínez‐GarcíaMarina
en-aut-sei=Martínez‐García
en-aut-mei=Marina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=Martínez‐SubiràMariona
en-aut-sei=Martínez‐Subirà
en-aut-mei=Mariona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=McCouchSusan
en-aut-sei=McCouch
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=McGheeLaurie
en-aut-sei=McGhee
en-aut-mei=Laurie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NickolsTravis
en-aut-sei=Nickols
en-aut-mei=Travis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=PetersNick
en-aut-sei=Peters
en-aut-mei=Nick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=PorterRaymond
en-aut-sei=Porter
en-aut-mei=Raymond
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=RomagosaIgnacio
en-aut-sei=Romagosa
en-aut-mei=Ignacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=RuudAnja Karine
en-aut-sei=Ruud
en-aut-mei=Anja Karine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SatoKazuhiro
en-aut-sei=Sato
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=SalviSilvio
en-aut-sei=Salvi
en-aut-mei=Silvio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SangiorgiGiuseppe
en-aut-sei=Sangiorgi
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=SchüllerRebekka
en-aut-sei=Schüller
en-aut-mei=Rebekka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=SenTaner Z.
en-aut-sei=Sen
en-aut-mei=Taner Z.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=SorianoJosé Miguel
en-aut-sei=Soriano
en-aut-mei=José Miguel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=StuparRobert M.
en-aut-sei=Stupar
en-aut-mei=Robert M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=TingTo‐Chia
en-aut-sei=Ting
en-aut-mei=To‐Chia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=ViningKelly
en-aut-sei=Vining
en-aut-mei=Kelly
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=von KorffMaria
en-aut-sei=von Korff
en-aut-mei=Maria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=WallaAgatha
en-aut-sei=Walla
en-aut-mei=Agatha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=WangDiane R.
en-aut-sei=Wang
en-aut-mei=Diane R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=WaughRobbie
en-aut-sei=Waugh
en-aut-mei=Robbie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=WiseRoger P.
en-aut-sei=Wise
en-aut-mei=Roger P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=WolfeRobert
en-aut-sei=Wolfe
en-aut-mei=Robert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=YaoEric
en-aut-sei=Yao
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=HayesPatrick M.
en-aut-sei=Hayes
en-aut-mei=Patrick M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
affil-num=1
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
affil-num=2
en-affil=Department of Crop Sciences, University of Illinois at Urbana-Champaign
kn-affil=
affil-num=3
en-affil=Nordic Genetic Resource Centre
kn-affil=
affil-num=4
en-affil=CIHEAM-Zaragoza
kn-affil=
affil-num=5
en-affil=Department of Plant Pathology, Entomology, and Microbiology, Iowa State University
kn-affil=
affil-num=6
en-affil=Department of Plant Sciences and Plant Pathology, Montana State University
kn-affil=
affil-num=7
en-affil=Department of Plant Sciences, University of California-Davis
kn-affil=
affil-num=8
en-affil=Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei–CSIC
kn-affil=
affil-num=9
en-affil=Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei–CSIC
kn-affil=
affil-num=10
en-affil=AGROTECNIO-CERCA Center, Universidad de Lleida
kn-affil=
affil-num=11
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
affil-num=12
en-affil=U.S. Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University
kn-affil=
affil-num=13
en-affil=Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid
kn-affil=
affil-num=14
en-affil=Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid
kn-affil=
affil-num=15
en-affil=Department of Agronomy and Plant Genetics, University of Minnesota
kn-affil=
affil-num=16
en-affil=Aardevo North America
kn-affil=
affil-num=17
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
affil-num=18
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=19
en-affil=Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei–CSIC
kn-affil=
affil-num=20
en-affil=Department of Plant Sciences, Norwegian University of Life Sciences
kn-affil=
affil-num=21
en-affil=Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid
kn-affil=
affil-num=22
en-affil=AGROTECNIO-CERCA Center, Universidad de Lleida
kn-affil=
affil-num=23
en-affil=Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University
kn-affil=
affil-num=24
en-affil=Colfax-Mingo Community High School
kn-affil=
affil-num=25
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
affil-num=26
en-affil=Department of Plant Pathology, Entomology, and Microbiology, Iowa State University
kn-affil=
affil-num=27
en-affil=Haupert Institute for Agricultural Studies, Huntington University
kn-affil=
affil-num=28
en-affil=AGROTECNIO-CERCA Center, Universidad de Lleida
kn-affil=
affil-num=29
en-affil=Department of Plant Sciences, Norwegian University of Life Sciences
kn-affil=
affil-num=30
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=31
en-affil=Department of Agricultural and Food Sciences, University of Bologna
kn-affil=
affil-num=32
en-affil=Department of Agricultural and Food Sciences, University of Bologna
kn-affil=
affil-num=33
en-affil=Department of Crop Sciences, University of Illinois at Urbana-Champaign
kn-affil=
affil-num=34
en-affil=Crop Improvement and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service
kn-affil=
affil-num=35
en-affil=AGROTECNIO-CERCA Center, Universidad de Lleida
kn-affil=
affil-num=36
en-affil=Department of Agronomy and Plant Genetics, University of Minnesota
kn-affil=
affil-num=37
en-affil=Agronomy Department, Purdue University
kn-affil=
affil-num=38
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
affil-num=39
en-affil=Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf
kn-affil=
affil-num=40
en-affil=Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf
kn-affil=
affil-num=41
en-affil=Agronomy Department, Purdue University
kn-affil=
affil-num=42
en-affil=Division of Plant Sciences, School of Life Sciences, University of Dundee
kn-affil=
affil-num=43
en-affil=Department of Plant Pathology, Entomology, and Microbiology, Iowa State University
kn-affil=
affil-num=44
en-affil=Agriculture and Agri-Food Canada
kn-affil=
affil-num=45
en-affil=Crop Improvement and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service
kn-affil=
affil-num=46
en-affil=Department of Crop and Soil Science, Oregon State University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=189
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Post-spinel-type AB2O4 high-pressure phases in geochemistry and materials science
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Post-spinel-type AB2O4 compounds are stable at higher pressures than spinel phases. These compounds have garnered much interest in geo- and materials science for their geochemical importance as well as potential application as high ionic conductors and materials with strongly correlated electrons. Here, large-volume high-pressure syntheses, structural features and properties of post-spinels are reviewed. Prospects are discussed for future searches for post-spinel-type phases by applying advanced large-volume high-pressure technology.
en-copyright=
kn-copyright=
en-aut-name=AkaogiMasaki
en-aut-sei=Akaogi
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamauraKazunari
en-aut-sei=Yamaura
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Gakushuin University
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disruption of the Enterococcus faecalis–Induced Biofilm on the Intraocular Lens Using Bacteriophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis–induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis–induced biofilms.
en-copyright=
kn-copyright=
en-aut-name=KishimotoTatsuma
en-aut-sei=Kishimoto
en-aut-mei=Tatsuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaKen
en-aut-sei=Fukuda
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaWaka
en-aut-sei=Ishida
en-aut-mei=Waka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwanaAozora
en-aut-sei=Kuwana
en-aut-mei=Aozora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TodokoroDaisuke
en-aut-sei=Todokoro
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashiroKenji
en-aut-sei=Yamashiro
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
en-keyword=biofilm
kn-keyword=biofilm
en-keyword=bacteriophage
kn-keyword=bacteriophage
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=endophthalmitis
kn-keyword=endophthalmitis
en-keyword=cataract
kn-keyword=cataract
en-keyword=enterococcus faecalis
kn-keyword=enterococcus faecalis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 µg/mL and 16 µg/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30–40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BoonruamkaewPhetcharat
en-aut-sei=Boonruamkaew
en-aut-mei=Phetcharat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=8
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=anionic AMP
kn-keyword=anionic AMP
en-keyword=AMP
kn-keyword=AMP
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=FN33
kn-keyword=FN33
en-keyword=genome
kn-keyword=genome
en-keyword=molecular dynamics simulations
kn-keyword=molecular dynamics simulations
en-keyword=MRSA
kn-keyword=MRSA
en-keyword=Virgibacillus chiguensis
kn-keyword=Virgibacillus chiguensis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250811
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RNA Delivery Using a Graphene Oxide-Polyethylenimine Hybrid Inhibiting Myotube Differentiation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) conjugated with short polyethylenimine (PEI) chains (GO-PEI) has been designed as a candidate nanocarrier for small interfering RNA (siRNA) delivery to mammalian cells based on the efficient interaction between the positively charged GO-based platform and the negatively charged siRNA. The function and efficiency of siRNA delivery using GO-PEI were compared to those using the positive control Lipofectamine RNAiMax by analyzing the differentiation to myotubes, and myogenin gene and protein expression in C2C12 cells. RNAiMax transfection induced cellularization and reduction of both myogenin gene and protein expression, suggesting that the differentiation of C2C12 cells was triggered by gene silencing. While GO-PEI also promoted cellularization, the myogenin gene expression remained comparable to scrambled controls, whereas the protein levels were higher than those observed with RNAiMax. Mechanistically, we attributed the reduced gene silencing efficiency of GO-PEI to a poor endosomal escape, despite strong siRNA complexation. This limitation was likely due to a low buffering capacity of GO-PEI, as a significant fraction of nitrogen atoms were already protonated, reducing the availability of free amines necessary for endosomal disruption. An appropriate chemical modification to enhance siRNA release from the endosomes is therefore essential for advancing the development of GO-based platforms as versatile and efficient nanocarriers in gene therapy applications.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraKoji
en-aut-sei=Matsuura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GaoZhengfeng
en-aut-sei=Gao
en-aut-mei=Zhengfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=2
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=3
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
en-keyword=graphene oxide
kn-keyword=graphene oxide
en-keyword=polyethylenimine
kn-keyword=polyethylenimine
en-keyword=myotubes
kn-keyword=myotubes
en-keyword=myogenin
kn-keyword=myogenin
en-keyword=small interfering RNA
kn-keyword=small interfering RNA
en-keyword=transfection
kn-keyword=transfection
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2500368
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250629
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Integration of Cholesterol Oxidase‐Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1 mM to 1.2 mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061 mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring.
en-copyright=
kn-copyright=
en-aut-name=CuiYang
en-aut-sei=Cui
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuoLin
en-aut-sei=Zhuo
en-aut-mei=Lin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=cholesterol
kn-keyword=cholesterol
en-keyword=magnetic resonance coupling
kn-keyword=magnetic resonance coupling
en-keyword=parity-time symmetry
kn-keyword=parity-time symmetry
en-keyword=smart contact lens
kn-keyword=smart contact lens
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=065001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inert structural transition in 4H and 6H SiC at high pressure and temperature: a Raman spectroscopy study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We conducted Raman spectroscopy measurements of 4H-SiC and 6H-SiC up to 69 GPa and 1023 K to assess the stability and bonding of SiC at high pressure and temperature. Both optic and acoustic modes were observed at wide pressure and temperature ranges. The temperature shifts of the Raman frequencies were fitted by the equation with the Bose–Einstein distribution function, and we found that the shifts were almost insensitive to the pressure. The mode Grüneisen coefficients weakly depend on the pressure and temperature, suggesting the sluggish transition of the crystal structure, unlike the previous experiments showing the transition or decomposition of SiC at high pressure and temperature conditions. Inert transitions are confirmed by Raman measurements and annealing experiments using multiple high-pressure apparatuses. The crystallinity may be a hidden critical parameter in the experiments to determine the stable polytypes of SiC under high pressure and temperature.
en-copyright=
kn-copyright=
en-aut-name=MaitaniShuhou
en-aut-sei=Maitani
en-aut-mei=Shuhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SinmyoRyosuke
en-aut-sei=Sinmyo
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YozaKenji
en-aut-sei=Yoza
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=2
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=3
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=Bruker Japan
kn-affil=
en-keyword=SiC
kn-keyword=SiC
en-keyword=Raman
kn-keyword=Raman
en-keyword=phase transitions
kn-keyword=phase transitions
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=high temperature
kn-keyword=high temperature
en-keyword=diamond anvil cell
kn-keyword=diamond anvil cell
en-keyword=crystal structure
kn-keyword=crystal structure
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=9
article-no=
start-page=846
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2–14), surfactants, and temperatures up to 40 °C for 12 h. The AMP demonstrated 4 µg/mL of MIC and 4–8 µg/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=bacterial genome
kn-keyword=bacterial genome
en-keyword=biosynthetic gene cluster
kn-keyword=biosynthetic gene cluster
en-keyword=Klebsiella pneumoniae
kn-keyword=Klebsiella pneumoniae
en-keyword=Mangrove
kn-keyword=Mangrove
en-keyword=mass spectrometry
kn-keyword=mass spectrometry
en-keyword=NNS5-6
kn-keyword=NNS5-6
en-keyword=Paenibacillus thiaminolyticus
kn-keyword=Paenibacillus thiaminolyticus
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6049
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photon-Counting CT Enhances Diagnostic Accuracy in Stable Coronary Artery Disease: A Comparative Study with Conventional CT
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and improved tissue characterization. Methods: In this retrospective, propensity score–matched study, we compared CCTA findings from 820 patients (410 per group) who underwent either EID-CT or PCD-CT for suspected stable CAD. Primary outcomes included stenosis severity, high-risk plaque features, and downstream invasive coronary angiography (ICA) referral and yield. Results: The matched cohorts were balanced in demographics and cardiovascular risk factors (mean age 67 years, 63% male). PCD-CT showed a favorable shift in stenosis severity distribution (p = 0.03). High-risk plaques were detected less frequently with PCD-CT (22.7% vs. 30.5%, p = 0.01). Median coronary calcium scores did not differ (p = 0.60). Among patients referred for ICA, those initially evaluated with PCD-CT were more likely to undergo revascularization (62.5% vs. 44.1%), and fewer underwent potentially unnecessary ICA without revascularization (3.7% vs. 8.0%, p = 0.001). The specificity in diagnosing significant stenosis requiring revascularization was 0.74 with EID-CT and 0.81 with PCD-CT (p = 0.04). Conclusions: PCD-CT improved diagnostic specificity for CAD, reducing unnecessary ICA referrals while maintaining detection of clinically significant disease. This advanced CT technology holds promise for more accurate, efficient, and patient-centered CAD evaluation.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaraShohei
en-aut-sei=Hara
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyagiRyosuke
en-aut-sei=Miyagi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=photon-counting CT
kn-keyword=photon-counting CT
en-keyword=coronary CT angiography
kn-keyword=coronary CT angiography
en-keyword=diagnostic accuracy
kn-keyword=diagnostic accuracy
en-keyword=invasive coronary angiography
kn-keyword=invasive coronary angiography
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=
article-no=
start-page=100277
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a technique to identify μm-sized organic matter in asteroidal material: An approach using machine learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Asteroidal materials contain organic matter (OM), which records a number of extraterrestrial environments and thus provides a record of Solar System processes. OM contain essential compounds for the origin of life. To understand the origin and evolution of OM, systematic identification and detailed observation using in-situ techniques is required. While both nm- and μm-sized OM were studied previously, only a small portion of a given sample surface was investigated in each study. Here, a novel workflow was developed and applied to identify and classify μm-sized OM on mm-sized asteroidal materials. The workflow involved image processing and machine learning, enabling a comprehensive and non-biased way of identifying, classifying, and measuring the properties of OM. We found that identifying OM is more accurate by classification with machine learning than by clustering. On the approach of classification with machine learning, five algorithms were tested. The random forest algorithm was selected as it scored the highest in 4 out of 5 accuracy parameters during evaluation. The workflow gave modal OM abundances that were consistent with those identified manually, demonstrating that the workflow can accurately identify 1-15 μm-sized OM. The size distribution of OM was modeled using the power-law distribution, giving slope α values that were consistent with fragmentation processes. The shape of the OM was quantified using circularity and solidity, giving a positive correlation and indicating these properties are closely related. Overall, the workflow enabled identification of many OM quickly and accurately and the obtainment of chemical and petrographic information. Such information can help the selection of OM for further in-situ techniques, and elucidate the origin and evolution of OM preserved in asteroidal materials.
en-copyright=
kn-copyright=
en-aut-name=KumarRahul
en-aut-sei=Kumar
en-aut-mei=Rahul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiKatsura
en-aut-sei=Kobayashi
en-aut-mei=Katsura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PotiszilChristian
en-aut-sei=Potiszil
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KunihiroTak
en-aut-sei=Kunihiro
en-aut-mei=Tak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Asteroidal material
kn-keyword=Asteroidal material
en-keyword=Organic matter
kn-keyword=Organic matter
en-keyword=Carbonaceous chondrites
kn-keyword=Carbonaceous chondrites
en-keyword=RyuguImage processing
kn-keyword=RyuguImage processing
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Size distribution
kn-keyword=Size distribution
END
start-ver=1.4
cd-journal=joma
no-vol=658
cd-vols=
no-issue=
article-no=
start-page=119310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Limited water contents of wadsleyite and ringwoodite coexisting with hydrous minerals in cold subducting slabs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=How water is distributed in a subducting slab is essential to understand water transport into the deep mantle and mechanisms of deep-focus earthquakes and slab deformation around the 660-km discontinuity. A recent experimental study demonstrated that water contents of olivine and wadsleyite coexisting with hydrous phase A is limited at upper mantle pressures, suggesting strong water partitioning to the hydrous phase. However, water distribution between nominally anhydrous and hydrous minerals at the deeper mantle is not investigated in detail. We determined water contents in wadsleyite and ringwoodite coexisting with hydrous phases down to transition-zone depths along cold slab temperatures. Wadsleyite coexisting with hydrous phase A has ∼200 ppm water at 14–16 GPa and 800 °C. At 21 GPa, ringwoodite coexisting with superhydrous phase B has 8–13 ppm water at 800 °C and 46 ppm at 900 °C. Thus, olivine and its high-pressure polymorphs are kinetically dry along cold slab core conditions even in a wet subducting slab. Slab deformation and stagnation around 660 km depth can be caused by grain-size reduction due to phase transitions of dry olivine and the presence of rheologically weak hydrous phases. The deepest earthquakes below 660 km depth can be caused by dehydration of hydrous phases.
en-copyright=
kn-copyright=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuJintao
en-aut-sei=Zhu
en-aut-mei=Jintao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtaniEiji
en-aut-sei=Ohtani
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Earth Sciences, Graduate School of Science, Tohoku University
kn-affil=
en-keyword=Subducting slab
kn-keyword=Subducting slab
en-keyword=Water
kn-keyword=Water
en-keyword=Olivine
kn-keyword=Olivine
en-keyword=Ringwoodite
kn-keyword=Ringwoodite
en-keyword=Hydrous phase
kn-keyword=Hydrous phase
en-keyword=Earthquake
kn-keyword=Earthquake
END
start-ver=1.4
cd-journal=joma
no-vol=1869
cd-vols=
no-issue=12
article-no=
start-page=130860
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250913
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The F54L mutation of Thioredoxin shows protein instability and increased fluctuations of the catalytic center
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thioredoxin is a ubiquitous redox protein that acts as an electron donor via its conserved dithiol motif (C32GPC35), catalyzing dithiol–disulfide exchange to regulate the redox state of target proteins. It supports antioxidant defense via peroxiredoxins, facilitates DNA synthesis by donating electrons to ribonucleotide reductase, and regulates redox-sensitive signaling pathways, including those controlling transcription and apoptosis. Neuronal degeneration and chronic kidney disease have been observed in Txn-F54L mutant rats; however, the details of why the Txn mutation causes these phenomena remain unknown. The present study aimed to elucidate the functional and structural changes caused by the F54L mutation. The Thioredoxin-F54L showed less insulin-reducing activity and more thermosensitivity to denaturation in the body temperature range compared to the wild type. The crystal structure revealed that F54 forms hydrophobic interactions with the surrounding hydrophobic amino acids. In addition, molecular dynamics simulation predicts increased fluctuations around the F54L mutation and a tendency for the distance between residues C32 and C35 at the catalytic center to be widened. The increased distance between residues C32 and C35 of the catalytic center may affect the reducing activity of the enzyme on the substrate. The finding that Thioredoxin-F54L is prone to denaturation at normal body temperature may reduce the normally functioning Thioredoxin. These molecular characteristics of Thioredoxin-F54L may be related to brain and kidney disease development in the Txn-F54L rats.
en-copyright=
kn-copyright=
en-aut-name=BabaTakumi
en-aut-sei=Baba
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UenoGo
en-aut-sei=Ueno
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OheChika
en-aut-sei=Ohe
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SajiShuku
en-aut-sei=Saji
en-aut-mei=Shuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoSachiko
en-aut-sei=Yamamoto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoMasaki
en-aut-sei=Yamamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakagawaHiroshi
en-aut-sei=Nakagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiNobuo
en-aut-sei=Okazaki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Kawasaki-OhmoriIori
en-aut-sei=Kawasaki-Ohmori
en-aut-mei=Iori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakeshitaKohei
en-aut-sei=Takeshita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center
kn-affil=
affil-num=2
en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center
kn-affil=
affil-num=3
en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center
kn-affil=
affil-num=4
en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=5
en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=6
en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center
kn-affil=
affil-num=7
en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency
kn-affil=
affil-num=8
en-affil=Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS)
kn-affil=
affil-num=9
en-affil=Department of Molecular Oncology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University
kn-affil=
affil-num=11
en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center
kn-affil=
en-keyword=Txn
kn-keyword=Txn
en-keyword=Thioredoxin
kn-keyword=Thioredoxin
en-keyword=Protein instability
kn-keyword=Protein instability
en-keyword=Thermosensitivity
kn-keyword=Thermosensitivity
en-keyword=Crystal structure
kn-keyword=Crystal structure
en-keyword=Molecular dynamics simulation
kn-keyword=Molecular dynamics simulation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250919
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual-action intranasal oxytocin enhances both male sexual performance and fertility in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=EnomotoChica
en-aut-sei=Enomoto
en-aut-mei=Chica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtiTakumi
en-aut-sei=Oti
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTakahiro
en-aut-sei=Yamanaka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimadaMasayuki
en-aut-sei=Shimada
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=4
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=5
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=oxytocin
kn-keyword=oxytocin
en-keyword=intranasal administration
kn-keyword=intranasal administration
en-keyword=sexual behavior
kn-keyword=sexual behavior
en-keyword=sperm motility
kn-keyword=sperm motility
en-keyword=paraventricular nucleus
kn-keyword=paraventricular nucleus
en-keyword=male sexual function
kn-keyword=male sexual function
en-keyword=androgen signaling
kn-keyword=androgen signaling
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=9
article-no=
start-page=1135
end-page=1151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250910
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC–CXCL1–CXCR2 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1–CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC–CXCL1–CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes.
en-copyright=
kn-copyright=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsukiToshiomi
en-aut-sei=Katsuki
en-aut-mei=Toshiomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoToshiyuki
en-aut-sei=Ko
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoMasamichi
en-aut-sei=Ito
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatagiriMikako
en-aut-sei=Katagiri
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaMasayuki
en-aut-sei=Kubota
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaShintaro
en-aut-sei=Yamada
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraTakahiro
en-aut-sei=Nakamura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AkibaYohei
en-aut-sei=Akiba
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KoukaThukaa
en-aut-sei=Kouka
en-aut-mei=Thukaa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KomuroKaoruko
en-aut-sei=Komuro
en-aut-mei=Kaoruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraMai
en-aut-sei=Kimura
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ItoShogo
en-aut-sei=Ito
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KomuroIssei
en-aut-sei=Komuro
en-aut-mei=Issei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaKeiichi
en-aut-sei=Fukuda
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IedaMasaki
en-aut-sei=Ieda
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=118
cd-vols=
no-issue=10
article-no=
start-page=146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Duganella hordei sp. nov., Duganella caerulea sp. nov., and Duganella rhizosphaerae sp. nov., isolated from barley rhizosphere
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Duganella sp. strains R1T, R57T, and R64T, isolated from barley roots in Japan, are Gram-stain-negative, motile, rod-shaped bacteria. Duganella species abundantly colonized barley roots. Strains R1T, R57T, and R64T were capable of growth at 4 °C, suggesting adaptation to colonize winter barley roots. Strains R57T and R64T formed purple colonies, indicating violacein production, while strain R1T did not. Based on 16S rRNA gene sequence similarities, strains R1T, R57T, and R64T were most closely related to D. violaceipulchra HSC-15S17T (99.10%), D. vulcania FT81WT (99.45%), and D. violaceipulchra HSC-15S17T (99.86%), respectively. Their genome sizes ranged from 7.05 to 7.38 Mbp, and their genomic G+C contents were 64.2–64.7%. The average nucleotide identity and digital DNA–DNA hybridization values between R1T and D. violaceipulchra HSC-15S17T, R57T and D. vulcania FT81WT, R64T and D. violaceipulchra HSC-15S17T were 86.0% and 33.2%, 95.7% and 67.9%, and 92.7% and 52.6%, respectively. Their fatty acids were predominantly composed of C16:0, C17:0 cyclo, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on their distinct genetic and phenotypic characteristics, and supported by chemotaxonomic analyses, we propose that strains R1T, R57T, and R64T represent novel species within the Duganella genus, for which the names Duganella hordei (type strain R1T = NBRC 115982 T = DSM 115069 T), Duganella caerulea (type strain R57T = NBRC 115983 T = DSM 115070 T), and Duganella rhizosphaerae (type strain R64T = NBRC 115984 T = DSM 115071 T) are proposed.
en-copyright=
kn-copyright=
en-aut-name=KishiroKatsumoto
en-aut-sei=Kishiro
en-aut-mei=Katsumoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SahinNurettin
en-aut-sei=Sahin
en-aut-mei=Nurettin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaishoDaisuke
en-aut-sei=Saisho
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaJun
en-aut-sei=Yamashita
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakagawaTomoyuki
en-aut-sei=Nakagawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniAkio
en-aut-sei=Tani
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Egitim Fakultesi, Mugla Sitki Kocman University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Applied Biological Sciences, Gifu University
kn-affil=
affil-num=8
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Barley
kn-keyword=Barley
en-keyword=Duganella
kn-keyword=Duganella
en-keyword=Novel species
kn-keyword=Novel species
en-keyword=Rhizosphere
kn-keyword=Rhizosphere
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=3
article-no=
start-page=394
end-page=403
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and Crystal Structure of Ilmenite-Type Silicate with Pyrope Composition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Akimotoite, ilmenite-type MgSiO3 high-pressure polymorph can be stable in the lower-mantle transition zone along average mantle and subducting slab geotherms. Significant amounts of Al2O3 can be incorporated into the structure, having the pyrope (Mg3Al2Si3O12) composition. Previous studies have investigated the effect of Al2O3 on its crystal structure at nearly endmember compositions. In this study, we synthesized high-quality ilmenite-type Mg3Al2Si3O12 phase at 27 GPa and 1073 K by means of a Kawai-type multi-anvil press and refined the crystal structure at ambient conditions using a synchrotron X-ray diffraction data via the Rietveld method to examine the effect of Al2O3. The unit-cell lattice parameters were determined to be a = 4.7553(7) Å, c = 13.310(2) Å, and V = 260.66(6) Å3, with Z = 6 (hexagonal, R3̲
). The volume of the present phase was placed on the akimotoite-corundum endmember join. However, the refined structure showed a strong nonlinear behavior of the a- and c-axes, which can be explained by Al incorporation into the MgO6 and SiO6 octahedral sites, which are distinctly different each other. Ilmenite-type Mg3Al2Si3O12 phase may be found in shocked meteorites and can be a good indicator for shock conditions at relatively low temperatures of 1027–1127 K.
en-copyright=
kn-copyright=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SinmyoRyosuke
en-aut-sei=Sinmyo
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuraTomoo
en-aut-sei=Katsura
en-aut-mei=Tomoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=3
en-affil=Bavarian Research Institute of Experimental Geochemistry and Geophysics, University of Bayreuth
kn-affil=
en-keyword=ilmenite
kn-keyword=ilmenite
en-keyword=akimotoite
kn-keyword=akimotoite
en-keyword=pyrope
kn-keyword=pyrope
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=X-ray diffraction
kn-keyword=X-ray diffraction
en-keyword=crystal structure
kn-keyword=crystal structure
en-keyword=Rietveld analysis
kn-keyword=Rietveld analysis
en-keyword=mantle
kn-keyword=mantle
en-keyword=subducting slab
kn-keyword=subducting slab
en-keyword=corundum
kn-keyword=corundum
END
start-ver=1.4
cd-journal=joma
no-vol=198
cd-vols=
no-issue=1
article-no=
start-page=kiaf137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2 MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo.
en-copyright=
kn-copyright=
en-aut-name=GachieSarah W
en-aut-sei=Gachie
en-aut-mei=Sarah W
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MuhireAlexandre
en-aut-sei=Muhire
en-aut-mei=Alexandre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiDi
en-aut-sei=Li
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawamotoAkihiro
en-aut-sei=Kawamoto
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Takeda-KamiyaNoriko
en-aut-sei=Takeda-Kamiya
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoYumi
en-aut-sei=Goto
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatoMayuko
en-aut-sei=Sato
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ToyookaKiminori
en-aut-sei=Toyooka
en-aut-mei=Kiminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshimuraRyo
en-aut-sei=Yoshimura
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakamiTsuneaki
en-aut-sei=Takami
en-aut-mei=Tsuneaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZhangLingang
en-aut-sei=Zhang
en-aut-mei=Lingang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurisuGenji
en-aut-sei=Kurisu
en-aut-mei=Genji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TerachiToru
en-aut-sei=Terachi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=5
en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=8
en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology
kn-affil=
affil-num=12
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=13
en-affil=Faculty of Life Sciences, Kyoto Sangyo University
kn-affil=
affil-num=14
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=pcaf098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thylakostasis: key factors in thylakoid membrane organization with emphasis on biogenesis and remodeling proteins in vascular plants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thylakoid membrane (TM), a defining feature for almost all oxygen-evolving photosynthetic organisms, serves as the structural foundation for light-driven energy conversion. In vascular plants, the TM evolved into a complex architecture composed of single-layered stroma thylakoids and stacked grana thylakoids, enabling the spatial organization of two photosystems (PSII and PSI) to optimize light capture and energy transfer. In addition, two membrane regions, one connecting these two compartments (grana margin) and the other corresponding to the curvature domain in grana, function in dissipating excess energy, balancing electron transfer, and maintaining functional PSII. Recent advances in electron microscopy imaging and proteome analysis of membrane subcompartments have provided new insights into the structure and dynamic adaptations of the TM in response to diverse environmental conditions. To describe the mechanisms that govern TM architecture, dynamics, and integrity, I am introducing the concept of “thylakostasis” (thylakoid homeostasis). Here, I provide an overview of the molecular components and processes central to thylakostasis, including the biosynthesis of lipids, chlorophyll, and proteins. I focus particularly on the membrane remodeling proteins whose functions have been elucidated recently, such as VIPP1, a member of the evolutionarily conserved PspA/ESCRT-III superfamily; FZL, a dynamin-like GTPase; and CURT1, a curvature-inducing protein unique to photosynthetic organisms. Together, these factors orchestrate TM biogenesis, remodeling, and adaptive flexibility that is essential for photosynthetic efficiency.
en-copyright=
kn-copyright=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=chloroplast
kn-keyword=chloroplast
en-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
kn-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
en-keyword=grana
kn-keyword=grana
en-keyword=membrane trafficking
kn-keyword=membrane trafficking
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=stroma thylakoid
kn-keyword=stroma thylakoid
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation of alkyl radicals via C(sp3)–C(sp3) bond cleavage of xanthene-based precursors for photocatalytic Giese-type reaction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Novel xanthene-based alkyl radical precursors were developed and subjected to photocatalytic C(sp3)–C(sp3) bond cleavage for the efficient generation of alkyl radicals, which were subsequently reacted with various alkenes to afford the corresponding Giese-type products. After the reaction, the produced xanthones can be recovered in high yield.
en-copyright=
kn-copyright=
en-aut-name=HoriuchiShuta
en-aut-sei=Horiuchi
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OishiMasato
en-aut-sei=Oishi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=wrae175
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
en-copyright=
kn-copyright=
en-aut-name=Hasegawa-TakanoMasumi
en-aut-sei=Hasegawa-Takano
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HosakaToshiaki
en-aut-sei=Hosaka
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYosuke
en-aut-sei=Nishimura
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuriharaMarie
en-aut-sei=Kurihara
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakajimaYu
en-aut-sei=Nakajima
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Ishizuka-KatsuraYoshiko
en-aut-sei=Ishizuka-Katsura
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Kimura-SomeyaTomomi
en-aut-sei=Kimura-Someya
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShirouzuMikako
en-aut-sei=Shirouzu
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=8
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=9
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
en-keyword=cyanobacteria
kn-keyword=cyanobacteria
en-keyword=microbial rhodopsin
kn-keyword=microbial rhodopsin
en-keyword=ecology
kn-keyword=ecology
en-keyword=evolution
kn-keyword=evolution
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=10
article-no=
start-page=4724
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells.
en-copyright=
kn-copyright=
en-aut-name=JiangYuli
en-aut-sei=Jiang
en-aut-mei=Yuli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiangJian
en-aut-sei=Liang
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChunyan
en-aut-sei=Wang
en-aut-mei=Chunyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanLi
en-aut-sei=Tan
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagawaShingo
en-aut-sei=Nagawa
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute for Translational Brain Reaearch, Fudan University
kn-affil=
affil-num=2
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
en-keyword=BAM1
kn-keyword=BAM1
en-keyword=WOX1
kn-keyword=WOX1
en-keyword=margin cells
kn-keyword=margin cells
en-keyword=auxin
kn-keyword=auxin
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=17
article-no=
start-page=8643
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anti-HMGB1 Antibody Therapy Ameliorates Spinal Cord Ischemia–Reperfusion Injury in Rabbits
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spinal cord ischemia–reperfusion (SCI/R) injury remains a major clinical challenge with limited therapeutic options. High-mobility group box 1 (HMGB1), a proinflammatory mediator released during cellular stress, has been implicated in the pathogenesis of ischemia–reperfusion-induced neural damage. In this study, we investigated the neuroprotective potential of the anti-HMGB1 monoclonal antibody (mAb) in a rabbit model of SCI/R injury. Male New Zealand White rabbits were anesthetized and subjected to 11 min of abdominal aortic occlusion using a micro-bulldog clamp following heparinization. Anti-HMGB1 mAb or control IgG was administered intravenously immediately after reperfusion and again at 6 h post-reperfusion. Neurological function was assessed at 6, 24, and 48 h after reperfusion using the modified Tarlov scoring system. The rabbits were euthanized 48 h after reperfusion for spinal cord and blood sampling. Treatment with anti-HMGB1 mAb significantly improved neurological outcomes, reduced the extent of spinal cord infarction, preserved motor neuron viability, and decreased the presence of activated microglia and infiltrating neutrophils. Furthermore, it attenuated apoptosis, oxidative stress, and inflammatory responses in the spinal cord, and helped maintain the integrity of the blood–spinal cord barrier. These findings suggest that anti-HMGB1 mAb may serve as a promising therapeutic agent for SCI/R injury.
en-copyright=
kn-copyright=
en-aut-name=MuraokaGenya
en-aut-sei=Muraoka
en-aut-mei=Genya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiYasuhiro
en-aut-sei=Fujii
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiuKeyue
en-aut-sei=Liu
en-aut-mei=Keyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=QiaoHandong
en-aut-sei=Qiao
en-aut-mei=Handong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangDengli
en-aut-sei=Wang
en-aut-mei=Dengli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OozawaSusumu
en-aut-sei=Oozawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Translational Research, Center for Innovative Clinical Medicine, Medical Development Field, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Medical Technology, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=7
en-affil=Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=thoracoabdominal aortic aneurysm
kn-keyword=thoracoabdominal aortic aneurysm
en-keyword=spinal cord ischemia–reperfusion injury
kn-keyword=spinal cord ischemia–reperfusion injury
en-keyword=high mobility group box 1
kn-keyword=high mobility group box 1
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=blood–spinal cord barrier
kn-keyword=blood–spinal cord barrier
en-keyword=aortic surgery
kn-keyword=aortic surgery
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250818
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Precise stratification of prognosis in pancreatic ductal adenocarcinoma patients based on pre- and postoperative genomic information
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all cancers; hence, multidisciplinary treatment is essential for patients with PDAC. Although the resectability status, tumour marker, KRAS circulating tumour DNA (mutKRAS-ctDNA) mutations, and GATA binding 6 (GATA6) expression status are promising prognostic biomarkers, their effective integration before and after surgery remains unclear.
Methods In this retrospective cohort study, patients with PDAC who had undergone radical resection were enrolled, and pre- and postoperative independent factors associated with poor prognosis were identified using Cox hazard modelling. Risk stratification systems were developed using the identified prognostic factors and investigated for the ability to predict prognosis.
Results A total of 91 patients with PDAC were included (median follow-up duration, 28 months). Borderline resectable or locally advanced cancer at diagnosis, elevated carbohydrate antigen 19–9 (CA19-9) level, and mutKRAS-ctDNA-positive status were identified as independent preoperative factors associated with poor prognosis. The postoperative factors significantly associated with shorter overall survival were low GATA6 expression, elevated CA19-9 level, and mutKRAS-ctDNA-positive status. Finally, the preoperative and postoperative risk scoring systems developed using Cox modelling hazard ratio values could significantly stratify prognosis after curative resection for PDAC.
Conclusion A risk stratification system based on liquid biopsy, specialised for each phase (pre- and post-surgery), has been proven to be a useful, simple, and practical prognostic prediction clinical tool to determine the optimal multidisciplinary treatment protocol for PDAC.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoKokichi
en-aut-sei=Miyamoto
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Biomedical Informatics, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Pancreatic ductal adenocarcinoma
kn-keyword=Pancreatic ductal adenocarcinoma
en-keyword=Risk stratification
kn-keyword=Risk stratification
en-keyword=Prognosis
kn-keyword=Prognosis
en-keyword=Tumour marker
kn-keyword=Tumour marker
en-keyword=KRAS
kn-keyword=KRAS
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=9
article-no=
start-page=396
end-page=406
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world Experience of Embolization for Intracranial Tumors in Japan: Analysis of 2,756 Cases from Japanese Registry of NeuroEndovascular Therapy 4
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Embolization of intracranial tumors is predominantly performed in Japan, primarily before neurosurgical resection. The Japanese Registry of NeuroEndovascular Therapy (JR-NET) Study Group, established in 2005, aims to clarify the factors influencing the outcomes of neuroendovascular treatment. Japanese Registry of NeuroEndovascular Therapy 4 is a nationwide, multicenter retrospective observational study that evaluates real-world data on intracranial tumor embolization in Japan. Japanese Registry of NeuroEndovascular Therapy 4 is based on data collected from 166 neurosurgical centers in Japan between January 2015 and December 2019. Of 63,230 patients, 2,664 (4.2%) with intracranial tumors underwent embolization. The primary endpoint was the proportion of patients with a modified Rankin scale (mRS) score of 0-2 at 30 days post-procedure. Secondary endpoints included procedure-related complications. Among the 2,664 patients, 61 records lacked sufficient data, leaving 2,603 patients (1,612 females, median age: 61 years [interquartile range 51-71]). The proportion of patients with mRS scores ≤2 at 30 days after the procedure was 86.9%. The overall incidence of procedure-related complications was 4.8%, with 1.8% hemorrhagic, 2.0% ischemic, and 1.0% classified as other complications. In the multivariate analysis, general anesthesia and embolization of vessels other than the external carotid artery were identified as risk factors for the development of complications. Meningioma cases had a complication rate of 4.3%, with major complications occurring in 3.5%. Hemangioblastoma cases had a 14.9% complication rate, with major complications at 9.9%. Japanese Registry of NeuroEndovascular Therapy 4 provides comprehensive real-world data on intracranial tumor embolization in Japan, identifying risk factors to inform and improve the safe practice of intracranial tumor embolization in neuroendovascular therapy.
en-copyright=
kn-copyright=
en-aut-name=HARUMAJun
en-aut-sei=HARUMA
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SUGIUKenji
en-aut-sei=SUGIU
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HISHIKAWATomohito
en-aut-sei=HISHIKAWA
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SOUTOMEYuta
en-aut-sei=SOUTOME
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EBISUDANIYuki
en-aut-sei=EBISUDANI
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KIMURARyu
en-aut-sei=KIMURA
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EDAKIHisanori
en-aut-sei=EDAKI
en-aut-mei=Hisanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KAWAKAMIMasato
en-aut-sei=KAWAKAMI
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MURAISatoshi
en-aut-sei=MURAI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HIRAMATSUMasafumi
en-aut-sei=HIRAMATSU
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TANAKAShota
en-aut-sei=TANAKA
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SATOWTetsu
en-aut-sei=SATOW
en-aut-mei=Tetsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IIHARAKoji
en-aut-sei=IIHARA
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IMAMURAHirotoshi
en-aut-sei=IMAMURA
en-aut-mei=Hirotoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ISHIIAkira
en-aut-sei=ISHII
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MATSUMARUYuji
en-aut-sei=MATSUMARU
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SAKAIChiaki
en-aut-sei=SAKAI
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YOSHIMURAShinichi
en-aut-sei=YOSHIMURA
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SAKAINobuyuki
en-aut-sei=SAKAI
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators
en-aut-sei=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurosurgery, Kindai University
kn-affil=
affil-num=13
en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=15
en-affil=Department of Neurosurgery, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Neurosurgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=17
en-affil=Department of Neurosurgery, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Neurosurgery, Hyogo Medical University
kn-affil=
affil-num=19
en-affil=Department of Neurological Surgery, Shimizu Hospital
kn-affil=
affil-num=20
en-affil=
kn-affil=
en-keyword=complication
kn-keyword=complication
en-keyword=intracranial tumor
kn-keyword=intracranial tumor
en-keyword=embolization
kn-keyword=embolization
en-keyword=Japanese registry
kn-keyword=Japanese registry
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9–MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9‒MCAM‒ERK‒c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK‒c-Jun pathway. The S100A8/A9‒signaling axis may represent a novel therapeutic target in GC.
en-copyright=
kn-copyright=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PanBo
en-aut-sei=Pan
en-aut-mei=Bo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WuFangping
en-aut-sei=Wu
en-aut-mei=Fangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXu
en-aut-sei=Zhang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunBei
en-aut-sei=Sun
en-aut-mei=Bei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Faculties of Educational and Research Management Field, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=S100 protein
kn-keyword=S100 protein
en-keyword=MCAM
kn-keyword=MCAM
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Metastasis
kn-keyword=Metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=412
end-page=437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biophysical regulation of extracellular matrix in systemic lupus erythematosus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by immune dysregulation and multi-organ damage. Recent advances have underscored the critical involvement of extracellular matrix (ECM) biophysical properties in shaping immune cell behavior and metabolic states that contribute to disease progression. This review systematically delineates the pathological remodeling of ECM biophysics in SLE, with a focus on their roles in mechanotransduction, immune-metabolic interplay, and organ-specific tissue injury. By integrating current evidence, we highlight how ECM-derived mechanical cues orchestrate aberrant immune responses and propose new perspectives for targeting ECM-immune crosstalk in the development of organ-specific, mechanism-based therapies for SLE.
en-copyright=
kn-copyright=
en-aut-name=LiQiwei
en-aut-sei=Li
en-aut-mei=Qiwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiQiang
en-aut-sei=Li
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XiaoZhaoyang
en-aut-sei=Xiao
en-aut-mei=Zhaoyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NARUSEKeiji
en-aut-sei=NARUSE
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=systemic lupus erythematosus (SLE)
kn-keyword=systemic lupus erythematosus (SLE)
en-keyword=extracellular matrix (ECM)
kn-keyword=extracellular matrix (ECM)
en-keyword=mechanotransduction
kn-keyword=mechanotransduction
en-keyword=mechanism
kn-keyword=mechanism
en-keyword=immune regulation
kn-keyword=immune regulation
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=organ-specific damage
kn-keyword=organ-specific damage
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of 50 krpm Ultra-High Speed IPMSM For EV Traction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper develops an ultra-high-speed 50 krpm motor for traction applications. A typical IPMSM structure is used for the rotor in this paper. At ultra-high speeds, the winding structure has a large effect on winding losses. Hence, this paper investigates the AC loss of the winding. The AC loss includes the eddy current loss and circulating current loss in the winding. Additionally, the ultra-high speed raises concerns about the rotor's critical speed. Therefore, in this paper, the shaft of the developed motor is manufactured, and the critical speed is evaluated.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraMasaki
en-aut-sei=Kimura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=4
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=IPMSM
kn-keyword=IPMSM
en-keyword=winding
kn-keyword=winding
en-keyword=traction motor
kn-keyword=traction motor
en-keyword=50 krpm
kn-keyword=50 krpm
en-keyword=eddy current loss
kn-keyword=eddy current loss
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=67
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Depletion of Lysyl Oxidase-Like 4 (LOXL4) Attenuates Colony Formation in vitro and Collagen Deposition in vivo Breast Cancer Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lysyl oxidase (LOX) family proteins have recently become a topic in cancer progression. Our recent study found a high expression of LOX-like 4 (LOXL4) in MDA-MB-231 cells. Objective: To reveal the impact of depleted LOXL4 in both in vitro and in vivo breast cancer models from a histological perspective. Material and Method: Endogenous LOXL4 was depleted using the CRISPR/Cas9 on MDA-MB-231 parental cells. Based on the LOXL4 protein expression, the clone was determined for the next experiment, thus generating MDA-MB-231 LOXL4 KO. Cell assay was conducted using colony formation assay (n=3) followed by crystal violet staining. The indicated cells were inoculated orthotopically to female BALB/c nude mice (n=5). At the end of the experiment, tumors were isolated, fixed, and prepared for Masson Trichrome staining. Result: CRISPR/Cas9 completely depleted LOXL4 expression on clone number #2-22. Depletion of LOXL4 reduced the colony size formed by MDA-MB-231 cells. MDA-MB-231 LOXL4 KO #2-22 derived tumors showed depressed tumor volume compared to the parental group. Reduced collagen was also observed from the Masson Trichrome staining (p<0.001). Conclusion: Depletion of LOXL4 downregulates the growth of MDA-MB-231 cells in vitro and collagen deposition in vivo.
en-copyright=
kn-copyright=
en-aut-name=Ni Luh Gede Yoni Komalasari
en-aut-sei=Ni Luh Gede Yoni Komalasari
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=I Gde Haryo Ganesha
en-aut-sei=I Gde Haryo Ganesha
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=I Gusti Nyoman Sri Wiryawan
en-aut-sei=I Gusti Nyoman Sri Wiryawan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=3
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=Good health
kn-keyword=Good health
en-keyword=Lysyl oxidase
kn-keyword=Lysyl oxidase
en-keyword=Extracellular matrix
kn-keyword=Extracellular matrix
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=16
article-no=
start-page=2634
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Impact of Gastrointestinal Immune-Related Adverse Events Depends on Nutritional Status in Cancer Patients Treated with Immune Checkpoint Inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastrointestinal immune-related adverse events (GI-irAEs) are recognized complications of immune checkpoint inhibitors (ICIs), but their prognostic relevance and associated risk factors remain unclear. This study aimed to assess whether baseline nutritional status, measured using the prognostic nutritional index (PNI), modifies the prognostic impact of GI-irAEs, and to identify clinical factors associated with their occurrence. Methods: We retrospectively analyzed 1104 cancer patients treated with ICIs at a single institution. GI-irAEs were defined as gastrointestinal symptoms requiring clinical intervention. Patients were stratified by irAE type and PNI (≥40 vs. <40), and differences in survival and treatment response were evaluated. Potential risk factors for developing GI-irAEs were also examined. Results: GI-irAEs occurred in 2.7% of patients and were associated with prolonged overall survival (median: 28.7 vs. 14.0 months) among those with PNI ≥ 40. This survival advantage was not observed in patients with PNI < 40. The PNI-dependent prognostic pattern was specific to GI-irAEs and not observed for non-GI irAEs. Similar trends were confirmed in 4- and 8-week landmark analyses. Differences in objective response rate and disease control rate by PNI status were most pronounced in patients with GI-irAEs. The use of anti-CTLA-4 antibodies was significantly associated with GI-irAE development (odds ratio 4.24; 95% confidence interval 1.73–10.39). Conclusions: GI-irAEs appear to confer a survival benefit primarily in patients with preserved nutritional status. PNI may serve as a useful tool to contextualize the clinical relevance of GI-irAEs and help identify patients most likely to benefit from immune activation during ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaEmi
en-aut-sei=Tanaka
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SueMasahiko
en-aut-sei=Sue
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshikawaTomoki
en-aut-sei=Yoshikawa
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KametakaDaisuke
en-aut-sei=Kametaka
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiChihiro
en-aut-sei=Sakaguchi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=gastrointestinal immune-related adverse events
kn-keyword=gastrointestinal immune-related adverse events
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=prognostic nutrition index
kn-keyword=prognostic nutrition index
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6207
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of the Diagnostic Performance of the Brush/Biopsy Rapid On-Site Evaluation (B-ROSE) in Cases of Bile Duct Stricture: A Prospective, Pilot Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=settingsOrder Article Reprints
Open AccessArticle
Evaluation of the Diagnostic Performance of the Brush/Biopsy Rapid On-Site Evaluation (B-ROSE) in Cases of Bile Duct Stricture: A Prospective, Pilot Study
by Nao Hattori 1,Daisuke Uchida 1,2,*,Kei Harada 1,Ryosuke Sato 1ORCID,Taisuke Obata 1,Akihiro Matsumi 1ORCID,Kazuya Miyamoto 1ORCID,Hiroyuki Terasawa 1ORCID,Yuki Fujii 1,Koichiro Tsutsumi 1ORCID,Shigeru Horiguchi 1,Kazuyuki Matsumoto 1ORCID andMotoyuki Otsuka 1
1
Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
2
Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2025, 14(17), 6207; https://doi.org/10.3390/jcm14176207
Submission received: 23 June 2025 / Revised: 21 August 2025 / Accepted: 26 August 2025 / Published: 2 September 2025
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Downloadkeyboard_arrow_down Browse Figures Versions Notes
Abstract
Background: Biliary strictures are diagnosed using endoscopic retrograde cholangiopancreatography (ERCP) with brush cytology and biopsy. However, brush cytology shows a sensitivity of 9–56.1% and a diagnostic accuracy of 43–65.4%, while biopsy demonstrates a sensitivity of 48%. Both methods exhibit high specificity but limited sensitivity. While rapid on-site evaluation (ROSE) is effective in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA), its application in ERCP-obtained samples remains underexplored. Methods: This prospective pilot study was conducted at Okayama University Hospital from April 2019 to July 2024. Patients requiring ERCP-guided sampling for bile duct strictures were included. ROSE was applied to brush cytology with up to three additional attempts and to imprint cytology from biopsy samples with up to two attempts. Diagnostic accuracy was assessed based on pathology and clinical course. Results: Among 37 patients (median age: 73 years, add range, and male–female ratio: 27:10), 18 had hilar and 19 had distal bile duct strictures. Brush cytology required one, two, or three attempts in twenty-six, six, and five cases, respectively, whereas biopsy required one or two attempts in thirty-five and two cases, respectively. Among the thirty-seven cases, thirty-five were malignant and two were benign. The B-ROSE group showed a sensitivity, specificity, and accuracy of 71.4%, 100.0%, and 73.0%, respectively, compared to lower accuracy in the conventional group, where single brush cytology attempts yielded a sensitivity of 48.6% and an accuracy of 48.6%, and single biopsy attempts showed a sensitivity of 68.6% and an accuracy of 70.3%. Conclusions: B-ROSE improves diagnostic accuracy, reduces repeat sampling, and minimizes patient burden in ERCP-based diagnosis of bile duct strictures, making it a valuable addition to current diagnostic protocols.
en-copyright=
kn-copyright=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TerasawaHiroyuki
en-aut-sei=Terasawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
en-keyword=bile duct stricture
kn-keyword=bile duct stricture
en-keyword=ERCP (endoscopic retrograde cholangiopancreatography)
kn-keyword=ERCP (endoscopic retrograde cholangiopancreatography)
en-keyword=rapid on-site evaluation (ROSE)
kn-keyword=rapid on-site evaluation (ROSE)
en-keyword=B-ROSE
kn-keyword=B-ROSE
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudohypoxia induced by iron chelator activates tumor immune response in lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypoxia-inducible factor (HIF) signaling plays a critical role in immune cell function. Pseudohypoxia is characterized as iron-mediated stabilization of HIF-1α under normoxic conditions, which can be induced by iron chelators. This study explored whether iron chelators exert antitumor effects by enhancing tumor immune responses and elucidating the underlying mechanisms. The iron chelators Super–polyphenol 10 (SP10) and Deferoxamine (DFO) were used to create iron-deficient and pseudohypoxia conditions. Pseudohypoxia induced by iron chelators stimulates IL-2 secretion from T cells and from both human and murine nonsmall cell lung cancer (NSCLC) cell lines (A549, PC-3, and LLC). Administration of SP10 reduced tumor growth when LLC tumors were implanted in C57BL/6 mice; however, this was not observed in immunodeficient RAG1-deficient C57BL/6 mice. SP10 itself did not directly inhibit LLC cells proliferation in vitro, suggesting an activation of the tumor immune response. SP10 synergistically enhanced the efficacy of PD-1 antibody therapy in lung cancer by increasing the number of tumor-infiltrating lymphocytes (TILs). In conclusion, iron chelation-induced pseudohypoxia activates tumor immune responses by directly upregulating HIF-1α, augmenting T cell function, and inducing IL-2 secretion from T cells, and cancer cells, thereby amplifying the immune efficacy of the PD-1 antibody in lung cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeradaManato
en-aut-sei=Terada
en-aut-mei=Manato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=iron
kn-keyword=iron
en-keyword=hypoxia-inducible factor
kn-keyword=hypoxia-inducible factor
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=17
article-no=
start-page=8145
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC–glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC–GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses.
en-copyright=
kn-copyright=
en-aut-name=SunRuitong
en-aut-sei=Sun
en-aut-mei=Ruitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoAina
en-aut-sei=Yano
en-aut-mei=Aina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=benzyl isothiocyanate
kn-keyword=benzyl isothiocyanate
en-keyword=multidrug resistance
kn-keyword=multidrug resistance
en-keyword=glutathione S-transferase
kn-keyword=glutathione S-transferase
en-keyword=NBDHEX
kn-keyword=NBDHEX
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=c-Jun N-terminal kinase
kn-keyword=c-Jun N-terminal kinase
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27047
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of Streptococcus mutans harboring the cnm gene encoding cell surface protein Cnm in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dental caries is a highly prevalent infectious disease primarily caused by the pathogenic bacterium Streptococcus mutans, which has also been associated with systemic disease. A 120-kDa collagen-binding protein (Cnm) produced by S. mutans contributes to cardiovascular disease pathogenicity. Few studies have addressed the current prevalence of S. mutans and the cnm gene in Japanese children or examined caries pathology in relation to cnm presence. Here, we investigated the prevalence of S. mutans and the distribution of cnm-positive S. mutans among 490 children who visited two university hospitals in Japan. The caries experience index (dmft/DMFT) was calculated, and the collagen-binding ability of cnm-positive S. mutans strains was assessed. S. mutans was isolated from the oral cavities of 158 patients (36.8%); 10.1% (16/158) harbored cnm-positive S. mutans. When caries experience indices were compared across dentitions, patients harboring cnm-positive strains had significantly higher dmft/DMFT scores than those with cnm-negative strains (P < 0.05). Additionally, a positive correlation was observed between the collagen-binding capacity of cnm-positive S. mutans and the dmft/DMFT score (r = 0.601, P < 0.05). These findings suggest that cnm contributes to caries progression through collagen-mediated adherence to tooth surfaces. The presence of cnm-positive S. mutans may represent a risk factor for increased caries susceptibility in children.
en-copyright=
kn-copyright=
en-aut-name=SuehiroYuto
en-aut-sei=Suehiro
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaMakoto
en-aut-sei=Okuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsuguMasatoshi
en-aut-sei=Otsugu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiaiMarin
en-aut-sei=Ochiai
en-aut-mei=Marin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMisato
en-aut-sei=Takagi
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TojoFumikazu
en-aut-sei=Tojo
en-aut-mei=Fumikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MikasaYusuke
en-aut-sei=Mikasa
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaShuhei
en-aut-sei=Naka
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Matsumoto-NakanoMichiyo
en-aut-sei=Matsumoto-Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapirattanakulJinthana
en-aut-sei=Lapirattanakul
en-aut-mei=Jinthana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkawaRena
en-aut-sei=Okawa
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=5
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=6
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Microbiology, Faculty of Dentistry, Mahidol University
kn-affil=
affil-num=11
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=12
en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=13
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=Collagen-binding protein
kn-keyword=Collagen-binding protein
en-keyword=Cnm
kn-keyword=Cnm
en-keyword=Prevalence
kn-keyword=Prevalence
en-keyword=Dental caries
kn-keyword=Dental caries
en-keyword=Japanese population
kn-keyword=Japanese population
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=8
article-no=
start-page=e70325
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiotoxicity Assessment of EGFR Tyrosine Kinase Inhibitors Using Human iPS Cell‐Derived Cardiomyocytes and FDA Adverse Events Reporting System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advances in the development of anti-cancer drugs have contributed to prolonged survival of cancer patients. In contrast, drug-induced cardiotoxicity, particularly cardiac contractile dysfunction, is of growing concern in cancer treatment. Therefore, it is important to understand the risks of anti-cancer drug-induced cardiac contractile dysfunction in drug development. We have previously developed image-based motion analysis using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to assess the effect of drugs on contractility. However, the utility and predictive potential of image-based motion analysis using hiPSC-CMs for anti-cancer drug-induced cardiac contractile dysfunction have not been well understood. Here we focused on epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and investigated the correlation between the hiPSC-CMs data and clinical signals of adverse events related to cardiac contractile dysfunction. We examined the effects of the four EGFR-TKIs, osimertinib, gefitinib, afatinib, and erlotinib, on the contractility of hiPSC-CMs using image-based motion analysis. We found that osimertinib decreased contraction velocity and deformation distance in a dose- and time-dependent manner, whereas gefitinib, afatinib, and erlotinib had little effect on these parameters. Next, we examined the real-world data of the EGFR-TKIs using FDA Adverse Event Reporting System (FAERS; JAPIC AERS). Only osimertinib showed significant clinical signals of adverse events related to cardiac contractile dysfunction. These data suggest that hiPSC-CM data correlate with clinical signals in FAERS analysis for four EGFR-TKIs. Thus, image-based motion analysis using hiPSC-CMs can be a useful platform for predicting the risk of anti-cancer drug-induced cardiac contractile dysfunction in patients.
en-copyright=
kn-copyright=
en-aut-name=YanagidaShota
en-aut-sei=Yanagida
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawagishiHiroyuki
en-aut-sei=Kawagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoMitsuo
en-aut-sei=Saito
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaYasunari
en-aut-sei=Kanda
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=2
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=3
en-affil=Japan Pharmaceutical Information Center (JAPIC)
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
en-keyword=cardiomyocytes
kn-keyword=cardiomyocytes
en-keyword=cardiotoxicity
kn-keyword=cardiotoxicity
en-keyword=contractility
kn-keyword=contractility
en-keyword=EGFR-tyrosine kinase inhibitor
kn-keyword=EGFR-tyrosine kinase inhibitor
en-keyword=FAERS
kn-keyword=FAERS
en-keyword=human iPS cell
kn-keyword=human iPS cell
END
start-ver=1.4
cd-journal=joma
no-vol=188
cd-vols=
no-issue=
article-no=
start-page=118137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unravelling the cardioprotective effects of calcitriol in Sunitinib-induced toxicity: A comprehensive in silico and in vitro study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sunitinib (SUN), a drug used to treat advanced renal cell carcinoma and other cancers, causes cardiotoxicity. This study aimed to identify a potential drug candidate to counteract SUN-induced cardiotoxicity. We analysed real-world data from adverse event report databases of existing clinically approved drugs to identify potential candidates. Through in silico analyses and in vitro experiments, the mechanisms of action were determined. The study identified calcitriol (CTL), an active form of vitamin D, as a promising candidate against SUN-induced cardiotoxicity. In H9c2 cells, SUN decreased cell viability significantly, whereas CTL mitigated this effect significantly. The SUN-treated group exhibited increased autophagy in H9c2 cells, which was reduced significantly in the CTL group. Bioinformatics analysis using Ingenuity Pathway Analysis revealed the mechanistic target of rapamycin (mTOR) as a common factor between autophagy and CTL. Notably, rapamycin, an mTOR inhibitor, nullified the effects of CTL on cell viability and autophagy. Furthermore, SUN treatment led to significant reductions in cardiomyocyte diameters and increases in their widths, changes that were inhibited by CTL. SUN also induced morphological changes in surviving H9c2 cells, causing them to adopt a rounded shape, whereas CTL improved their morphology to resemble the elongated shape of the control group. In conclusion, the findings of the present study suggest that CTL has the potential to prevent SUN-induced cardiomyocyte damage through autophagy, particularly via mTOR-mediated pathways. The findings indicate that CTL could serve as an effective prophylactic agent against SUN-induced cardiotoxicity, offering a promising avenue for further research and potential clinical applications.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshika
en-aut-sei=Sakamoto
en-aut-mei=Yoshika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaMitsuhiro
en-aut-sei=Goda
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomochikaNanami
en-aut-sei=Tomochika
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakawaWakana
en-aut-sei=Murakawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AizawaFuka
en-aut-sei=Aizawa
en-aut-mei=Fuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiKenta
en-aut-sei=Yagi
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Izawa-IshizawaYuki
en-aut-sei=Izawa-Ishizawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshizawaKeisuke
en-aut-sei=Ishizawa
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=6
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
en-keyword=Sunitinib
kn-keyword=Sunitinib
en-keyword=Advanced renal cell carcinoma
kn-keyword=Advanced renal cell carcinoma
en-keyword=Cardiotoxicity
kn-keyword=Cardiotoxicity
en-keyword=Calcitriol
kn-keyword=Calcitriol
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=MTOR
kn-keyword=MTOR
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=40
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time dependent predictors of cardiac inflammatory adverse events in cancer patients receiving immune checkpoint inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Cardio-inflammatory immune related adverse events (irAEs) while receiving immune checkpoint inhibitor (ICI) therapy are particularly consequential due to their associations with poorer treatment outcomes. Evaluation of predictive factors of these serious irAEs with a time dependent approach allows better understanding of patients most at risk.
Objective: To identify different elements of patient data that are significant predictors of early and late-onset or delayed cardio-inflammatory irAEs through various predictive modeling strategies.
Methods: A cohort of patients receiving ICI therapy from January 1, 2010 to May 1, 2022 was identified from TriNetX meeting inclusion/exclusion criteria. Patient data collected included occurrence of early and later cardio-inflammatory irAEs, patient survival time, patient demographic information, ICI therapies, comorbidities, and medication histories. Predictive and statistical modeling approaches identified unique risk factors for early and later developing cardio-inflammatory irAEs.
Results: A cohort of 66,068 patients on ICI therapy were identified in the TriNetX platform; 193 (0.30%) experienced early cardio-inflammatory irAEs and 175 (0.26%) experienced later cardio-inflammatory irAEs. Significant predictors for early irAEs included: anti-PD-1 therapy at index, combination ICI therapy at index, and history of peripheral vascular disease. Significant predictors for later irAEs included: a history of myocarditis and/or pericarditis, cerebrovascular disease, and history of non-steroidal anti-inflammatory medication use.
Conclusions: Cardio-inflammatory irAEs can be divided into clinically meaningful categories of early and late based on time since initiation of ICI therapy. Considering distinct risk factors for early-onset and late-onset events may allow for more effective patient monitoring and risk assessment.
en-copyright=
kn-copyright=
en-aut-name=SayerMichael
en-aut-sei=Sayer
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasakaMisako
en-aut-sei=Nagasaka
en-aut-mei=Misako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LeeBenjamin J.
en-aut-sei=Lee
en-aut-mei=Benjamin J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohJean
en-aut-sei=Doh
en-aut-mei=Jean
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PatelPranav M.
en-aut-sei=Patel
en-aut-mei=Pranav M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiAya F.
en-aut-sei=Ozaki
en-aut-mei=Aya F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Division of Hematology and Oncology, University of California
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, University of California Irvine Health
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, University of California Irvine Health
kn-affil=
affil-num=6
en-affil=Division of Cardiology, Department of Medicine, University of California
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California
kn-affil=
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
en-keyword=Immune-Related adverse events
kn-keyword=Immune-Related adverse events
en-keyword=Myocarditis
kn-keyword=Myocarditis
en-keyword=Pericarditis
kn-keyword=Pericarditis
en-keyword=Predictive modeling
kn-keyword=Predictive modeling
en-keyword=TriNetx
kn-keyword=TriNetx
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=1305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery and Functional Characterization of Novel Aquaporins in Tomato (Solanum lycopersicum): Implications for Ion Transport and Salinity Tolerance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to its economic importance and cultivation under moderate salinity conditions in Japan. A swelling assay using X. laevis oocyte confirmed that all five examined tomato SlPIP2 isoforms showed water transport activity. Among them, two-electrode voltage clamp (TEVC) experiments showed that only SlPIP2;1, SlPIP2;4, and SlPIP2;8 transport Na+ and K+, with no transport activity for Cs+, Rb+, Li+, or Cl−. CaCl2 (1.8 mM) reduced ionic currents by approximately 45% compared to 30 µM free-Ca2+. These isoforms function as very low-affinity Na+ and K+ transporters. Expression analysis showed that SlPIP2;4 and SlPIP2;8 had low, stable expression, while SlPIP2;1 was strongly upregulated in roots NaCl treatment (200 mM, 17days), suggesting distinct physiological roles for these ion-conducting AQPs (icAQPs). These data hypothesized that tomato icAQPs play a critical role in ion homeostasis, particularly under salinity stress. In conclusion, the first icAQPs have been identified in the dicotyledonous crop. These icAQPs are essential for plant resilience under salt stress.
en-copyright=
kn-copyright=
en-aut-name=PaulNewton Chandra
en-aut-sei=Paul
en-aut-mei=Newton Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImranShahin
en-aut-sei=Imran
en-aut-mei=Shahin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsumotoAnri
en-aut-sei=Mitsumoto
en-aut-mei=Anri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Aquaporin (AQP)
kn-keyword=Aquaporin (AQP)
en-keyword=ion transport
kn-keyword=ion transport
en-keyword=plasma membrane intrinsic proteins (PIPs)
kn-keyword=plasma membrane intrinsic proteins (PIPs)
en-keyword=tomato
kn-keyword=tomato
en-keyword=oocytes
kn-keyword=oocytes
en-keyword=water transport
kn-keyword=water transport
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p < 0.05) were noted during infection to Int407 cell-line. Additionally, LF-EIEC exhibited extensive colonization of the mouse intestine and expressed severe keratoconjunctivitis in guinea pigs. Together, our findings highlight LF-EIEC as an emerging pathogenic variant warranting heightened surveillance and comprehensive investigation to better understand its epidemiological and clinical significance.
en-copyright=
kn-copyright=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HalderProlay
en-aut-sei=Halder
en-aut-mei=Prolay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SamantaProsenjit
en-aut-sei=Samanta
en-aut-mei=Prosenjit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShawSreeja
en-aut-sei=Shaw
en-aut-mei=Sreeja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BosePuja
en-aut-sei=Bose
en-aut-mei=Puja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RoyDeboleena
en-aut-sei=Roy
en-aut-mei=Deboleena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RoyNivedita
en-aut-sei=Roy
en-aut-mei=Nivedita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RamamurthyThandavarayan
en-aut-sei=Ramamurthy
en-aut-mei=Thandavarayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoleyHemanta
en-aut-sei=Koley
en-aut-mei=Hemanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MukhopadhyayAsish Kumar
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=2
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=3
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=4
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=6
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=7
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=8
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=9
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=10
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=11
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=12
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=14
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
en-keyword=Antibiotic resistance
kn-keyword=Antibiotic resistance
en-keyword=Bacterial infections
kn-keyword=Bacterial infections
en-keyword=Diarrhoea
kn-keyword=Diarrhoea
en-keyword=Enteroinvasive Escherichia coli
kn-keyword=Enteroinvasive Escherichia coli
en-keyword=Keratoconjunctivitis
kn-keyword=Keratoconjunctivitis
en-keyword=Pathogenesis
kn-keyword=Pathogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bioengineered chondrocyte-products from human induced pluripotent stem cells are useful for repairing articular cartilage injury in minipig model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The capacity of articular cartilage for self-repair is limited. Therefore, wide-ranging cartilage damage rarely resolves spontaneously, leading to the development of osteoarthritis. Previously, we developed human-induced pluripotent stem cell (hiPSC)-derived expandable human limb-bud-like mesenchymal (ExpLBM) cells with stable expansion and high chondrogenic capacity. In this study, various forms of articular cartilage-like tissue were fabricated using ExpLBM technology and evaluated to examine their potential as biomaterials. ExpLBM cells derived from hiPSCs were used to produce particle-like cartilage tissue and plate-like cartilage tissue. The cartilaginous particles and cartilaginous plates were transplanted into a minipig osteochondral defect model, and cartilage engraftment was histologically evaluated. For both transplanted cartilaginous particles and cartilaginous plates, good Safranin O staining and integration with the surrounding tissue were observed. Cartilaginous particles and cartilaginous plates made using hiPSCs-derived ExpLBM cells are effective for the regeneration of cartilage after injury.
en-copyright=
kn-copyright=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisawaYuki
en-aut-sei=Fujisawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HanakiShojiro
en-aut-sei=Hanaki
en-aut-mei=Shojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtakeShigeo
en-aut-sei=Otake
en-aut-mei=Shigeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyazawaShinichi
en-aut-sei=Miyazawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=5
article-no=
start-page=1302
end-page=1309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=X-ray fluorescence holography under high-pressure conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study reports the first application of X-ray fluorescence holography (XFH) under high-pressure conditions. We integrated XFH with a diamond anvil cell to investigate the local structure around Sr atoms in single-crystal SrTiO3 under high pressure. By utilizing nano-polycrystalline diamond anvils and a yttrium filter, we effectively eliminated significant background noise from both the anvils and the gasket. This optimized experimental configuration enabled the measurement of Sr Kα holograms of the SrTiO3 sample at pressures up to 13.3 GPa. The variation of lattice constants with pressure was calculated by the shifts of Kossel lines, and real-space images of the atomic structures were reconstructed from the Sr Kα holograms at different pressures. This work successfully demonstrates the feasibility of employing XFH under high-pressure conditions as a novel method for visualizing pressure-induced changes in the three-dimensional local structure around the specified element.
en-copyright=
kn-copyright=
en-aut-name=ZhanXinhui
en-aut-sei=Zhan
en-aut-mei=Xinhui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshimatsuNaoki
en-aut-sei=Ishimatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraKoji
en-aut-sei=Kimura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HappoNaohisa
en-aut-sei=Happo
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekharHalubai
en-aut-sei=Sekhar
en-aut-mei=Halubai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoTomoko
en-aut-sei=Sato
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakajimaNobuo
en-aut-sei=Nakajima
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawamuraNaomi
en-aut-sei=Kawamura
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HigashiKotaro
en-aut-sei=Higashi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SekizawaOki
en-aut-sei=Sekizawa
en-aut-mei=Oki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KadobayashiHirokazu
en-aut-sei=Kadobayashi
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiRitsuko
en-aut-sei=Eguchi
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubozonoYoshihiro
en-aut-sei=Kubozono
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TajiriHiroo
en-aut-sei=Tajiri
en-aut-mei=Hiroo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HosokawaShinya
en-aut-sei=Hosokawa
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsushitaTomohiro
en-aut-sei=Matsushita
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ShinmeiToru
en-aut-sei=Shinmei
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrifuneTetsuo
en-aut-sei=Irifune
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HayashiKoichi
en-aut-sei=Hayashi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=2
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=3
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Graduate School of Information Sciences, Hiroshima City University
kn-affil=
affil-num=5
en-affil=Institute of Industrial Nanomaterials, Kumamoto University
kn-affil=
affil-num=6
en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK
kn-affil=
affil-num=7
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=8
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=9
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=11
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=12
en-affil=Graduate School of Science, University of Hyogo
kn-affil=
affil-num=13
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=14
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=15
en-affil=Faculty of Materials for Energy, Shimane University
kn-affil=
affil-num=16
en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology
kn-affil=
affil-num=17
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=18
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=19
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
en-keyword=X-ray fluorescence holography
kn-keyword=X-ray fluorescence holography
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=SrTiO3
kn-keyword=SrTiO3
END
start-ver=1.4
cd-journal=joma
no-vol=131
cd-vols=
no-issue=9
article-no=
start-page=744
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optical and chemical properties of silver tree-like structure treated with gold galvanic substitution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galvanic gold substitution was executed in the presence of trisodium citrate on silver tree-like structures. No discernible difference in geometry was observed between the pre- and post-gold substitution phases, which benefited from the presence of citrate ions. The extent of gold substitution was regulated by the amount of gold ion solution added. After the gold substitution, an increase in extinction was observed in the ultraviolet region, indicating that gold was deposited at the surface. Raman scattering of para-toluenethiol was measured on the gold/silver tree-like structures at 488 nm excitations, where a decrease in the Raman peak intensity was observed as the quantity of gold ion solution increased. The results indicated that the optical property of silver was lost due to the increase of the amount of gold deposition. Concurrently, an investigation was conducted into the chemical resistance of the gold/silver tree-like structures, which was evaluated by measuring the resistivity inverse-proportional to the amount of silver ions dissolved by the diluted nitric acid. As the amount of gold ion solution added increased, the resistivity increased and became constant. The result implied that the surface chemical property had undergone a complete transformation into gold.
en-copyright=
kn-copyright=
en-aut-name=HondaKazushi
en-aut-sei=Honda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeyasuNobuyuki
en-aut-sei=Takeyasu
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Gold/silver tree-like structures
kn-keyword=Gold/silver tree-like structures
en-keyword=Galvanic substitution
kn-keyword=Galvanic substitution
en-keyword=SERS
kn-keyword=SERS
en-keyword=Raman mapping
kn-keyword=Raman mapping
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=103121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of pre-reconstruction filtering with butterworth filter on 111In-pentetreotide SPECT image quality and quantitative accuracy: A phantom study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: This study evaluates the image quality and quantitative accuracy of SPECT images with pre- and post-reconstruction smoothing filters in somatostatin receptor scintigraphy using phantom data.
Methods: We evaluated the spatial resolution, the contrast-to-noise ratio (CNR), and the quantitative accuracy using a NEMA IEC body phantom filled with a 111In solution. SPECT images were obtained with a Siemens Symbia T16 SPECT/CT system. Quantitative accuracy refers to the ability to accurately estimate the radioactive concentration of 111In in the phantom from the image. SPECT reconstructions were performed using three methods: post-reconstruction Gaussian filtering (post-G), pre-reconstruction Gaussian filtering (pre-G), and pre-reconstruction Butterworth filtering (pre-B). To verify each filtering method, the cut-off frequency of the Butterworth filter and the full width at half maximum (FWHM) of the Gaussian filter were each changed to eight different settings.
Results: FWHMs were 21.2, 19.8, and 18.0 mm for post-G, pre-G, and pre-B. CNRs (37-mm sphere) were 47.2, 63.8, and 69.5. Pre-B showed a 12.0 % error rate at 0.40 cycles/cm, while post-G and pre-G showed 20.2 % and 22.0 % at 7.2-mm FWHM. Pre-B outperformed other methods for resolution, CNR, and quantitative accuracy.
Conclusion: For 111In-pentetreotide SPECT images, image reconstruction with a Butterworth filter applied to the projection image before reconstruction was found to be superior to reconstruction with a Gaussian filter in terms of image quality and quantitative accuracy.
This method can be easily implemented in routine clinical SPECT imaging workflows and has the potential to improve diagnostic confidence.
Implications for practice: The proposed method with a pre-reconstruction Butterworth filter has great potential to improve the image quality and quantitative accuracy of 111In-SPECT images.
en-copyright=
kn-copyright=
en-aut-name=HasegawaD.
en-aut-sei=Hasegawa
en-aut-mei=D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiT.
en-aut-sei=Iguchi
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaM.
en-aut-sei=Nakashima
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshitomiK.
en-aut-sei=Yoshitomi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaiM.
en-aut-sei=Miyai
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaK.
en-aut-sei=Kojima
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaT.
en-aut-sei=Asahara
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=SPECT
kn-keyword=SPECT
en-keyword=Butterworth filter
kn-keyword=Butterworth filter
en-keyword=Gaussian filter
kn-keyword=Gaussian filter
en-keyword=111In-pentetreotide
kn-keyword=111In-pentetreotide
en-keyword=Quantification
kn-keyword=Quantification
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=7
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Animal–chlorophyte photosymbioses: evolutionary origins and ecological diversity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic symbiosis occurs across diverse animal lineages, including Porifera, Cnidaria, Xenacoelomorpha and Mollusca. These associations between animal hosts and photosynthetic algae often involve the exchange of essential macronutrients, supporting adaptation to a wide range of aquatic environments. A small yet taxonomically widespread subset of animals host photosymbionts from the core chlorophytes, a phylogenetically expansive clade of green algae. These rare instances of ‘plant-like’ animals have arisen independently across distantly related lineages, resulting in striking ecological and physiological diversity. Although such associations provide valuable insights into the evolution of symbiosis and adaptation to novel ecological niches, animal–chlorophyte photosymbioses remain relatively understudied. Here, we present an overview of photosymbioses between animals and chlorophytes, highlighting their independent evolutionary origins, ecological diversity and emerging genomic resources. Focusing on Porifera, Cnidaria and Xenacoelomorpha, we review shared and lineage-specific adaptations underlying these associations. We also contrast them with dinoflagellate-based systems to demonstrate their distinct ecological and cellular features. Our work sets the stage for elucidating the molecular mechanisms underlying these associations, enhancing our understanding of how interspecies interactions drive adaptation to unique ecological niches through animal–chlorophyte symbiosis.
en-copyright=
kn-copyright=
en-aut-name=LiaoIsabel Jiah-Yih
en-aut-sei=Liao
en-aut-mei=Isabel Jiah-Yih
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakagamiTosuke
en-aut-sei=Sakagami
en-aut-mei=Tosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LewinThomas D.
en-aut-sei=Lewin
en-aut-mei=Thomas D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BaillyXavier
en-aut-sei=Bailly
en-aut-mei=Xavier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaMayuko
en-aut-sei=Hamada
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LuoYi-Jyun
en-aut-sei=Luo
en-aut-mei=Yi-Jyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Biodiversity Research Center, Academia Sinica
kn-affil=
affil-num=2
en-affil=Biodiversity Research Center, Academia Sinica
kn-affil=
affil-num=3
en-affil=Biodiversity Research Center, Academia Sinica
kn-affil=
affil-num=4
en-affil=Laboratoire des Modèles Marins Multicellulaires, Station Biologique de Roscoff
kn-affil=
affil-num=5
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=6
en-affil=Biodiversity Research Center, Academia Sinica
kn-affil=
en-keyword=hydra
kn-keyword=hydra
en-keyword=photosymbiosis
kn-keyword=photosymbiosis
en-keyword=green algae
kn-keyword=green algae
en-keyword=acoels
kn-keyword=acoels
en-keyword=sponges
kn-keyword=sponges
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=3
article-no=
start-page=1025
end-page=1033
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Angiogenin-induced Osteoclastogenesis Mediates Bone Destruction in Oral Squamous Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Bone destruction caused by oral cancer severely impacts patient quality of life. This study aimed to clarify the role of angiogenin (ANG) in osteoclastogenesis and oral cancer-induced bone destruction.
Materials and Methods: Recombinant ANG was used to assess its effects on osteoclast formation and bone resorption activity in bone marrow cultures. ANG-knockdown oral squamous carcinoma HSC-2 cells (ANG-RNAi) were transplanted into intramedullary cavities of femurs. Bone destruction was radiologically analyzed, while angiogenesis and osteoclast induction in the surrounding area of the transplanted lesion were histologically examined.
Results: Recombinant ANG promoted osteoclast formation and bone resorption activity. Transplantation of ANG-RNAi cells significantly reduced tumor growth and bone destruction properties compared to transplantation of control cells. Histological analysis revealed lower angiogenesis and fewer osteoclast induction in the ANG-RNAi cells-transplanted group.
Conclusion: ANG mediates oral cancer-induced bone destruction by promoting osteoclast formation and resorption. These findings suggest that ANG could be a potential therapeutic target for suppressing tumor growth, angiogenesis, and bone destruction in oral cancer therapy.
en-copyright=
kn-copyright=
en-aut-name=AOKIKASUMI
en-aut-sei=AOKI
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHITANINANA
en-aut-sei=YOSHITANI
en-aut-mei=NANA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KURIONAITO
en-aut-sei=KURIO
en-aut-mei=NAITO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YOSHIOKANORIE
en-aut-sei=YOSHIOKA
en-aut-mei=NORIE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TERAMACHIJUMPEI
en-aut-sei=TERAMACHI
en-aut-mei=JUMPEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IKEGAMEMIKA
en-aut-sei=IKEGAME
en-aut-mei=MIKA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OKAMURAHIROHIKO
en-aut-sei=OKAMURA
en-aut-mei=HIROHIKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IBARAGISOICHIRO
en-aut-sei=IBARAGI
en-aut-mei=SOICHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Surgery, Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Function and Anatomy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Angiogeninoste
kn-keyword=Angiogeninoste
en-keyword=oclastogenesis
kn-keyword=oclastogenesis
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=osteoclasts
kn-keyword=osteoclasts
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=2
article-no=
start-page=49
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2024 Incentive Award of the Okayama Medical Association in Cancer Research (2024 Hayashibara Prize and Yamada Prize)
kn-title=令和6年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=直井勇人
kn-aut-sei=直井
kn-aut-mei=勇人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍微小環境学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neutrophil-to-lymphocyte ratio affects the impact of proton pump inhibitors on efficacy of immune checkpoint inhibitors in patients with non‑small-cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The neutrophil-to-lymphocyte ratio (NLR) at the initiation of immune checkpoint inhibitor (ICI) therapy is a known predictor of prognosis. Proton pump inhibitors (PPIs) reportedly attenuate the therapeutic efficacy of ICIs. However, the attenuation effects are not consistently observed across all patients. This study aimed to evaluate whether NLR serves as a stratification factor to determine the impact of PPI on the efficacy of ICI.
Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (≥ 4) and lower NLR (< 4)). PPI use was defined as the administration of PPIs within 30 days before or after ICI initiation. The primary outcome was progression-free survival (PFS) and the secondary outcome was overall survival (OS).
Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n = 61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p < 0.01, median OS: 3.3 vs. 19.6 months; p = 0.015). Conversely, in the lower NLR group (n = 71), no significant difference in PFS and OS was observed between PPI users and non-PPI users (median PFS: 2.8 vs. 7.3 months, p = 0.83, median OS: 17.6 vs. 24.4 months, p = 0.40).
Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoTakefumi
en-aut-sei=Ito
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=Neutrophil-to-lymphocyte ratio
kn-keyword=Neutrophil-to-lymphocyte ratio
en-keyword=Non-small-cell lung cancer
kn-keyword=Non-small-cell lung cancer
en-keyword=Proton pump inhibitor
kn-keyword=Proton pump inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=e72549
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimization of Preemptive Therapy for Cytomegalovirus Infections With Valganciclovir Based on Therapeutic Drug Monitoring: Protocol for a Phase II, Single-Center, Single-Arm Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Valganciclovir (VGCV) is the first-line drug for preemptive therapy of cytomegalovirus (CMV) infections. However, even when administered at the dose specified in the package insert, there is significant interindividual variability in the plasma concentrations of ganciclovir (GCV). In addition, correlations have been reported between the area under the concentration–time curve and therapeutic efficacy or adverse events. Therefore, therapeutic drug monitoring (TDM) can be used to improve the efficacy and safety of preemptive VGCV therapy.
Objective: This study aims to evaluate whether the dosage adjustment of VGCV based on TDM in patients undergoing preemptive therapy for CMV infections is associated with the successful completion rate of treatment without severe hematological adverse effects.
Methods: This phase II, single-center, single-arm trial aims to enroll 40 patients admitted at the Department of Rheumatology and Clinical Immunology, Kobe University Hospital, who will receive oral VGCV as preemptive therapy for CMV infections. Participants will begin treatment with VGCV at the dose recommended in the package insert, with subsequent dose adjustments based on weekly TDM results. The primary end point will be the proportion of patients who achieve CMV antigenemia negativity within 3 weeks without severe hematological adverse events. The secondary end points will include weekly changes in CMV antigen levels, total VGCV dose, and duration of preemptive therapy. For safety evaluation, the occurrence, type, and severity of VGCV-related adverse events will be analyzed. Additionally, this study will explore the correlations between the efficacy and safety of preemptive therapy and the pharmacokinetic parameters of GCV, CMV-polymerase chain reaction values, and nudix hydrolase 15 (NUDT15) genetic polymorphisms. The correlation between GCV plasma concentrations obtained from regular venous blood and blood concentrations will be examined using dried blood spots.
Results: This study began with patient recruitment in September 2024, with 5 participants enrolled as of June 16, 2025. The target enrollment is 40 participants, and the anticipated study completion is set for July 2027.
Conclusions: This is the first study to investigate the impact of TDM intervention in patients receiving VGCV as preemptive therapy. The findings are postulated to provide valuable evidence regarding the utility of TDM in patients receiving VGCV as preemptive therapy.
Trial Registration: Japan Registry of Clinical Trials jRCTs051240080; https://jrct.mhlw.go.jp/latest-detail/jRCTs051240080
International Registered Report Identifier (IRRID): DERR1-10.2196/72549
en-copyright=
kn-copyright=
en-aut-name=TamuraNaoki
en-aut-sei=Tamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoharaKotaro
en-aut-sei=Itohara
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaYo
en-aut-sei=Ueda
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaneToshiyasu
en-aut-sei=Sakane
en-aut-mei=Toshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SaegusaJun
en-aut-sei=Saegusa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=5
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, Kobe Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=valganciclovir
kn-keyword=valganciclovir
en-keyword=ganciclovir
kn-keyword=ganciclovir
en-keyword=cytomegalovirus
kn-keyword=cytomegalovirus
en-keyword=therapeutic drug monitoring
kn-keyword=therapeutic drug monitoring
en-keyword=preemptive therapy
kn-keyword=preemptive therapy
en-keyword=dried blood spots
kn-keyword=dried blood spots
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70104
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adequacy evaluation of 22‐gauge needle endoscopic ultrasound‐guided tissue acquisition samples and glass slides preparation for successful comprehensive genomic profiling testing: A single institute experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: This study aimed to evaluate the successful sequencing rate of Foundation One CDx (F1CDx) using small tissue samples obtained with a 22-gauge needle (22G) through endoscopic ultrasound-guided fine needle acquisition (EUS-TA) and to propose guidelines for tissue quantity evaluation criteria and proper slide preparation in clinical practice.
Methods: Between June 2019 and April 2024, 119 samples of 22G EUS-TA collected for F1CDx testing at Himeji Red Cross Hospital were retrospectively reviewed. Tissue adequacy was only assessed based on tumor cell percentage (≥20%). The procedure stopped when white tissue fragments reached 20 mm during macroscopic on-site evaluation. The specimens were prepared using both ‘tissue preserving sectioning’ to retain tissue within formalin-fixed paraffin-embedded blocks and the ‘thin sectioning matched needle gauge and tissue length’ method with calculation to ensure minimal unstained slides for the 1 mm3 sample volume criterion. Tissue area from HE slides and sample volume were measured, and F1CDx reports were analyzed.
Results: Of 119 samples, 108 (90.8%) were suitable for F1CDx. Excluding the cases not submitted for testing, in the 45 cases where F1CDx was done using 22G EUS-TA samples, eight (17.8%) had a sum of tissue area tissue of 25 mm2 or greater in the HE-stained sample. However, all cases met the F1CDx 1 mm3 volume criterion by submitting > 30 unstained slides per sample. As a result, 43 of 45 cases (95.6%) were successfully analyzable.
Conclusions: The 22G EUS-TA needle is an effective tool for providing the sufficient tissue volume required for F1CDx.
en-copyright=
kn-copyright=
en-aut-name=NagataniTami
en-aut-sei=Nagatani
en-aut-mei=Tami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WaniYoji
en-aut-sei=Wani
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakataniMasahiro
en-aut-sei=Takatani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FushimiSoichiro
en-aut-sei=Fushimi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriShinichiro
en-aut-sei=Hori
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KaiKyohei
en-aut-sei=Kai
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiTetsuya
en-aut-sei=Okazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=5
en-affil=Division of Medical Support, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=12
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biliary tract cancer
kn-keyword=biliary tract cancer
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=endoscopic ultrasound-guided fine needle aspiration
kn-keyword=endoscopic ultrasound-guided fine needle aspiration
en-keyword=endoscopic ultrasound-guided fine needle biopsy
kn-keyword=endoscopic ultrasound-guided fine needle biopsy
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
END
start-ver=1.4
cd-journal=joma
no-vol=287
cd-vols=
no-issue=
article-no=
start-page=117674
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 μA mM−1 cm−2, a limit of detection of 100 μM, a detection range up to 60 mM, and a response time of 90 s at 100 μM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions.
en-copyright=
kn-copyright=
en-aut-name=WuShiqi
en-aut-sei=Wu
en-aut-mei=Shiqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakagawaWakutaka
en-aut-sei=Nakagawa
en-aut-mei=Wakutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriYuki
en-aut-sei=Mori
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MéhesGábor
en-aut-sei=Méhes
en-aut-mei=Gábor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawanoTomonori
en-aut-sei=Kawano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=4
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=8
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=Flexible wearable sensor
kn-keyword=Flexible wearable sensor
en-keyword=Plant monitoring
kn-keyword=Plant monitoring
en-keyword=Carbon fiber
kn-keyword=Carbon fiber
en-keyword=Multi-enzyme system
kn-keyword=Multi-enzyme system
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=8
article-no=
start-page=e91072
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Craniofacial Fibrous Dysplasia to Affect or Not the Optic Nerve in Long-Term Follow-Up of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibrous dysplasia of the bone is characterized by immature fibrous bones of trabeculae and fibrovascular proliferation in the medulla. In this study, we report three consecutive patients with craniofacial fibrous dysplasia with or without optic nerve involvement. In Case 1, a 43-year-old man with blurred vision in the right eye at the first visit was well until the age of 54 years, when he came back with symptoms suggestive of paranasal sinusitis. Computed tomography scans disclosed a mucocele in the right sphenoid sinus and thickened bilateral ethmoid, sphenoid, and frontal bones. He underwent an emergency nasal endoscopic surgery to make a drainage opening to the sphenoid and ethmoid sinuses on the right side with incomplete success. The pathology of the resected tissue confirmed fibrous dysplasia. With intravenous antibiotics, he recovered from blepharoptosis, complete ophthalmoplegia, and visual acuity decrease on the right side. He was well until the age of 71 years when he had a self-limiting episode of visual field cloudiness caused by the right sphenoid sinus mucocele. At the age of 75 years, he developed abrupt vision loss to no light perception in the right eye. He underwent an open skull surgery to extirpate the sphenoid mucocele on the right side and died of an unknown cause two years later. In Case 2, a 29-year-old man had a two-week-long headache, and computed tomography scans revealed fibrous dysplasia in the bilateral sphenoid bones. Nasal biopsy at the spheno-ethmoid recess proved a pathological diagnosis of fibrous dysplasia. Goldmann perimetry showed normal visual fields in both eyes. He was followed every year by magnetic resonance imaging to maintain normal visual fields until the latest visit at the age of 41 years. In Case 3, a 12-year-old girl was referred to an ophthalmologist to check her vision. She had been diagnosed with fibrous dysplasia of the left maxillary bone at the age of six years by a dentist. She had a gingival resection on the left maxilla at the age of 15 years and had a left maxillary bone resection at 18 years at another hospital. One month after the resection, Goldmann perimetry showed superior peripheral field depression in the left eye, in contrast with the normal visual field in the right eye. She maintained the visual acuity of 1.5 in both eyes until the last visit at the age of 21 years. In fibrous dysplasia as a rare disease, functional and cosmetic problems, including vision problems, should be considered in a case-based approach.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKiyoshi
en-aut-sei=Yamada
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoMitsuhiro
en-aut-sei=Okano
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Otorhinolaryngology, School of Medicine, International University of Health and Welfare
kn-affil=
en-keyword=computed tomography (ct) scan
kn-keyword=computed tomography (ct) scan
en-keyword=craniofacial bone
kn-keyword=craniofacial bone
en-keyword=fibrous dysplasia
kn-keyword=fibrous dysplasia
en-keyword=goldmann perimetry
kn-keyword=goldmann perimetry
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=monostotic
kn-keyword=monostotic
en-keyword=optic nerve
kn-keyword=optic nerve
en-keyword=pathology
kn-keyword=pathology
en-keyword=visual acuity
kn-keyword=visual acuity
en-keyword=visual field
kn-keyword=visual field
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=10
article-no=
start-page=2373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor–stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
en-copyright=
kn-copyright=
en-aut-name=AizawaYuka
en-aut-sei=Aizawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagaKenta
en-aut-sei=Haga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshibaNagako
en-aut-sei=Yoshiba
en-aut-mei=Nagako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YortchanWitsanu
en-aut-sei=Yortchan
en-aut-mei=Witsanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakadaSho
en-aut-sei=Takada
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaRintaro
en-aut-sei=Tanaka
en-aut-mei=Rintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoEriko
en-aut-sei=Naito
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbéTatsuya
en-aut-sei=Abé
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaSatoshi
en-aut-sei=Maruyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamazakiManabu
en-aut-sei=Yamazaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanumaJun-ichi
en-aut-sei=Tanuma
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TomiharaKei
en-aut-sei=Tomihara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TogoShinsaku
en-aut-sei=Togo
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=2
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=4
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=5
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=6
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=7
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=8
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=9
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=10
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=11
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=15
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=cancer-associated fibroblasts
kn-keyword=cancer-associated fibroblasts
en-keyword=oral mucosa
kn-keyword=oral mucosa
en-keyword=patient-derived
kn-keyword=patient-derived
en-keyword=organotypic culture
kn-keyword=organotypic culture
en-keyword=3D in vitro model
kn-keyword=3D in vitro model
en-keyword=polarity
kn-keyword=polarity
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=473
end-page=479.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus–like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth—not only in neonates with type I interferonopathy but also in other IEIs, including CGD.
en-copyright=
kn-copyright=
en-aut-name=NihiraHiroshi
en-aut-sei=Nihira
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaDaisuke
en-aut-sei=Nakajima
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IzawaKazushi
en-aut-sei=Izawa
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawashimaYusuke
en-aut-sei=Kawashima
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShibataHirofumi
en-aut-sei=Shibata
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonnoRyo
en-aut-sei=Konno
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiguchiMotoko
en-aut-sei=Higashiguchi
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoTakayuki
en-aut-sei=Miyamoto
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nishitani-IsaMasahiko
en-aut-sei=Nishitani-Isa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiejimaEitaro
en-aut-sei=Hiejima
en-aut-mei=Eitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HondaYoshitaka
en-aut-sei=Honda
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsubayashiTadashi
en-aut-sei=Matsubayashi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaTakashi
en-aut-sei=Ishihara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwataNaomi
en-aut-sei=Iwata
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhwadaYoko
en-aut-sei=Ohwada
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TomotakiSeiichi
en-aut-sei=Tomotaki
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawaiMasahiko
en-aut-sei=Kawai
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MurakamiKosaku
en-aut-sei=Murakami
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhnishiHidenori
en-aut-sei=Ohnishi
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IshimuraMasataka
en-aut-sei=Ishimura
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=OkadaSatoshi
en-aut-sei=Okada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YamashitaMotoi
en-aut-sei=Yamashita
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MorioTomohiro
en-aut-sei=Morio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HoshinoAkihiro
en-aut-sei=Hoshino
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KaneganeHirokazu
en-aut-sei=Kanegane
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ImaiKohsuke
en-aut-sei=Imai
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakamuraYasuko
en-aut-sei=Nakamura
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=NonoyamaShigeaki
en-aut-sei=Nonoyama
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UchiyamaToru
en-aut-sei=Uchiyama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=OnoderaMasafumi
en-aut-sei=Onodera
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=IshikawaTakashi
en-aut-sei=Ishikawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawaiToshinao
en-aut-sei=Kawai
en-aut-mei=Toshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=TakitaJunko
en-aut-sei=Takita
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NishikomoriRyuta
en-aut-sei=Nishikomori
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OharaOsamu
en-aut-sei=Ohara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=YasumiTakahiro
en-aut-sei=Yasumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Nara Medical University
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Infection and Immunology, Aichi Children’s Health and Medical Center
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=22
en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=23
en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=24
en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=25
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=26
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=27
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=28
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=29
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=30
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=31
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=32
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=33
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=34
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=37
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=Inborn errors of immunity
kn-keyword=Inborn errors of immunity
en-keyword=interferonopathy
kn-keyword=interferonopathy
en-keyword=signature
kn-keyword=signature
en-keyword=proteome
kn-keyword=proteome
en-keyword=dried blood spot
kn-keyword=dried blood spot
en-keyword=CGD
kn-keyword=CGD
en-keyword=WAS
kn-keyword=WAS
en-keyword=newborn
kn-keyword=newborn
en-keyword=neonate
kn-keyword=neonate
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=roaf042
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis – secondary publication
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making.
en-copyright=
kn-copyright=
en-aut-name=MiyamaeTakako
en-aut-sei=Miyamae
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoNami
en-aut-sei=Okamoto
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYuzaburo
en-aut-sei=Inoue
en-aut-mei=Yuzaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaTomohiro
en-aut-sei=Kubota
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EbatoTakasuke
en-aut-sei=Ebato
en-aut-mei=Takasuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IrabuHitoshi
en-aut-sei=Irabu
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamedaHideto
en-aut-sei=Kameda
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoYuko
en-aut-sei=Kaneko
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuboHiroshi
en-aut-sei=Kubo
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MitsunagaKanako
en-aut-sei=Mitsunaga
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MoriMasaaki
en-aut-sei=Mori
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaAyako
en-aut-sei=Nakajima
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimuraKenichi
en-aut-sei=Nishimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhkuboNaoaki
en-aut-sei=Ohkubo
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoTomomi
en-aut-sei=Sato
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugitaYuko
en-aut-sei=Sugita
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakanashiSatoshi
en-aut-sei=Takanashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaTakayuki
en-aut-sei=Tanaka
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UmebayashiHiroaki
en-aut-sei=Umebayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamanishiShingo
en-aut-sei=Yamanishi
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FusamaMie
en-aut-sei=Fusama
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=HirataShintaro
en-aut-sei=Hirata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KishimotoMitsumasa
en-aut-sei=Kishimoto
en-aut-mei=Mitsumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KohnoMasataka
en-aut-sei=Kohno
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KojimaMasayo
en-aut-sei=Kojima
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MorinobuAkio
en-aut-sei=Morinobu
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=SugiharaTakahiko
en-aut-sei=Sugihara
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YanaiRyo
en-aut-sei=Yanai
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HarigaiMasayoshi
en-aut-sei=Harigai
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety
kn-affil=
affil-num=3
en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kitasato University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
kn-affil=
affil-num=7
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University
kn-affil=
affil-num=8
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=10
en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital
kn-affil=
affil-num=11
en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University
kn-affil=
affil-num=12
en-affil=Center for Rheumatic Diseases, Mie University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Iizuka Hospital
kn-affil=
affil-num=15
en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=17
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital
kn-affil=
affil-num=19
en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Children’s Hospital
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Nippon Medical School
kn-affil=
affil-num=22
en-affil=Health Sciences Department of Nursing, Kansai University of International Studies
kn-affil=
affil-num=23
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=24
en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine
kn-affil=
affil-num=25
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=26
en-affil=Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=27
en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=28
en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=29
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
kn-affil=
affil-num=30
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
affil-num=31
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=32
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=33
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=34
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
en-keyword=Clinical practice guidelines
kn-keyword=Clinical practice guidelines
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
en-keyword=juvenile idiopathic arthritis
kn-keyword=juvenile idiopathic arthritis
en-keyword=systematic review
kn-keyword=systematic review
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=
article-no=
start-page=244
end-page=256
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Brain function
kn-keyword=Brain function
en-keyword=Neuroplasticity
kn-keyword=Neuroplasticity
en-keyword=Neuroprotection
kn-keyword=Neuroprotection
en-keyword=Cognitive decline
kn-keyword=Cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Age-related behavioural abnormalities in C57BL/6.KOR–Apoe shl mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer’s disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiTetsuji
en-aut-sei=Miyazaki
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=age
kn-keyword=age
en-keyword=apolipoprotein
kn-keyword=apolipoprotein
en-keyword=behavioural test
kn-keyword=behavioural test
en-keyword=central nervous system
kn-keyword=central nervous system
en-keyword=mouse
kn-keyword=mouse
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=1399
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ≥50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399–2.351), age (ORs = 0.969; 95% CIs: 0.948–0.991), body mass index (≥25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467–2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002–1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087–1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD.
en-copyright=
kn-copyright=
en-aut-name=IwaiKomei
en-aut-sei=Iwai
en-aut-mei=Komei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AzumaTetsuji
en-aut-sei=Azuma
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YonenagaTakatoshi
en-aut-sei=Yonenaga
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TabataKoichiro
en-aut-sei=Tabata
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=4
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=5
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
en-keyword=oral health
kn-keyword=oral health
en-keyword=liver diseases
kn-keyword=liver diseases
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=mastication
kn-keyword=mastication
en-keyword=physical examination
kn-keyword=physical examination
en-keyword=surveys and questionnaires
kn-keyword=surveys and questionnaires
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=292
end-page=296
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Computed tomography findings of idiopathic multicentric Castleman disease subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study retrospectively evaluated the computed tomography (CT) findings of idiopathic multicentric Castleman disease (iMCD) at a single center and compared the CT findings of iMCD-TAFRO with those of iMCD-non-TAFRO. CT images obtained within 30 days before diagnostic confirmation were reviewed for 20 patients with iMCD (8 men and 12 women, mean age 52.8 ± 12.3 years, range 25–74 years). Twelve patients were diagnosed with iMCD-TAFRO, five with iMCD-idiopathic plasmacytic lymphadenopathy, and three with iMCD-not otherwise specified. CT images revealed anasarca and lymphadenopathy in all 20 patients. The iMCD-TAFRO group showed significantly higher frequencies of ascites (100% vs. 37.5%, P = 0.004), gallbladder wall edema (75.0% vs. 12.5%, P = 0.020), periportal collar (91.7% vs. 25.0%, P = 0.004), and anterior mediastinal lesions (non-mass-forming infiltrative lesions) (66.7% vs. 12.5%, P = 0.028). Para-aortic edema tended to be more frequent in patients with the iMCD-TAFRO group (83.3% vs. 37.5%, P = 0.062), while the absence of anterior mediastinal lesions tended to be more frequent in the iMCD-non-TAFRO group (16.7% vs. 62.5%, P = 0.062). These CT findings may have clinical implications for improving the accuracy and speed of iMCD diagnosis and differentiating iMCD-TAFRO from other subtypes.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwakiNoriko
en-aut-sei=Iwaki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology, National Cancer Center Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=TAFRO syndrome
kn-keyword=TAFRO syndrome
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=3
article-no=
start-page=e70167
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Occupational therapist‐guided exercise increased white blood cell and neutrophil counts during clozapine treatment: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Moderate exercise increases white blood cells and neutrophils. However, there are no reports on the relationship between exercise intensity and these cells. We observed a patient taking clozapine whose white blood cell and neutrophil counts were borderline. Supervised exercise therapy with an occupational therapist stabilized these counts.
Case Presentation: A 50-year-old woman with treatment-resistant schizophrenia was prescribed clozapine. By Day 63, the clozapine dosage had been increased to 450 mg/day. Additionally, she was advised to perform a 30-min walking exercise program 1 h before blood tests. Exercise therapy supervised by an occupational therapist was performed eight times, and self-training was performed five times. Exercise intensity was monitored using the Borg Scale for subjective evaluation and the Karvonen formula for objective evaluation. Supervised exercise therapy with an occupational therapist resulted in greater increases on the Borg Scale and Karvonen formula than did self-training. It also induced increases in white blood cells and neutrophils. Her psychiatric symptoms improved, and she was discharged on Day 71. A blood test taken after discharge revealed that her white blood cell and neutrophil counts were within the normal range and she continued to take clozapine for 2 years. She has since been able to enjoy a calm and relaxed life at home.
Conclusion: Exercise involving subjective and objective evaluation by an occupational therapist effectively increased white blood cells and neutrophils during clozapine treatment. Supervised exercise therapy by an occupational therapist is important when self-exercise is insufficient for continuing clozapine treatment.
en-copyright=
kn-copyright=
en-aut-name=HinotsuKenji
en-aut-sei=Hinotsu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhyaYoshio
en-aut-sei=Ohya
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaTakahiro
en-aut-sei=Asada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=clozapine
kn-keyword=clozapine
en-keyword=exercise
kn-keyword=exercise
en-keyword=leukopenia
kn-keyword=leukopenia
en-keyword=neutropenia
kn-keyword=neutropenia
en-keyword=occupational therapist
kn-keyword=occupational therapist
END
start-ver=1.4
cd-journal=joma
no-vol=2892
cd-vols=
no-issue=
article-no=
start-page=012002
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal Grain Rotation during Tensile Test of Polycrystalline Pure Titanium Thin Sheet Based on Surface Height and Crystal Orientation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin sheets and wires of polycrystalline pure titanium are important materials for various devices used in electrical, mechanical, dental, and medical fields. Since pure titanium shows strong anisotropy in elastic and plastic deformation, and the individual grains comprising a polycrystalline body have different orientations and geometries, inhomogeneous deformation always occurs on the microscopic scale. This inhomogeneity is more significant in thin films than in bulk materials. It is therefore important to investigate the inhomogeneous deformation of pure titanium thin sheets to ensure the reliability of various titanium devices. In this study, thin-sheet specimens made of polycrystalline pure titanium were subjected to tensile testing. Inhomogeneous deformation was evaluated on the basis of two kinds of crystal grain rotations based on surface height and crystal orientation. The results under elastic and plastic tensile conditions were compared.
en-copyright=
kn-copyright=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhashiHiroaki
en-aut-sei=Ohashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=9
article-no=
start-page=4310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=2
en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SLC transporter
kn-keyword=SLC transporter
en-keyword=ABC transporter
kn-keyword=ABC transporter
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-α–induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-α
kn-keyword=tumor necrosis factor-α
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=S1
article-no=
start-page=7
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Basic biology is not just “for the birds”: how avian studies have informed us about vertebrate reproduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Avian reproductive physiology has been studied for centuries, largely because of the importance of birds as food animals. It is likely that the ubiquity and ease of access to domesticated chickens led to them being used in some of the first experiments on transplantation of endocrine structures—in this case, the testes. Since then, study of seasonal changes in reproductive physiology (photoperiodism) in different orders of bird species has led to advances in the understanding of endocrine regulation of reproductive physiology and behavior. These include mechanisms of adult neuroplasticity, sexual selection, sperm competition, stress physiology, and circadian physiology. Here, we focus mainly on the discovery in birds of a neuropeptide named gonadotropin-inhibitory hormone that mostly has inhibitory effects on reproduction. This hormone has since been shown to exist in all mammals studied to date, including humans (it is known as RFamide-related peptide in mammals). We discuss the history and implications of avian studies on gonadotropin-inhibitory hormone/RFamide-related peptide for human reproductive biology.
en-copyright=
kn-copyright=
en-aut-name=BentleyGeorge E.
en-aut-sei=Bentley
en-aut-mei=George E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=GnIH
kn-keyword=GnIH
en-keyword=RFamide
kn-keyword=RFamide
END
start-ver=1.4
cd-journal=joma
no-vol=1863
cd-vols=
no-issue=
article-no=
start-page=149752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Amyloid-beta
kn-keyword=Amyloid-beta
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Neumentix
kn-keyword=Neumentix
en-keyword=Phagocytosis
kn-keyword=Phagocytosis
en-keyword=Survival rate
kn-keyword=Survival rate
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=8
article-no=
start-page=1217
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly γ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoKazunari
en-aut-sei=Ito
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaninoYuka
en-aut-sei=Tanino
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiHayato
en-aut-sei=Takeuchi
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=5
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=6
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amino acid
kn-keyword=Amino acid
en-keyword=GABA
kn-keyword=GABA
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=rice koji
kn-keyword=rice koji
en-keyword=Thai-colored rice
kn-keyword=Thai-colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=6
article-no=
start-page=uoaf044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry.
en-copyright=
kn-copyright=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMomo
en-aut-sei=Kondo
en-aut-mei=Momo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItakuraShoko
en-aut-sei=Itakura
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoshinoYujiro
en-aut-sei=Hoshino
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaMakiya
en-aut-sei=Nishikawa
en-aut-mei=Makiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusamoriKosuke
en-aut-sei=Kusamori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment and Information Sciences, Yokohama National University
kn-affil=
affil-num=6
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=photoredox catalysis
kn-keyword=photoredox catalysis
en-keyword=[2 + 2] cycloaddition
kn-keyword=[2 + 2] cycloaddition
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The stress‒strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films.
en-copyright=
kn-copyright=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=raduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=140
cd-vols=
no-issue=
article-no=
start-page=745
end-page=776
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 °C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShahriarMamun
en-aut-sei=Shahriar
en-aut-mei=Mamun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KhanM. Azizur R.
en-aut-sei=Khan
en-aut-mei=M. Azizur R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Taufiq-YapYun Hin
en-aut-sei=Taufiq-Yap
en-aut-mei=Yun Hin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MohantaSuman C.
en-aut-sei=Mohanta
en-aut-mei=Suman C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=19
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=20
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Advanced materials
kn-keyword=Advanced materials
en-keyword=Fuel cell
kn-keyword=Fuel cell
en-keyword=Hydrogen gas generation
kn-keyword=Hydrogen gas generation
en-keyword=Proton exchange membrane
kn-keyword=Proton exchange membrane
en-keyword=Polymer
kn-keyword=Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=
article-no=
start-page=173
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photocatalytic hydrogen (H₂) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H₂ production.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalekAbdul
en-aut-sei=Malek
en-aut-mei=Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NipaFarzana Yeasmin
en-aut-sei=Nipa
en-aut-mei=Farzana Yeasmin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RaihanObayed
en-aut-sei=Raihan
en-aut-mei=Obayed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UddinMd. Elias
en-aut-sei=Uddin
en-aut-mei=Md. Elias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbrahimMohd Lokman
en-aut-sei=Ibrahim
en-aut-mei=Mohd Lokman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Abdulkareem-AlsultanG.
en-aut-sei=Abdulkareem-Alsultan
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MondalAlam Hossain
en-aut-sei=Mondal
en-aut-mei=Alam Hossain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University
kn-affil=
affil-num=6
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=7
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=8
en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA
kn-affil=
affil-num=9
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=10
en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=19
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=21
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=22
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=H2
kn-keyword=H2
en-keyword=Sustainability
kn-keyword=Sustainability
en-keyword=Photocatalytic
kn-keyword=Photocatalytic
en-keyword=Photo-stability
kn-keyword=Photo-stability
en-keyword=Heterojunction
kn-keyword=Heterojunction
en-keyword=CdS
kn-keyword=CdS
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=1
article-no=
start-page=144
end-page=156
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lymphadenectomy and chemotherapy are effective treatments for patients with 2023 international federation of gynecology and obstetrics stage IIC-high risk endometrial cancer in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background In early-stage endometrial cancer (EC), the treatment of aggressive histological subtypes (endometrioid carcinoma grade 3, serous carcinoma, clear-cell carcinoma, undifferentiated carcinoma, mixed carcinoma, and carcinosarcoma) is controversial. We aimed to investigate the treatment of patients with International Federation of Gynecology and Obstetrics (FIGO) stage IC and stage IIC EC according to the 2023 classification.
Methods We retrospectively identified patients with FIGO 2023 stage IC, IIC-intermediate risk (IIC-I), and IIC-high risk (IIC-H) EC who underwent adjuvant therapy or observation after surgery at eight medical institutions from 2004 to 2023. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan–Meier estimates and univariate and multivariate analyses.
Results The PFS and OS were significantly worse in patients with FIGO 2023 stage IIC-H EC than in those with FIGO 2023 stage IIC-I EC (PFS: p = 0.008 and OS: p = 0.006). According to the FIGO 2023 stage IIC-H classification, lymphadenectomy and chemotherapy resulted in better prognoses regarding both PFS and OS (p < 0.001 for both) than other treatments. Our findings suggest that lymphadenectomy and chemotherapy effectively reduced vaginal stump and lymph node metastases in FIGO 2023 stage IIC-H EC (p < 0.001 and p = 0.008, respectively). Furthermore, in the multivariate analysis, not undergoing lymphadenectomy or chemotherapy were independent predictors of recurrence and poor prognoses in patients with FIGO 2023 stage IIC-H EC (p < 0.001 and p = 0.031, respectively).
Conclusion Lymphadenectomy and chemotherapy resulted in better prognoses regarding both recurrence and survival in patients with FIGO 2023 stage IIC high-risk EC.
en-copyright=
kn-copyright=
en-aut-name=TaniYoshinori
en-aut-sei=Tani
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YorimitsuMasae
en-aut-sei=Yorimitsu
en-aut-mei=Masae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiNoriko
en-aut-sei=Seki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanishiMie
en-aut-sei=Nakanishi
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItouHironori
en-aut-sei=Itou
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimizuMiyuki
en-aut-sei=Shimizu
en-aut-mei=Miyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoDan
en-aut-sei=Yamamoto
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaEtsuko
en-aut-sei=Takahara
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Kagawa Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, National Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Fukuyama City Hospital
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Endometrial cancer
kn-keyword=Endometrial cancer
en-keyword=FIGO 2023
kn-keyword=FIGO 2023
en-keyword=Stage IIC high risk
kn-keyword=Stage IIC high risk
en-keyword=Lymphadenectomy
kn-keyword=Lymphadenectomy
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japan’s current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japan’s position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japan’s goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide.
en-copyright=
kn-copyright=
en-aut-name=NguyenThu Huong
en-aut-sei=Nguyen
en-aut-mei=Thu Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTaku
en-aut-sei=Fujiwara
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaHiromasa
en-aut-sei=Yamashita
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogawaHironori
en-aut-sei=Togawa
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHaruo
en-aut-sei=Miyake
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoMasako
en-aut-sei=Goto
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMasato
en-aut-sei=Nakamura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OritateFumiko
en-aut-sei=Oritate
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IharaHirotaka
en-aut-sei=Ihara
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=4
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=5
en-affil=R & D Department, Japan Sewage Works Agency
kn-affil=
affil-num=6
en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=9
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=10
en-affil=Institute for Agro-Environmental Sciences, NARO
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Japan
kn-keyword=Japan
en-keyword=Sewage sludge
kn-keyword=Sewage sludge
en-keyword=Agriculture
kn-keyword=Agriculture
en-keyword=Sludge fertilizers
kn-keyword=Sludge fertilizers
en-keyword=Governmental initiatives
kn-keyword=Governmental initiatives
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=23
article-no=
start-page=3243
end-page=3248
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Treatment for Life Threatening Recurrent Non-traumatic Rectus Sheath Hematoma in a Case with Microscopic Polyangiitis with Rapidly Progressive Glomerulonephritis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 68-year-old woman was admitted to our hospital because of a rapid progression of renal dysfunction with positive myeloperoxidase antineutrophil cytoplasmic antibody and was diagnosed with rapidly progressive glomerulonephritis associated with microscopic polyangiitis (MPA). Severe right rectus sheath hematoma (RSH) bleeding from the inferior epigastric artery developed after starting hemodialysis, which required 4 transarterial embolizations due to recurrent bleeding. After additional treatment with methylprednisolone pulse therapy and rituximab, no rebleeding occurred. Although the giant hematoma reached the pelvis, it shrank spontaneously without any intervention. Nontraumatic RSH should therefore be considered when treating patients with multiple risk factors.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimotoShiho
en-aut-sei=Morimoto
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerajimaYuya
en-aut-sei=Terajima
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=rectus sheath hematoma
kn-keyword=rectus sheath hematoma
en-keyword=microscopic polyangiitis
kn-keyword=microscopic polyangiitis
en-keyword=hemodialysis
kn-keyword=hemodialysis
END
start-ver=1.4
cd-journal=joma
no-vol=343
cd-vols=
no-issue=
article-no=
start-page=103558
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SwarazA.M.
en-aut-sei=Swaraz
en-aut-mei=A.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=3
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=4
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=5
en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=11
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=14
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=16
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=17
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=18
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Silicon-based materials
kn-keyword=Silicon-based materials
en-keyword=Water splitting
kn-keyword=Water splitting
en-keyword=Hydrogen
kn-keyword=Hydrogen
en-keyword=Sustainable
kn-keyword=Sustainable
en-keyword=Clean and renewable energy
kn-keyword=Clean and renewable energy
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=2
article-no=
start-page=71
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300 nm) and plasma emission UV sheet (347 ± 52 nm, hereafter 350 nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600 mJ/cm2), and 350 nm (14,400 mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350 nm, but at other wavelengths (i.e., 265, 280, and 300 nm) the removals were more than 64%. Therefore, UV radiation at 350 nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design.
en-copyright=
kn-copyright=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaShiho
en-aut-sei=Yoshida
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EchigoShinya
en-aut-sei=Echigo
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiRyohei
en-aut-sei=Takanami
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Shimane University
kn-affil=
affil-num=3
en-affil=Graduate School of Global Environmental Studies, Kyoto University
kn-affil=
affil-num=4
en-affil=Faculty of Design Technology, Osaka Sangyo University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=trichloramine
kn-keyword=trichloramine
en-keyword=disinfection byproducts
kn-keyword=disinfection byproducts
en-keyword=drinking water
kn-keyword=drinking water
en-keyword=ultraviolet light
kn-keyword=ultraviolet light
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyaHirosato
en-aut-sei=Yokoya
en-aut-mei=Hirosato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiomiShun
en-aut-sei=Shiomi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakenori
en-aut-sei=Uehara
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fan-shaped pneumatic soft actuator
kn-keyword=fan-shaped pneumatic soft actuator
en-keyword=ankle-joint rehabilitation device
kn-keyword=ankle-joint rehabilitation device
en-keyword=hysteresis
kn-keyword=hysteresis
en-keyword=range of motion
kn-keyword=range of motion
END
start-ver=1.4
cd-journal=joma
no-vol=329
cd-vols=
no-issue=1
article-no=
start-page=L183
end-page=L196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=ImakiireSatomi
en-aut-sei=Imakiire
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuroKeiji
en-aut-sei=Kimuro
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeimei
en-aut-sei=Yoshida
en-aut-mei=Keimei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKohei
en-aut-sei=Masaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiRyo
en-aut-sei=Izumi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImabayashiMisaki
en-aut-sei=Imabayashi
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTakanori
en-aut-sei=Watanabe
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshikawaTomohito
en-aut-sei=Ishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosokawaKazuya
en-aut-sei=Hosokawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushimaShouji
en-aut-sei=Matsushima
en-aut-mei=Shouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HashimotoToru
en-aut-sei=Hashimoto
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShinoharaKeisuke
en-aut-sei=Shinohara
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsukiShunsuke
en-aut-sei=Katsuki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatobaTetsuya
en-aut-sei=Matoba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HiranoKatsuya
en-aut-sei=Hirano
en-aut-mei=Katsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsutsuiHiroyuki
en-aut-sei=Tsutsui
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AbeKohtaro
en-aut-sei=Abe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
en-keyword=factor Xa
kn-keyword=factor Xa
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=proteinase-activated receptor
kn-keyword=proteinase-activated receptor
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary hypertension
kn-keyword=pulmonary hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=2
article-no=
start-page=282
end-page=289
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240917
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port™ MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period (< 30 days).
Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6 ± 13.1 years; range, 18–85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2 ± 10.9 min (range 15–112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n = 8) and subcutaneous bleeding (n = 1), Grade II arrhythmia (n = 1), and Grade IIIa pneumothorax (n = 1). Furthermore, 496 patients were followed up for ≥ 30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n = 4), catheter occlusion (n = 1), and skin necrosis due to subcutaneous leakage of trabectedin (n = 1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Central venous catheters
kn-keyword=Central venous catheters
en-keyword=Vascular access device
kn-keyword=Vascular access device
en-keyword=Treatment outcome
kn-keyword=Treatment outcome
en-keyword=Safety
kn-keyword=Safety
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design.
en-copyright=
kn-copyright=
en-aut-name=ImDohyun
en-aut-sei=Im
en-aut-mei=Dohyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JormakkaMika
en-aut-sei=Jormakka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JugeNarinobu
en-aut-sei=Juge
en-aut-mei=Narinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KishikawaJun-ichi
en-aut-sei=Kishikawa
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugitaYukihiko
en-aut-sei=Sugita
en-aut-mei=Yukihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NodaTakeshi
en-aut-sei=Noda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UemuraTomoko
en-aut-sei=Uemura
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShiimuraYuki
en-aut-sei=Shiimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaHidetsugu
en-aut-sei=Asada
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Applied Biology, Kyoto Institute of Technology
kn-affil=
affil-num=5
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=6
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=7
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=e240601
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Is subclinical hypothyroidism associated with cardiovascular disease in the elderly?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subclinical hypothyroidism (SCH) is diagnosed when thyroid function tests show that the serum thyrotropin (TSH) level is elevated and the serum free thyroxine (FT4) level is normal. SCH is mainly caused by Hashimoto’s thyroiditis, the prevalence of which increases with aging. Recently, it has been revealed that SCH is associated with risk factors for cardiovascular diseases (CVDs), including atherosclerosis, dyslipidemia and hypertension, leading to cardiovascular morbidity and mortality. However, there are still controversies regarding the diagnosis and treatment of SCH in elderly patients. In this review, we present recent evidence regarding the relationship between SCH and CVD and treatment recommendations for SCH, especially in elderly patients. Studies have shown that SCH is associated with CVD and all-cause mortality. Patients aged less than 65 years showed significant associations of SCH with CVD risk and all-cause mortality, whereas patients aged 65 or older did not show such associations. It was shown that levothyroxine therapy was associated with lower all-cause mortality and cardiovascular mortality in younger SCH patients (<65–70 years) but not in SCH patients aged 65–70 years or older. In elderly SCH patients, levothyroxine treatment should be considered individually according to the patient’s age, serum TSH level, hypothyroid symptoms, CVD risk and other comorbidities. To further elucidate the impact of SCH on CVD in elderly patients, studies should be conducted using age-specific reference ranges of results of thyroid function tests, focusing on elderly patients, specific serum TSH levels, thyroid antibody status and cardiovascular risk factors.
en-copyright=
kn-copyright=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuyamaAtsuhito
en-aut-sei=Suyama
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaKou
en-aut-sei=Hasegawa
en-aut-mei=Kou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cardiovascular disease
kn-keyword=cardiovascular disease
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=subclinical hypothyroidism
kn-keyword=subclinical hypothyroidism
en-keyword=thyroid disease
kn-keyword=thyroid disease
END
start-ver=1.4
cd-journal=joma
no-vol=487
cd-vols=
no-issue=
article-no=
start-page=137307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
en-copyright=
kn-copyright=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium detoxification
kn-keyword=Cadmium detoxification
en-keyword=Coprecipitation
kn-keyword=Coprecipitation
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Gastrointestinal tract
kn-keyword=Gastrointestinal tract
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2503029
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polyglycerol‐Grafted Graphene Oxide with pH‐Responsive Charge‐Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=charge conversion
kn-keyword=charge conversion
en-keyword=in vivo tumor internalization
kn-keyword=in vivo tumor internalization
en-keyword=non-specific interaction
kn-keyword=non-specific interaction
en-keyword=pH-responsiveness
kn-keyword=pH-responsiveness
en-keyword=polyglycerol-grafted graphene oxide
kn-keyword=polyglycerol-grafted graphene oxide
END
start-ver=1.4
cd-journal=joma
no-vol=48
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=59
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Underlying Mechanism for the Altered Hypoglycemic Effects of Nateglinide in Rats with Acute Peripheral Inflammation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined. Although the plasma concentration profile of NTG in API rats was marginally distinguishable from that in control rats, the hypoglycemic effect of NTG was more persistent in API rats than in control rats. In addition, NTG elevated the plasma level of insulin more intensely in API rats than in control rats. Then, the islets of Langerhans were procured by perfusing the pancreas with collagenase solution in control and API rats, and the pancreatic mRNA expression of preproinsulin (Ins1), as well as that of sulfonylurea receptor ABCC8 (Abcc8), were examined. As a result, the expression of preproinsulin and ABCC8 mRNA increased in API rats. These findings suggest that the hypoglycemic effect of NTG was potentiated in API rats due to increased insulin secretion in the pancreas, which was caused by enhanced preproinsulin synthesis and expression of the sulfonylurea receptor.
en-copyright=
kn-copyright=
en-aut-name=TokoHaruka
en-aut-sei=Toko
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OginoManami
en-aut-sei=Ogino
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiwakiAkane
en-aut-sei=Nishiwaki
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojinaMoeko
en-aut-sei=Kojina
en-aut-mei=Moeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AibaTetsuya
en-aut-sei=Aiba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=blood sugar
kn-keyword=blood sugar
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=insulin
kn-keyword=insulin
en-keyword=Langerhans islet
kn-keyword=Langerhans islet
en-keyword=nateglinide
kn-keyword=nateglinide
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=14
article-no=
start-page=2406
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250721
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Definitions of, Advances in, and Treatment Strategies for Breast Cancer Oligometastasis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oligometastasis represents a clinically relevant state of limited metastatic disease that could be amenable to selected local therapies in carefully chosen patients. Although initial trials such as SABR-COMET demonstrated a survival benefit with aggressive local treatment, breast cancer was underrepresented. Subsequent breast cancer-specific trials, including NRG-BR002, failed to show a clear survival benefit, highlighting uncertainties and the need for further refinement in patient selection and integration with systemic approaches. The definitions of oligometastasis continue to evolve, incorporating radiological, clinical, and biological features. Advances in imaging and molecular profiling suggest that oligometastatic breast cancer might represent a distinct biological subtype, with potential biomarkers including PIK3CA mutations and YAP/TAZ expression. Organ-specific strategies using stereotactic radiotherapy, surgery, and proton therapy have shown favorable local control in certain settings, though their impact on the overall survival remains under investigation. Emerging techniques, including circulating tumor DNA (ctDNA) analysis, are being explored to improve patient selection and disease monitoring. Ongoing trials may provide further insight into the role of local therapy, particularly in hormone receptor-positive or HER2-positive subtypes. Local and systemic strategies need to be carefully coordinated to optimize the outcomes. This review summarizes the current definitions of and evidence and therapeutic considerations for oligometastatic breast cancer and outlines potential future directions.
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamotoShogo
en-aut-sei=Nakamoto
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraYuki
en-aut-sei=Fujiwara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KosakaMaya
en-aut-sei=Kosaka
en-aut-mei=Maya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaraharaYuki
en-aut-sei=Narahara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiKento
en-aut-sei=Fujii
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaReina
en-aut-sei=Maeda
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatoShutaro
en-aut-sei=Kato
en-aut-mei=Shutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MimataAsuka
en-aut-sei=Mimata
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshiokaRyo
en-aut-sei=Yoshioka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KuwaharaChihiro
en-aut-sei=Kuwahara
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsukiokiTakahiro
en-aut-sei=Tsukioki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakahashiYuko
en-aut-sei=Takahashi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwataniTsuguo
en-aut-sei=Iwatani
en-aut-mei=Tsuguo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=oligo-recurrence
kn-keyword=oligo-recurrence
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=local therapy
kn-keyword=local therapy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N = 205) or arm B (N = 202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69–1.07, one-sided p = 0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33–0.53, p < 0.0001). There were no treatment-related deaths.
Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151).
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraFumikata
en-aut-sei=Hara
en-aut-mei=Fumikata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YanagidaYasuhiro
en-aut-sei=Yanagida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuneizumiMichiko
en-aut-sei=Tsuneizumi
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoNaohito
en-aut-sei=Yamamoto
en-aut-mei=Naohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHiroshi
en-aut-sei=Matsumoto
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SutoAkihiko
en-aut-sei=Suto
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeKenichi
en-aut-sei=Watanabe
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraoMichiko
en-aut-sei=Harao
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KanbayashiChizuko
en-aut-sei=Kanbayashi
en-aut-mei=Chizuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ItohMitsuya
en-aut-sei=Itoh
en-aut-mei=Mitsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KadoyaTakayuki
en-aut-sei=Kadoya
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AnanKeisei
en-aut-sei=Anan
en-aut-mei=Keisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaShigeto
en-aut-sei=Maeda
en-aut-mei=Shigeto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiKeita
en-aut-sei=Sasaki
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OgawaGakuto
en-aut-sei=Ogawa
en-aut-mei=Gakuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SajiShigehira
en-aut-sei=Saji
en-aut-mei=Shigehira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaHaruhiko
en-aut-sei=Fukuda
en-aut-mei=Haruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IwataHiroji
en-aut-sei=Iwata
en-aut-mei=Hiroji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Cancer Institute Hospital
kn-affil=
affil-num=3
en-affil=National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Shizuoka General Hospital
kn-affil=
affil-num=5
en-affil=Gunma Prefectural Cancer Center
kn-affil=
affil-num=6
en-affil=Chiba Prefectural Cancer Center
kn-affil=
affil-num=7
en-affil=Saitama Prefectural Cancer Center
kn-affil=
affil-num=8
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Jichi Medical University Hospital
kn-affil=
affil-num=11
en-affil=Niigata Prefectural Cancer Center
kn-affil=
affil-num=12
en-affil=Hiroshima City Hiroshima Citizen’s Hospital
kn-affil=
affil-num=13
en-affil=Hiroshima University Hospital
kn-affil=
affil-num=14
en-affil=Kitakyushu Municipal Medical Center
kn-affil=
affil-num=15
en-affil=Nagasaki Municipal Medical Center
kn-affil=
affil-num=16
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=17
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Fukushima Medical University
kn-affil=
affil-num=19
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Aichi Cancer Center Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=2
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE·2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE·2H2O (1–100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE·2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE·2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE·2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiyamaChiharu
en-aut-sei=Nishiyama
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagoshiTakeru
en-aut-sei=Nagoshi
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakoAkane
en-aut-sei=Miyako
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoSuzuka
en-aut-sei=Ono
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=7
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=BADGE
kn-keyword=BADGE
en-keyword=neurite outgrowth
kn-keyword=neurite outgrowth
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=GPER
kn-keyword=GPER
en-keyword=Hes1
kn-keyword=Hes1
en-keyword=neurogenin-3
kn-keyword=neurogenin-3
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=350
end-page=359
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-Phenylphenothiazine Radical Cation with Extended π-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 °C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described.
en-copyright=
kn-copyright=
en-aut-name=YanoMasafumi
en-aut-sei=Yano
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaMinami
en-aut-sei=Ueda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YajimaTatsuo
en-aut-sei=Yajima
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KashiwagiYukiyasu
en-aut-sei=Kashiwagi
en-aut-mei=Yukiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=2
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=3
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Osaka Research Institute of Industrial Science and Technology
kn-affil=
en-keyword=triarylamines
kn-keyword=triarylamines
en-keyword=N-phenylphenothiazine
kn-keyword=N-phenylphenothiazine
en-keyword=radical cation
kn-keyword=radical cation
en-keyword=near-infrared absorption
kn-keyword=near-infrared absorption
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e003250
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM—defined as LVEF of ≤45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ≥14/mm², including ≤4 monocytes/mm², with CD3+ T lymphocytes of≥7/mm². Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan–Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm² (low); 13 of 13.1–23.9/mm² (moderate); and T lymphocytes of ≥24 /mm² (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ≤5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakafumi
en-aut-sei=Nakayama
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgoKeiko Ohta
en-aut-sei=Ogo
en-aut-mei=Keiko Ohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuganoYasuo
en-aut-sei=Sugano
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokokawaTetsuro
en-aut-sei=Yokokawa
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaYoshihiko
en-aut-sei=Ikeda
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroeMichiaki
en-aut-sei=Hiroe
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatakeyamaKinta
en-aut-sei=Hatakeyama
en-aut-mei=Kinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Ishibashi-UedaHatsue
en-aut-sei=Ishibashi-Ueda
en-aut-mei=Hatsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DohiKaoru
en-aut-sei=Dohi
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AnzaiToshihisa
en-aut-sei=Anzai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SeoYoshihiro
en-aut-sei=Seo
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Imanaka-YoshidaKyoko
en-aut-sei=Imanaka-Yoshida
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keiyu Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiology, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=10
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=15
article-no=
start-page=2290
end-page=2294
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HinoRimi
en-aut-sei=Hino
en-aut-mei=Rimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujinoGo
en-aut-sei=Fujino
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaiYuto
en-aut-sei=Sakai
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=K. IwataNobue
en-aut-sei=K. Iwata
en-aut-mei=Nobue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=6
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=9
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=spastic paraparesis
kn-keyword=spastic paraparesis
en-keyword=whole-exome sequence analysis
kn-keyword=whole-exome sequence analysis
en-keyword=SPG7
kn-keyword=SPG7
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=151
end-page=159.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The greater palatine nerve and artery both supply the maxillary teeth
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery. The authors aimed to investigate the palatal innervation and blood supply of the maxillary teeth.
Methods. Eight cadaveric maxillae containing most teeth or alveolar sockets were selected. The mean age at the time of death was 82.4 years. The samples were examined with colored water injection, latex injection, microcomputed tomography with contrast dye, gross anatomic dissection, and histologic observation.
Results. Through both injection studies and microcomputed tomographic analysis, the authors found that the small foramina on and around the greater palatine groove connected to the alveolar process and tooth sockets. The small foramina in the greater palatine and incisive canal also continued inside the alveolar process and the tooth sockets.
Conclusions. The alveolar branches of the greater palatine nerve and artery as well as the nasopalatine nerve and sphenopalatine artery supply maxillary teeth, alveolar bone, and periodontal tissue via the palatal alveolar foramina with superior alveolar nerves and arteries.
Practical Implications. This knowledge is essential for dentists when administering local anesthetic to the maxillary teeth and performing an osteotomy. Anatomic and dental textbooks should be updated with this new knowledge for better patient care.
en-copyright=
kn-copyright=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnbalaganMuralidharan
en-aut-sei=Anbalagan
en-aut-mei=Muralidharan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZouBinghao
en-aut-sei=Zou
en-aut-mei=Binghao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToriumiTaku
en-aut-sei=Toriumi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, School of Medicine, Kurume University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=4
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=5
en-affil=Department of Anatomy, School of Life Dentistry at Niigata, The Nippon Dental University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=University of Queensland
kn-affil=
en-keyword=Maxillary teeth
kn-keyword=Maxillary teeth
en-keyword=dental pulp
kn-keyword=dental pulp
en-keyword=anatomy
kn-keyword=anatomy
en-keyword=nerve block
kn-keyword=nerve block
en-keyword=root canal treatment
kn-keyword=root canal treatment
en-keyword=cadaver
kn-keyword=cadaver
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1151
end-page=1159
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.
en-copyright=
kn-copyright=
en-aut-name=Furuya-IkudeChiemi
en-aut-sei=Furuya-Ikude
en-aut-mei=Chiemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KittaAkane
en-aut-sei=Kitta
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNaoko
en-aut-sei=Tomonobu
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawasakiYoshihiro
en-aut-sei=Kawasaki
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=2
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
en-keyword=NCF-1 (p47phox)
kn-keyword=NCF-1 (p47phox)
en-keyword=ROS
kn-keyword=ROS
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Tumor growth
kn-keyword=Tumor growth
en-keyword=Apoptosis
kn-keyword=Apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=472
cd-vols=
no-issue=
article-no=
start-page=123486
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs.
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChoTakusei
en-aut-sei=Cho
en-aut-mei=Takusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakiyamaYoshio
en-aut-sei=Sakiyama
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumiKensho
en-aut-sei=Sumi
en-aut-mei=Kensho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchioNaohiro
en-aut-sei=Uchio
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatakeAkane
en-aut-sei=Satake
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakiyamaYoshihisa
en-aut-sei=Takiyama
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsushitaTakuya
en-aut-sei=Matsushita
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Neurology, Kochi Medical School, Kochi University
kn-affil=
affil-num=12
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=13
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=14
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=15
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Leukodystrophy
kn-keyword=Leukodystrophy
en-keyword=CC2L
kn-keyword=CC2L
en-keyword=CLCN2
kn-keyword=CLCN2
en-keyword=MCP sign
kn-keyword=MCP sign
END
start-ver=1.4
cd-journal=joma
no-vol=219
cd-vols=
no-issue=
article-no=
start-page=104944
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Establishment of a transgenic strain for the whole brain calcium imaging in larval medaka fish (Oryzias latipes)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=GCaMP-based calcium imaging is a powerful tool for investigating neural function in specific neurons. We generated transgenic (Tg) medaka strains expressing jGCaMP7s across extensive brain regions under the control of the gap43 promoter. Using these Tg larvae, calcium imaging successfully detected a tricaine-induced suppression of spontaneous neural activity and topographical visual responses in the optic tectum elicited by moving paramecia or optical fiber stimulation. These results indicate that our Tg medaka strains provide a versatile platform for investigating neural dynamics and their responses to various stimuli.
en-copyright=
kn-copyright=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyanariKazuhiro
en-aut-sei=Miyanari
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiraishiAsuka
en-aut-sei=Shiraishi
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsudaSachiko
en-aut-sei=Tsuda
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=2
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=gap43
kn-keyword=gap43
en-keyword=JGCaMP7s
kn-keyword=JGCaMP7s
en-keyword=Ac/Ds
kn-keyword=Ac/Ds
en-keyword=Visuotopy
kn-keyword=Visuotopy
en-keyword=slc2a15b
kn-keyword=slc2a15b
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=12
article-no=
start-page=2664
end-page=2671
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long‐term outcomes of endoscopic resection of superficial esophageal squamous cell carcinoma in late‐elderly patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: As the population ages, the number of elderly patients with superficial esophageal squamous cell carcinoma (ESCC) is increasing. We aimed to clarify the indications for endoscopic resection (ER) in late-elderly patients with ESCC in terms of life expectancy.
Methods: Patients aged ≥75 years who underwent ER for ESCC at our institution from January 2005 to December 2018 were enrolled. Clinical data, including the Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists physical status (ASA-PS), Charlson comorbidity index, and prognostic nutritional index (PNI), were collected at the time of ER. The main outcome measure was overall survival (OS).
Results: Two hundred eight consecutive patients were enrolled. The patients' median age was 78 years (range, 75–89 years). The 5-year follow-up rate was 88.5% (median follow-up period, 6.6 years). The 5-year OS rate was 79.2% (95% confidence interval [CI], 72.2–84.8), and 5-year net survival standardized for age, sex, and calendar year was 1.04 (95% CI, 0.98–1.09). In the multivariate analysis, an ASA-PS of 3 (hazard ratio, 2.45; 95% CI, 1.16–5.17) and PNI of <44.0 (hazard ratio, 2.73; 95% CI, 1.38–5.40) were independent prognostic factors. When neither of these factors was met, the 5-year OS rate was 87.8% (95% CI, 80.0–92.9), and 5-year net survival was 1.08 (95% CI, 1.02–1.14).
Conclusions: ER for ESCC in late-elderly patients may improve life expectancy. ER is recommended in patients with a good ASA-PS and PNI.
en-copyright=
kn-copyright=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiKeisuke
en-aut-sei=Fukui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Societal Safety Sciences, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=endoscopic resection
kn-keyword=endoscopic resection
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=late-elderly patient
kn-keyword=late-elderly patient
en-keyword=long-term outcome
kn-keyword=long-term outcome
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=12
article-no=
start-page=1697
end-page=1702
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gastric Mucosa-associated Lymphoid Tissue Lymphoma That Relapsed after 11 Years Subsequent to Achieving Complete Remission
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old Japanese man was diagnosed with extranodal marginal zone lymphoma of the mucosa-associated lymphoid tissue in the stomach (gastric MALT lymphoma). Fluorescence in situ hybridization analysis revealed the absence of t (11;18) (q21;q21) translocation but the presence of extra copies of MALT1, indicating tetrasomy 18. Helicobacter pylori eradication led to complete remission (CR). However, the gastric MALT lymphoma relapsed after 11 years old. This case underscores the need for long-term observation (>10 years) of patients with gastric MALT lymphoma. Further investigation is warranted to elucidate the correlation between trisomy/tetrasomy 18 and the recurrence propensity.
en-copyright=
kn-copyright=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OotukaMotoyuki
en-aut-sei=Ootuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=gastric MALT lymphoma
kn-keyword=gastric MALT lymphoma
en-keyword=H. pylori
kn-keyword=H. pylori
en-keyword=relapse
kn-keyword=relapse
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=10
article-no=
start-page=1367
end-page=1371
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Idiopathic Gastric Antral Ulcers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A Japanese woman presented with gastric antral ulcers accompanied by erosion and edema, demonstrating a chronic pattern of improvement and recurrence for more than six years. The patient had no relevant treatment history, and Helicobacter pylori infection was ruled out. Other potential etiologies contributing to gastric ulcers were eliminated on the basis of endoscopic biopsy and blood laboratory findings. Consequently, the patient was diagnosed with idiopathic gastric antral ulcer. This disease is often overlooked, and the chronological endoscopic images provided in this report can be used as a reference.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=gastric ulcer
kn-keyword=gastric ulcer
en-keyword=diopathic ulcer
kn-keyword=diopathic ulcer
en-keyword=Helicobacter pylori
kn-keyword=Helicobacter pylori
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
en-copyright=
kn-copyright=
en-aut-name=KatadaChikatoshi
en-aut-sei=Katada
en-aut-mei=Chikatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaTetsuji
en-aut-sei=Yokoyama
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoTomonori
en-aut-sei=Yano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHaruhisa
en-aut-sei=Suzuki
en-aut-mei=Haruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurueYasuaki
en-aut-sei=Furue
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoyamaHisashi
en-aut-sei=Doyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoikeTomoyuki
en-aut-sei=Koike
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaokiMasashi
en-aut-sei=Tamaoki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawataNoboru
en-aut-sei=Kawata
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraoMotohiro
en-aut-sei=Hirao
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgataTakashi
en-aut-sei=Ogata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatagiriAtsushi
en-aut-sei=Katagiri
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamanouchiTakenori
en-aut-sei=Yamanouchi
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KiyokawaHirofumi
en-aut-sei=Kiyokawa
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakuboHirofumi
en-aut-sei=Kawakubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KonnoMaki
en-aut-sei=Konno
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhashiShinya
en-aut-sei=Ohashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KishimotoYo
en-aut-sei=Kishimoto
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KanoKoichi
en-aut-sei=Kano
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MureKanae
en-aut-sei=Mure
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HayashiRyuichi
en-aut-sei=Hayashi
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IshikawaHideki
en-aut-sei=Ishikawa
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MutoManabu
en-aut-sei=Muto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Health and Promotion, National Institute of Public Health
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Endoscopy, Hokkaido University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Endoscopy, Shizuoka Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Tochigi Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=22
en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital
kn-affil=
affil-num=23
en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Public Health, Wakayama Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East
kn-affil=
affil-num=26
en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=27
en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center
kn-affil=
affil-num=28
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=alcohol
kn-keyword=alcohol
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=field cancerization
kn-keyword=field cancerization
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=JEC study
kn-keyword=JEC study
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=8
article-no=
start-page=e18026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Commissioning of respiratory‐gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%–50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0–10.0 mm (10.0–20.0 mm target motions) and periods of 3–6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a ± 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 ± 0.2% and 98.2 ± 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of ±10% and both spill and gate time delays of ±0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within ±5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps.
en-copyright=
kn-copyright=
en-aut-name=TominagaYuki
en-aut-sei=Tominaga
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakisakaYushi
en-aut-sei=Wakisaka
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakahiro
en-aut-sei=Kato
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaMasaya
en-aut-sei=Ichihara
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YasuiKeisuke
en-aut-sei=Yasui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiMotoharu
en-aut-sei=Sasaki
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishioTeiji
en-aut-sei=Nishio
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=2
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=3
en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
kn-affil=
affil-num=4
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
affil-num=5
en-affil=School of Medical Sciences, Fujita Health University
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
en-keyword=4D dynamic dose
kn-keyword=4D dynamic dose
en-keyword=interplay effect
kn-keyword=interplay effect
en-keyword=pencil beam scanning
kn-keyword=pencil beam scanning
en-keyword=proton therapy
kn-keyword=proton therapy
en-keyword=respiratory gating
kn-keyword=respiratory gating
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=8
article-no=
start-page=afaf224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oestrogen replacement combined with resistance exercise in older women with knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Interventions targeting physical function decline in older women with knee osteoarthritis (KOA) are vital for healthy ageing. The additive benefits of combining oestrogen replacement therapy (ERT) with resistance exercise remain unclear.
Objective: To evaluate the additive effect of low-dose ERT on physical performance when combined with a muscle resistance exercise programme (MREP) in older women with KOA.
Design: This is a placebo-controlled, double-blind, randomised clinical trial.
Subjects: The subjects were community-dwelling women aged ≥65 years with chronic knee pain and KOA diagnosis.
Methods: Participants completed a 3-month MREP and were randomised to receive daily low-dose transdermal ERT (oestradiol 0.54 mg/day) or placebo. Outcomes were assessed at baseline, postintervention and 12 months later. The primary outcome was change in 30-second chair stand test (CS-30) score. Secondary outcomes included muscle mass, knee extension strength, walking performance, metabolic indicators, knee pain scale and 12-item short-form health survey (SF-12). Between-group differences in CS-30 changes were analysed using a linear regression model based on the intention-to-treat principle.
Results: Among 168 individuals screened, 75 participants (mean age 73.8 years, SD 5.8) were enrolled and randomised into an ERT group (n = 37) or a placebo group (n = 38). Baseline CS-30 scores were 14.81 (SD 3.95) in the ERT group and 15.58 (SD 3.48) in the placebo group. At 3 months, mean changes were 2.59 (SD 2.58) and 1.79 (SD 2.28) repetitions, respectively. The primary analysis showed no statistically significant between-group difference [regression coefficient: 0.81 (95% CI: −0.31, 1.92); P = .16]. Post hoc subgroup and sensitivity analyses suggested that benefits may exist among early-stage KOA participants. SF-12 mental health scores also improved significantly in the ERT group. No serious adverse events occurred.
Conclusions: ERT did not confer significant additive benefits to resistance exercise overall but may improve outcomes in early-stage KOA and mental health domains. These exploratory findings warrant further investigation.
en-copyright=
kn-copyright=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiKasumi
en-aut-sei=Takahashi
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTsunemasa
en-aut-sei=Kondo
en-aut-mei=Tsunemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkedaTomohiro
en-aut-sei=Ikeda
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakamotoYoko
en-aut-sei=Sakamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=4
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=5
en-affil=Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
en-keyword=oestrogen replacement therapy
kn-keyword=oestrogen replacement therapy
en-keyword=muscle resistance exercise
kn-keyword=muscle resistance exercise
en-keyword=knee osteoarthritis
kn-keyword=knee osteoarthritis
en-keyword=physical performance
kn-keyword=physical performance
en-keyword=randomised controlled trial
kn-keyword=randomised controlled trial
en-keyword=older people
kn-keyword=older people
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=2
article-no=
start-page=ivae021
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plasma concentrations of histidine-rich glycoprotein in primary graft dysfunction after lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVES: Histidine-rich glycoprotein has been reported as an anti-inflammatory glycoprotein that inhibits acute lung injury in mice with sepsis and as a prognostic biomarker in patients with sepsis. We investigated the relationship between plasma concentrations of histidine-rich glycoprotein and the risk of occurrence of primary graft dysfunction.
METHODS: According to the primary graft dysfunction grade at post-transplant 72 h, patients who underwent lung transplantation were divided into three groups: non-primary graft dysfunction group (grade 0–1), moderate primary graft dysfunction group (grade 2), and severe primary graft dysfunction group (grade 3). The plasma concentrations of histidine-rich glycoprotein measured daily during the first post-transplant 7 days were compared among the three groups. Appropriate cutoff values of the concentrations were set for survival analyses after lung transplantation.
RESULTS: A total of 68 patients were included. The plasma histidine-rich glycoprotein concentration at post-transplant 72 h was significantly lower in the severe primary graft dysfunction group (n = 7) than in the other two groups [non-primary graft dysfunction group (n = 43), P = 0.042; moderate primary graft dysfunction group (n = 18), P = 0.040]. Patients with plasma histidine-rich glycoprotein concentration ≥34.4 µg/ml at post-transplant 72 h had significantly better chronic lung allograft dysfunction-free survival (P = 0.012) and overall survival (P = 0.037) than those with the concentration <34.4 µg/ml.
CONCLUSIONS: Plasma histidine-rich glycoprotein concentrations at post-transplant 72 h might be associated with the risk of development of primary graft dysfunction.
en-copyright=
kn-copyright=
en-aut-name=ShiotaniToshio
en-aut-sei=Shiotani
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=Lung transplantation
kn-keyword=Lung transplantation
en-keyword=Primary graft dysfunction
kn-keyword=Primary graft dysfunction
en-keyword=Histidine-rich glycoprotein
kn-keyword=Histidine-rich glycoprotein
en-keyword=Chronic lung allograft dysfunction
kn-keyword=Chronic lung allograft dysfunction
en-keyword=Overall survival
kn-keyword=Overall survival
END
start-ver=1.4
cd-journal=joma
no-vol=207
cd-vols=
no-issue=
article-no=
start-page=108683
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracranial activity of sotorasib vs docetaxel in pretreated KRAS G12C-mutated advanced non-small cell lung cancer from a global, phase 3, randomized controlled trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To assess the efficacy and safety of sotorasib in patients with brain metastases using data from the phase 3 CodeBreaK 200 study, which evaluated sotorasib in adults with pretreated advanced or metastatic KRAS G12C-mutated non-small cell lung cancer (NSCLC).
Materials and methods: Patients with KRAS G12C-mutated NSCLC who progressed after platinum-based chemotherapy and checkpoint inhibitor therapy were randomized 1:1 to sotorasib or docetaxel. An exploratory post-hoc analysis evaluated central nervous system (CNS) progression-free survival (PFS) and time to CNS progression in patients with treated and stable brain metastases at baseline. Measures were assessed by blinded independent central review per study-modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
Results: Of the patients randomly assigned to receive sotorasib (n=171) or docetaxel (n=174), baseline CNS metastases were present in 40 (23%) and 29 (17%) patients, respectively. With a median follow-up of 20.0 months for this patient subgroup, median CNS PFS was longer with sotorasib compared with docetaxel (9.6 vs 4.5 months; hazard ratio, 0.43 [95% CI, 0.20–0.92]; P=0.02). Among patients with baseline treated CNS lesions of ≥10 mm, the percentage of patients who achieved CNS tumor shrinkage of ≥30% was two-fold higher with sotorasib than docetaxel (33.3% vs 15.4%). Treatment-related adverse events among patients with CNS lesions at baseline were consistent with those of the overall study population.
Conclusions: These results suggest intracranial activity with sotorasib complements the overall PFS benefit observed with sotorasib vs docetaxel, with safety outcomes similar to those in the general CodeBreaK 200 population.
Clinical trials registration number: NCT04303780.
en-copyright=
kn-copyright=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyrigosKonstantinos
en-aut-sei=Syrigos
en-aut-mei=Konstantinos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiviLorenzo
en-aut-sei=Livi
en-aut-mei=Lorenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PaulusAstrid
en-aut-sei=Paulus
en-aut-mei=Astrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimSang-We
en-aut-sei=Kim
en-aut-mei=Sang-We
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYuanbin
en-aut-sei=Chen
en-aut-mei=Yuanbin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GriesingerFrank
en-aut-sei=Griesinger
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZalcmanGerard
en-aut-sei=Zalcman
en-aut-mei=Gerard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HughesBrett G.M.
en-aut-sei=Hughes
en-aut-mei=Brett G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SørensenJens Benn
en-aut-sei=Sørensen
en-aut-mei=Jens Benn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlaisNormand
en-aut-sei=Blais
en-aut-mei=Normand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FerreiraCarlos G.M.
en-aut-sei=Ferreira
en-aut-mei=Carlos G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LindsayColin R.
en-aut-sei=Lindsay
en-aut-mei=Colin R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WardPatrick J.
en-aut-sei=Ward
en-aut-mei=Patrick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ObiozorCynthia Chinedu
en-aut-sei=Obiozor
en-aut-mei=Cynthia Chinedu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WangYang
en-aut-sei=Wang
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PetersSolange
en-aut-sei=Peters
en-aut-mei=Solange
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Erasmus MC Cancer Institute, University Medical Center
kn-affil=
affil-num=2
en-affil=Sotiria General Hospital
kn-affil=
affil-num=3
en-affil=Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence
kn-affil=
affil-num=4
en-affil=Centre Hospitalier Universitaire de Liège
kn-affil=
affil-num=5
en-affil=Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine
kn-affil=
affil-num=6
en-affil=The Cancer & Hematology Centers of Western Michigan
kn-affil=
affil-num=7
en-affil=Medical Oncology Department, Vall d’Hebron University Hospital
kn-affil=
affil-num=8
en-affil=Pius-Hospital Oldenburg
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Hospital Bichat-Claude Bernard
kn-affil=
affil-num=11
en-affil=The Prince Charles Hospital, University of Queensland
kn-affil=
affil-num=12
en-affil=Rigshospitalet
kn-affil=
affil-num=13
en-affil=Department of Medicine, Centre Hospitalier de l’Université de Montréal
kn-affil=
affil-num=14
en-affil=Oncoclinicas
kn-affil=
affil-num=15
en-affil=Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust
kn-affil=
affil-num=16
en-affil=University Clinical Centre, Medical University of Gdansk
kn-affil=
affil-num=17
en-affil=SCRI at OHC
kn-affil=
affil-num=18
en-affil=Amgen Inc.
kn-affil=
affil-num=19
en-affil=Amgen Inc.
kn-affil=
affil-num=20
en-affil=Lausanne University Hospital
kn-affil=
en-keyword=Brain metastases
kn-keyword=Brain metastases
en-keyword=KRAS G12C-mutated
kn-keyword=KRAS G12C-mutated
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=NSCLC
kn-keyword=NSCLC
en-keyword=Randomized controlled trial
kn-keyword=Randomized controlled trial
en-keyword=Sotorasib
kn-keyword=Sotorasib
en-keyword=Survival
kn-keyword=Survival
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien–Dindo classification grade II–V on postoperative day (POD) 3–5. EM was defined as achieving an ICU Mobility Scale (IMS) ≥7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE.
en-copyright=
kn-copyright=
en-aut-name=NOZAWAYasuaki
en-aut-sei=NOZAWA
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HARADAKazuhiro
en-aut-sei=HARADA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NOMAKazuhiro
en-aut-sei=NOMA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KATAYAMAYoshimi
en-aut-sei=KATAYAMA
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HAMADAMasanori
en-aut-sei=HAMADA
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OZAKIToshifumi
en-aut-sei=OZAKI
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Graduate School of Health Science Studies, Kibi International University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
en-keyword=Early mobilization
kn-keyword=Early mobilization
en-keyword=Postoperative pneumonia
kn-keyword=Postoperative pneumonia
en-keyword=Orthostatic intolerance
kn-keyword=Orthostatic intolerance
en-keyword=Thoracic esophageal squamous cell carcinoma
kn-keyword=Thoracic esophageal squamous cell carcinoma
en-keyword=Robot-assisted minimally invasive esophagectomy
kn-keyword=Robot-assisted minimally invasive esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berberine Prevents NSAID-Induced Small Intestinal Injury by Protecting Intestinal Barrier and Inhibiting Inflammasome-Associated Activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Nonsteroidal anti-inflammatory drugs (NSAID), which are commonly used to manage pain and inflammation, often cause gastrointestinal injuries, including small intestinal damage. Berberine (BBR) is a traditional Chinese medicine that protects against these injuries. However, the mechanism of action is not fully understood.
Aims This study aimed to evaluate the protective effects of BBR against NSAID-induced intestinal injury and elucidate the underlying molecular mechanisms.
Methods We evaluated the effects of BBR on NSAID-induced intestinal injury using a combination of mouse models and human gut organoids. Mice were treated with indomethacin with or without BBR to induce small intestinal injury. Human gut organoids were exposed to NSAID, with or without BBR, to assess their direct epithelial effects. Histological analyses, cytokine measurements, and Western blotting were performed to evaluate intestinal damage, tight junction integrity, and inflammasome-associated activation.
Results In NSAID-treated mice, BBR markedly reduced ulcers and adhesions and preserved ileal Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1) levels. BBR inhibited both NOD-like receptor family pyrin domain-containing 6 and NOD-like receptor family caspase recruitment domain–containing protein 4 inflammasome activation, reducing Caspase-1 maturation and downstream interleukin-1β and tumor necrosis factor-α release. In human gut organoids, BBR demonstrated comparable protective effects by directly mitigating NSAID-induced epithelial barrier disruption caused by Claudin-1 and Occludin downregulation, although it did not restore ZO-1 expression.
Conclusions BBR effectively prevented NSAID-induced small intestinal injury by maintaining tight junction integrity and inhibiting inflammasome-associated activation, indicating its potential as a therapeutic agent against such damage.
en-copyright=
kn-copyright=
en-aut-name=IshiguroMikako
en-aut-sei=Ishiguro
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyosawaJyunki
en-aut-sei=Toyosawa
en-aut-mei=Jyunki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
kn-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
en-keyword=Berberine
kn-keyword=Berberine
en-keyword=Tight junction protein
kn-keyword=Tight junction protein
en-keyword=Inflammasomes
kn-keyword=Inflammasomes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250714
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-naïve and 156 biologic-non-naïve) were included. Significantly more biologic-naïve than biologic-non-naïve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05–1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30–4.48; P=0.0052; biologic-naïve patients: OR, 2.40; 95% CI, 1.10–5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ≥ 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00–7.62; P= 0.050) and shorter disease duration (OR for median duration ≥ 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13–0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence.
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FernandezJovelle L.
en-aut-sei=Fernandez
en-aut-mei=Jovelle L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=DeguchiHisato
en-aut-sei=Deguchi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=22
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Medication persistence
kn-keyword=Medication persistence
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ≥ 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ≥ 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ≥ 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ≥ 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangZhezhou
en-aut-sei=Huang
en-aut-mei=Zhezhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=QinFei
en-aut-sei=Qin
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Nathan ArokianathanFatima Megala
en-aut-sei=Nathan Arokianathan
en-aut-mei=Fatima Megala
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DavéKiran
en-aut-sei=Davé
en-aut-mei=Kiran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShahShweta
en-aut-sei=Shah
en-aut-mei=Shweta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHyunchung
en-aut-sei=Kim
en-aut-mei=Hyunchung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University
kn-affil=
affil-num=2
en-affil=Cerner Enviza
kn-affil=
affil-num=3
en-affil=Cerner Enviza
kn-affil=
affil-num=4
en-affil=Oracle Life Sciences
kn-affil=
affil-num=5
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=6
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=7
en-affil=Bristol Myers Squibb
kn-affil=
en-keyword=Quality of life
kn-keyword=Quality of life
en-keyword=Presenteeism
kn-keyword=Presenteeism
en-keyword=Absenteeism
kn-keyword=Absenteeism
en-keyword=Ulcerative colitis
kn-keyword=Ulcerative colitis
en-keyword=Japan
kn-keyword=Japan
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=7
article-no=
start-page=920
end-page=927
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The association of fasting triglyceride variability with renal dysfunction and proteinuria in medical checkup participants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The association between the variability of triglyceride (TG) and chronic kidney disease (CKD) progression remains unclear. We examined whether intraindividual variability in fasting TG was associated with the exacerbation of CKD.
Methods We conducted a retrospective and observational study. 18,339 participants, who went through medical checkups and had checked their estimated glomerular filtration rate (eGFR) and semi-quantitative proteinuria by urine dipstick every year since 2017 for 4 years were registered. Variability in fasting TG was determined using the standard deviation (SD), and maximum minus minimum difference (MMD) between 2017 and 2021. The primary end point for the analysis of eGFR decline was eGFR < 60 mL/min/1.73 m2. The secondary end point for the analysis of proteinuria was the incidence of proteinuria ≥ ( ±) by urine dipstick.
Results The renal survival was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p < 0.001, and < 0.001, respectively). Lower SD and lower MMD were significantly associated with renal survival in the adjusted model (hazard ratio (HR), 1.12; 95% confidence intervals (CI), 1.04–1.21, and HR, 1.13; 95% CI 1.05–1.23, respectively). The non-incidence of proteinuria was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p < 0.001 and < 0.001, respectively).
Conclusion Fasting TG variability was associated with CKD progression in participants who went through medical checkups.
en-copyright=
kn-copyright=
en-aut-name=Matsuoka-UchiyamaNatsumi
en-aut-sei=Matsuoka-Uchiyama
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakawaTomohiko
en-aut-sei=Asakawa
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakurabuYoshimasa
en-aut-sei=Sakurabu
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaKatsuyoshi
en-aut-sei=Katayama
en-aut-mei=Katsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoRika
en-aut-sei=Takemoto
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UmebayashiRyoko
en-aut-sei=Umebayashi
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=eGFR decline
kn-keyword=eGFR decline
en-keyword=Proteinuria
kn-keyword=Proteinuria
en-keyword=Renal dysfunction
kn-keyword=Renal dysfunction
en-keyword=Triglyceride variability
kn-keyword=Triglyceride variability
en-keyword=Fasting triglyceride
kn-keyword=Fasting triglyceride
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=30
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transtibial pullout repair improved short-term clinical outcomes in patients with oblique medial meniscus posterior root tear comparable to radial root tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Medial meniscus (MM) posterior root tears (PRT) can lead to excessive knee loading and unsatisfactory clinical outcomes after non-operative treatment or meniscectomy. Although favourable clinical outcomes after MM posterior root (PR) repair have been reported, no study has specifically investigated the outcomes of different types of MMPRT. This study aimed to compare the clinical outcomes of patients with complete radial and oblique MMPRT following MMPR repair.
Methods Forty patients who had undergone MMPR repair were retrospectively investigated. Patients with type 2 (20 knees) and 4 MMPRT (20 knees) were included in this study. The MMPRT type was classified according to the LaPrade classification. Plain radiographs, magnetic resonance images, arthroscopic findings, and pre- and postoperative clinical outcomes were evaluated.
Results At 1 year postoperatively, clinical outcomes notably improved in patients with type 2 and 4 MMPRT. No significant differences were observed in any of the evaluations between these patients, both before and after the surgery.
Conclusion Patients with type 2 and type 4 MMPRT exhibited significantly improved clinical outcomes. MMPR repair is beneficial in treating type 2 and type 4 MMPRT.
Level of evidence IV
en-copyright=
kn-copyright=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoharaToshiki
en-aut-sei=Kohara
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Clinical outcomes
kn-keyword=Clinical outcomes
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Oblique tear
kn-keyword=Oblique tear
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Radial tear
kn-keyword=Radial tear
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=305
end-page=309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Rare Presentation of Pneumonic-Type Adenocarcinoma Hidden behind Empyema
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pneumonic-type adenocarcinoma (P-ADC) can closely mimic pneumonia. We report a P-ADC initially diagnosed as pneumonia which developed into a pulmonary abscess and empyema. A 50-year-old Japanese male diagnosed with pneumonia, pulmonary abscess, and empyema was administered antibiotics and a chest tube for drainage, which improved his symptoms and blood test results. However, chest computed tomography showed an enlarged infiltrative shadow. The patient underwent bronchoscopy and was diagnosed with an adenocarcinoma. This case highlights the importance of considering P-ADC in differential diagnoses when a pneumonia-like shadow enlarges post-empyema treatment. Diagnostic and clinical tests, e.g., bronchoscopy, should be performed in such cases.
en-copyright=
kn-copyright=
en-aut-name=SenooSatoru
en-aut-sei=Senoo
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujiRyoko
en-aut-sei=Tsuji
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakataKohei
en-aut-sei=Takata
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumoriShunsuke
en-aut-sei=Matsumori
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MuranoFumika
en-aut-sei=Murano
en-aut-mei=Fumika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugisakiYuka
en-aut-sei=Sugisaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OmoriHiroki
en-aut-sei=Omori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakahashiKenji
en-aut-sei=Takahashi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkadaToshiaki
en-aut-sei=Okada
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Diagnostic Pathology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
en-keyword=pneumonic type adenocarcinoma
kn-keyword=pneumonic type adenocarcinoma
en-keyword=empyema
kn-keyword=empyema
en-keyword=bronchoscopy
kn-keyword=bronchoscopy
en-keyword=lung cancer diagnosis
kn-keyword=lung cancer diagnosis
en-keyword=cavity formation
kn-keyword=cavity formation
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=283
end-page=286
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC.
en-copyright=
kn-copyright=
en-aut-name=ImamuraYuta
en-aut-sei=Imamura
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KindoHiroya
en-aut-sei=Kindo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MuraiAya
en-aut-sei=Murai
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anterior uveitis
kn-keyword=anterior uveitis
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=maxillary sinus
kn-keyword=maxillary sinus
en-keyword=postoperative maxillary cyst
kn-keyword=postoperative maxillary cyst
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=279
end-page=282
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaMao
en-aut-sei=Yoshikawa
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital
kn-affil=
en-keyword=gallbladder metastasis
kn-keyword=gallbladder metastasis
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=oligometastatic disease
kn-keyword=oligometastatic disease
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=231
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ≥ 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ≥ 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ≥ 2 nm/ml.
en-copyright=
kn-copyright=
en-aut-name=KardanM Enes
en-aut-sei=Kardan
en-aut-mei=M Enes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ErdemIlknur
en-aut-sei=Erdem
en-aut-mei=Ilknur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YildizEmre
en-aut-sei=Yildiz
en-aut-mei=Emre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KirazNuri
en-aut-sei=Kiraz
en-aut-mei=Nuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ÇelikkolAliye
en-aut-sei=Çelikkol
en-aut-mei=Aliye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=4
en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=5
en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University
kn-affil=
en-keyword=geriatrics
kn-keyword=geriatrics
en-keyword=gram-negative bacteria
kn-keyword=gram-negative bacteria
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=1
article-no=
start-page=e70005
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lyme neuroborreliosis in Japan: Borrelia burgdorferi sensu lato as a cause of meningitis of previously undetermined etiology in hospitalized patients outside of the island of Hokkaido, 2010–2021
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available. We sought to determine if LNB could be a cause of previously undiagnosed encephalitis or meningitis in Japan.
Methods: Investigators at 15 hospitals in 10 prefectures throughout Japan retrieved serum and/or cerebrospinal fluid (CSF) samples collected in 2010–2021 from 517 patients hospitalized with encephalitis or meningitis which had an etiology that had not been determined. Samples were tested for Bbsl-specific antibodies using ELISA and Western blot tests. In alignment with the European Union LNB case definition, a confirmed LNB case had CSF pleocytosis and intrathecal production of Bbsl-specific antibodies and a probable LNB case had a CSF sample with pleocytosis and Bbsl-specific antibodies.
Results: LNB was identified in three hospitalized patients with meningitis of previously undetermined etiology: a male resident of Aomori Prefecture was a confirmed LNB case, and two female residents of Oita Prefecture were probable LNB cases. None of the patients with confirmed or probable LNB had traveled in the month prior to symptom onset and none had samples previously tested for LB.
Conclusion: The identification of previously undiagnosed LNB cases indicates a need for enhanced disease awareness in Japan, particularly beyond Hokkaido Island, and more readily available LB diagnostic testing.
en-copyright=
kn-copyright=
en-aut-name=OhiraMasayuki
en-aut-sei=Ohira
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakanoAi
en-aut-sei=Takano
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiKentaro
en-aut-sei=Yoshi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AraiAkira
en-aut-sei=Arai
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsoYashuhiro
en-aut-sei=Aso
en-aut-mei=Yashuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FurutaniRikiya
en-aut-sei=Furutani
en-aut-mei=Rikiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamanoTadanori
en-aut-sei=Hamano
en-aut-mei=Tadanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takahashi‐IwataIkuko
en-aut-sei=Takahashi‐Iwata
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanekoChikako
en-aut-sei=Kaneko
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraTohru
en-aut-sei=Matsuura
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaNorihisa
en-aut-sei=Maeda
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaHideto
en-aut-sei=Nakajima
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShindoKatsuro
en-aut-sei=Shindo
en-aut-mei=Katsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuenagaToshihiko
en-aut-sei=Suenaga
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugieKazuma
en-aut-sei=Sugie
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SuzukiYasuhiro
en-aut-sei=Suzuki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AnguloFrederick J.
en-aut-sei=Angulo
en-aut-mei=Frederick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=EdwardsJuanita
en-aut-sei=Edwards
en-aut-mei=Juanita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=BenderCody Matthew
en-aut-sei=Bender
en-aut-mei=Cody Matthew
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HarperLisa R.
en-aut-sei=Harper
en-aut-mei=Lisa R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakayamaYoshikazu
en-aut-sei=Nakayama
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ItoShuhei
en-aut-sei=Ito
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=PilzAndreas
en-aut-sei=Pilz
en-aut-mei=Andreas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=StarkJames H.
en-aut-sei=Stark
en-aut-mei=James H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoïsiJennifer C.
en-aut-sei=Moïsi
en-aut-mei=Jennifer C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=TakaoMasaki
en-aut-sei=Takao
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry
kn-affil=
affil-num=2
en-affil=Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University
kn-affil=
affil-num=3
en-affil=National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Aomori Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Neurology, Oita Prefectural Hospital
kn-affil=
affil-num=6
en-affil=Department of Neurology, National Hospital Organization, Shinshu Ueda General Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurology, University of Fukui Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Hokkaido University Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Southern Tohoku General Hospital
kn-affil=
affil-num=10
en-affil=Division of Neurology, Jichi Medical University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Hospital Organization Beppu Medical Center
kn-affil=
affil-num=12
en-affil=Department of Neurology, Nihon University Itabashi Hospital
kn-affil=
affil-num=13
en-affil=Department of Neurology, Kurashiki Central Hospital
kn-affil=
affil-num=14
en-affil=Department of Neurology, Tenri Hospital
kn-affil=
affil-num=15
en-affil=Department of Neurology, Nara Medical University Hospital
kn-affil=
affil-num=16
en-affil=Department of Neurology, National Hospital Organization Asahikawa Medical Center
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Hospital
kn-affil=
affil-num=18
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=19
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=20
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=21
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=22
en-affil=Vaccines Medical Affairs, Pfizer Japan Inc
kn-affil=
affil-num=23
en-affil=Vaccines Medical Affairs, Pfizer Japan Inc
kn-affil=
affil-num=24
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=25
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=26
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=27
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=28
en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=disease burden
kn-keyword=disease burden
en-keyword=Lyme neuroborreliosis
kn-keyword=Lyme neuroborreliosis
en-keyword=meningitis
kn-keyword=meningitis
en-keyword=tick-borne disease
kn-keyword=tick-borne disease
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=1
article-no=
start-page=104318
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hypotheses of pathophysiological mechanisms in epileptic encephalopathies: A review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE.
Review: Current hypotheses are as follows: 1) neuronal dysfunction based on genetic abnormalities that may affect neurocognitive functions and epilepsy separately; 2) impairment of synaptic homeostasis during sleep that may be responsible for DEE/EE with spike-and-wave activation in sleep; 3) abnormal subcortical regulation of the cerebral cortex; 4) abnormal cortical metabolism and hemodynamics with impairment of the neural network including default mode network; 5) neurotransmitter imbalance and disordered neural excitability; 6) the effects of neuroinflammation that may be caused by epileptic seizures and in turn aggravate epileptogenesis; 7) the interaction between physiological and pathological high-frequency EEG activity; etc. The causal relationship between epileptiform EEG activity and neurocognitive dysfunctions is small in DEE based on genetic abnormalities and it is largely unestablished in the other hypothetical mechanisms.
Conclusion: We have not yet found answers to the question of whether the single-central or multiple derangements are present and what seizures and intense epileptiform EEG abnormalities mean in EE. We need to continue our best efforts in both aspects to elucidate the pathophysiological mechanisms of DEE/EE and further develop epilepsy treatment and precision medicine.
en-copyright=
kn-copyright=
en-aut-name=KobayashiKatsuhiro
en-aut-sei=Kobayashi
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShibataTakashi
en-aut-sei=Shibata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaHiroki
en-aut-sei=Tsuchiya
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkiyamaMari
en-aut-sei=Akiyama
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Asahigawaso Rehabilitation and Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Behavior
kn-keyword=Behavior
en-keyword=Childhood epilepsy
kn-keyword=Childhood epilepsy
en-keyword=Cognitive function
kn-keyword=Cognitive function
en-keyword=Developmental and epileptic encephalopathy
kn-keyword=Developmental and epileptic encephalopathy
en-keyword=Regression
kn-keyword=Regression
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 µg/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 µg/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10× MIC, with killing rates during the first 3 h ranging from 4.04 ± 0.01 to 4.31 ± 0.03 h−1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 µg/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 µg/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=7
article-no=
start-page=e70506
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tongue Schwannoma at the Median Inferior Surface in the Elderly: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report the extremely rare case of an atypical schwannoma that occurred at the median inferior surface of the tongue in an elderly patient. We performed an excisional biopsy to achieve a definitive diagnosis. Based on the histopathological findings, we diagnosed a schwannoma (mixed type, Antoni A/B).
en-copyright=
kn-copyright=
en-aut-name=FukushimaKiho
en-aut-sei=Fukushima
en-aut-mei=Kiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoIzumi
en-aut-sei=Yamamoto
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YutoriHirokazu
en-aut-sei=Yutori
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=elderly
kn-keyword=elderly
en-keyword=inferior surface of the tongue
kn-keyword=inferior surface of the tongue
en-keyword=schwannoma
kn-keyword=schwannoma
en-keyword=tongue tumor
kn-keyword=tongue tumor
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=2
article-no=
start-page=151495
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
en-copyright=
kn-copyright=
en-aut-name=TamuraShiori
en-aut-sei=Tamura
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PasangClarissa Ellice Talitha
en-aut-sei=Pasang
en-aut-mei=Clarissa Ellice Talitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaMinami
en-aut-sei=Tsuda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaShilan
en-aut-sei=Ma
en-aut-mei=Shilan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShindoHiromasa
en-aut-sei=Shindo
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhkuboTomoki
en-aut-sei=Ohkubo
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiyamaYoichi
en-aut-sei=Fujiyama
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaiMiho
en-aut-sei=Tamai
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TagawaYoh-ichi
en-aut-sei=Tagawa
en-aut-mei=Yoh-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=8
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=9
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=10
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
en-keyword=Intestine chip
kn-keyword=Intestine chip
en-keyword=Inflammatory bowel disease
kn-keyword=Inflammatory bowel disease
en-keyword=Co-culture
kn-keyword=Co-culture
en-keyword=Tri-culture
kn-keyword=Tri-culture
en-keyword=Fluidic device
kn-keyword=Fluidic device
en-keyword=Disease model
kn-keyword=Disease model
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Inflammation
kn-keyword=Inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=272
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EsakiKayoko
en-aut-sei=Esaki
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GreimelPeter
en-aut-sei=Greimel
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShingaiNanoka
en-aut-sei=Shingai
en-aut-mei=Nanoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OyaYasushi
en-aut-sei=Oya
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaTakeo
en-aut-sei=Yoshikawa
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences
kn-affil=
affil-num=10
en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=12
en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Juvenile amyotrophic lateral sclerosis
kn-keyword=Juvenile amyotrophic lateral sclerosis
en-keyword=SPTLC1
kn-keyword=SPTLC1
en-keyword=Sphingolipids
kn-keyword=Sphingolipids
en-keyword=Mosaicism
kn-keyword=Mosaicism
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=14
article-no=
start-page=2240
end-page=2244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Wilson's Disease Preceded by Schizophrenia-like Symptoms with Frontal-dominant Leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report a 26-year-old man diagnosed with Wilson's disease (WD), initially treated for schizophrenia for 11 years. At 26 years old, he was admitted because of status epilepticus. Brain magnetic resonance imaging revealed frontal-dominant leukoencephalopathy with cystic changes and basal ganglia atrophy. The diagnosis of WD was confirmed based on neuropsychiatric symptoms, Kayser-Fleischer rings, abnormal copper metabolism, and a genetic analysis of ATP7B. Psychotic symptoms in WD can precede neurological manifestations, and extrapyramidal signs may be mistaken for drug-induced Parkinsonism. WD should be considered in patients presenting with progressive Parkinsonism preceded by schizophrenia-like psychiatric symptoms.
en-copyright=
kn-copyright=
en-aut-name=MiyanoRyoji
en-aut-sei=Miyano
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObataSatomi
en-aut-sei=Obata
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoyamaHiroaki
en-aut-sei=Koyama
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaiYudai
en-aut-sei=Nakai
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubotaAkatsuki
en-aut-sei=Kubota
en-aut-mei=Akatsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimizuJun
en-aut-sei=Shimizu
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakuishiKaori
en-aut-sei=Sakuishi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Wilson’s disease
kn-keyword=Wilson’s disease
en-keyword=leukoencephalopathy
kn-keyword=leukoencephalopathy
en-keyword=brain MRI
kn-keyword=brain MRI
en-keyword=ATP7B
kn-keyword=ATP7B
en-keyword=schizophrenia
kn-keyword=schizophrenia
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=15
article-no=
start-page=e71098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real‐World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA–RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA–RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA–RNA panel identified more histology-specific fusion genes than DNA panels (p = 0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p = 0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA–RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimoiTatsunori
en-aut-sei=Shimoi
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TabataMasahiro
en-aut-sei=Tabata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology, National Cancer Center Hospital
kn-affil=
affil-num=13
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=genotype-matched therapy
kn-keyword=genotype-matched therapy
en-keyword=multiplex gene panel test
kn-keyword=multiplex gene panel test
en-keyword=sarcoma
kn-keyword=sarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distinct age-related effects of homologous recombination deficiency on genomic profiling and treatment efficacy in gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The incidence of gastric cancer among younger patients is increasing globally, with growing attention being paid to the role of homologous recombination deficiency (HRD). However, the effect of HRD on treatment outcomes and prognosis in this population remains unclear.
Methods We analyzed clinical and genomic data from the Center for Cancer Genomics and Advanced Therapeutics database. Younger patients (≤ 39 years, n = 140) were compared with older patients (≥ 65 years, n = 1118) diagnosed with gastric cancer. This study focused on mutations in homologous recombination repair (HRR) genes and their association with tumor mutation burden (TMB), microsatellite instability (MSI), and treatment outcomes.
Results In older patients, HRD was associated with higher TMB and microsatellite instability-high (MSI-H) status, whereas no such correlations were observed in younger patients. Notably, MSI-H status was not observed in the younger group. Younger patients with HRD had a significantly shorter time to treatment failure (TTF) and overall survival (OS) than those without HRD. Conversely, in older patients, there was no significant difference in TTF or OS based on HRD status.
Conclusion HRR gene mutations influence genomic profiling, TMB, and MSI differently depending on the age of gastric cancer onset, suggesting potential effects on treatment efficacy and prognosis.
en-copyright=
kn-copyright=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Department of Practical Gastrointestinal Endoscopy, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Homologous recombination repair gene
kn-keyword=Homologous recombination repair gene
en-keyword=Early-onset gastric cancer
kn-keyword=Early-onset gastric cancer
en-keyword=Comprehensive genomic profiling
kn-keyword=Comprehensive genomic profiling
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=
article-no=
start-page=1477
end-page=1486
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predictive Value of Tumor ERCC1 Expression for Treatment Outcomes After Adjuvant Chemotherapy in Patients with Completely Resected Non-Small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To evaluate the predictive value of tumor expression of the excision repair cross-complementation group 1 gene (ERCC1) for the treatment outcomes after platinum-based adjuvant chemotherapy in patients with completely resected non-small cell lung cancer (NSCLC).
Methods: In this study, we conducted immunohistochemical analysis using a mouse monoclonal anti-ERCC1 antibody (clone 8F1) of operative specimens obtained from 238 patients enrolled in the SLCG0401 study which compared paclitaxel plus carboplatin (CBDCA+PTX) with uracil-tegafur (UFT) as adjuvant chemotherapy for stage IB-IIIA NSCLC. The overall survival (OS) of the patients was compared according to the ERCC1 expression status and adjuvant chemotherapy employed.
Results: Of the 238 specimens, 102 (42.9%) showed a positive result for ERCC1 expression. There were no significant differences in the patient characteristics or OS between the tumor ERCC1-positive and -negative patient groups. Among the patients with ERCC1-negative tumors, there was no significant difference in the survival between patient groups treated with CBDCA+PTX and UFT (HR=0.932, 95% CI: 0.52– 1.67, p=0.814). However, among the patients with ERCC1-positive tumors, CBDCA+PTX treatment tended to yield an inferior outcome, in terms of the OS, as compared with UFT treatment (HR=1.852, 95% CI: 0.92– 3.73, p=0.080). Multivariate analysis showed that ERCC1 expression was not an independent predictor of the OS following CBDCA+PTX treatment in completely resected NSCLC patients.
Conclusion: In completely resected NSCLC patients with positive tumor ERCC1 expression, adjuvant CBDCA+PTX treatment tended to yield an inferior outcome as compared with UFT treatment in terms of the OS. However, immunohistochemical analysis with the 8F1 antibody cannot be used for clinical decision making at this point.
en-copyright=
kn-copyright=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaishoShinsuke
en-aut-sei=Saisho
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=postoperative adjuvant chemotherapy
kn-keyword=postoperative adjuvant chemotherapy
en-keyword=platinum-based chemotherapy
kn-keyword=platinum-based chemotherapy
en-keyword=excision repair crosscomplementation group 1 gene
kn-keyword=excision repair crosscomplementation group 1 gene
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=cr.25-0262
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Omental Bleeding as a Result of Segmental Arterial Mediolysis Treated Successfully by Laparoscopic Partial Omentectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=INTRODUCTION: Segmental arterial mediolysis (SAM) is a rare, non-atherosclerotic, non-inflammatory arteriopathy characterized by lysis of the arterial media, leading to aneurysm formation and possible rupture. Although visceral arteries are typically involved, SAM-induced omental bleeding is extremely uncommon. While transcatheter arterial embolization (TAE) has been reported, surgical resection offers both definitive hemostasis and histopathological confirmation.
CASE PRESENTATION: A 56-year-old man presented with upper abdominal pain without a history of trauma. Contrast-enhanced CT revealed a hematoma and fusiform dilation of an omental artery, suggesting omental hemorrhage. As he was hemodynamically stable, initial conservative management was chosen. However, a follow-up CT on day 7 demonstrated aneurysm enlargement, prompting laparoscopic partial omentectomy. Intraoperative findings included a 5-cm hematoma in the central omentum. Histopathological examination showed vacuolization of the tunica media and loss of the internal elastic lamina, confirming the diagnosis of SAM. The patient had an uneventful postoperative course and was discharged on the 3rd postoperative day.
CONCLUSIONS: This rare case of SAM-related omental bleeding was successfully treated with laparoscopic partial omentectomy. Tailored treatment strategies including laparoscopic surgery are essential for optimal outcomes in SAM.
en-copyright=
kn-copyright=
en-aut-name=MimataYudai
en-aut-sei=Mimata
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MinagiHitoshi
en-aut-sei=Minagi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=segmental arterial mediolysis
kn-keyword=segmental arterial mediolysis
en-keyword=laparoscopic partial omentectomy
kn-keyword=laparoscopic partial omentectomy
en-keyword=hemoperitoneum
kn-keyword=hemoperitoneum
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=1008
end-page=1016
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High risk of multiple gastric cancers in Japanese individuals with Lynch syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.
Methods: Data on Japanese individuals with LS were retrospectively collected from a single institution. The clinical features of GC, including the cumulative risk of multiple GCs, were analyzed.
Results: Among 96 individuals with LS (MLH1/MSH2/MSH6, 75:20:1), 32 GC lesions were detected in 15 individuals with LS (male/female, 11:4). The median age at initial GC diagnosis was 52.7 y (range: 28–71). Histological examination revealed a predominance of intestinal type (19/24: 87.5%). Moreover, the majority of the GC lesions (82%) were determined to have high-frequency of microsatellite instability. The cumulative risk of individuals with LS developing GC at 70 y was 31.3% (MLH1 36.1%, MSH2 18.0%). Notably, the cumulative risk of individuals with LS developing metachronous and/or synchronous GCs at 0, 10 and 20 y after initial diagnosis of GC was 26.7%, 40.7%, and 59.4%, respectively.
Conclusion: Due to a higher risk of developing multiple GCs, intensive surveillance might be especially recommended for Japanese individuals with LS associated initial GC.
en-copyright=
kn-copyright=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=van SchaikThijs A.
en-aut-sei=van Schaik
en-aut-mei=Thijs A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYumiko
en-aut-sei=Sato
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuganoKokichi
en-aut-sei=Sugano
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiKiwamu
en-aut-sei=Akagi
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHideyuki
en-aut-sei=Ishida
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=5
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Kyoundo Hospital, SSasaki Foundation
kn-affil=
affil-num=8
en-affil=Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
en-keyword=cumulative risk
kn-keyword=cumulative risk
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=Japanese individuals
kn-keyword=Japanese individuals
en-keyword=Lynch syndrome
kn-keyword=Lynch syndrome
en-keyword=multiple gastric cancers
kn-keyword=multiple gastric cancers
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=5
article-no=
start-page=271
end-page=277
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240329
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12 months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6 months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2 years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5 years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches.
en-copyright=
kn-copyright=
en-aut-name=ChikadaAyaka
en-aut-sei=Chikada
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiYuji
en-aut-sei=Takahashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatsunoMasahisa
en-aut-sei=Katsuno
en-aut-mei=Masahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraKazuhiro
en-aut-sei=Hara
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoderaOsamu
en-aut-sei=Onodera
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshiharaTomohiko
en-aut-sei=Ishihara
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TadaMasayoshi
en-aut-sei=Tada
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuwabaraSatoshi
en-aut-sei=Kuwabara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugiyamaAtsuhiko
en-aut-sei=Sugiyama
en-aut-mei=Atsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamanakaYoshitaka
en-aut-sei=Yamanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakahashiRyosuke
en-aut-sei=Takahashi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SawamotoNobukatsu
en-aut-sei=Sawamoto
en-aut-mei=Nobukatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SakatoYusuke
en-aut-sei=Sakato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IshimotoTomoyuki
en-aut-sei=Ishimoto
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HanajimaRitsuko
en-aut-sei=Hanajima
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeYasuhiro
en-aut-sei=Watanabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakigawaHiroshi
en-aut-sei=Takigawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AdachiTadashi
en-aut-sei=Adachi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HigashiKeiko
en-aut-sei=Higashi
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KiraJunichi
en-aut-sei=Kira
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=YabeIchiro
en-aut-sei=Yabe
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=MatsushimaMasaaki
en-aut-sei=Matsushima
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OgataKatsuhisa
en-aut-sei=Ogata
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IshikawaKinya
en-aut-sei=Ishikawa
en-aut-mei=Kinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=NishidaYoichiro
en-aut-sei=Nishida
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=IshiguroTaro
en-aut-sei=Ishiguro
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OzakiKokoro
en-aut-sei=Ozaki
en-aut-mei=Kokoro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NagataTetsuya
en-aut-sei=Nagata
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=17
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=22
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=23
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=24
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=25
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=26
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=27
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=28
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=29
en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=30
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=31
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=32
en-affil=Department of Neurology, Higashi-Saitama National Hospital
kn-affil=
affil-num=33
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=34
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=35
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=36
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=37
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=38
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=multicenter cohort study
kn-keyword=multicenter cohort study
en-keyword=multiple system atrophy
kn-keyword=multiple system atrophy
en-keyword=natural history
kn-keyword=natural history
en-keyword=patient registry
kn-keyword=patient registry
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=12
article-no=
start-page=613
end-page=621
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P–p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 – 7.76, p = 0.0400).
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasaki
en-aut-sei=Tanaka
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomotoJunko
en-aut-sei=Nomoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NCBN Controls WGS Consortium
en-aut-sei=NCBN Controls WGS Consortium
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=9
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=10
en-affil=
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5‑FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S‑1 adjuvant chemotherapy: Follow‑up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age‑related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non‑small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5‑fluorouracil (5‑FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5‑FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S‑1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5‑FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross‑complementation group 1 (ERCC1), were assessed via quantitative reverse‑transcription PCR assays in 89 elderly patients (≥75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S‑1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ≥75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence‑free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S‑1 adjuvant chemotherapy. The age‑related decrease in TS expression supports the potential benefit of 5‑FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720‑0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi‑Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non‑small cell lung cancer
kn-keyword=non‑small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S‑1
kn-keyword=S‑1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparable Clinical Outcomes Between Segmentectomy and Lobectomy for NSCLC With Unsuspected N1/N2: A Multicenter Real-World Data Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Segmentectomy for lung cancer has been increasingly performed. However, evidence regarding the necessity of additional surgical resection after the diagnosis of unsuspected N1 or N2 lymph node metastasis is limited.
Methods We conducted a multicenter, real-world data study of patients with any clinical T and N0 non-small cell lung cancer (NSCLC) who underwent lobectomy or segmentectomy between 2012 and 2021 and who subsequently received a diagnosis of pathologic N1 or N2 lymph node metastasis. Patients were categorized into lobectomy and segmentectomy groups. We analyzed overall survival (OS), recurrence-free survival (RFS), cumulative recurrence rates, and recurrence patterns using both unadjusted and propensity score–adjusted cohorts.
Results A total of 736 patients were in the lobectomy group, and 70 were in the segmentectomy group. In the unadjusted cohort, segmentectomy-treated patients were older, had a lower preoperative percentage of vital capacity, had smaller tumors, and received less postoperative adjuvant chemotherapy. The 5-year OS was significantly worse in the segmentectomy group (P = .011), with no significant differences in 5-year RFS or cumulative recurrence rates. In the propensity score–adjusted cohort, there were no significant differences in OS, RFS, or recurrence rates; however, the segmentectomy group had a higher rate of local recurrence.
Conclusions In patients with unsuspected N1 or N2 NSCLC, analysis using a cohort adjusted for patient background with propensity scores revealed no differences in OS, RFS, or cumulative recurrence rates between segmentectomy and lobectomy. This finding suggests that additional resection of the remaining segments may not be necessary for these patients. However, the higher rate of local recurrence in the segmentectomy group warrants careful consideration.
en-copyright=
kn-copyright=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UenoTsuyoshi
en-aut-sei=Ueno
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMototsugu
en-aut-sei=Watanabe
en-aut-mei=Mototsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MisaoTakahiko
en-aut-sei=Misao
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WashioKazuhiro
en-aut-sei=Washio
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkutaniDaisuke
en-aut-sei=Okutani
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayamaMakio
en-aut-sei=Hayama
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UomotoMasashi
en-aut-sei=Uomoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaEiji
en-aut-sei=Yamada
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KurosakiTakeshi
en-aut-sei=Kurosaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YaginumaYuji
en-aut-sei=Yaginuma
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamataOsamu
en-aut-sei=Kawamata
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NishikawaHitoshi
en-aut-sei=Nishikawa
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OtsukaTomoaki
en-aut-sei=Otsuka
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaTakeshi
en-aut-sei=Yoshikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=HayashiTatsuro
en-aut-sei=Hayashi
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=7
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=8
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=9
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=10
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=11
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=12
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=13
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=14
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=15
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=16
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=17
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=18
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=19
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=20
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=21
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=22
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=23
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=24
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=25
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=26
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=27
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in liquid biopsy for bone and soft-tissue sarcomas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone and soft-tissue sarcomas are a heterogeneous group of malignant tumors originating from mesenchymal tissues, accounting for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. While blood-based tumor markers are available in major types of cancers, evidence demonstrating useful circulating biomarkers is limited in bone and soft-tissue sarcomas. Despite the development of combined modality treatments, a significant proportion of sarcoma patients respond poorly to chemotherapy or radiotherapy, leading to local relapse or distant metastasis. However, imaging methods, such as X-ray, computed tomography, positron emission tomography, magnetic resonance imaging, and scintigraphy, are mostly used to detect or monitor tumor development. Liquid biopsy is an emerging minimally invasive diagnostic technique that detects tumor-derived molecules in body fluids, including circulating tumor cells, circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and circulating extracellular vesicles. This method offers new possibilities for early tumor detection, prognostic evaluation, and therapeutic monitoring and may serve as a benchmark for treatment modification. This review focuses on the current technological advances in liquid biopsy for bone and soft-tissue sarcoma and explores its potential role in guiding personalized treatments. If these modalities could determine resistance to ongoing therapy or the presence of minimal residual disease at the end of the treatment protocol, the obtained data would be important for determining whether to change treatment approaches or add adjuvant therapies.
en-copyright=
kn-copyright=
en-aut-name=WangYilang
en-aut-sei=Wang
en-aut-mei=Yilang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimaruTakahiko
en-aut-sei=Ishimaru
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Liquid biopsy
kn-keyword=Liquid biopsy
en-keyword=Bone sarcoma
kn-keyword=Bone sarcoma
en-keyword=Soft-tissue sarcoma
kn-keyword=Soft-tissue sarcoma
en-keyword=Circulating tumor cells
kn-keyword=Circulating tumor cells
en-keyword=Circulating nucleic acids
kn-keyword=Circulating nucleic acids
en-keyword=Circulating microvesicles
kn-keyword=Circulating microvesicles
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=654
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biogeochemical impact of nickel and urea in the great oxidation event
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Great Oxidation Event marks the first substantial increase in atmospheric oxygen on Earth. Despite the oxygenic photosynthesis that emerged hundreds of million years before this event, the specific biogeochemical mechanisms responsible for maintaining low oxygen levels for an extended period remain elusive. Here, we show the critical role of urea as a nitrogen source for cyanobacteria, the cascading impact of nickel on abiotic urea production, and their combined effects on the proliferation of cyanobacteria leading to the great oxidation event. Urea formation was experimentally evaluated under simulated Archean conditions and cyanobacterial growth was monitored providing urea as the nitrogen source. Our findings demonstrate that urea can be produced in the Archean cyanobacterial habitats with UV-C irradiation, shedding light on the controversy regarding the evolution of nitrogen-fixing enzymes in primitive cyanobacteria. We propose that environmental conditions in the early Archean, characterized by elevated urea and nickel concentration, may have hindered cyanobacterial expansion, contributing to the delay between the evolution of oxygenic photosynthesis and the onset of the great oxidation event.
en-copyright=
kn-copyright=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology.
en-copyright=
kn-copyright=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaOsamu
en-aut-sei=Yokota
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiTakashi
en-aut-sei=Haraguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawanoTomohito
en-aut-sei=Kawano
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nakashima-YasudaHanae
en-aut-sei=Nakashima-Yasuda
en-aut-mei=Hanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HasegawaMasato
en-aut-sei=Hasegawa
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HosonoYasuyuki
en-aut-sei=Hosono
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TeradaSeishi
en-aut-sei=Terada
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Zikei Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Amyotrophic lateral sclerosis
kn-keyword=Amyotrophic lateral sclerosis
en-keyword=Heat shock protein
kn-keyword=Heat shock protein
en-keyword=DNAJC7
kn-keyword=DNAJC7
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=Live-cell imaging
kn-keyword=Live-cell imaging
en-keyword=Zebrafish disease model
kn-keyword=Zebrafish disease model
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression ≥ 50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p = 0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=MoriTakeru
en-aut-sei=Mori
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaMio
en-aut-sei=Kitagawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaTomokazu
en-aut-sei=Hasegawa
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomeyaMasanori
en-aut-sei=Someya
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuchiyaTakaaki
en-aut-sei=Tsuchiya
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GochoToshio
en-aut-sei=Gocho
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateMirei
en-aut-sei=Date
en-aut-mei=Mirei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriiMariko
en-aut-sei=Morii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Autoantibodies
kn-keyword=Autoantibodies
en-keyword=PACIFIC regimen
kn-keyword=PACIFIC regimen
en-keyword=ICIs
kn-keyword=ICIs
en-keyword=Immune monitoring
kn-keyword=Immune monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=e00110-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)−1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroyuki
en-aut-sei=Yamada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotozonoChihiro
en-aut-sei=Motozono
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiSho
en-aut-sei=Yamasaki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TorrellesJordi B.
en-aut-sei=Torrelles
en-aut-mei=Jordi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TurnerJoanne
en-aut-sei=Turner
en-aut-mei=Joanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=3
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=5
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I•CARE)
kn-affil=
affil-num=6
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I•CARE)
kn-affil=
affil-num=7
en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=8
en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=Mycobacterium tuberculosis
kn-keyword=Mycobacterium tuberculosis
en-keyword=pyroptosis
kn-keyword=pyroptosis
en-keyword=caspase
kn-keyword=caspase
en-keyword=RNA-Seq
kn-keyword=RNA-Seq
en-keyword=cytokine
kn-keyword=cytokine
en-keyword=fibroblasts
kn-keyword=fibroblasts
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=11
article-no=
start-page=348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241030
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coronal Cementum and Reduced Enamel Epithelium on Occlusal Surface of Impacted Wisdom Tooth in a Human
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: There is only limited research on the coronal cementum of a tooth, and the mechanisms of its forming process are not well-defined. This report presents a coronal cementum on the occlusal surfaces of enamel in an impacted wisdom tooth in a human, which is not nearly the cervical portion. Materials and Methods: The tooth (Tooth #1) was derived from a 46-year-old female. Histological analysis, including hematoxylin and eosin (HE) and toluidine blue (TB) staining, and Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometer (SEM-EDS) analysis of the extracted tooth were conducted. Radiographic examination showed that Tooth #1 was horizontally impacted in the maxilla and had the apex of a single root placed between the buccal and palatal roots of Tooth #2. Results: Coronal cementum was distributed widely on the enamel, and reduced enamel epithelium was also found with enamel matrix proteins histologically. The formation of acellular cementum was observed to be more predominant than that of the cellular cementum in Tooth #1. SEM showed that the occlusal cementum connected directly with enamel. Calcium mapping revealed an almost similar occlusal cementum and enamel. In addition, the spectrum of elements in coronal cementum resembled the primary cementum according to SEM-EDS. Discussion: Thus, coronal cementogenesis in impacted human teeth might be related to the existence of reduced enamel epithelium.
en-copyright=
kn-copyright=
en-aut-name=HorieNaohiro
en-aut-sei=Horie
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataMasaru
en-aut-sei=Murata
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinamidaYasuhito
en-aut-sei=Minamida
en-aut-mei=Yasuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagayasuHiroki
en-aut-sei=Nagayasu
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimoTsuyoshi
en-aut-sei=Shimo
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkazawaToshiyuki
en-aut-sei=Akazawa
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujigiwaHidetsugu
en-aut-sei=Tsujigiwa
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaikelYoussef
en-aut-sei=Haikel
en-aut-mei=Youssef
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=2
en-affil=Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=3
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=4
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=5
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=6
en-affil=Industrial Technology and Environment Research Development, Hokkaido Research Organization
kn-affil=
affil-num=7
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=8
en-affil=Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche médicale Unité Mixte de Recherche (INSERM UMR) _S 1121, University of Strasbourg
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=coronal cementum
kn-keyword=coronal cementum
en-keyword=human
kn-keyword=human
en-keyword=reduced epithelium
kn-keyword=reduced epithelium
en-keyword=impacted tooth
kn-keyword=impacted tooth
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=hcaf176
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disseminated Mycobacterium chelonae infection predominantly involving the facial region of an immunocompromised elderly patient
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SazumiYosuke
en-aut-sei=Sazumi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MuenrayaPoowadon
en-aut-sei=Muenraya
en-aut-mei=Poowadon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiharaSatoru
en-aut-sei=Sugihara
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawakamiYoshio
en-aut-sei=Kawakami
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=779
cd-vols=
no-issue=
article-no=
start-page=152453
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1,2-naphthoquinone enhances IFN-γ-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-γ-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-γ production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-γ-induced activation of dendritic cells and promotes the activation of CD8 T cells.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazatoKanon
en-aut-sei=Miyazato
en-aut-mei=Kanon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobataKai
en-aut-sei=Kobata
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=1,2-Napthoquinone
kn-keyword=1,2-Napthoquinone
en-keyword=Dendritic cell
kn-keyword=Dendritic cell
en-keyword=IFN-γ
kn-keyword=IFN-γ
en-keyword=MHC-I
kn-keyword=MHC-I
en-keyword=CD8 T cell
kn-keyword=CD8 T cell
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=32
article-no=
start-page=e2501933122
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250805
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions—a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues—K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12—creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species.
en-copyright=
kn-copyright=
en-aut-name=Nguyen ThaoTran
en-aut-sei=Nguyen Thao
en-aut-mei=Tran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UranoRyo
en-aut-sei=Urano
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangPeitong
en-aut-sei=Wang
en-aut-mei=Peitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShinodaWataru
en-aut-sei=Shinoda
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=10
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=aluminum resistance
kn-keyword=aluminum resistance
en-keyword=membrane protein structure
kn-keyword=membrane protein structure
en-keyword=citrate transporter
kn-keyword=citrate transporter
en-keyword=MATE transporter
kn-keyword=MATE transporter
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=3474
end-page=3475
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250806
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gene replacement therapy for centronuclear myopathy: A breakthrough in complex genetic muscle disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=90
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the phylogenetic relationships among <i>Alpinia</i> species native to the Nansei Islands, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Alpinia species (A. intermedia, A. zerumbet, A. formosana, A. uraiensis, and unidentified strains native to the Daito Islands), which are native to the Nansei Islands, Japan are ornamental plants that can be used as resources to produce seasonings and antibacterial and antiviral substances. Despite the usefulness of these plants, little scientific research has been conducted on their phylogenetic relationships. In this study, their phylogenetic relationships were examined based on genomic and chloroplast DNA polymorphisms, repetitive sequence abundance, and cytogenetic perspectives. The results indicated that A. formosana is most likely the outcome of a hybrid of A. zerumbet and A. intermedia, and the unidentified strains native to the Daito Islands are the outcomes of a hybrid of A. zerumbet and A. uraiensis. Immunostaining with a newly produced anti-centromere-specific histone H3 (CENH3) antibody revealed that the number of chromosomes in these species was 2n=48.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NarusakaMari
en-aut-sei=Narusaka
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NarusakaYoshihiro
en-aut-sei=Narusaka
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
affil-num=3
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
en-keyword=Alpinia
kn-keyword=Alpinia
en-keyword=Nansei Islands
kn-keyword=Nansei Islands
en-keyword=Chromosome number
kn-keyword=Chromosome number
en-keyword=CENH3 (centromere-specific histone H3)
kn-keyword=CENH3 (centromere-specific histone H3)
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=12
article-no=
start-page=e202402802
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90–92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
en-copyright=
kn-copyright=
en-aut-name=TekAhmet L
en-aut-sei=Tek
en-aut-mei=Ahmet L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Yıldız AkkamışHümeyra
en-aut-sei=Yıldız Akkamış
en-aut-mei=Hümeyra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=8
article-no=
start-page=522
end-page=532
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6–305 µM, MIC: 0.5–128 µg ml−1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTeruhiko
en-aut-sei=Ishikawa
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiYoko
en-aut-sei=Eguchi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgarashiMasayuki
en-aut-sei=Igarashi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkajimaToshihide
en-aut-sei=Okajima
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitaKohei
en-aut-sei=Mita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYuri
en-aut-sei=Yamasaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumikuraKaho
en-aut-sei=Sumikura
en-aut-mei=Kaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkumuraTaisei
en-aut-sei=Okumura
en-aut-mei=Taisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabuchiYuna
en-aut-sei=Tabuchi
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiChigusa
en-aut-sei=Hayashi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PasquaMartina
en-aut-sei=Pasqua
en-aut-mei=Martina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ColucciaMarco
en-aut-sei=Coluccia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ProssedaGianni
en-aut-sei=Prosseda
en-aut-mei=Gianni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ColonnaBianca
en-aut-sei=Colonna
en-aut-mei=Bianca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KohayakawaChie
en-aut-sei=Kohayakawa
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TaniAkiyoshi
en-aut-sei=Tani
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HarutaJun-ichi
en-aut-sei=Haruta
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=UtsumiRyutaro
en-aut-sei=Utsumi
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University
kn-affil=
affil-num=3
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=4
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=11
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=12
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=13
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=14
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=15
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=16
en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=17
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=18
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual roles of suberin deposition at the endodermal Casparian strip in manganese uptake of rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice roots are characterized by having two Casparian strips (CSs) at the exodermis and endodermis, where transporters for mineral nutrients are expressed. However, the exact role of the CS in expression of the transporters and subsequent nutrient uptake is poorly understood. Here, we first investigated the role of the CS in manganese (Mn) uptake by using a rice mutant (oscasp1) defective in formation of the endodermal CS. Knockout of OsCASP1 resulted in decreased Mn uptake under limited Mn conditions, but increased Mn uptake at high Mn concentration. Immunostaining revealed that knockout of OsCASP1 did not affect the cell specificity of localization of two transporters (OsNramp5 and OsMTP9) required for Mn uptake, but decreased the protein abundance of these transporters at the endodermis regardless of Mn concentrations tested. Furthermore, we found that overaccumulation of suberin at the endodermis of the mutants suppressed the expression of two transporters; the expression of the two transporters was only observed in the endodermal cells without suberin deposition, but not in the cells with suberin deposition. Taken together, our results indicate that there are two roles for the CS in Mn uptake; maintaining normal expression of the transporters at limited Mn concentration and preventing Mn diffusion to the stele at high Mn concentration.
en-copyright=
kn-copyright=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Casparian strip
kn-keyword=Casparian strip
en-keyword=endodermis
kn-keyword=endodermis
en-keyword=manganese transporter
kn-keyword=manganese transporter
en-keyword=rice
kn-keyword=rice
en-keyword=root
kn-keyword=root
en-keyword=suberin deposition
kn-keyword=suberin deposition
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=3
article-no=
start-page=99
end-page=117
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Golli–myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli–myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli–myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli–myelin basic protein knockout through the generation of conditional knockout mice (Golli–myelin basic proteinsfl/fl; E3CreN), in which Golli–myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli–myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli–myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli–myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli–myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli–myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaSaki
en-aut-sei=Nishioka
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTomoyuki
en-aut-sei=Yamanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeManabu
en-aut-sei=Abe
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImamuraYukio
en-aut-sei=Imamura
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyasakaTomohiro
en-aut-sei=Miyasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KakudaNobuto
en-aut-sei=Kakuda
en-aut-mei=Nobuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimogoriTomomi
en-aut-sei=Shimogori
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamakawaKazuhiro
en-aut-sei=Yamakawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IkawaMasahito
en-aut-sei=Ikawa
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NukinaNobuyuki
en-aut-sei=Nukina
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=3
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=4
en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University
kn-affil=
affil-num=5
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=6
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=7
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science
kn-affil=
affil-num=10
en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science
kn-affil=
affil-num=11
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=12
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
en-keyword=Golli-MBP
kn-keyword=Golli-MBP
en-keyword=Cerebellar granule neuron
kn-keyword=Cerebellar granule neuron
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Conditional knockout
kn-keyword=Conditional knockout
END
start-ver=1.4
cd-journal=joma
no-vol=218
cd-vols=
no-issue=
article-no=
start-page=104922
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alteration of perineuronal nets and parvalbumin interneurons in prefrontal cortex and hippocampus, and correlation with blood corticosterone in activity-based anorexia model mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anorexia nervosa (AN) is an eating disorder characterized by restricted energy intake, severely underweight status, and frequent hyperactivity. Previous research has shown structural and functional alterations in the medial prefrontal cortex (mPFC) and hippocampus of AN patients. To investigate the pathological mechanism of AN, we analyzed the expression and distribution of parvalbumin (PV) interneurons and perineuronal nets (PNNs), which are implicated in the pathology of neuropsychiatric disorders, in the mPFC and hippocampus dorsal (HPCd) and ventral (HPCv) using an activity-based anorexia (ABA) mouse model. We found that PNN expression and density increased in the mPFC, with minor alterations in the HPCd and HPCv of ABA mice. The expression and distribution of PV neurons were unchanged in the brains of ABA mice, except for a regional decrease in PV-expressing neuron density in the HPCd. Co-localization analysis showed an increased number of PNNs enwrapping PV-negative neurons in the mPFC of ABA mice. Furthermore, the upregulation of PNN expression in the mPFC was positively correlated with elevated blood corticosterone levels, a well-known stress indicator, in ABA mice. Our findings suggest that the increased expression and distribution of PNNs surrounding PV-negative neurons in the mPFC may indicate the pathological mechanisms of AN.
en-copyright=
kn-copyright=
en-aut-name=NguyenHoang Duy
en-aut-sei=Nguyen
en-aut-mei=Hoang Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=activity-based anorexia
kn-keyword=activity-based anorexia
en-keyword=perineuronal nets
kn-keyword=perineuronal nets
en-keyword=parvalbumin
kn-keyword=parvalbumin
en-keyword=corticosterone
kn-keyword=corticosterone
en-keyword=prefrontal cortex
kn-keyword=prefrontal cortex
en-keyword=hippocampus
kn-keyword=hippocampus
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrostatically‐Driven Collapse of Polyelectrolytes: The Role of the Solvent's Dielectric Constant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced
polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of ε ≃ 12 − 180 is investigated. For high and intermediate ε media, typical polyelectrolyte behavior is observed: the correlation length (ξ) scales with concentration (c) as ξ ∼ c−1∕2, as predicted by various theories. When the dielectric constant of the solvent decreases below ≃ 22, a scaling of ξ ∼ c−1∕3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions.
en-copyright=
kn-copyright=
en-aut-name=GulatiAnish
en-aut-sei=Gulati
en-aut-mei=Anish
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MengLingzi
en-aut-sei=Meng
en-aut-mei=Lingzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeTakaichi
en-aut-sei=Watanabe
en-aut-mei=Takaichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LopezCarlos G.
en-aut-sei=Lopez
en-aut-mei=Carlos G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Physical Chemistry, RWTH Aachen University
kn-affil=
affil-num=2
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
en-keyword=counterion
kn-keyword=counterion
en-keyword=dipole
kn-keyword=dipole
en-keyword=polyelectrolyte
kn-keyword=polyelectrolyte
en-keyword=SANS
kn-keyword=SANS
en-keyword=SAXS
kn-keyword=SAXS
en-keyword=scattering
kn-keyword=scattering
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Gastric Atypical Lipomatous Tumor/Well‐Differentiated Liposarcoma With Endoscopic Morphological Changes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lipomatous tumor/well-differentiated liposarcoma is a locally aggressive mesenchymal neoplasm composed of adipocytes and stromal cells. Gastric cases are exceedingly rare, and their malignant potential remains unclear. We report a case of a woman in her 60s who was found to have multiple submucosal tumor-like lesions of the stomach. Over time, the tumors increased in size, requiring a laparoscopic partial gastrectomy. Histological examination revealed a tumor composed of both fatty tissue and fibrous stroma with nuclear atypia. Immunohistochemistry showed positivity for CDK4 and MDM2, and fluorescence in situ hybridization confirmed MDM2 amplification, leading to a diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma. This case presented an unusual gastric manifestation, with multiple submucosal tumor-like lesions on endoscopy and exhibiting progressive morphological changes over several years.
en-copyright=
kn-copyright=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoteShizuma
en-aut-sei=Omote
en-aut-mei=Shizuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SonobeHiroshi
en-aut-sei=Sonobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoRyosuke
en-aut-sei=Hamano
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InagakiMasaru
en-aut-sei=Inagaki
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Fukuyama Minami Hospital
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=atypical lipomatous tumor
kn-keyword=atypical lipomatous tumor
en-keyword=CDK4
kn-keyword=CDK4
en-keyword=MDM2
kn-keyword=MDM2
en-keyword=stomach
kn-keyword=stomach
en-keyword=well-differentiated liposarcoma
kn-keyword=well-differentiated liposarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ≤12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 as a prognostic marker for patients with colorectal cancer and synchronous liver metastasis and a predictor of chemotherapy efficacy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes plays a role in cancer progression. However, its clinical significance in metastatic colorectal cancer (CRC) remains unclear. This study aimed to evaluate whether ADAR1 expression predicts prognosis and treatment response in colorectal cancer (CRC) with synchronous liver metastasis. This study included 40 patients with stage IV CRC and synchronous liver metastases. ADAR1 expression in tumor tissues was evaluated using immunohistochemistry. Expression levels were quantified using the immunoreactive score, and associations with clinicopathological features, overall survival (OS), and chemotherapy response were examined. High ADAR1 expression was significantly associated with multiple liver metastases (P = 0.0206), lymph node metastasis (P = 0.0241), and reduced response to chemotherapy (P = 0.0224). Significantly shorter OS was observed in patients with high ADAR1 expression in the nucleus (P = 0.0458). ADAR1 expression was an independent prognostic factor comparable to the presence of extrahepatic metastases. Low ADAR1 expression was correlated with a higher likelihood of achieving a response to chemotherapy. ADAR1 expression can reflect tumor aggressiveness and chemotherapy resistance in patients with CRC and synchronous liver metastasis. ADAR1 has considerable potential as a dual-purpose biomarker for stratifying patients based on prognosis and optimizing treatment intensity.
en-copyright=
kn-copyright=
en-aut-name=NittaKaori
en-aut-sei=Nitta
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MiyakeEiki
en-aut-sei=Miyake
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA editing
kn-keyword=RNA editing
en-keyword=Liver metastasis
kn-keyword=Liver metastasis
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs.
en-copyright=
kn-copyright=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaNaohiro
en-aut-sei=Okada
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHiroaki
en-aut-sei=Inoue
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Neutron Therapy Research Center, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END