このエントリーをはてなブックマークに追加


ID 69466
FullText URL
fulltext.pdf 8.64 MB
Author
Hiraoka, Yasuaki Kyoto University
Nakashima, Ken Shimane University
Obayashi, Ippei Okayama University
Xu, Chenguang Kyoto University
Abstract
A central challenge in the theory of multiparameter persistence modules lies in defining effective descriptors for representations of infinite or wild type. In this work, we propose a novel framework for analyzing interval approximations of fully commutative quivers, which offers a tunable trade-off between approximation resolution and computational complexity. Our approach is evaluated on commutative ladder modules of both finite and infinite type. For finite-type cases, we establish an efficient method for computing indecomposable decompositions using solely one-parameter persistent homology. For infinite-type cases, we introduce a new invariant that captures persistence in the second parameter by connecting standard persistence diagrams through interval approximations. Furthermore, we present several models for constructing commutative ladder filtrations, providing new insights into the behavior of random filtrations and demonstrating the utility of our framework in topological analysis of material structures.
Keywords
Topological data analysis
Multiparameter persistent homology
Quiver representation
Zigzag persistence
Computational topology
Published Date
2025-10-23
Publication Title
Japan Journal of Industrial and Applied Mathematics
Publisher
Springer Science and Business Media LLC
ISSN
0916-7005
NCID
AA10799861
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
© The Author(s) 2025
File Version
publisher
DOI
Related Url
isVersionOf https://doi.org/10.1007/s13160-025-00739-w
License
http://creativecommons.org/licenses/by/4.0/
Citation
Hiraoka, Y., Nakashima, K., Obayashi, I. et al. Refinement of interval approximations for fully commutative quivers. Japan J. Indust. Appl. Math. (2025). https://doi.org/10.1007/s13160-025-00739-w
助成情報
22H05107: 「かたち」と「うごき」を表す高次元データ記述子の開発 ( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
JPMJMI22G1: 未来医療を創出する4次元トポロジカルデータ解析数理共通基盤の開発 ( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
20H05884: 数理情報科学に基づく超秩序構造の網羅的解析 ( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
19H00834: X線顕微鏡と応用数学の融合による航空機用複合材料の破壊トリガーサイト特定 ( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
JPMJPR1923: パーシステントホモロジーによる位相高次構造抽出手法開発 ( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
JPMJSP2110: ( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
( 理化学研究所 / RIKEN )