start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=1
article-no=
start-page=100720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dynamin 2 is involved in osteoblast migration by regulating the organization of F-actin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Dynamin, a GTPase that regulates membrane dynamics, has recently been implicated in actin cytoskeletal remodeling. This study aimed to elucidate the role of dynamin in osteoblast migration by examining the effects of dynamin inhibition on the localization and organization of F-actin and dynamin 2 in MC3T3-E1 cells.
Methods: MC3T3-E1 cells were treated with dynamin inhibitors (Dyngo 4a and Dynole 34-2), and cell migration was assessed using a wound-healing assay. Fluorescent staining was performed to analyze the intracellular localization of F-actin and dynamin 2.
Results: Dynamin inhibition significantly reduced the migration of MC3T3-E1 cells. Fluorescence analysis revealed a marked decrease in the accumulation and colocalization of F-actin and dynamin 2 at the protrusion edge. Additionally, dynamin inhibition suppressed the formation of lamellipodia and stress fibers while promoting the appearance of abnormal F-actin clusters in the cytoplasm.
Conclusions: These findings suggest that dynamin plays an essential role in osteoblast migration by regulating actin cytoskeletal remodeling, particularly through the formation of lamellipodia and stress fibers.
en-copyright=
kn-copyright=
en-aut-name=MoriyaTakumi
en-aut-sei=Moriya
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SurongA.
en-aut-sei=Surong
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakemotoFumiko
en-aut-sei=Takemoto
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Dynamin
kn-keyword=Dynamin
en-keyword=Cell migration
kn-keyword=Cell migration
en-keyword=Osteoblasts
kn-keyword=Osteoblasts
en-keyword=F-actin
kn-keyword=F-actin
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=1
article-no=
start-page=219
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Does perioperative discontinuation of anti-rheumatic drugs increase postoperative complications in orthopedic surgery for rheumatoid arthritis?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective This study aimed to investigate whether discontinuation of biological or targeted synthetic antirheumatic disease-modifying drugs (bDMARDs or tsDMARDs) influences the incidence of postoperative complications in patients with rheumatoid arthritis (RA) undergoing orthopedic surgery.
Methods A retrospective multicenter cohort study including patients receiving bDMARDs or tsDMARDs who underwent orthopedic surgery was conducted. Data collected encompassed the duration of drug discontinuation and postoperative adverse events, such as delayed wound healing, surgical site infection (SSI), disease flare-ups, and mortality. The association between drug discontinuation and these outcomes was analyzed. Multivariate analyses were conducted to identify potential risk factors for these events.
Results A total of 2,060 cases were initially enrolled. After applying inclusion and exclusion criteria, data from 1,953 patients were analyzed. No significant differences were observed between the groups regarding delayed wound healing, SSI, or mortality. However, the incidence of disease flare-ups was substantially higher in the drug discontinuation group and in the interleukin (IL)-6 inhibitor group. Multivariate analysis identified that tumor necrosis factor α and IL-6 inhibitor use was associated with a higher risk of delayed wound healing relative to T-cell function modifiers.
Conclusion In orthopedic surgery for patients with RA, maintaining the standard or the half of administration interval of bDMARD appears safe in the preoperative period. However, the drug discontinuation may increase the risk of postoperative flare-ups, particularly with IL-6 inhibitors. In addition, T-cell function modifiers may be associated with a lower risk of delayed wound healing, suggesting their safety profile in this context.
en-copyright=
kn-copyright=
en-aut-name=ItoHiromu
en-aut-sei=Ito
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaHajime
en-aut-sei=Ishikawa
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujiShigeyoshi
en-aut-sei=Tsuji
en-aut-mei=Shigeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MochizukiTakeshi
en-aut-sei=Mochizuki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EbinaKosuke
en-aut-sei=Ebina
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoTakumi
en-aut-sei=Matsumoto
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubotaAyako
en-aut-sei=Kubota
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakajimaArata
en-aut-sei=Nakajima
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KanekoAtsushi
en-aut-sei=Kaneko
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsushitaIsao
en-aut-sei=Matsushita
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HaraRyota
en-aut-sei=Hara
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakurabaKoji
en-aut-sei=Sakuraba
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AkasakiYukio
en-aut-sei=Akasaki
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsubaraTsukasa
en-aut-sei=Matsubara
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MochidaYuichi
en-aut-sei=Mochida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KanbeKatsuaki
en-aut-sei=Kanbe
en-aut-mei=Katsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NakagawaNatsuko
en-aut-sei=Nakagawa
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MurataKoichi
en-aut-sei=Murata
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MomoharaShigeki
en-aut-sei=Momohara
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Rheumatology, Niigata Rheumatic Center
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Osaka Minami Medical Center
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Kamagaya General Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka University Faculty of Medicine Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Nagoya University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Toho University Omori Medical Center
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery and Rehabilitation, Toho University Sakura Medical Center
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Nagoya Medical Center
kn-affil=
affil-num=13
en-affil=Department of Rehabilitation Medicine, Kanazawa Medical University
kn-affil=
affil-num=14
en-affil=The Center for Rheumatic Diseases, Nara Medical University
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Kyushu Medical Center
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Kyushu University
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Matsubara Mayflower Hospital
kn-affil=
affil-num=18
en-affil=Department of Orthopaedic Surgery, Yokohama City University Medical Center
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Nippori Orthopaedics and Rheumatic Clinic
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Kakogawa Medical Center
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Endowed Course for Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine
kn-affil=
en-keyword=Rheumatoid arthritis
kn-keyword=Rheumatoid arthritis
en-keyword=Orthopaedic surgery
kn-keyword=Orthopaedic surgery
en-keyword=DMARD
kn-keyword=DMARD
en-keyword=Perioperative complications
kn-keyword=Perioperative complications
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=19
article-no=
start-page=9630
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251002
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Critical Requirement of Senescence-Associated CCN3 Expression in CD44-Positive Stem Cells for Osteoarthritis Progression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and subchondral bone remodeling. Previous studies have shown that cellular communication network factor 3 (CCN3) expression increases with age in cartilage, and its overexpression promotes OA-like changes by inducing senescence-associated secretory phenotypes. This study aimed to investigate the effect of Ccn3 knockout (KO) on OA development using a murine OA model. Destabilization of the medial meniscus (DMM) surgery was performed in wild-type (WT) and Ccn3-KO mice. Histological scoring and staining were used to assess cartilage degeneration and proteoglycan loss. Gene and protein expressions of catabolic enzyme (Mmp9), hypertrophic chondrocyte marker (Col10a1), senescence marker, and cyclin-dependent kinase inhibitor 1A (Cdkn1a) were evaluated. Single-cell RNA sequencing (scRNA-seq) data from WT and Sox9-deficient cartilage were reanalyzed to identify Ccn3+ progenitor populations. Immunofluorescence staining assessed CD44 and Ki67 expression in articular cartilage. The effects of Ccn3 knockdown on IL-1β-induced Mmp13 and Adamts5 expression in chondrocytes were examined in vitro. Ccn3 KO mice exhibited reduced cartilage degradation and catabolic gene expression compared with WT mice post-DMM. scRNA-seq revealed enriched Ccn3-Cd44 double-positive cells in osteoblast progenitor, synovial mesenchymal stem cell, and mesenchymal stem cell clusters. Immunofluorescence showed increased CCN3+/CD44+ cells in femoral and tibial cartilage and meniscus. Ki67+ cells were significantly increased in DMM-treated Ccn3 KO cartilage, mostly CD44+. In vitro Ccn3 knockdown attenuated IL-1β-induced Mmp13 and Adamts5 expressions in chondrocytes. Ccn3 contributes to OA pathogenesis by promoting matrix degradation, inducing hypertrophic changes, and restricting progenitor cell proliferation, highlighting Ccn3 as a potential therapeutic target for OA.
en-copyright=
kn-copyright=
en-aut-name=HabumugishaJanvier
en-aut-sei=Habumugisha
en-aut-mei=Janvier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiroseKazuki
en-aut-sei=Hirose
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=articular
kn-keyword=articular
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=mesenchymal stem cells
kn-keyword=mesenchymal stem cells
en-keyword=nephroblastoma overexpressed protein
kn-keyword=nephroblastoma overexpressed protein
en-keyword=osteoarthritis
kn-keyword=osteoarthritis
END
start-ver=1.4
cd-journal=joma
no-vol=1873
cd-vols=
no-issue=2
article-no=
start-page=120091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SPRED2 controls the severity of cisplatin-induced acute kidney injury by inhibiting ERK activation and TNFα production in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cisplatin is an effective chemotherapeutic agent used to treat solid tumors, but its clinical use is limited by acute kidney injury (AKI), in which ERK signaling plays a crucial role. Here, we investigated whether Sprouty-related EVH1 domain-containing protein 2 (SPRED2), an endogenous inhibitor of the Ras/Raf/ERK pathway, protects against cisplatin-induced AKI. Spred2?/? mice showed more severe renal injury and stronger ERK activation than wild-type (WT) mice, whereas pretreatment with the MEK inhibitor U0126 markedly attenuated the injury. In HK-2 cells (proximal tubular cells), SPRED2 knockdown enhanced cisplatin-induced apoptosis and caspase-3 activation, accompanied by decreased Bcl-2 expression. Spred2?/? kidneys displayed increased macrophage infiltration and elevated Tnfα, Il1b, and Ccl2 expression. Neutralization of TNFα with anti-TNFα antibody ameliorated renal injury and reduced the levels of Il1b and Ccl2 mRNA in Spred2?/? mice. In vitro, TNFα slightly decreased the viability of control and SPRED2 knockdown HK-2 cells without cisplatin treatment, but the decreased viability was augmented in SPRED2 knockdown cells by cisplatin. Immunohistochemistry revealed that macrophages were the predominant TNFα-positive cell population. Bone marrow?derived macrophages from Spred2?/? mice produced higher levels of TNFα in response to cisplatin compared with control cells, and this increase was markedly suppressed by U0126.
These findings indicate that endogenous SPRED2 protects kidneys from cisplatin-induced AKI by limiting ERK activation, tubular apoptosis, and TNFα-mediated inflammation.
en-copyright=
kn-copyright=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HeJiali
en-aut-sei=He
en-aut-mei=Jiali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GaoTong
en-aut-sei=Gao
en-aut-mei=Tong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunkelSteven L.
en-aut-sei=Kunkel
en-aut-mei=Steven L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathology, University of Michigan Medical School
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cisplatin
kn-keyword=Cisplatin
en-keyword=ERK
kn-keyword=ERK
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=SPRED2
kn-keyword=SPRED2
en-keyword=TNFα
kn-keyword=TNFα
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251123
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A rare case of supratentorial ependymosarcoma harboring ZFTA::RELA fusion
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ependymosarcoma is an exceedingly rare variant of ependymoma characterized by a mixture of ependymomatous and sarcomatous components. We report a case of supratentorial ependymosarcoma harboring a ZFTA::RELA fusion in a 10-year-old girl. Histologically, the tumor comprised an ependymomatous component resembling clear cell ependymoma and a sarcomatous component. ZFTA::RELA fusion was confirmed in both components. Genome-wide methylation profiling classified both components as supratentorial ependymoma, ZFTA fusion?positive by the German Cancer Research Center (DKFZ) CNS tumor classifier v12b8. However, their copy number alteration profiles were distinct. The ependymomatous component exhibited a gain of chromosome 1q and a loss of chromosomes 1p, 9, and 19q, while the sarcomatous component showed a loss of chromosome 14. These findings suggest that both components may have differentiated from a common precursor despite their distinct morphologies. The patient underwent gross total resection followed by adjuvant chemoradiotherapy and remains recurrence-free eight years post-treatment. Further investigation of additional cases is warranted to better understand the pathogenesis of this rare tumor.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SurugaYasuki
en-aut-sei=Suruga
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatomiKaishi
en-aut-sei=Satomi
en-aut-mei=Kaishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueYohei
en-aut-sei=Inoue
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HattoriYasuhiko
en-aut-sei=Hattori
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NobusawaSumihito
en-aut-sei=Nobusawa
en-aut-mei=Sumihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiratoJunko
en-aut-sei=Hirato
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IchimuraKoichi
en-aut-sei=Ichimura
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IchikawaTomotsugu
en-aut-sei=Ichikawa
en-aut-mei=Tomotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Pathology, Faculty of Medicine, Kyorin University
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Neurosurgery, Hamamatsu University Hospital
kn-affil=
affil-num=8
en-affil=Department of Human Pathology, Gunma University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pathology, Public Tomioka General Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pathology, Faculty of Medicine, Kyorin University
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Neurological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Ependymoma
kn-keyword=Ependymoma
en-keyword=Ependymosarcoma
kn-keyword=Ependymosarcoma
en-keyword=ZFTA
kn-keyword=ZFTA
en-keyword=RELA
kn-keyword=RELA
en-keyword=Methylation profiling
kn-keyword=Methylation profiling
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=6
article-no=
start-page=104265
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel leukocytapheresis method using highly concentrated sodium citrate solution for the manufacturing of tisagenlecleucel
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For the manufacturing of tisagenlecleucel (tisa-cel) requires the non-mobilized mononuclear cell collection (MNC). CD3+ cell collection is performed using the same protocol as autologous peripheral blood stem cell harvest (auto-PBSCH), but this procedure necessitates the same target CD3+ cell yields regardless of age or body weight, which may take several days especially in pediatric and small female patients with low white blood cell counts. We previously demonstrated a novel method using highly concentration sodium citrate (HSC), which reduced the need for an anticoagulant (AC) solution and shortened the procedure time in auto-PBSCH. This novel method was expected to offer advantages for smaller patients, prompting us to investigate its application in leukocytapheresis for the manufacturing of tisa-cel. We retrospectively analyzed consecutive leukocytapheresis data obtained using Spectra Optia continuous MNC mode between November 2022 and June 2024 at our institution (n?=?9). In six of nine patients, pre-leukocytapheresis CD3+ cell counts were less than 500 /μL, but all could obtain the target CD3+ cell yields in one day upon processing blood volume adjustment. When we compared patients who had received CD3+ cell collection using normal-concentration sodium citrate (NSC) as our previously reported using propensity score-matched pair analysis, the total AC solution volume was significantly lower (1168 vs. 316?mL, p?0.001) and procedure time was significantly shorter (254 vs. 228?min, p?=?0.04) in the HSC group compared to the NSC group. In conclusion, this procedure was also useful for non-mobilized MNC. Our findings warrant validation in a larger patient cohort.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkeuchiKazuhiro
en-aut-sei=Ikeuchi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Chimeric antigen receptor T cell therapy
kn-keyword=Chimeric antigen receptor T cell therapy
en-keyword=Anticoagulant
kn-keyword=Anticoagulant
en-keyword=Acid citrate dextrose solution A
kn-keyword=Acid citrate dextrose solution A
en-keyword=Highly concentrated sodium citrate
kn-keyword=Highly concentrated sodium citrate
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=9
article-no=
start-page=1662
end-page=1672
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel method for autologous peripheral blood stem cell harvest using highly concentrated sodium citrate solution replacing acid citrate dextrose solution A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: As the processed blood volume increases, a larger amount of anticoagulant (AC) is required, which leads to a serious issue of fluid dilution in large-volume leukocytapheresis (defined as ?3-fold total blood volume). We previously reported a novel method for allogeneic peripheral blood stem cell harvest (PBSCH) using highly concentrated sodium citrate (HSC; 5.32%), which shortened the procedure time and reduced the need for an AC solution without heparin. In this study, we extended this novel method to autologous PBSCH (auto-PBSCH) and compared it with patients who received auto-PBSCH using normal concentrated sodium citrate (NSC; 2.2%).
Study Design and Methods: We retrospectively analyzed consecutive auto-PBSCH data obtained using the Spectra Optia continuous mononuclear cell collection mode between May 2017 and May 2025 at our institution.
Results: Leukocytapheresis was performed using NSC in 36 patients and HSC in 22. In the HSC group, patients tended to be younger, had significantly lower body weight, and had significantly fewer hematopoietic tumors as primary diseases compared to the NSC group. After propensity score-matched cohort adjusted for patient background, the total amount of AC solution was significantly lower (694 [range, 77?1648] vs. 298?mL [range, 64?797], p?=?.02), and procedure time was significantly shorter (224 [range, 117?395] vs. 181?min [range, 103?309], p?=?.048) in the HSC group. Furthermore, the loss rates of magnesium and potassium were lower in the HSC group.
Conclusion: This novel leukocytapheresis method demonstrated the efficacy and safety in auto-PBSCH, while minimizing the patient burden.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkeuchiKazuhiro
en-aut-sei=Ikeuchi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimonoJoji
en-aut-sei=Shimono
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=acid citrate dextrose solution A
kn-keyword=acid citrate dextrose solution A
en-keyword=anticoagulant
kn-keyword=anticoagulant
en-keyword=autologous
kn-keyword=autologous
en-keyword=highly concentrated sodium citrate
kn-keyword=highly concentrated sodium citrate
en-keyword=peripheral blood stem cell
kn-keyword=peripheral blood stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e95808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk Stratification for the Prediction of Skeletal-Related Events in Patients With Bone Metastases From Non-small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Skeletal-related events (SREs) frequently occur in patients with bone metastases from non-small cell lung cancer (NSCLC). This study aimed to identify risk factors for SREs in patients with NSCLC. Based on these factors, we also aimed to stratify patients into subgroups to facilitate the assessment of SRE risk. This retrospective analysis used medical records of 139 patients with NSCLC bone metastases who received treatment at our institution between 2011 and 2014. The incidence of SREs was assessed, and SRE-free survival was analyzed using the Kaplan-Meier method. Clinical information collected at registration was assessed to identify factors associated with the onset of SREs within six months. Univariate analysis was performed using Fisher’s exact test, and multivariate analysis was performed using Cox regression. Of the 139 patients, 36 (26%) developed SREs after registration. The SRE-free survival rates were 80% and 64% at 6 and 12 months, respectively. The univariate and multivariate analyses revealed that the absence of epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) rearrangement (hazard ratio (HR): 4.51, 95% confidence interval (CI): 1.32-15.7, p = 0.017) and a lactate dehydrogenase (LDH) level ?400 U/L (HR: 8.08, 95% CI: 1.78-36.6, p = 0.0067) were risk factors for SRE presentation within six months. Patients were classified into the following three subgroups: with EGFR mutation or ALK rearrangement and LDH level <400 U/L; without EGFR mutation or ALK rearrangement and LDH level <400 U/L; with/without EGFR mutation or ALK rearrangement and LDH level ?400 U/L. The corresponding six-month SRE-free survival rates were 92%, 69%, and 34%, respectively, showing significant differences (p < 0.001). Close monitoring is recommended for patients with LDH levels ?400 U/L in daily clinical practice, particularly with the help of the proficiency of orthopedic and radiological experts, to prevent complications such as pathological fractures and paraplegia.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshihiro
en-aut-sei=Sakamoto
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anaplastic lymphoma kinase
kn-keyword=anaplastic lymphoma kinase
en-keyword=bone metastases
kn-keyword=bone metastases
en-keyword=epidermal growth factor receptor-tyrosine kinase
kn-keyword=epidermal growth factor receptor-tyrosine kinase
en-keyword=lactate dehydrogenase
kn-keyword=lactate dehydrogenase
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=skeletal related events
kn-keyword=skeletal related events
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=急性鶏コクシジウム症感染早期におけるγδ T細胞の機能的役割に関する研究
kn-title=Studies on the functional roles of γδ T cells in the early phase of acute avian coccidiosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LE VIET QUAN
en-aut-sei=LE VIET QUAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=気孔開閉運動を制御するシロイヌナズナの孔辺細胞Ca2+チャネルCNGC2の機能解析
kn-title=Functional characterization of a guard cell Ca2+ channel CNGC2 involved in regulation of stomatal movement in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ROJINA AKTER
en-aut-sei=ROJINA AKTER
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム中部エビ養殖池排水路における水質保全のための底質微生物燃料電池の改良
kn-title=Improving sediment microbial fuel cells for water quality control in shrimp pond drainages in Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN TU UYEN
en-aut-sei=NGUYEN TU UYEN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=歯小?と歯根膜の細胞が高分化型口腔扁平上皮癌の骨浸潤におよぼす影響
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=CHANGANQI
en-aut-sei=CHANG
en-aut-mei=ANQI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍周囲組織が口腔扁平上皮癌の生物学的性格に与える影響
kn-title=The Origin of Stroma Influences the Biological Characteristics of Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OMORIHaruka
en-aut-sei=OMORI
en-aut-mei=Haruka
kn-aut-name=大森悠加
kn-aut-sei=大森
kn-aut-mei=悠加
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Treg細胞の高い抗原性は、Treg細胞における高いPD-1発現を介してPD-1ブロック療法に対する抵抗性を与える
kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MATSUURAHiroaki
en-aut-sei=MATSUURA
en-aut-mei=Hiroaki
kn-aut-name=松浦宏昌
kn-aut-sei=松浦
kn-aut-mei=宏昌
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=原発性鼻腔副鼻腔びまん性大細胞型B細胞リンパ腫におけるMYD88およびCD79B遺伝子変異の解析:MCD様サブタイプの同定
kn-title=High Prevalence of MYD88 and CD79B Mutations in Primary Sinonasal Diffuse Large B-Cell Lymphoma: Identification of an MCD-like Subtype
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PENGFANGLI
en-aut-sei=PENG
en-aut-mei=FANGLI
kn-aut-name=彭芳?
kn-aut-sei=彭
kn-aut-mei=芳?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Japanese title:食道扁平上皮癌の予後因子としての特異的形態を有する腫瘍微小血管
kn-title=Tumor microvessels with specific morphology as a prognostic factor in esophageal squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HNIN THIDA TUN
en-aut-sei=HNIN THIDA TUN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=分泌REICタンパク質によるPD-L1制御を介した抗腫瘍機序の解明
kn-title=Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=GOHARAYuma
en-aut-sei=GOHARA
en-aut-mei=Yuma
kn-aut-name=合原勇馬
kn-aut-sei=合原
kn-aut-mei=勇馬
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=EGFRとMETを標的とする二重特異性抗体であるアミバンタマブのALK融合遺伝子陽性非小細胞肺癌細胞株に対する有効性
kn-title=Efficacy of amivantamab, a bi-specific antibody targeting EGFR and MET, in ALK-rearranged non-small-cell lung cancer cell lines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NISHITatsuya
en-aut-sei=NISHI
en-aut-mei=Tatsuya
kn-aut-name=西達也
kn-aut-sei=西
kn-aut-mei=達也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=HIF-PH阻害剤はT細胞に擬似低酸素状態を誘導し、抗腫瘍免疫応答を増強することでマイクロサテライト安定型大腸癌の増殖を抑制する
kn-title=HIF‐PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=CHENYUEHUA
en-aut-sei=CHEN
en-aut-mei=YUEHUA
kn-aut-name=?悦?
kn-aut-sei=?
kn-aut-mei=悦?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=中枢神経原発リンパ腫における形質芽細胞様リンパ腫細胞のシングルセル並びに空間解析
kn-title=Single-cell and spatial characterization of plasmablast-like lymphoma cells in primary central nervous system lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KOBAYASHIHiroki
en-aut-sei=KOBAYASHI
en-aut-mei=Hiroki
kn-aut-name=小林宏紀
kn-aut-sei=小林
kn-aut-mei=宏紀
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=骨肉腫細胞由来CCL2による腫瘍関連マクロファージ集積を介した肺転移促進機序
kn-title=Osteosarcoma cell?derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KONDOHiroya
en-aut-sei=KONDO
en-aut-mei=Hiroya
kn-aut-name=近藤宏也
kn-aut-sei=近藤
kn-aut-mei=宏也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=虚血性脳卒中モデルラットにおけるヒト改変骨髄由来間質細胞(SB623)の脳内移植と随意運動および強制運動の治療効果
kn-title=Therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) with voluntary and forced exercise in a rat model of ischemic stroke
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAGASETakayuki
en-aut-sei=NAGASE
en-aut-mei=Takayuki
kn-aut-name=永瀬喬之
kn-aut-sei=永瀬
kn-aut-mei=喬之
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=4
article-no=
start-page=313
end-page=326
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current management of neurotrophic receptor tyrosine kinase fusion-positive sarcoma: an updated review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, pembrolizumab has demonstrated significant efficacy in treating tumors characterized by a high tumor mutational burden and high microsatellite instability. Tropomyosin receptor kinase (TRK) inhibitors have shown considerable efficacy against tumors harboring neurotrophic receptor tyrosine kinase (NTRK) fusion genes, highlighting the growing importance of personalized medicine in cancer treatment. Advanced sequencing technologies enable the rapid analysis of numerous genetic abnormalities in tumors, facilitating the identification of patients with positive biomarkers. These advances have increased the likelihood of providing effective, tailored treatments. NTRK fusion genes are present in various cancer types, including sarcomas, and the TRK inhibitors larotrectinib and entrectinib have been effectively used for these malignancies. Consequently, the treatment outcomes for NTRK fusion-positive tumors have improved significantly, reflecting a shift toward more personalized therapeutic approaches. This review focuses on NTRK fusion-positive sarcomas and comprehensively evaluates their epidemiology, clinical features, and radiological and histological characteristics. We also investigated the treatment landscape, including the latest methodologies involving TRK inhibitors, and discussed the long-term efficacy of these inhibitors, and their optimal order of use. Notably, larotrectinib has demonstrated a high response rate in infantile fibrosarcoma, and its efficacy has been confirmed even in advanced cases. However, further research is warranted to optimize treatment duration and subsequent management strategies. The accumulation of clinical cases worldwide will play a pivotal role in refining the treatment approaches for tumors associated with NTRK fusion genes.
en-copyright=
kn-copyright=
en-aut-name=KubotaYuta
en-aut-sei=Kubota
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoMasanori
en-aut-sei=Kawano
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IwasakiTatsuya
en-aut-sei=Iwasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItonagaIchiro
en-aut-sei=Itonaga
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakuNobuhiro
en-aut-sei=Kaku
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaKazuhiro
en-aut-sei=Tanaka
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery , Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
en-keyword=NTRK fusion-positive sarcoma
kn-keyword=NTRK fusion-positive sarcoma
en-keyword=larotrectinib
kn-keyword=larotrectinib
en-keyword=entrectinib
kn-keyword=entrectinib
en-keyword=infantile fibrosarcoma
kn-keyword=infantile fibrosarcoma
en-keyword=NTRK-rearranged spindle cell neoplasms
kn-keyword=NTRK-rearranged spindle cell neoplasms
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=42195
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of puberulic acid?induced nephrotoxicity using stem cell-based kidney organoids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent cases of acute kidney injury (AKI) in Japan have been linked to Beni-koji CholesteHelp supplements, with puberulic acid identified as a potential nephrotoxic contaminant. To address the need for a reliable in vitro nephrotoxicity testing platform, we developed a screening model using kidney organoids derived from adult rat kidney stem (KS) cells. The organoids were exposed to known nephrotoxicants, including cisplatin and gentamicin, to validate the system. Puberulic acid toxicity was evaluated in both KS cell-derived organoids and wild-type mice. The organoids recapitulated tubular injury induced by known nephrotoxins and showed significant Kim-1 mRNA upregulation. Puberulic acid-treated organoids and mice exhibited morphological features of acute tubular necrosis (ATN), mitochondrial damage, and reduced cytochrome c oxidase subunit IV (COX-IV) expression. Markers of oxidative stress and apoptosis, such as 8-hydroxy-2’-deoxyguanosine (8-OHdG) and cleaved caspase-3, were also elevated. These findings suggest that puberulic acid induces mitochondrial dysfunction and oxidative stress, leading to tubular cell death. Puberulic acid-induced nephrotoxicity was demonstrated using our kidney organoid model. KS cell-derived kidney organoids may provide a simple, reproducible, and rapid platform for nephrotoxicity assessment, which may complement conventional animal experiments.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchidaNaruhiko
en-aut-sei=Uchida
en-aut-mei=Naruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Kidney organoid
kn-keyword=Kidney organoid
en-keyword=Kidney stem cell
kn-keyword=Kidney stem cell
en-keyword=Puberulic acid
kn-keyword=Puberulic acid
en-keyword=Nephrotoxicity
kn-keyword=Nephrotoxicity
en-keyword=Mitochondrial dysfunction
kn-keyword=Mitochondrial dysfunction
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=5
article-no=
start-page=e70057
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of IgA Nephropathy With Membranoproliferative Glomerulonephritis-Like Features Miyu Kanazawa,
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 73-year-old man was referred due to the onset of nephrotic-range proteinuria. He had been diagnosed with rheumatoid arthritis 18?years prior and had achieved remission with treatment, including methotrexate and janus kinase (JAK) inhibitor. Although routine follow-ups had not revealed any urinary abnormalities, subsequent tests detected proteinuria and hematuria in the absence of infection or other symptoms. As the urinary abnormalities persisted, with a serum albumin decrease and proteinuria measuring 5.7?g/day, indicating nephrotic syndrome, the patient was referred to our hospital for further evaluation, and a renal biopsy was performed. Light microscopy revealed mesangial cell proliferation, endocapillary proliferation and double-contoured basement membranes. Immunofluorescence microscopy showed IgA-dominant deposits in both mesangial areas and glomerular capillary walls. Transmission electron microscopy demonstrated electron-dense deposits in the mesangium and subendothelial regions, leading to the diagnosis of membranoproliferative glomerulonephritis (MPGN)-type IgA nephropathy. Immunostaining with the Gd-IgA1 (galactose-deficient IgA1)-specific antibody (KM55) was positive, consistent with the diagnosis. Following the initiation of steroid therapy, proteinuria rapidly decreased, achieving complete remission within 5?months. IgA nephropathy with MPGN-like features often presents as nephrotic syndrome, differing from the typical pathological and clinical presentation of IgA nephropathy, making differentiation from secondary MPGN and other diseases sometimes challenging. This case suggests that KM55 staining may offer additional information in differentiating atypical IgA nephropathy with non-classical pathological features.
en-copyright=
kn-copyright=
en-aut-name=KanazawaMiyu
en-aut-sei=Kanazawa
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiRyoya
en-aut-sei=Aoki
en-aut-mei=Ryoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SueMihiro
en-aut-sei=Sue
en-aut-mei=Mihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHiromasa
en-aut-sei=Miyake
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchidaNaruhiko
en-aut-sei=Uchida
en-aut-mei=Naruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Gd-IgA1
kn-keyword=Gd-IgA1
en-keyword=IgA nephropathy
kn-keyword=IgA nephropathy
en-keyword=membranoproliferative glomerulonephritis
kn-keyword=membranoproliferative glomerulonephritis
en-keyword=nephrotic syndrome
kn-keyword=nephrotic syndrome
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=5762
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hypoglycemia and hyperinsulinemia induced by phenolic uremic toxins in CKD and DKD patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Patients with end-stage renal disease have lower fasting plasma glucose and HbA1c levels, with significantly higher insulin levels. For a long time, it has been believed that this higher insulin level in renal failure is due to decreased insulin clearance caused by reduced renal function. However, here we reported that accumulation of the gut microbiota-derived uremic toxin, phenyl sulfate (PS) in the renal failure, increased insulin secretion from the pancreas by enhanced glucose-stimulated insulin secretion. Other endogenous sulfides compounds which accumulated as in the renal failure also increased glucose-stimulated insulin secretion from β?-cell. With RNA-seq analyses and gene knock down, we demonstrated that insulin secretion evoked by PS was mediated by Ddah2. In addition, we also found that PS increased insulin resistance through lncRNA expression and Erk phosphorylation in the adipocytes. To confirm the relationship between PS and glucose metabolism in human, we recruited 2 clinical cohort studies (DKD and CKD) including 462 patients, and found that there was a weak negative correlation between PS and HbA1c. Because these trials did not measure fasting insulin level, we alternatively used the urinary C-peptide/creatinine ratio (UCPCR) as an indicator of insulin resistance. We found that PS may induce insulin resistance in patients with eGFR?60 mL/min/1.73 m2. These data suggest that the accumulation of uremic toxins modulates glucose metabolism and induced insulin resistance in CKD and DKD patients. Considering HbA1c as a reflection of chronic hyperglycemia and UCPCR as a reflection of chronic hyperinsulinemia, our findings indicate that PS is negatively associated with hyperglycemia independent of CKD, and positively associated with hyperinsulinemia in DKD patients.
en-copyright=
kn-copyright=
en-aut-name=TonguYoshiyasu
en-aut-sei=Tongu
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KasaharaTomoko
en-aut-sei=Kasahara
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkiyamaYasutoshi
en-aut-sei=Akiyama
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoHsin-Jung
en-aut-sei=Ho
en-aut-mei=Hsin-Jung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoYotaro
en-aut-sei=Matsumoto
en-aut-mei=Yotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KujiraiRyota
en-aut-sei=Kujirai
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KikuchiKoichi
en-aut-sei=Kikuchi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NataKoji
en-aut-sei=Nata
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanzakiMakoto
en-aut-sei=Kanzaki
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzukiKenshin
en-aut-sei=Suzuki
en-aut-mei=Kenshin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeShun
en-aut-sei=Watanabe
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KawabeChiharu
en-aut-sei=Kawabe
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MiyataYui
en-aut-sei=Miyata
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItaiShun
en-aut-sei=Itai
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyoharaTakafumi
en-aut-sei=Toyohara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuzukiChitose
en-aut-sei=Suzuki
en-aut-mei=Chitose
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaTetsuhiro
en-aut-sei=Tanaka
en-aut-mei=Tetsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TomiokaYoshihisa
en-aut-sei=Tomioka
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AbeTakaaki
en-aut-sei=Abe
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Tohoku University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
kn-affil=
affil-num=10
en-affil=Department of Biomedical Engineering, Tohoku University
kn-affil=
affil-num=11
en-affil=Tohoku University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
kn-affil=
en-keyword=CKD, DKD, Phenyl sulfate, Uremic toxin, Insulin secretion, Insulin resistance, Gut microbiota
kn-keyword=CKD, DKD, Phenyl sulfate, Uremic toxin, Insulin secretion, Insulin resistance, Gut microbiota
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1568338
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A pilot transcriptomic study of a novel multitargeted BRT regimen for anti?MDA5 antibody-positive dermatomyositis: improving survival over conventional therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis (MDA5-DM) is associated with severe outcomes, primarily due to rapidly progressive interstitial lung disease (RP-ILD), which is often refractory to standard therapies such as calcineurin inhibitors (e.g., tacrolimus) combined with cyclophosphamide (TC-Tx). This study evaluated the efficacy of a novel multitargeted regimen combining baricitinib, rituximab, and tacrolimus (BRT-Tx) in improving survival outcomes for MDA5-DM patients with poor prognostic factors.
Methods: Fourteen MDA5-DM patients with multiple adverse prognostic factors were studied. Seven received the BRT-Tx regimen, and the remaining seven, previously treated with TC-Tx, served as historical controls. Twelve-month survival was assessed. Transcriptome analysis was performed for six patients (BRT=3, TC=3), beginning with cluster analysis to evaluate whether changes in peripheral blood gene expression varied according to treatment or prognosis. Gene ontology analysis characterized expression profiles in survivors and distinguished treatment effects. Alterations in the type I, II, and III interferon signatures were also assessed.
Results: In the TC-Tx group, four of seven patients succumbed to RP-ILD, whereas all seven BRT-Tx patients survived the 12-month observation period. Only one BRT-Tx patient required combined rescue therapies, including plasma exchange, and one case of unexplained limbic encephalitis (LE) occurred. Cytomegalovirus reactivation was observed in both groups (BRT: 5/7; TC: 6/7). Transcriptomic analysis revealed no treatment-specific clustering of differentially expressed genes (DEGs) before and after therapy. However, survivors and nonsurvivors formed distinct clusters, with survivors showing significant posttreatment suppression of B-cell-related gene expression. Moreover, interferon signature scores were significantly lower after treatment in survivors than in nonsurvivors. BRT-Tx effectively suppressed B-cell-mediated immune responses and maintained a low interferon signature, while TC-Tx resulted in nonspecific gene suppression, and in nonsurvivors, an elevated interferon signature was observed.
Conclusion: BRT-Tx has the potential to improve survival in MDA5-DM patients by effectively targeting hyperactive immune pathways. The combination of rituximab and tacrolimus is expected to disrupt B-cell?T-cell interactions and reduce autoantibody production, whereas baricitinib may suppress both IFN and GM-CSF signaling, regulating excessive autoimmunity mediated by cells such as macrophages. Unlike TC-Tx, BRT-Tx avoids cyclophosphamide-associated risks such as infertility and secondary malignancies. Future randomized controlled trials are warranted to validate its efficacy and safety.
en-copyright=
kn-copyright=
en-aut-name=TokunagaMoe
en-aut-sei=Tokunaga
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaiYu
en-aut-sei=Nakai
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYoshiharu
en-aut-sei=Sato
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiratsukaMitori
en-aut-sei=Hiratsuka
en-aut-mei=Mitori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatsueTakeshi
en-aut-sei=Nakatsue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaekiTakako
en-aut-sei=Saeki
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmayaharaTakatsune
en-aut-sei=Umayahara
en-aut-mei=Takatsune
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoyamaYoshinobu
en-aut-sei=Koyama
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Rheumatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=DNA Chip Research Inc., Medical Laboratory
kn-affil=
affil-num=4
en-affil=DNA Chip Research Inc., Medical Laboratory
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Rheumatology and Nephrology, Department of Internal Medicine, Nagaoka Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Division of Rheumatology and Nephrology, Department of Internal Medicine, Nagaoka Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Division of Dermatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Rheumatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
en-keyword=anti-MDA5 antibody-positive dermatomyositis (MDA5-DM)
kn-keyword=anti-MDA5 antibody-positive dermatomyositis (MDA5-DM)
en-keyword=JAK inhibitor
kn-keyword=JAK inhibitor
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=rituximab
kn-keyword=rituximab
en-keyword=multitargeted treatment
kn-keyword=multitargeted treatment
en-keyword=IFN signature
kn-keyword=IFN signature
en-keyword=transcriptome analysis
kn-keyword=transcriptome analysis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=p53-armed oncolytic adenovirus induces apoptosis in pancreatic cancer-associated stellate cells via macropinocytosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pancreatic ductal adenocarcinoma (PDAC)-associated pancreatic stellate cells (PSCs) promote PDAC tumor progression. Notably, PDAC tumors display enhanced macropinocytosis, resulting in enhanced uptake of extracellular particles, including nutrients and viruses. We previously demonstrated the therapeutic potential of telomerase-specific oncolytic adenoviruses OBP-301 and p53-armed OBP-702 against human PDAC cells. However, it remains unclear whether macropinocytosis promotes the virus sensitivity of PDAC-associated PSCs. Here, we show that PSCs activated by human PDAC cells (Panc-1 and BxPC-3) exhibit enhanced sensitivity to wild-type and oncolytic adenoviruses via enhanced macropinocytosis. The virus sensitivity of PSCs was analyzed for the infectivity, replication, and cytopathic activity of wild-type and oncolytic adenoviruses. PDAC-associated PSCs were more sensitive to wild-type and oncolytic adenoviruses than were control PSCs; this sensitivity was mediated by activation of macropinocytosis. In three-dimensional (3D) culture models, p53-armed OBP-702 decreased the viability of PDAC-associated PSCs more strongly than did non-armed OBP-301, reflecting induction of p53-mediated apoptosis. Co-inoculation of PSCs enhanced the growth of PDAC tumors, an effect that was attenuated by OBP-702-mediated p53 activation in the tumor stroma. Our results suggest that p53-armed oncolytic adenovirus OBP-702 eliminates PDAC-associated PSCs via enhancement of macropinocytosis-mediated virus entry and induction of p53-mediated apoptosis.
en-copyright=
kn-copyright=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiYosuke
en-aut-sei=Takahashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KanoMitsunobu R.
en-aut-sei=Kano
en-aut-mei=Mitsunobu R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasamuneAtsushi
en-aut-sei=Masamune
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=15
en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Oncolys BioPharma, Inc.
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e94951
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bladder Trigone as a Sensory Hub: A Narrative Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The bladder trigone is an anatomically and functionally distinct region within the lower urinary tract (LUT), characterized by a dense network of afferent sensory fibers, specialized urothelial interactions, and prominent mechanotransduction mechanisms. Its intricate neuroarchitecture enables precise detection of bladder filling and coordination of micturition, whereas dysregulation of these pathways contributes to lower urinary tract symptoms (LUTS), including urgency, frequency, and bladder pain. Despite its recognized clinical relevance, the structural and functional basis of trigonal sensory signaling - and its role - remain incompletely understood.
This review synthesizes current evidence on trigonal afferent organization, integrating data from anatomical mapping, receptor profiling, electrophysiological characterization, and translational research. Seminal anatomical observations are combined with recent advances in mechanotransduction and purinergic, peptidergic, and transient receptor potential (TRP) signaling to provide a comprehensive perspective. The trigone exhibits three principal afferent classes: (1) intraepithelial fibers penetrating umbrella cells, marked by P2X purinoceptor 3 (P2X3), transient receptor potential vanilloid 1 (TRPV1), calcitonin gene-related peptide (CGRP), and substance P (SP); (2) subepithelial plexuses surrounding microvasculature, enriched in vasoactive neuropeptides and exhibiting plastic hypertrophy in overactive bladder (OAB) and interstitial cystitis/bladder pain syndrome (IC/BPS); and (3) encapsulated corpuscular endings at the lamina propria-detrusor junction, expressing PIEZO1/2 and acid-sensing ion channels (ASICs) for rapid adaptation. In trigeminal dorsal root ganglion (DRG) neurons, high expression of PIEZO2, P2RX3, and voltage-gated sodium channel, type 1.8 (Nav1.8) was observed, revealing their role as the foundation for multisensory information processing. Functional assays highlight distinct mechanotransductive and chemosensory pathways, with aging, inflammation, and neurotrophic factors driving afferent plasticity underlying abnormal bladder sensation, such as urgency, frequency, and pain. Early clinical trials of P2X3 antagonists and intravesical TRPV1 inhibitors demonstrate promising symptomatic benefits. Collectively, evidence positions the bladder trigone as a critical sensory hub where neuronal, urothelial, and immune signals converge to regulate bladder sensation. Understanding its molecular and structural specialization may inform the development of region-specific neuromodulatory therapies targeting sensory urgency and afferent-driven bladder dysfunction.
en-copyright=
kn-copyright=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=bladder trigone
kn-keyword=bladder trigone
en-keyword=botulinum toxin
kn-keyword=botulinum toxin
en-keyword=lower urinary tract symptoms
kn-keyword=lower urinary tract symptoms
en-keyword=sensory afferents
kn-keyword=sensory afferents
en-keyword=varicosities
kn-keyword=varicosities
END
start-ver=1.4
cd-journal=joma
no-vol=786
cd-vols=
no-issue=
article-no=
start-page=152753
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen-rich gas enhances mitochondrial membrane potential and respiratory function recovery in Caco-2 cells post-ischemia-reperfusion injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Ischemia-reperfusion (I/R) injury induces oxidative stress, leading to damage in highly susceptible intestinal tissues. Molecular hydrogen (H2) has shown therapeutic potential in I/R injuries, with our prior research showing its efficacy in improving outcomes in rat intestinal transplantation models. However, its impact on mitochondrial function remain insufficiently understood. This study aims to elucidate how H2 modulates mitochondrial function impaired by I/R injury.
Methods: To assess the effects of H2 on I/R injury, cells were divided into three groups: a control group, a hypoxic group (99 % N2, 1 % O2, without H2 for 3, 6, or 24 h), and a hypoxic-H2 group (99 % H2, 1 % O2, for the same durations). After treatment, cells were reoxygenated under normoxic conditions (21 % O2) for 1, 2, 4, or 6 h. Mitochondrial membrane potential, oxygen consumption, and ATP production were measured. Reactive oxygen species production and apoptotic and metabolic regulators were also assessed.
Results: H2 markedly promoting mitochondrial recovery following I/R injury, by enhancing ATP production, restoring mitochondrial membrane potential, and improving oxygen consumption. It also reduced ROS levels and suppressed pro-apoptotic signaling. Notably, H2 suppressed the expression of HIF1α and PDK1, suggesting that H2 may act upstream of hypoxia-driven signaling pathways. These changes promoted oxidative phosphorylation and overall cellular function during reperfusion.
Conclusions: Our findings reveal that H2 therapy supports mitochondrial function, suppresses ROS, and modulates hypoxia-driven pathways in I/R injury. These insights advance the understanding of H2's potential in addressing I/R injury and provide a foundation for its application in other hypoxia-related conditions.
en-copyright=
kn-copyright=
en-aut-name=SeyaMizuki
en-aut-sei=Seya
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MengYing
en-aut-sei=Meng
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshinoriKosaki
en-aut-sei=Yoshinori
en-aut-mei=Kosaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeAkihiro
en-aut-sei=Watanabe
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaTaihei
en-aut-sei=Yamada
en-aut-mei=Taihei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University
kn-affil=
affil-num=10
en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Intestinal ischemia-reperfusion injury
kn-keyword=Intestinal ischemia-reperfusion injury
en-keyword=Molecular hydrogen
kn-keyword=Molecular hydrogen
en-keyword=Hydrogen gas therapy
kn-keyword=Hydrogen gas therapy
en-keyword=Caco-2 cells
kn-keyword=Caco-2 cells
en-keyword=Mitochondrial function
kn-keyword=Mitochondrial function
en-keyword=Hypoxia-inducible factor-1α (HIF1α)
kn-keyword=Hypoxia-inducible factor-1α (HIF1α)
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=18
article-no=
start-page=1481
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Oral Peritumoral Tissue on Infiltration and Differentiation of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The recruitment of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) of oral squamous carcinoma (OSCC) affects significant cancer invasion; however, in the normal host tissue that is located in the cancer’s surrounding area, this is poorly investigated. In this study, we examined the impact of gingival connective tissue cells (GCTCs) and periodontal ligament cells (PDLCs), which are involved in the invasive pathway of OSCC, on oral cancer invasion via TAMs recruitment. Transwell (migration) assays were used to examine the effects of GCTCs and PDLCs on the migration of macrophages, which indicated that the interaction between GCTCs and HSC-2/HSC-3 (human oral squamous cell carcinoma cell line) promoted the recruitment of macrophages, whereas the interaction between PDLCs was inhibited. An indirect co-culture was then used to examine the effects of GCTCs and PDLCs on the differentiation of macrophages, which indicated that the interaction between GCTCs enhanced their ability to transform into M2-type macrophages. Furthermore, the effects of GCTCs and PDLCs on the recruitment of CD45(+) monocytes, F4/80(+) M0 macrophages, iNOS(+) M1 macrophages, and CD163(+) M2 TAMs were assayed by immunohistochemistry. The results revealed that the interaction between GCTCs and HSC-2/HSC-3 promoted the infiltration of CD45(+) monocytes, F4/80(+) M0 macrophages, and CD163(+) M2 TAMs, whereas the PDLCs inhibited it, while their effect on iNOS(+) M1 macrophages was limited. Collectively, the GCTCs contributed to the infiltration of TAMs into the TME of OSCC cells, whereas the PDLCs exerted an inhibitory effect. These findings suggest a potential regulatory mechanism underlying the progression of OSCC.
en-copyright=
kn-copyright=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhaoYulu
en-aut-sei=Zhao
en-aut-mei=Yulu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=gingival connective tissue cells (GCTCs)
kn-keyword=gingival connective tissue cells (GCTCs)
en-keyword=periodontal ligament cells (PDLCs)
kn-keyword=periodontal ligament cells (PDLCs)
en-keyword=tumor-associated macrophages (TAMs)
kn-keyword=tumor-associated macrophages (TAMs)
en-keyword=macrophage polarity
kn-keyword=macrophage polarity
en-keyword=tumor microenvironment (TME)
kn-keyword=tumor microenvironment (TME)
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=17
article-no=
start-page=2770
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250825
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refining the Role of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the tumor microenvironment, various immune and stromal cells, such as fibroblasts and vascular endothelial cells, contribute to tumor growth and progression by interacting with cancer cells. Tumor-associated macrophages (TAMs) have attracted attention as major players in the tumor microenvironment. The origin of TAMs is believed to be the infiltration of monocytes derived from bone marrow progenitor cells into tumor tissues and their differentiation into macrophages, whereas tissue-resident macrophages derived from yolk sacs have recently been reported. TAMs infiltrating tumor tissues act in a tumor-promoting manner through immunosuppression, angiogenesis, and the promotion of cancer cell invasion. Reflecting the nature of TAMs, increased TAM invasion and TAM-specific gene expression in tumor tissues may be the new biomarkers for cancer. Moreover, new therapeutic strategies targeting TAMs, such as transformation into immunostimulatory macrophages, suppression of TAM infiltration, and promotion of phagocytosis, are being investigated, and many clinical trials are underway. As the origin and function of TAMs are further elucidated, TAM-targeted therapy is expected to become a new option for the immunotherapy of various cancers, including oral cancers.
en-copyright=
kn-copyright=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TianyanPiao
en-aut-sei=Tianyan
en-aut-mei=Piao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiMasae
en-aut-sei=Fujii
en-aut-mei=Masae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tumor-associated macrophage (TAM)
kn-keyword=tumor-associated macrophage (TAM)
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=macrophage polarity
kn-keyword=macrophage polarity
en-keyword=invasion
kn-keyword=invasion
en-keyword=carcinogenesis
kn-keyword=carcinogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=14
article-no=
start-page=4055
end-page=4070
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CXCR4 Inhibition Induces Tumor Necrosis by Selectively Targeting the Proliferating Blood Vessels in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The C-X-C chemokine receptor type 4 (CXCR4) is a G protein-coupled transmembrane receptor that contributes to tumor growth and angiogenesis. While prior studies have primarily focused on CXCR4 expression in cancer cells and its role in metastasis, a few have examined its involvement in tumor-associated vasculature. In this study, we reported for the first time that CXCR4 expression within the tumor vasculature is significantly associated with higher pathological grades of human oral squamous cell carcinoma (OSCC) (p<0.03). A previous study reported that inhibiting CXCR4 with AMD3100 induces tumor cell death and enhances the efficacy of the chemotherapeutic agent cisplatin. These findings suggest that CXCR4 is an important target for cancer treatment. However, the tumor vascular system is known to be heterogeneous within the tumor microenvironment (TME), which may influence the treatment outcomes. Therefore, this study aimed to explore the effect of CXCR4 antagonism on various blood vessels present within the oral squamous cell carcinoma (OSCC) tumor stroma. Although the efficiency of AMD3100 was not significant in MOC cancer cells, necrosis was induced in the TME when applied to a poorly differentiated OSCC model, highlighting the role of the TME. Notably, CXCR4 is found to be highly overlapped with CD105+ angiogenic tumor vessels among various vascular markers. Treatment with AMD3100 leads to a marked reduction in the CD105+ vessels and impairs the maturation of tumor micro-vessels, explaining the cause of observed necrosis. Thus, CXCR4 serves as a promising biomarker in OSCC, and its inhibition with AMD3100 offers the therapeutic potential, particularly in cases with advanced pathological grades.
en-copyright=
kn-copyright=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaSaori
en-aut-sei=Yoshida
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=4
en-affil=Preliminary Examination Room, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=CXCR4
kn-keyword=CXCR4
en-keyword=tumor angiogenesis
kn-keyword=tumor angiogenesis
en-keyword=chemokine receptors
kn-keyword=chemokine receptors
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=AMD3100
kn-keyword=AMD3100
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=5
article-no=
start-page=689
end-page=699
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytomegalovirus reactivation in patients with large B-cell lymphoma treated with chimeric antigen receptor T-cell therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chimeric antigen receptor (CAR) T-cell therapy has improved outcomes of relapsed and/or refractory large B-cell lymphoma (r/r LBCL). However, its off-tumor effects result in severe prolonged humoral immune deficiency. Cytomegalovirus (CMV) is a latent virus that can be life-threatening in immunosuppressed patients. In the setting of CAR T-cell therapy, Asian race is a risk factor for clinically significant CMV infection. However, the effect of CAR T-cell therapy on CMV reactivation in Japanese patients remains unclear. Previous reports used polymerase chain reaction (PCR), but we used the pp65 antigenemia assay to retrospectively investigate long-term effects in patients with r/r LBCL. The study included 46 patients. Nine (19.6%) developed CMV reactivation, with a median onset of 13 days. Six of these patients received preemptive therapy, and none developed CMV end-organ disease. Primary refractory disease, grade 2?4 cytokine release syndrome, and high-dose corticosteroids were risk factors for CMV reactivation. Long-term follow-up showed that CMV reactivation rarely occurred later than 28 days post-infusion. Our study using the pp65 antigenemia assay showed a similar incidence of CMV reactivation, onset, and risk factors to those in the previous reports using PCR.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasunariTaro
en-aut-sei=Masunari
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashidaRisa
en-aut-sei=Hashida
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkaSatoshi
en-aut-sei=Oka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraYuki
en-aut-sei=Fujiwara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology, Chugoku Central Hospital
kn-affil=
affil-num=4
en-affil=Division of Hematology, Ehime Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Science Center
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
en-keyword=Cytomegalovirus reactivation
kn-keyword=Cytomegalovirus reactivation
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=CAR T-cell therapy
kn-keyword=CAR T-cell therapy
en-keyword=Hypogammaglobulinemia
kn-keyword=Hypogammaglobulinemia
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of methotrexate-dosing regimens for GVHD prophylaxis on clinical outcomes of HLA-matched allogeneic HSCT
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Severe graft-versus-host disease (GVHD) remains a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT), necessitating optimal immunosuppressive strategies. This retrospective study used data from the Japanese Transplant Registry Unified Management Program to compare three methotrexate (MTX)-dosing regimens for GVHD prophylaxis in patients undergoing human leucocyte antigen (HLA)-matched allo-HSCT: a low-dose 3-day regimen (Ld3:10?mg/m2 on day 1, 7?mg/m2 on days 3 and 6), a low-dose 4-day regimen (Ld4: Ld3 with an additional 7?mg/m2 on day 11) and an original-dose 3-day regimen (Od3: 15?mg/m2 on day 1, 10?mg/m2 on days 3 and 6). Among 2537 analysed patients, Ld3 was the most commonly used regimen. Multivariate analyses showed no significant differences in the cumulative incidence of grade II?IV acute GVHD among regimens. However, Od3 was associated with an increased risk of grade III?IV acute GVHD, and Ld4 was linked to delayed neutrophil engraftment. This study is the first large-scale retrospective analysis of the impact of different MTX-dosing regimens on the outcomes of HLA-matched allo-HSCT, providing valuable insights into optimal MTX-dosing strategies in clinical practice.
en-copyright=
kn-copyright=
en-aut-name=SuzukiTomotaka
en-aut-sei=Suzuki
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JoTomoyasu
en-aut-sei=Jo
en-aut-mei=Tomoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshifujiKota
en-aut-sei=Yoshifuji
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTadakazu
en-aut-sei=Kondo
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishidaTetsuya
en-aut-sei=Nishida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OnishiYasushi
en-aut-sei=Onishi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SawaMasashi
en-aut-sei=Sawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HasegawaYuta
en-aut-sei=Hasegawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SerizawaKentaro
en-aut-sei=Serizawa
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtaShuichi
en-aut-sei=Ota
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YoshimitsuMakoto
en-aut-sei=Yoshimitsu
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KandaJunya
en-aut-sei=Kanda
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Hematology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=5
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Centre, Komagome Hospital
kn-affil=
affil-num=6
en-affil=Division of Hematology, Jichi Medical University Saitama Medical Centre
kn-affil=
affil-num=7
en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Centre Nagoya Daiichi Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Tohoku University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Haematopoietic Stem Cell Transplantation, National Cancer Centre Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology, Hokkaido University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Rheumatology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Department of Hematology, Sapporo Hokuyu Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology, Kanagawa Cancer Centre
kn-affil=
affil-num=16
en-affil=Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=17
en-affil=Japanese Data Centre for Haematopoietic Cell Transplantation
kn-affil=
affil-num=18
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=allo-HSCT
kn-keyword=allo-HSCT
en-keyword=dosing regimens
kn-keyword=dosing regimens
en-keyword=graft-versus-host disease
kn-keyword=graft-versus-host disease
en-keyword=GVHD prophylaxis
kn-keyword=GVHD prophylaxis
en-keyword=methotrexate
kn-keyword=methotrexate
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=5
article-no=
start-page=e70138
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Late‐Onset?Invasive Aspergillosis With Pituitary Involvement and Dysfunction Following CD19 Chimeric Antigen Receptor T‐Cell Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Invasive fungal infection (IFI) after chimeric antigen receptor (CAR) T-cell therapy is less common than bacterial and viral infections, but can be fatal once it develops. As most cases occur within 30 days after CAR T-cell infusion, late-onset IFI?particularly mould infection?appears to be under-recognised.
Discussion: We report an illustrative case of pituitary aspergillosis developing as late as one year after CD19 CAR T-cell therapy, highlighting a persistent risk in certain patients with delayed immune reconstitution.
Conclusion: This case underscores the need for continued vigilance and individualised antifungal strategies to prevent IFI beyond the early post-infusion period.
Trial Registration: The authors have confirmed clinical trial registration is not needed for this submission.
en-copyright=
kn-copyright=
en-aut-name=IkedaDaisuke
en-aut-sei=Ikeda
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NawadaTomohiro
en-aut-sei=Nawada
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinoharaTakayuki
en-aut-sei=Shinohara
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaganoTomohiro
en-aut-sei=Nagano
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KubotaSaya
en-aut-sei=Kubota
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiyamaRyuichiro
en-aut-sei=Hiyama
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UenoMasaya
en-aut-sei=Ueno
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MakitaMasanori
en-aut-sei=Makita
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=The Center for Graduate Medical Education, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Fungal Infection, National Institute of Infectious Diseases
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of Hematology, Chugoku Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=aspergillosis
kn-keyword=aspergillosis
en-keyword=CD19 CAR T
kn-keyword=CD19 CAR T
en-keyword=invasive fungal infection
kn-keyword=invasive fungal infection
en-keyword=pituitary
kn-keyword=pituitary
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=18
article-no=
start-page=4640
end-page=4653
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refinement of day 28 treatment response criteria for acute GVHD: a collaboration study of the JSTCT and MAGIC
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Overall response (OR) that combines complete (CR) and partial responses (PR) is the conventional end point for acute graft-versus-host disease (GVHD) trials. Because PR includes heterogeneous clinical presentations, reclassifying PR could produce a better end point. Patients in the primary treatment cohort from the Japanese Society for Transplantation and Cellular Therapy (JSTCT) were randomly divided into training and validation sets. In the training set, a classification and regression tree algorithm generated day 28 refined response (RR) criteria based on symptoms at treatment and day 28. We then evaluated RR for primary and second-line treatments, using the area under the receiver operating characteristic curve (AUC) and negative predictive value (NPV) for 6-month nonrelapse mortality as performance measures. RR considered patients with grade 0/1 at day 28 without additional treatment as responders. RR for primary treatment produced higher AUCs than OR with small improvement of NPVs in both validation sets: JSTCT (AUC, 0.73 vs 0.69 [P < .001]; NPV, 92.0% vs 89.6% [P < .001]) and the Mount Sinai Acute GVHD International Consortium (MAGIC; AUC, 0.71 vs 0.68 [P = .032]; NPV, 90.9% vs 89.8% [P = .009]). RR for second-line treatment produced similar AUCs but much higher NPVs than OR in both validation sets of JSTCT (AUC, 0.64 vs 0.63 [P = .775]; NPV, 74.5% vs 66.0% [P < .001]) and MAGIC (AUC, 0.67 vs 0.64 [P = .105]; NPV, 86.8% vs 76.1% [P = .004]). Classifying persistent but mild skin symptoms as responses and residual lower gastrointestinal GVHD as nonresponses were major drivers in improving the prognostic performance of RR. Our externally validated day 28 RR would serve as a better end point than conventional criteria in future first- and second-line treatment trials.
en-copyright=
kn-copyright=
en-aut-name=AkahoshiYu
en-aut-sei=Akahoshi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InamotoYoshihiro
en-aut-sei=Inamoto
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SpyrouNikolaos
en-aut-sei=Spyrou
en-aut-mei=Nikolaos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakasoneHideki
en-aut-sei=Nakasone
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DinizMarcio A.
en-aut-sei=Diniz
en-aut-mei=Marcio A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AyukFrancis
en-aut-sei=Ayuk
en-aut-mei=Francis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ChoeHannah K.
en-aut-sei=Choe
en-aut-mei=Hannah K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EtoTetsuya
en-aut-sei=Eto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EtraAaron M.
en-aut-sei=Etra
en-aut-mei=Aaron M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HexnerElizabeth O.
en-aut-sei=Hexner
en-aut-mei=Elizabeth O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HiramotoNobuhiro
en-aut-sei=Hiramoto
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HoganWilliam J.
en-aut-sei=Hogan
en-aut-mei=William J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HollerErnst
en-aut-sei=Holler
en-aut-mei=Ernst
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KataokaKeisuke
en-aut-sei=Kataoka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakitaToshiro
en-aut-sei=Kawakita
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TanakaTakashi
en-aut-sei=Tanaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=VasovaIngrid
en-aut-sei=Vasova
en-aut-mei=Ingrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YoshiharaSatoshi
en-aut-sei=Yoshihara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IshimaruFumihiko
en-aut-sei=Ishimaru
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ChenYi-Bin
en-aut-sei=Chen
en-aut-mei=Yi-Bin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KandaJunya
en-aut-sei=Kanda
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamuraRyotaro
en-aut-sei=Nakamura
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=FerraraJames L. M.
en-aut-sei=Ferrara
en-aut-mei=James L. M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LevineJohn E.
en-aut-sei=Levine
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=TeshimaTakanori
en-aut-sei=Teshima
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=2
en-affil=Department of Blood and Marrow Transplantation and Cellular Therapy, Fujita Health University School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=4
en-affil=Division of Hematology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf
kn-affil=
affil-num=8
en-affil=Division of Hematology, Blood and Marrow Transplantation Program, The Ohio State University Comprehensive Cancer Center
kn-affil=
affil-num=9
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Hamanomachi Hospital
kn-affil=
affil-num=11
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=12
en-affil=Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Department of Hematology, Kobe City Medical Center General Hospital
kn-affil=
affil-num=14
en-affil=Division of Hematology, Mayo Clinic
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Internal Medicine III, University of Regensburg
kn-affil=
affil-num=16
en-affil=Division of Molecular Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Department of Hematology, National Hospital Organization Kumamoto Medical Center
kn-affil=
affil-num=18
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=19
en-affil=Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital
kn-affil=
affil-num=21
en-affil=Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universit?t Erlangen-N?rnberg and University Hospital Erlangen
kn-affil=
affil-num=22
en-affil=Department of Hematology, Hyogo Medical University Hospital
kn-affil=
affil-num=23
en-affil=Technical Department, Japanese Red Cross Blood Service Headquarters
kn-affil=
affil-num=24
en-affil=Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=25
en-affil=Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital
kn-affil=
affil-num=26
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=27
en-affil=Department of Hematology and Hematopoietic Cell Transplantation, City of Hope
kn-affil=
affil-num=28
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=29
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=30
en-affil=Division of Hematology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=31
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=32
en-affil=Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy of ciclosporin monotherapy in non-severe aplastic anaemia not requiring transfusions: Results from a multicentre phase II study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The efficacy of ciclosporin (CsA) to treat transfusion-independent non-severe aplastic anaemia (TI-NSAA) has not yet been systematically evaluated. We conducted a prospective trial in patients with TI-NSAA treated with CsA monotherapy. CsA (3.5?mg/kg/day) was administered to patients with TI-NSAA aged ?16. The CsA dose was adjusted to maintain a blood CsA level of ?600?ng/mL at 2?h post-administration. Blood cell counts were assessed after 8, 16 and 52?weeks of therapy. Thirty-two evaluable patients from 21 institutions were enrolled. The median age was 63.5 (range: 16?83) years. At 8?weeks, haematological improvement, with increases in haemoglobin (Hb) ?1.5?g/dL (haematological improvement in erythrocytes [HI-E]) and platelet count ?30?×?109/L (haematological improvement in platelets [HI-P]), was observed in 0/25 (0%) and 6/32 (19%) evaluable cases respectively. HI-E and HI-P occurred in 1/25 (4%) and 10/32 (31%) patients at 16?weeks, respectively, and at 52?weeks in 5/25 (20%) and 16/32 (50%) patients respectively. Nine grade 3 adverse events (AEs) occurred in six patients, but there were no grade ?4 AEs. Ten of the 32 patients experienced grade 2 renal toxicity. Low-dose CsA is effective in TI-NSAA patients and demonstrates minimal renal toxicity. However, at least 16?weeks are necessary to adequately evaluate its efficacy.
en-copyright=
kn-copyright=
en-aut-name=IshiyamaKen
en-aut-sei=Ishiyama
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamazakiMasahide
en-aut-sei=Yamazaki
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaHiroyuki
en-aut-sei=Maruyama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosonoNaoko
en-aut-sei=Hosono
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiHiroki
en-aut-sei=Yamaguchi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanimotoKazuki
en-aut-sei=Tanimoto
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiuraHiroyuki
en-aut-sei=Sugiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UsukiKensuke
en-aut-sei=Usuki
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshimuraKenichi
en-aut-sei=Yoshimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaSeishi
en-aut-sei=Ogawa
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KanakuraYuzuru
en-aut-sei=Kanakura
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsumuraItaru
en-aut-sei=Matsumura
en-aut-mei=Itaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AkashiKoichi
en-aut-sei=Akashi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakaoShinji
en-aut-sei=Nakao
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Keiju Medical Center
kn-affil=
affil-num=3
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, University of Fukui Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Nippon Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Japanese Red Cross Fukuoka Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Chugoku Central Hospital of Japan Mutual Aid Association of Public School Teachers
kn-affil=
affil-num=9
en-affil=Department of Hematology, NTT Medical Center Tokyo
kn-affil=
affil-num=10
en-affil=Department of Biostatistics and Health Data Science, Graduate School of Medical Science, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University
kn-affil=
affil-num=12
en-affil=Sumitomo Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Rheumatology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
kn-affil=
affil-num=15
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
en-keyword=ciclosporin
kn-keyword=ciclosporin
en-keyword=prospective study
kn-keyword=prospective study
en-keyword=renal toxicity
kn-keyword=renal toxicity
en-keyword=transfusion-independent non-severe aplastic anaemia
kn-keyword=transfusion-independent non-severe aplastic anaemia
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=e098532
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protocol for a multicentre, open-label, dose-escalation phase I/II study evaluating the tolerability, safety, efficacy and pharmacokinetics of repeated continuous intravenous PPMX-T003 in patients with aggressive natural killer cell leukaemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Aggressive natural killer cell leukaemia (ANKL) is a rare form of NK cell lymphoma with a very low incidence and poor prognosis. While multi-agent chemotherapy including L-asparaginase has been used to treat ANKL patients, they often cannot receive adequate chemotherapy at diagnosis due to liver dysfunction. PPMX-T003, a fully human monoclonal antibody targeting the transferrin receptor 1, shows promise in treating ANKL by helping patients recover from fulminant clinical conditions, potentially enabling a transition to chemotherapy. This study aimed to evaluate the tolerability, safety, efficacy, and pharmacokinetics of repeated continuous intravenous PPMX-T003 in patients with ANKL.
Methods and analysis This multicentre, open-label, dose-escalation phase I/II study will be conducted at nine hospitals in Japan. Patients diagnosed with ANKL (whether as a primary or recurrent disease) and exhibiting abnormal liver function or hepatomegaly due to the primary disease will be included. The primary endpoint is the tolerability and safety of repeated continuous intravenous administration of PPMX-T003 in the first course, based on adverse events and dose-limiting toxicities. PPMX-T003 will be administered as a continuous intravenous infusion every 24?hours for five consecutive days, followed by a 2-day break. Pretreatment will be provided to minimise the risk of infusion-related reactions. Initial doses of PPMX-T003 will be 0.5, 1.0 or 2.0 mg/kg, with subsequent dose increases determined by the Data and Safety Monitoring Committee. The sample size is set at seven participants, with enrolment increased to up to 12 participants if dose-limiting toxicities occur, based on feasibility due to the rarity of ANKL. Descriptive statistics will summarise data according to initial dose, and pharmacokinetic analysis will be conducted based on administered dose.
Ethics and dissemination This study was approved by the institutional review boards at participating hospitals. The results will be disseminated in peer-reviewed journals.
Trial registration number jRCT2061230008 (jRCT); NCT05863234 (ClinicalTrials.gov).
en-copyright=
kn-copyright=
en-aut-name=FukuharaNoriko
en-aut-sei=Fukuhara
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnizukaMakoto
en-aut-sei=Onizuka
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KandaJunya
en-aut-sei=Kanda
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AndoKiyoshi
en-aut-sei=Ando
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Hematology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Tokai University School of Medicine Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Hematology, Hiroshima University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=
article-no=
start-page=103224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The vicious cycle between nutrient deficiencies and antibiotic-induced nutrient depletion at the host cell-pathogen interface: Coenzyme Q10 and omega-6 as key molecular players
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The increasing prevalence of antibiotic resistance and pathological inflammation underscores the importance of understanding the underlying biochemical and immune processes that govern the host-pathogen interface. Nutrient deficiency, compounded by antibiotic-induced nutrient depletion, forms a vicious cycle of overt inflammation, contributing to bacterial toxin translocation in human inter-organ and intra-organs milieus. Coenzyme Q10 (CoQ10) and omega-6 linoleic acid (LA 18:2ω6) are integral to cellular membrane integrity and immune defense. However, the complex enzymatic steps at the host cell-pathogen interface remain poorly understood. This study is particularly timely, as it explores these knowledge gaps, which can inform the development of nutritional and therapeutic strategies that modulate or target these mechanisms. Using an infectious-inflamed cell co-culture model of the gut-liver axis, we exposed triple cell co-cultures of human intestinal epithelial cells (T84), macrophage-like THP-1 cells, and hepatic cells (Huh7) to linoleic acid-producing Lactobacillus casei (L. casei) and Pseudomonas aeruginosa strain PAO1 (PAO1). The cultures were incubated for 6?h in medium with or without ceftazidime antibiotic. PAO1 and L. casei exerted opposing effects on the secretion of Th1 cytokines IL-1β, IL-6, and the Th 2-type cytokine IL-10. Inoculation with PAO1 decreased CoQ10 and linoleic acid levels compared to uninfected controls. L. casei restored cellular health and biofunctionality impaired by PAO1, indicating its benefit to the host's well-being. The antibiotic ceftazidime exerted dual effects, alleviating PAO1 toxicity while marginally disrupting the beneficial effects of L. casei. Our results show how the vicious cycle of nutrient deficiency and antibiotic-induced nutrient loss reinforces pathological inflammation at the host cell-pathogen interface and highlights the need for more appropriate targeted antibiotic use that preserves essential nutrients like CoQ10 and omega-6 fatty acids. Inflammatory responses driven by opportunistic pathogens and LA-producing bacteria represent opposing immunometabolic pathways that may provide insights into novel approaches for treating infection and reducing antibiotic resistance.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Bl?merSophia
en-aut-sei=Bl?mer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=?ahi?n KayaAysel
en-aut-sei=?ahi?n Kaya
en-aut-mei=Aysel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Kr?gerSandra
en-aut-sei=Kr?ger
en-aut-mei=Sandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=R?ckenChristoph
en-aut-sei=R?cken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Sch?ferHeiner
en-aut-sei=Sch?fer
en-aut-mei=Heiner
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Christian-Albrechts-University of Kiel
kn-affil=
affil-num=3
en-affil=Department of Nutrition and Dietetics, Faculty of Health Sciences, Antalya Bilim University
kn-affil=
affil-num=4
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Laboratory of Molecular Gastroenterology & Hepatology, Christian-Albrechts-University & UKSH Campus Kiel
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=9
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=Coenzyme Q10
kn-keyword=Coenzyme Q10
en-keyword=Infection
kn-keyword=Infection
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Micronutrients
kn-keyword=Micronutrients
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=81
cd-vols=
no-issue=
article-no=
start-page=152587
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The diagnostic utility and frequency of CD56 expression in plasma cell myeloma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma cell myeloma (PCM) is a hematological malignancy characterized by systemic proliferation of neoplastic plasma cells within the bone marrow. Diagnosis requires clinical findings and immunohistochemical staining, including CD138, CD79a, cyclin D1, immunoglobulin κ (Igκ), and λ (Igλ). However, CD79a and cyclin D1 have limited sensitivity and specificity, and Igκ/Igλ assessment is often difficult due to overstaining. Therefore, more reliable antibodies are needed to accurately diagnose PCM. In this study, we examined the diagnostic utility of CD56 expression in PCM. We retrospectively performed immunostaining for CD138, CD56, CD79a, cyclin D1, Igκ, and Igλ in bone marrow samples from 116 patients with PCM.
CD56 expression was observed in 85/116 cases (73.3 %), CD79a was downregulated in 46/116 cases (39.7 %), and cyclin D1 expression was observed in 42/116 cases (36.2 %). The expression of CD56 was significantly higher than that of CD79a and cyclin D1 (both p < 0.001). The combination of two antibodies resulted in the highest detection rate when combining CD56 and CD79a (105/116, 90.5 %), which was significantly higher than the detection rates of CD56 and cyclin D1 (93/116, 80.2 %) and CD79a and cyclin D1 (75/116, 64.7 %) (both p < 0.001). In contrast, lymphoplasmacytic lymphoma and marginal zone lymphoma lacked CD56 and cyclin D1 expression. Furthermore, in cases where light chain restriction was undetectable (11/116, 9.5 %), all could be diagnosed as PCM based on CD56, CD79a, and cyclin D1. Among these, CD56 showed the highest detection rate (8/11, 72.7 %).
These findings highlight CD56 as a helpful marker for PCM diagnosis and support further clinical research.
en-copyright=
kn-copyright=
en-aut-name=ImaiMidori
en-aut-sei=Imai
en-aut-mei=Midori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaRio
en-aut-sei=Yamada
en-aut-mei=Rio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoSyoma
en-aut-sei=Kato
en-aut-mei=Syoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TabeMizuha
en-aut-sei=Tabe
en-aut-mei=Mizuha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diagnostic Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=Plasma cell myeloma
kn-keyword=Plasma cell myeloma
en-keyword=Immunohistochemical staining
kn-keyword=Immunohistochemical staining
en-keyword=CD56
kn-keyword=CD56
END
start-ver=1.4
cd-journal=joma
no-vol=152
cd-vols=
no-issue=22
article-no=
start-page=dev204763
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ROS produced by Dual oxidase regulate cell proliferation and haemocyte migration during leg regeneration in the cricket
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Many animals regenerate lost body parts through several signalling pathways; however, the triggers that initiate regeneration remain unclear. In the present study, we focused on the role of reactive oxygen species (ROS) produced by the NADPH oxidase Dual oxidase (Duox) during cricket leg regeneration. The results showed that ROS levels were upregulated during leg regeneration and decreased by DuoxRNAi. In DuoxRNAi nymphs, wound closure and scab formation were incomplete 2?days after amputation, and hypertrophy occurred in the distal region of the regenerating legs at 5?days after amputation. In addition, the hypertrophic phenotype was induced by DuoxARNAi and NADPH oxidase inhibitor treatment. During hypertrophy, haemocytes, including plasmatocytes, oenocytoids and granulocytes, accumulated. Proliferation of haemocytes in regenerating legs was not increased by DuoxRNAi; however, haemocyte accumulation was regulated by the Spatzle (Spz) family molecules, which are Toll receptor ligands. As the exoskeleton of DuoxRNAi nymphs was thinner than that of the control, excessive haemocyte accumulation can cause hypertrophy in DuoxRNAi nymphs. Thus, Duox-derived ROS are involved in wound healing and haemocyte accumulation through the Spz/Toll signalling pathway during leg regeneration in crickets.
en-copyright=
kn-copyright=
en-aut-name=Okumura-HironoMisa
en-aut-sei=Okumura-Hirono
en-aut-mei=Misa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaYoshimasa
en-aut-sei=Hamada
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Reactive oxygen species (ROS)
kn-keyword=Reactive oxygen species (ROS)
en-keyword=NADPH oxidase (Nox)
kn-keyword=NADPH oxidase (Nox)
en-keyword=Dual oxidase (Duox)
kn-keyword=Dual oxidase (Duox)
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Gryllus bimaculatus
kn-keyword=Gryllus bimaculatus
END
start-ver=1.4
cd-journal=joma
no-vol=386
cd-vols=
no-issue=
article-no=
start-page=115145
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) with voluntary and forced exercise in a rat model of ischemic stroke
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery. This study evaluated the effects of voluntary and forced exercise, alone and in combination with SB623 cell transplantation, on neurological and psychological outcomes in a rat model of ischemic stroke. Male Wistar rats that had undergone middle cerebral artery occlusion (MCAO) were divided into six groups: control, voluntary exercise (V-Ex), forced exercise (F-Ex), SB623 transplantation, SB623 + V-Ex, and SB623 + F-Ex. Voluntary exercise was facilitated using running wheels, while forced exercise was conducted on treadmills. Neurological recovery was assessed using the modified neurological severity score (mNSS). Psychological symptoms were evaluated through the open field test (OFT) and forced swim test (FST), and neurogenesis was assessed via BrdU labeling. Both exercise groups exhibited significant changes in body weight post-MCAO. Both exercises enhanced the treatment effect of SB623 transplantation. The forced exercise showed a stronger treatment effect on ischemic stroke than voluntary exercise alone, and the sole voluntary exercise improved depression-like behavior. The SB623 + F-Ex group demonstrated the greatest improvements in motor function, infarct area reduction, and neurogenesis. The SB623 + V-Ex group was most effective in alleviating depression-like behavior. Future research should optimize these exercise protocols and elucidate the underlying mechanisms to develop tailored rehabilitation strategies for stroke patients.
en-copyright=
kn-copyright=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawauchiSatoshi
en-aut-sei=Kawauchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YabunoSatoru
en-aut-sei=Yabuno
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SasakiTatsuya
en-aut-sei=Sasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawaiKoji
en-aut-sei=Kawai
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanimotoShun
en-aut-sei=Tanimoto
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SaijoTomoya
en-aut-sei=Saijo
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Ischemic stroke
kn-keyword=Ischemic stroke
en-keyword=Post-stroke depression
kn-keyword=Post-stroke depression
en-keyword=Regenerative medicine
kn-keyword=Regenerative medicine
en-keyword=Rehabilitation
kn-keyword=Rehabilitation
en-keyword=SB623
kn-keyword=SB623
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=e2025-0034
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimal Virtual-target Definition for Detecting Feeding Arteries of Renal Cell Carcinoma Using Automated Feeder-detection Software
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To determine the optimal virtual-target definition for detecting renal cell carcinoma feeders using transarterial computed tomography angiography with automated feeder-detection software.
Material and Methods: This retrospective study included 17 patients with 17 renal cell carcinomas who underwent transarterial ethiodized-oil marking before cryoablation. Tumor feeders were automatically detected on transarterial renal computed tomography angiography images using the automated feeder-detection software with three virtual-target definitions: small (ellipsoidal area maximized within the tumor contour), medium (ellipsoidal area covering the entire tumor with a minimal peripheral margin), and large (ellipsoidal area including the tumor and a 5-mm peripheral margin). The detected feeders were classified as true or false positives according to the findings of selective renal arteriography, by consensus of two interventional radiologists. Feeder-detection sensitivity and the mean number of false-positive feeders per tumor were calculated for each virtual-target definition.
Results: For 17 tumors, 25 feeding arteries were identified on the arteriography. The feeder-detection sensitivity of the software was 80.0% (20/25), 88.0% (22/25), and 48.0% (12/25) for small, medium, and large virtual targets, respectively. The mean ± standard deviation number of false-positive feeders per tumor was 0.82 ± 1.3, 1.41 ± 1.1, and 2.82 ± 1.6 when using small, medium, and large virtual-target definitions, respectively.
Conclusions: The detection rate of renal cell carcinoma feeders with the automated feeder-detection software varies according to the virtual-target definition. Using a medium virtual target, covering the entire tumor with a minimal peripheral margin, may provide the highest sensitivity and an acceptable number of false-positive feeders.
en-copyright=
kn-copyright=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigakiFumiyo
en-aut-sei=Higaki
en-aut-mei=Fumiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, Tsuyama Chuo Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=computed tomography angiography
kn-keyword=computed tomography angiography
en-keyword=kidney
kn-keyword=kidney
en-keyword=software
kn-keyword=software
en-keyword=therapeutic embolization
kn-keyword=therapeutic embolization
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=DSOK-0011 Potentially Regulates Circadian Misalignment and Affects Gut Microbiota Composition in Activity-Based Anorexia Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Anorexia nervosa (AN) is a metabolic-psychiatric disorder characterized by severe weight loss, hypercortisolemia, and hypothalamic?pituitary?adrenal (HPA) axis activation. In this study, we investigated the effect of inhibiting cortisol regeneration via the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) on the pathophysiology of AN.
Method: Female C57BL/6J mice underwent a 7-day activity-based anorexia (ABA) paradigm, involving 3?h daily feeding and free access to wheels, until 25% body weight loss or experiment completion. Mice were orally treated once daily with a potent 11β-HSD1 inhibitor, DSOK-0011, or vehicle. Body weight, food intake, and activity transitions were recorded; plasma corticosterone and cholesterol levels were measured using a fluorometric assay; gut microbiota were analyzed using 16S rRNA sequencing; and hippocampal glial cells were analyzed using immunohistochemistry.
Results: DSOK-0011-treated mice exhibited a modest but significant increase in postprandial wheel-running activity compared to baseline (4?5?p.m., p?=?0.018; 5?6?p.m., p?=?0.043), whereas vehicle-treated mice showed higher preprandial activity (9?10?a.m., p?=?0.0229). Gut microbiota analysis revealed increased alpha diversity in ABA mice, with a specific enrichment of the Lachnospiraceae family in the DSOK-0011 group. However, DSOK-0011 did not significantly affect body weight, food intake, corticosterone, and lipid levels, or hippocampal glial cell populations.
Conclusion: Inhibition of 11β-HSD1 by DSOK-0011 was associated with microbiota alterations and subtle shifts in activity timing under energy-deficient conditions. These findings suggest that peripheral glucocorticoid metabolism may influence microbial and behavioral responses in the ABA model, although its metabolic impact appears limited in the acute phase.
en-copyright=
kn-copyright=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaNanami
en-aut-sei=Wada
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyazakiKenji
en-aut-sei=Miyazaki
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTaro
en-aut-sei=Kato
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriuchiYoshihiro
en-aut-sei=Horiuchi
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiriiHiroshi
en-aut-sei=Kirii
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NguyenHoang Duy
en-aut-sei=Nguyen
en-aut-mei=Hoang Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HinotsuKenji
en-aut-sei=Hinotsu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhyaYoshio
en-aut-sei=Ohya
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaTakahiro
en-aut-sei=Asada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=5
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=6
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=7
en-affil=Department of Animal Applied Microbiology, Okayama University Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=11β-HSD1
kn-keyword=11β-HSD1
en-keyword=activity-based anorexia
kn-keyword=activity-based anorexia
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=corticosterone
kn-keyword=corticosterone
en-keyword=eating disorders
kn-keyword=eating disorders
en-keyword=microbiota
kn-keyword=microbiota
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=1
article-no=
start-page=22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective impact of landiolol against acute lung injury following hemorrhagic shock and resuscitation in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemorrhagic shock and resuscitation (HSR) induces pulmonary inflammation, leading to acute lung injury (ALI). Notably, blocking β1 receptors can lead to organ protection through anti?inflammatory and anti?apoptotic effects. Additionally, although the β1 receptor pathway is blocked by the β1 blocker, the β2 receptor pathway may be preserved and activate the 5' adenosine monophosphate?activated protein kinase (AMPK) pathway. The present study aimed to examine whether administration of the β1 blocker landiolol could achieve lung protection in a model of HSR?ALI, alongside improvements in inflammation and apoptosis. Male Sprague?Dawley rats underwent hemorrhage keeping their mean arterial pressure at 30 mmHg for 1 h. Resuscitation by reinfusion was initiated to restore blood pressure to pre?hemorrhage levels for >15 min, followed by a 45?min stabilization period to create the HSR?ALI model. Landiolol (100 mg/kg/min) or saline was continuously administered after resuscitation. The lung tissues, which were collected for assessing inflammation and apoptosis?related damage, underwent analyses, including histological examination, neutrophil count, assessment of lung wet/dry weight ratio, detection of the mRNA levels of tumor necrosis factor?α (TNF?α) and inducible nitric oxide synthase (iNOS), identification of terminal deoxynucleotidyl transferase dUTP nick?end labeling (TUNEL)?positive cells, and evaluation of caspase?3 expression. In addition, phosphorylated AMPKα (pAMPKα) expression was tested via western blotting. Compared with the HSR/saline group, the HSR/landiolol group demonstrated a reduction in lung tissue damage score, and significant reductions in neutrophil count, lung wet/dry weight ratio, lung TNF?α and iNOS mRNA levels, TUNEL?positive cells and cleaved caspase?3 expression. Furthermore, landiolol administration following HSR treatment increased pAMPKα expression. No significant hypotension occurred between the HSR/landiolol and HSR/saline groups; and blood loss did not differ significantly between the groups. In conclusion, landiolol administration after HSR reduced lung inflammation and apoptosis, suggesting a potential improvement in tissue damage. Furthermore, pAMPKα activation in the HSR/landiolol group may be the mechanism underlying the pulmonary protective effects of landiolol.
en-copyright=
kn-copyright=
en-aut-name=SakamotoRisa
en-aut-sei=Sakamoto
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuHiroko
en-aut-sei=Shimizu
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraRyu
en-aut-sei=Nakamura
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LuYifu
en-aut-sei=Lu
en-aut-mei=Yifu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiYaqiang
en-aut-sei=Li
en-aut-mei=Yaqiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriEmiko
en-aut-sei=Omori
en-aut-mei=Emiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiToru
en-aut-sei=Takahashi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Human Anatomy, Shantou University Medical College
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Anesthesiology, Okayama Saidaiji Hospital
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=HSR
kn-keyword=HSR
en-keyword=lung injury
kn-keyword=lung injury
en-keyword=landiolol
kn-keyword=landiolol
en-keyword=β1 blocker
kn-keyword=β1 blocker
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=apoptosis
kn-keyword=apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=1
article-no=
start-page=234
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rotenone targets midbrain astrocytes to produce glial dysfunction-mediated dopaminergic neurodegeneration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Exposure to pesticides, such as rotenone or paraquat, is an environmental factor that plays an important role in the pathogenesis of Parkinson's disease (PD). Rotenone induces PD-like pathology and is therefore used to develop parkinsonian animal models. Dopaminergic neurotoxicity caused by rotenone has been attributed to the inhibition of mitochondrial complex I, oxidative stress and neuroinflammation; however, the mechanisms underlying selective dopaminergic neurodegeneration by rotenone remain unclear. To resolve this, we focused on glial diversity and examined whether the brain region-specific glial response to rotenone could determine the vulnerability of dopaminergic neurons using primary cultured neurons, astrocytes and microglia from the midbrain and striatum of rat embryos and rotenone-injected PD model mice. Direct neuronal treatment with low-dose rotenone failed to damage dopaminergic neurons. Conversely, rotenone exposure in the presence of midbrain astrocyte and microglia or conditioned media from rotenone-treated midbrain glial cultures containing astrocytes and microglia produced dopaminergic neurotoxicity, but striatal glia did not. Surprisingly, conditioned media from rotenone-treated midbrain astrocytes or microglia monocultures did not affect neuronal survival. We also demonstrated that rotenone targeted midbrain astrocytes prior to microglia to induce dopaminergic neurotoxicity. Rotenone-treated astrocytes produced secreted protein acidic and rich in cysteine (SPARC) extracellularly, which induced microglial proliferation, increase in IL-1β and TNF-α, and NF-κB (p65) nuclear translocation in microglia, resulting in dopaminergic neurodegeneration. In addition, rotenone exposure caused the secretion of NFAT-related inflammatory cytokines and a reduction in the level of an antioxidant metallothionein (MT)-1 from midbrain glia. Furthermore, we observed microglial proliferation and a decrease in the number of MT-positive astrocytes in the substantia nigra, but not the striatum, of low-dose rotenone-injected PD model mice. Our data highlight that rotenone targets midbrain astrocytes, leading to SPARC secretion, which promotes the neurotoxic conversion of microglia and leads to glial dysfunction-mediated dopaminergic neurodegeneration.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IsookaNami
en-aut-sei=Isooka
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuokaRyo
en-aut-sei=Kikuoka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImafukuFuminori
en-aut-sei=Imafuku
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SogawaNorio
en-aut-sei=Sogawa
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KitamuraYoshihisa
en-aut-sei=Kitamura
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacotherapy, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Rotenone
kn-keyword=Rotenone
en-keyword=Astrocyte
kn-keyword=Astrocyte
en-keyword=Microglia
kn-keyword=Microglia
en-keyword=SPARC
kn-keyword=SPARC
en-keyword=Parkinson's disease
kn-keyword=Parkinson's disease
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=38590
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Serum extracellular vesicles containing adenoviral E1A-DNA as a predictive biomarker for liquid biopsy in oncolytic adenovirus therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oncolytic adenoviruses replicate selectively in tumor cells and induce immunogenic cell death, but predictive biomarkers for early therapeutic response are lacking. This study evaluated extracellular vesicle-encapsulated adenoviral E1A-DNA (EV-E1A-DNA) as a minimally invasive biomarker for monitoring responses to telomerase-specific oncolytic adenoviruses OBP-301 and OBP-502. EVs were isolated from human and murine cancer cell lines and from the serum of treated mice using ultracentrifugation. EV-associated E1A-DNA levels were measured by quantitative polymerase chain reaction and found to correlate with cytotoxicity in vitro and tumor regression in vivo. In xenograft models, serum EV-E1A-DNA levels at 2 days post-treatment showed strong correlations with final tumor volume and survival, supporting their utility as an early predictive biomarker. In immunocompetent mice pre-immunized with wild-type adenovirus, free viral DNA was undetectable in serum due to neutralizing antibodies, whereas EV-E1A-DNA remained detectable. This “stealth effect” indicates that EVs protect viral components from immune clearance. These results demonstrate that EV-E1A-DNA is a sensitive and virus-specific biomarker that enables early assessment of therapeutic efficacy, even in the presence of antiviral immunity. This strategy offers a promising liquid biopsy approach for personalized monitoring of oncolytic virotherapy and may be applicable to other virus-based therapies.
en-copyright=
kn-copyright=
en-aut-name=YagiChiaki
en-aut-sei=Yagi
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HanzawaShunya
en-aut-sei=Hanzawa
en-aut-mei=Shunya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadowakiDaisuke
en-aut-sei=Kadowaki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakamotoMasaki
en-aut-sei=Sakamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamadaYuki
en-aut-sei=Hamada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoRyoma
en-aut-sei=Sugimoto
en-aut-mei=Ryoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhtaniTomoko
en-aut-sei=Ohtani
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KumonKento
en-aut-sei=Kumon
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Oncolys BioPharma, Inc.
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Oncolytic adenovirus
kn-keyword=Oncolytic adenovirus
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
en-keyword=Liquid biopsy
kn-keyword=Liquid biopsy
en-keyword=Predictive biomarker
kn-keyword=Predictive biomarker
en-keyword=Stealth effect
kn-keyword=Stealth effect
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gemcitabine-induced neutrophil extracellular traps via interleukin-8-CXCR1/2 pathway promote chemoresistance in pancreatic cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and chemoresistance poses a significant challenge in its treatment. Neutrophil extracellular traps (NETs) have emerged as key players in the tumour microenvironment, but their role in chemoresistance remains unclear.
Methods: We investigated the involvement of NETs in PDAC chemoresistance using patient tumour samples, in vitro assays with gemcitabine (GEM)-treated PDAC cells, and in vivo mouse models. We evaluated cytokine production, NET formation and tumour response to GEM, with or without the CXCR1/2 inhibitor navarixin.
Results: NETs are significantly accumulated in the tumours of PDAC patients exhibiting poor response to chemotherapy. GEM-treated PDAC cells secrete pro-inflammatory cytokines such as interleukin-8 (IL-8). IL-8 promote the formation of chemotherapy-induced NETs (chemoNETosis) through activation of CXCR 1/2 on neutrophils. Importantly, treatment with navarixin significantly suppressed chemoNETosis, restored sensitivity to GEM, and significantly reduced tumour growth in vivo.
Conclusions: Our findings reveal that NETs contribute to chemoresistance in PDAC and that IL-8?mediated chemoNETosis plays a pivotal role in this process. Inhibition of CXCR1/2-mediated NET formation enhances the efficacy of GEM. This approach may represent a promising therapeutic strategy for overcoming chemoresistance in PDAC. These results support further clinical investigation of anti-NETs therapies.
en-copyright=
kn-copyright=
en-aut-name=NogiShohei
en-aut-sei=Nogi
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaniguchiAtsuki
en-aut-sei=Taniguchi
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YagiTomohiko
en-aut-sei=Yagi
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=11
article-no=
start-page=1677
end-page=1685
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Cytoreductive Nephrectomy in the Immune Checkpoint Inhibitor Era: A Multicenter Collaborative Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: We aimed to evaluate overall survival (OS) and determine the optimal timing of cytoreductive nephrectomy (CN) in patients with metastatic renal cell carcinoma (mRCC) receiving immune checkpoint inhibitor (ICI)-based therapy.
Methods: This retrospective study reviewed medical records of 447 patients with mRCC treated with ICI at multiple Japanese institutions between January 2018 and August 2023. From this cohort, 178 patients with lymph node or distant metastases received either cytoreductive nephrectomy (CN group; n?=?72) or ICI therapy without cytoreductive nephrectomy (non-CN group; n?=?106) as first-line treatment.
Results: Median progression-free survival was 15.7?months, and median overall survival was 58.1?months. CN significantly improved OS, with the CN group's median OS not reached, compared to 29.6?months in the non-CN group (p?=?0.01). Deferred CN also showed improved survival outcomes. Poor prognostic factors for immediate CN included International Metastatic Renal Cell Carcinoma Database Consortium poor risk, sarcomatoid differentiation, and a high neutrophil-to-lymphocyte ratio.
Conclusions: We developed a prognostic model to guide patient selection for CN, emphasizing the need for personalized treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=10
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=11
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=12
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=17
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=18
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
en-keyword=cytoreductive nephrectomy
kn-keyword=cytoreductive nephrectomy
en-keyword=IMDC classification
kn-keyword=IMDC classification
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=neutrophil-to- lymphocyte ratio
kn-keyword=neutrophil-to- lymphocyte ratio
en-keyword=sarcomatoid differentiation
kn-keyword=sarcomatoid differentiation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optogenetic Cancer Therapy Using the Light-Driven Outward Proton Pump Rhodopsin Archaerhodopsin-3 (AR3)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Medicines used for cancer treatment often cause serious side effects by damaging normal cells due to nonspecific diffusion. To address this issue, we previously developed an optical method to induce apoptotic cell death via intracellular pH alkalinization using the outward proton pump rhodopsin, Archaerhodopsin-3 (AR3) in various noncancer model cells in vitro and in vivo. In this study, we applied this method to cancer cells and tumors to evaluate its potential as an anticancer therapeutic strategy. First, we confirmed that AR3-expressing murine cancer cell lines (MC38, B16F10) showed apoptotic cell death upon green light irradiation, as indicated by increased levels of cell death and apoptosis-related markers. Next, we established stable AR3-expressing MC38 and B16F10 cells by using viral vectors. When these AR3-expressing cells were subcutaneously transplanted into C57BL/6 mice, the resulting tumors initially grew at a rate comparable to that of control tumors lacking AR3 expression or light stimulation. However, upon green light irradiation, AR3-expressing tumors exhibited either a marked reduction in size or significantly suppressed growth, accompanied by the induction of apoptosis signals and decreased proliferation signals. These results demonstrate that AR3-mediated cell death has potent antitumor effects both in vitro and in vivo. This optical method thus holds promise as a novel cancer therapy with potentially reduced side effects.
en-copyright=
kn-copyright=
en-aut-name=NakaoShin
en-aut-sei=Nakao
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=281
cd-vols=
no-issue=
article-no=
start-page=111174
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-terminal domains and site-specific glycosylation regulate the secretion of avian melanocortin inverse agonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Agouti signaling protein (ASIP) and agouti-related protein (AGRP) are paralogous inverse agonists of melanocortin receptors with distinct physiological roles, but their structural and biochemical properties in birds remain poorly understood. Here, we characterized chicken ASIP and AGRP proteins. Analysis of available sequences revealed that a motif resembling the mammalian proprotein convertase 1/3 (PC1/3, also known as PCSK1) cleavage site is conserved across a broad range of avian orders, but Western blot analysis of transfected Chinese hamster ovary (CHO-K1) cells and chicken hypothalamus detected no cleavage, suggesting that avian AGRP may not be post-translationally processed at this site. Chicken ASIP mRNA contains an in-frame upstream ATG (uATG) and a putative N-linked glycosylation site at Asn-42, both conserved across multiple avian orders. Overexpression in CHO-K1 cells showed that ASIP translated from either ATG produces a mature protein of the same size that is N-glycosylated at Asn-42 and exhibits markedly lower secretion efficiency than AGRP. Domain-swapping experiments revealed that the N-terminal domain reduces secretion, whereas a naturally occurring ASIP-b variant with an additional N-glycan at Asn-47 shows enhanced secretion. Proteasome inhibition increased intracellular ASIP, and endoglycosidase H (Endo H) sensitivity indicated endoplasmic reticulum (ER) retention, suggesting that the N-terminal domain limits secretion via ER-associated proteasomal degradation. These findings reveal species-specific post-translational regulation of avian melanocortin inverse agonists, in which N-terminal features and site-specific N-glycosylation determine secretion efficiency, likely contributing to their distinct roles in pigmentation and hypothalamic energy balance.
en-copyright=
kn-copyright=
en-aut-name=FukuchiHibiki
en-aut-sei=Fukuchi
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeRyoya
en-aut-sei=Watanabe
en-aut-mei=Ryoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IidaYuna
en-aut-sei=Iida
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoSaya
en-aut-sei=Nakano
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MizutaniAya
en-aut-sei=Mizutani
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AboTatsuhiko
en-aut-sei=Abo
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Agouti signaling protein
kn-keyword=Agouti signaling protein
en-keyword=Agouti-related protein
kn-keyword=Agouti-related protein
en-keyword=Avian melanocortin inverse agonists
kn-keyword=Avian melanocortin inverse agonists
en-keyword=Post-translational modification
kn-keyword=Post-translational modification
en-keyword=N-linked glycosylation
kn-keyword=N-linked glycosylation
en-keyword=Protein secretion
kn-keyword=Protein secretion
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=1680
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251029
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Kidney Organoids: Current Advances and Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Kidney organoids, derived from stem cells, including pluripotent stem cells and adult progenitor cells, have been reported as three-dimensional in vitro models that reflect key aspects of kidney development, structure, and function. Advances in differentiation protocols and tissue engineering have enabled the generation of organoids that exhibit nephron-like structures, including glomerular and tubular structures. Kidney organoids have been widely applied in several directions, including disease modeling and therapeutic screening, drug nephrotoxicity evaluation, and regenerative medicine. In particular, kidney organoids offer a promising platform for studying genetic kidney diseases, such as polycystic kidney disease and congenital anomalies of the kidney and urinary tract (CAKUT), by allowing patient-specific modeling for the analysis of pathophysiology and therapeutic screening. Despite several current limitations, such as incomplete maturation, lack of full nephron segmentation, and variability between protocols and cell conditions, further technological innovations such as microfluidics and bioengineering may refine kidney organoid systems. This review highlights recent advances in kidney organoid research, outlines major applications, and discusses future directions to enhance their physiological relevance, functional maturity, and translational integration into preclinical and clinical nephrology.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchidaNaruhiko
en-aut-sei=Uchida
en-aut-mei=Naruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=kidney organoid
kn-keyword=kidney organoid
en-keyword=stem cell
kn-keyword=stem cell
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug toxicity
kn-keyword=drug toxicity
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative medicine
kn-keyword=regenerative medicine
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=27
article-no=
start-page=6557
end-page=6563
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fluorescence detection of DNA with a single-base mismatch by a Tm-independent peptide nucleic acid (PNA) twin probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=There is a need to develop efficient methods for detecting target nucleic acids to enable the rapid diagnosis and early treatment of diseases. We previously demonstrated that a peptide nucleic acid (PNA) twin probe, consisting of two PNAs each containing a fluorescent dye, with pyrene at one end, detects target DNA sequence-specifically through pyrene excimer emission. In this study, to advance the development of this probe system, we further investigated the fluorescence properties of the PNA twin probe P1 and P2, and found that the excimer fluorescence was significantly reduced when a mismatched base in the DNA sequence was present at the site of P1 closest to the pyrene. In other words, this probe was found to detect single-base mismatches without taking into account the thermal stability of the PNA/DNA hybrid. The detection limit of this PNA twin probe for the single-base-mismatched DNA was 2.7 nM. In the future, this probe should lead to a method to detect point mutations in endogenous nucleic acids within cells.
en-copyright=
kn-copyright=
en-aut-name=IshiiKoki
en-aut-sei=Ishii
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigetoHajime
en-aut-sei=Shigeto
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamuraShohei
en-aut-sei=Yamamura
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiYoshitane
en-aut-sei=Imai
en-aut-mei=Yoshitane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitamatsuMizuki
en-aut-sei=Kitamatsu
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
affil-num=2
en-affil=Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=3
en-affil=Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=4
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=20
article-no=
start-page=3351
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tertiary Lymphoid Structures Are Associated with Favorable Clinical Outcomes and Negatively Correlated with Cancer-Associated Fibroblasts in Esophageal Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Esophageal cancer remains a highly aggressive malignant tumor with poor prognosis, despite advances in combination therapies and novel immunotherapies. Tertiary lymphoid structures (TLSs), characterized by densely packed CD20+ B cells in a germinal-center-like structure, have recently been recognized as immune-stimulating components within the tumor microenvironment. In contrast, cancer-associated fibroblasts (CAFs) are stromal cells expressing fibroblast-activating protein (FAP) involved in immunosuppression. Methods: In this retrospective study, 124 clinical samples from patients who underwent radical surgery for esophageal cancer at our institute were analyzed. We investigated whether TLSs could serve as a prognostic factor and examined their association with tumor microenvironment factors. Results: The presence of TLSs was an independent prognostic factor for overall and progression-free survival in multivariate analyses. A high level of TLS formation correlated with better nutritional status, fewer M2 macrophages, and greater plasma cell infiltration. Additionally, little TLS formation was observed in areas with abundant CAFs, and quantitative analyses revealed a significant negative correlation between TLSs and CAFs. Conclusions: TLSs enhance antitumor immunity via macrophages and plasma cells and can be a valuable prognostic indicator in patients undergoing surgery for esophageal cancer. Targeting CAFs may prove to be a promising therapeutic strategy to enhance tumor-immunity-related TLSs.
en-copyright=
kn-copyright=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakedaYasushige
en-aut-sei=Takeda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoHijiri
en-aut-sei=Matsumoto
en-aut-mei=Hijiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTatsuya
en-aut-sei=Takahashi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawasakiKento
en-aut-sei=Kawasaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkaiMasaaki
en-aut-sei=Akai
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShirakawaYasuhiro
en-aut-sei=Shirakawa
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tertiary lymphoid structures (TLSs)
kn-keyword=tertiary lymphoid structures (TLSs)
en-keyword=cancer-associated fibroblasts (CAFs)
kn-keyword=cancer-associated fibroblasts (CAFs)
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=prognosis
kn-keyword=prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=6
article-no=
start-page=738
end-page=748
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk of Heart Failure Hospitalization in Patients Treated With Osimertinib
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Osimertinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, is used to treat patients with epidermal growth factor receptor?mutant non?small-cell lung cancer. Although osimertinib has been linked to heart failure (HF), detailed risk estimates remain unclear.
Objectives The aim of this study was to examine the association between osimertinib use and HF hospitalization.
Methods In this retrospective cohort study using a large-scale Japanese claims database, patients diagnosed with lung cancer between April 2008 and December 2021 who received cancer therapy were identified. Patients were categorized into osimertinib and control groups according to treatment received. The incidence of HF hospitalization during the treatment period was compared between the groups. Multivariable analyses were performed before and after propensity score matching.
Results The osimertinib and control groups included 11,391 and 108,144 patients, respectively. Among the entire cohort, the median age was 70 years (Q1-Q3: 64-76 years), and the median follow-up duration was 173 days (Q1-Q3: 73-448 days). The incidence of HF hospitalization was 9.9 and 4.1 cases per 1,000 person-years in the osimertinib and control groups, respectively. In multivariable analysis, osimertinib was associated with a higher risk for HF hospitalization than control therapy (subdistribution HR: 2.56; 95% CI: 2.07-3.18; P < 0.001). This association remained significant after propensity score matching (subdistribution HR: 2.29; 95% CI: 1.62-3.24; P < 0.001).
Conclusions Osimertinib use was associated with an increased risk for HF hospitalization. Cardiac function should be closely monitored in patients receiving osimertinib.
en-copyright=
kn-copyright=
en-aut-name=TatebeYasuhisa
en-aut-sei=Tatebe
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaYuta
en-aut-sei=Tanaka
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ManabeYohei
en-aut-sei=Manabe
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoShinobu
en-aut-sei=Okano
en-aut-mei=Shinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashionnaTsukasa
en-aut-sei=Higashionna
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurakawaKiminaka
en-aut-sei=Murakawa
en-aut-mei=Kiminaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
en-keyword=adverse events
kn-keyword=adverse events
en-keyword=cardiotoxicity
kn-keyword=cardiotoxicity
en-keyword=epidermal growth factor receptor tyrosine kinase inhibitor
kn-keyword=epidermal growth factor receptor tyrosine kinase inhibitor
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=pharmacotherapy
kn-keyword=pharmacotherapy
en-keyword=propensity score matching
kn-keyword=propensity score matching
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251020
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coupling effects of biochar and sediment microbial fuel cells on CH4 and CO2 emissions from straw-amended paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose The independent incorporation of biochar and sediment microbial fuel cells (SMFCs) into paddy soil has been shown to reduce methane (CH4) emissions. However, the application of rice straw into paddy soil enhances the availability of labile carbon that stimulates methanogen growth, counteracting the mitigation effects of both methods. This study, therefore, aimed to investigate the effect of coupling biochar and SMFC on CH4 and CO2 emissions from straw-amended paddy soil.
Materials and methods Single chamber SMFC setups constructed using acrylic columns (height, 25 cm; inner diameter, 9 cm) with six treatments were established using soil amended with 0% (0BC), 1% (1BC), and 2% (2BC) biochar: with and without SMFC conditions. Stainless steel mesh (15?×?3 cm) and graphite felt (6?×?5 cm) were used as anode and cathode materials, respectively.
Results Cumulative emission of CH4 in the 0BC treatment with SMFC was 39% less than in that without SMFC. Biochar addition and SMFC operation together further reduced CH4 emission by 57% and 60% in 1BC and 2BC treatments, respectively, compared to that in the 0BC treatment without SMFC operation. The relative abundance of microbial communities indicated methane-oxidizing bacteria were enriched in the presence of biochar and hydrogenotrophic Methanoregula were suppressed by SMFC operation. This suggested that SMFC mainly inhibited CH4 production by outcompeting hydrogenotrophic archaea.
Conclusion The use of biochar made from leftover rice straw has an interactive effect on SMFC operation and both methods can be used to reduce CH4 emission from straw-amended paddy soil.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakaharaNozomi
en-aut-sei=Nakahara
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=7
en-affil=Department of Comprehensive Technical Solutions, Okayama University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Electrogenesis
kn-keyword=Electrogenesis
en-keyword=Methane oxidation
kn-keyword=Methane oxidation
en-keyword=Pyrolysis
kn-keyword=Pyrolysis
en-keyword=Paddy field
kn-keyword=Paddy field
en-keyword=Methanogens
kn-keyword=Methanogens
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=836
end-page=849
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251028
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Accelerates Epithelial-Mesenchymal Transition and the Cell Cycle of Hepatocellular Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Hepatocellular carcinoma (HCC) is a heterogeneous liver cancer with limited treatment options and a poor prognosis in advanced stages. To identify novel biomarkers and therapeutic targets, we investigated the role of chromosome 1 open reading frame 50 (C1orf50), a gene with a previously uncharacterized function in HCC.
Materials and Methods: We performed a comprehensive transcriptome data analysis of the human hepatocellular carcinoma project from The Cancer Genome Atlas (TCGA) and subsequently validated the oncogenic roles of C1orf50 using HCC cell lines.
Results: Using transcriptomic and clinical data from TCGA, we stratified 355 primary HCC samples based on C1orf50 expression levels. Patients with high C1orf50 expression exhibited significantly shorter overall survival, suggesting its association with aggressive tumor behavior. Differential expression and enrichment analyses revealed that C1orf50-high tumors were enriched in oncogenic pathways, including epithelial-mesenchymal transition (EMT), cell cycle activation, and stemness-related properties. Transcriptional regulatory network analysis detected 456 significantly dysregulated regulons, including ZEB1/2 and E2F2, key drivers of EMT and cell cycle, in the C1orf50-high group. In addition, we observed increased YAP1/TAZ signaling, further linking C1orf50 to stemness and therapeutic resistance. Functional data from CRISPR-based dependency screening suggested that several transcription factors up-regulated in the C1orf50-high state, such as ZBTB11 and CTCE, are essential for the survival of HCC cells. These findings indicate potential therapeutic vulnerabilities and support the rationale for targeting C1orf50-associated pathways.
Conclusion: C1orf50 is a novel biomarker of poor prognosis in HCC and a key regulator of oncogenic features such as EMT, cell cycle progression, and stemness. This study highlights the therapeutic potential of targeting C1orf50-related networks in aggressive subtypes of liver cancer.
en-copyright=
kn-copyright=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PE?ATIRSO
en-aut-sei=PE?A
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=6
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=hepatocellular carcinoma
kn-keyword=hepatocellular carcinoma
en-keyword=stemness
kn-keyword=stemness
en-keyword=cell cycle
kn-keyword=cell cycle
en-keyword=epithelial?mesenchymal transition
kn-keyword=epithelial?mesenchymal transition
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e95411
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary Lacrimal Sac Diffuse Large B-cell Lymphoma Treated With Local Radiotherapy Alone: A Case With No Relapse After 21 Years of Follow-Up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary lacrimal sac lymphoma is rare and diagnosed as diffuse large B-cell lymphoma in a predominant histopathological type. Systemic chemotherapy would be the standard of care, but local radiotherapy may be a treatment option toward a localized lesion. The present patient is a 54-year-old otherwise healthy woman with a right lacrimal sac mass, which was proven by excisional biopsy to be diffuse large B-cell lymphoma. Since she did not have any other systemic lesions on gallium scintigraphy and neck-to-abdominal computed tomography scans, which were the standard procedure at that time, she underwent local radiotherapy at 40 Gy. Two years later, at the age of 56 years, she developed radiation retinopathy with macular edema in the right eye and had spotty laser photocoagulation in the nasal half of the fundus. At the age of 57 years, she developed radiation cataract and underwent cataract surgery with intraocular lens implantation in the right eye. At the age of 58 years, the macular edema in the right eye became worse and remained active, resulting in poor visual acuity of 0.1. She thus underwent 25-gauge vitrectomy in the right eye to peel off the adhering posterior vitreous surface, together with the internal limiting membrane, as the standard procedure at that time. The visual acuity in the right eye was elevated to 0.6. She maintained the visual acuity afterward and had no relapse of lymphoma in 21 years from the diagnosis of primary right lacrimal sac diffuse large B-cell lymphoma. Local radiotherapy would still be a treatment option for localized lymphoma lesions such as primary lacrimal sac lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMitsuhiro
en-aut-sei=Takemoto
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Radiotherapy, Himeji Red Cross Hospital
kn-affil=
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=excisional biopsy
kn-keyword=excisional biopsy
en-keyword=lacrimal sac
kn-keyword=lacrimal sac
en-keyword=laser photocoagulation
kn-keyword=laser photocoagulation
en-keyword=macular edema
kn-keyword=macular edema
en-keyword=pathology
kn-keyword=pathology
en-keyword=radiation cataract
kn-keyword=radiation cataract
en-keyword=radiation retinopathy
kn-keyword=radiation retinopathy
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=vitrectomy
kn-keyword=vitrectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative analysis of interactions between five strains of Pseudomonas syringae pv. tabaci and Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta 6605), the agent of wildfire disease in tobacco, has been used as a model strain for elucidating the virulence mechanisms of Pta. However, the host genes involved in resistance or susceptibility to Pta remain largely unknown. Nicotiana benthamiana is a model plant species in the Solanaceae family and is useful in functional analyses of genes. We herein compared five Pta strains (6605, 6823, 7372, 7375, and 7380) in terms of their phenotypes on medium and interactions with N. benthamiana. Pta 6605 and Pta 6823 showed more active proliferation than the other strains in a high cell density culture. Moreover, Pta 6605 exhibited markedly higher swarming motility than the other strains. In inoculated leaves of N. benthamiana, Pta 6605 and Pta 6823 caused more severe disease symptoms and proliferated to a higher cell density than the other strains. However, Pta 6823 as well as Pta 7372 and Pta 7380 induced the high accumulation of salicylic acid (SA). Moreover, the inoculations of Pta 6823 and Pta 7372 resulted in the upregulation of ethylene biosynthesis genes. On the other hand, Pta 6605 induced neither SA accumulation nor the expression of ethylene biosynthesis genes, and suppressed the expression of jasmonate biosynthesis genes. Moreover, chlorosis was clearly induced in the upper uninoculated leaves of Pta 6605-infected plants. These results suggest that Pta 6605 escapes from or suppresses plant immune systems and, thus, is the most virulent on N. benthamiana among the five strains tested.
en-copyright=
kn-copyright=
en-aut-name=NakaoYuna
en-aut-sei=Nakao
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsaiShuta
en-aut-sei=Asai
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatouShinpei
en-aut-sei=Katou
en-aut-mei=Shinpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Science and Technology, Shinshu University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Science and Technology, Shinshu University
kn-affil=
en-keyword=Chlorosis
kn-keyword=Chlorosis
en-keyword=Nicotiana benthamiana
kn-keyword=Nicotiana benthamiana
en-keyword=Phytohormones
kn-keyword=Phytohormones
en-keyword=Pseudomonas syringae pv. tabaci
kn-keyword=Pseudomonas syringae pv. tabaci
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=
article-no=
start-page=110530
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surrogate-assisted motion planning and layout design of robotic cellular manufacturing systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation. The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate model can estimate the robot’s operation time with 98% of accuracy without explicit computations of the motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator show that the total computation time is approximately 1/400, significantly shorter than the conventional methods.
en-copyright=
kn-copyright=
en-aut-name=KawabeTomoya
en-aut-sei=Kawabe
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiTatsushi
en-aut-sei=Nishi
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiuZiang
en-aut-sei=Liu
en-aut-mei=Ziang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraTomofumi
en-aut-sei=Fujiwara
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Robotics
kn-keyword=Robotics
en-keyword=Cellular manufacturing
kn-keyword=Cellular manufacturing
en-keyword=Layout design
kn-keyword=Layout design
en-keyword=Sequence-pair
kn-keyword=Sequence-pair
en-keyword=Motion planning
kn-keyword=Motion planning
en-keyword=Surrogate optimization
kn-keyword=Surrogate optimization
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Artificial intelligence
kn-keyword=Artificial intelligence
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=20
article-no=
start-page=10072
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurofibromin Encoded by the Neurofibromatosis Type 1 (NF1) Gene Promotes the Membrane Translocation of SPRED2, Thereby Inhibiting the ERK Pathway in Breast Cancer Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Neurofibromin (NF) inhibits the RAS/RAF/ERK pathway through its interaction with SPRED1 (Sprouty-related EVH1 domain-containing protein 1). Here, we investigated the functional relationship between NF and SPRED2 in breast cancer (BC). Human BC cell lines were transfected to downregulate or overexpress NF and SPRED2 and subsequently subjected to functional assays. Protein and mRNA levels were analyzed by Western blotting and RT-qPCR, respectively. Protein?protein interactions were examined by immunoprecipitation. Database analyses and immunohistochemistry (IHC) of BC tissues were performed to validate the in vitro findings. Downregulating NF or SPRED2 expression in BC cells enhanced cell proliferation, migration and invasion accompanied by RAF/ERK activation, whereas overexpression produced opposite effects. NF formed a protein complex with SPRED2 and facilitated its translocation to the plasma membrane. By IHC, SPRED2 membrane localization was absent in NF-negative luminal A and triple-negative BC (TNBC) but present in a subset of luminal A BC. By database analyses, both NF1 and SPRED2 mRNA levels were reduced in BC tissues, and luminal A BC patients with high expression of both NF1 and SPRED2 mRNA exhibited improved relapse-free survival. These results suggest a critical role for the NF?SPRED2 axis in BC progression and highlight it as a potential therapeutic target.
en-copyright=
kn-copyright=
en-aut-name=Su PwintNang Thee
en-aut-sei=Su Pwint
en-aut-mei=Nang Thee
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiChunning
en-aut-sei=Li
en-aut-mei=Chunning
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GaoTong
en-aut-sei=Gao
en-aut-mei=Tong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=SPRED2
kn-keyword=SPRED2
en-keyword=neurofibromatosis type 1
kn-keyword=neurofibromatosis type 1
en-keyword=neurofibromin
kn-keyword=neurofibromin
en-keyword=RAS/RAF/ERK
kn-keyword=RAS/RAF/ERK
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ATPase copper transporting beta contributes to cisplatin resistance as a regulatory factor of extracellular vesicles in head and neck squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cisplatin (CDDP) resistance remains a major clinical challenge in the treatment of head and neck squamous cell carcinoma (HNSC). Our group identified ATPase copper transporting beta (ATP7B) as a mediator of CDDP resistance through its role in drug efflux and small extracellular vesicle (sEV) secretion. Herein, we uncovered a novel mechanism by which ATP7B regulates sEV dynamics and the intercellular transmission of CDDP resistance. Using transcriptomic analyses of HNSC datasets, we demonstrate that ATP7B expression correlates with endocytosis- and epithelial-mesenchymal transition (EMT)-related gene sets and with elevated levels of EV-associated proteins. CDDP-resistant HNSC cells exhibited upregulated ATP7B, Rab5/Rab7, and preferentially secreted HSP90- and EpCAM-rich sEVs. These sEVs were leading to increased ATP7B expression and reduced CDDP sensitivity in recipient cells. A pharmacological inhibition of sEV biogenesis with GW4869 suppressed ATP7B and Atox1 expressions, inhibited late endosome maturation, and significantly enhanced CDDP-induced apoptosis in HNSC cells. In vivo, GW4869 reduced the sEV protein content and ATP7B expression in xenograft tumors. These findings establish that ATP7B is a critical modulator of sEV cargo and resistance propagation. Our results highlight a previously unrecognized ATP7B?sEV axis driving chemoresistance and identify sEV inhibition as a promising strategy to overcome therapeutic failure in HNSC.
en-copyright=
kn-copyright=
en-aut-name=OgawaTatsuo
en-aut-sei=Ogawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RyumonShoji
en-aut-sei=Ryumon
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKohei
en-aut-sei=Sato
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmemoriKoki
en-aut-sei=Umemori
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKunihiro
en-aut-sei=Yoshida
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkuiTatsuo
en-aut-sei=Okui
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Momen-HeraviFatemeh
en-aut-sei=Momen-Heravi
en-aut-mei=Fatemeh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=11
en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Orofacial Sciences, School of Dentistry, University of California San Francisco
kn-affil=
affil-num=14
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=234
end-page=249
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biochar-amended Sediment Microbial Fuel Cells for Water Quality Improvement in Intensive and Extensive Pond Drainages in Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The use of nutrient-rich feed in shrimp farming in Central Vietnam has led to high nitrogen (N) and phosphorus (P) contents in the pond sediment. The objectives of the study were to assess the effectiveness of biochar-sediment microbial fuel cells (BC-SMFCs) in suppressing P and N release from two types of sediment in intensive (Int) and extensive (Ext) pond drainages in Central Vietnam. Single chamber SMFCs were set up and operated under open or closed-circuit (no SMFC or SMFC) conditions. Coconut shell biochar (BC) was amended to sediments at 1%. For Int-sediment, total phosphorus (TP) release was reduced by no BC-SMFCs through co-precipitation with Fe. On the other hand, BC-SMFCs did not suppress TP release because P was released from BC and organic matter decomposition was enhanced in the sediment. Application of BC enhanced organic N mineralization in the sediment. Nitrification and denitrification occurred in the overlying water, reducing mineral N concentrations. For Ext-sediment, BC addition and SMFC conditions did not affect TP and total nitrogen (TN) release because of low initial organic matter content, and less reductive condition. Our study suggested that the effect of SMFCs was masked by BC which released more P from Int-sediment to the water.
en-copyright=
kn-copyright=
en-aut-name=NguyenUyen Tu
en-aut-sei=Nguyen
en-aut-mei=Uyen Tu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaNozomi
en-aut-sei=Nakahara
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PereraGamamada Liyanage Erandi Priyangika
en-aut-sei=Perera
en-aut-mei=Gamamada Liyanage Erandi Priyangika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LeHuu Tien
en-aut-sei=Le
en-aut-mei=Huu Tien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Comprehensive Technical Solutions, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Education, Science and Technology Quang Tri Branch, Hue University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=biochar
kn-keyword=biochar
en-keyword=Central Vietnam
kn-keyword=Central Vietnam
en-keyword=electricity generation
kn-keyword=electricity generation
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=shrimp farming
kn-keyword=shrimp farming
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=3
article-no=
start-page=215
end-page=227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Root-exuded sugars as drivers of rhizosphere microbiome assembly
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sugars in root exudates play a pivotal role in shaping plant-microbe interactions in the rhizosphere, serving as carbon sources and signaling molecules that orchestrate microbial behavior, community structure, and plant resilience. Recent research has shed light on the dynamics of sugar levels in root exudates, the factors that influence their secretion, and the mechanisms by which these sugars drive microbial colonization and community assembly in the rhizosphere. Microbial communities, in turn, contribute to plant physiological changes that enhance growth and stress tolerance. While well-studied sugars such as glucose, sucrose, and fructose are known to promote chemotaxis, motility, and biofilm formation, emerging evidence suggests that less-studied sugars like arabinose and trehalose may also play significant roles in microbial interactions and stress resilience. Key challenges remain, including the accurate measurement of labile sugars that are rapidly metabolized by microbes, and the elucidation of genetic mechanisms underlying rhizosphere metabolic interactions in both host plants and microbes. Addressing these challenges will advance our understanding of sugar-mediated interactions and inform the development of sustainable agricultural innovations.
en-copyright=
kn-copyright=
en-aut-name=HemeldaNiarsi Merry
en-aut-sei=Hemelda
en-aut-mei=Niarsi Merry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=carbon sources
kn-keyword=carbon sources
en-keyword=plant-derived sugars
kn-keyword=plant-derived sugars
en-keyword=plant-microbe interactions
kn-keyword=plant-microbe interactions
en-keyword=rhizosphere
kn-keyword=rhizosphere
en-keyword=root exudate
kn-keyword=root exudate
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=1
article-no=
start-page=46
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251009
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Highly efficient transgenesis mediated by Tip100 transposon system in medaka
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transgenesis mediated by transposon is an effective approach for introducing exogenous DNA into the nuclear genome and establishing stable transgenic strains that efficiently express genetic tools. Although the DNA transposon Tol2 is widely used for transgenesis in zebrafish, its endogenous transpositional activity can lead to unintended transgene mobilization, making it unsuitable for transgenesis in medaka (Oryzias latipes). Here, we demonstrated that the DNA transposon Tip100, originally identified in the common morning glory (Ipomoea purpurea), an ornamental plant, can serve as a useful tool for transgenesis in Japanese medaka. The GFP transgene cassette, when co-injected with Tip100 transposase mRNA, was expressed in significantly higher number of somatic cells in the injected fish. Furthermore, a transgene flanked by truncated recognition sequences (100 bp each) exhibited expression levels comparable to those of the original vector containing the full 2.2 kb recognition sequence. Injection of a transgene driven by a germline-specific promoter revealed that fish injected with Tip100 mRNA exhibited a significantly higher germline transmission rate (42/68; 62.7%) compared to those injected without the mRNA (13/62; 21.0%). We successfully established transgenic strains by outcrossing injected founders with GFP-positive germ cells (7/7; 100%) and demonstrated that the transgenes were randomly integrated into the medaka genome, generating 8-bp duplications at the insertional sites?an insertional signature of the hAT superfamily of transposons. Our findings indicate that the Tip100 system is a promising tool for generating stable transgenic strains that express various genetic tools in medaka and potentially other fish species.
en-copyright=
kn-copyright=
en-aut-name=TanakaYoshitaka
en-aut-sei=Tanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoshinoAtsushi
en-aut-sei=Hoshino
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
affil-num=2
en-affil=Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=National Institute for Basic Biology
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
en-keyword=Fish
kn-keyword=Fish
en-keyword=Medaka
kn-keyword=Medaka
en-keyword=Morning glory
kn-keyword=Morning glory
en-keyword=Transgenic
kn-keyword=Transgenic
en-keyword=Transposon
kn-keyword=Transposon
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=399
end-page=404
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Epstein-Barr Virus-Associated Early Gastric Carcinoma with Lymphoid Stroma Mimicking a Submucosal Tumor: A Typical Case Diagnosed by Endoscopic Resection and Treated by Local Resection with Sentinel Node Navigation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gastric cancer with lymphoid stroma (GCLS) accounts for 1%-7% of gastric cancers; ~80% are Epstein-Barr virus (EBV)-positive. The rate of lymph node metastasis is relatively low, even when an early GCLS has invaded the submucosa. We report an early GCLS with massive submucosal invasion mimicking a submucosal tumor (SMT), diagnosed by endoscopic submucosal resection (ESD) and treated with local resection and sentinel node navigation surgery (SNNS). The patient was a 40-year-old Japanese man. A protruding lesion on the greater curvature of the middle part of his stomach was detected by X-ray, and an endoscopic examination revealed a 2.5-cm protruding tumor covered with a normal mucosa and small ulcers at the apex. ESD was performed for a diagnosis. The pathological diagnosis was lymphoepithelioma-like gastric cancer (GCLS), pT1b(SM2), Ly0, V0, pHM1, pVM1. EBV infection in the cancer cells was confirmed pathologically by EBV-encoded RNA. The local resection was performed using SNNS. The patient has had no recurrence or post-gastrectomy syndrome 4 years postsurgery. EBV-associated early GCLS resembling an SMT is relatively rare, and clinicians need to be aware of this disease. Local resection using SNNS may be a surgical option for GCLS cases with a low rate of lymphatic metastasis.
en-copyright=
kn-copyright=
en-aut-name=IsozakiHiroshi
en-aut-sei=Isozaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoSasau
en-aut-sei=Matsumoto
en-aut-mei=Sasau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakamaTakehiro
en-aut-sei=Takama
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IsozakiYuka
en-aut-sei=Isozaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShigeki
en-aut-sei=Murakami
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=2
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=5
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=gastric cancer with lymphoid stroma
kn-keyword=gastric cancer with lymphoid stroma
en-keyword=lymphoepithelioma-like carcinoma
kn-keyword=lymphoepithelioma-like carcinoma
en-keyword=Epstein Barr virus
kn-keyword=Epstein Barr virus
en-keyword=sentinel node navigation surgery
kn-keyword=sentinel node navigation surgery
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=369
end-page=379
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Blood Pressure and Heart Rate Patterns Identified by Unsupervised Machine Learning and Their Associations with Subclinical Cerebral and Renal Damage in a Japanese Community: The Masuda Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We applied unsupervised machine learning to analyze blood pressure (BP) and resting heart rate (HR) patterns measured during a 1-year period to assess their cross-sectional relationships with subclinical cerebral and renal target damage. Dimension reduction via uniform manifold approximation and projection, followed by K-means++ clustering, was used to categorize 362 community-dwelling participants (mean age, 56.2 years; 54.9% women) into three groups: Low BP and Low HR (Lo-BP/Lo-HR), High BP and High HR (Hi-BP/Hi-HR), and Low BP and High HR (Lo-BP/Hi-HR). Cerebral vessel lesions were defined as the presence of at least one of the following magnetic resonance imaging findings: lacunar infarcts, white matter hyperintensities, cerebral microbleeds, or intracranial artery stenosis. A high urinary albumin-to-creatinine ratio (UACR) was defined as the top 10% (? 12 mg/g) of the mean value from ?2 measurements. Poisson regression with robust error variance, adjusted for demographics, lifestyle, and medical history, showed that the Hi-BP/Hi-HR group had relative risks of 3.62 (95% confidence interval, 1.75-7.46) for cerebral vessel lesions and 3.58 (1.33-9.67) for high UACR, and the Lo-BP/Hi-HR group had a relative risk of 3.09 (1.12-8.57) for high UACR, compared with the Lo-BP/Lo-HR group. These findings demonstrate the utility of an unsupervised, data-driven approach for identifying physiological patterns associated with subclinical target organ damage.
en-copyright=
kn-copyright=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MunetomoSosuke
en-aut-sei=Munetomo
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniguchiKaori
en-aut-sei=Taniguchi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakahataNoriko
en-aut-sei=Nakahata
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine
kn-affil=
affil-num=7
en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition
kn-affil=
affil-num=8
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood pressure
kn-keyword=blood pressure
en-keyword=heart rate
kn-keyword=heart rate
en-keyword=subclinical disease
kn-keyword=subclinical disease
en-keyword=uniform manifold approximation and projection
kn-keyword=uniform manifold approximation and projection
en-keyword=unsupervised machine learning
kn-keyword=unsupervised machine learning
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=353
end-page=358
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of Extraocular Muscles in Patients with Exotropia and Healthy Participants Using Anterior Segment Optical Coherence Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To analyze and characterize the medial and lateral rectus muscles in patients with exotropia using anterior segment optical coherence tomography (AS-OCT). This study included 24 patients with exotropia (48 eyes) and 25 healthy individuals (50 eyes). Anterior segment optical coherence tomography was used to construct the en face images. The anterior chamber angle to the extraocular muscle insertion distance, muscle width, and muscle fiber angle from the muscle insertion sites were compared between the exotropia and the control groups. The correlation between these parameters and age or angle of deviation was evaluated. The mean ages were 13.2±4.1 years for the exotropia group and 17.6±7.2 years for the control group. The lateral rectus angle was significantly more inwardly rotated in the exotropia group than in the control group (1.6±6.3°, ?1.4±4.0°, p=0.014). With increasing angle of deviation, the width of the lateral rectus increased (p=0.002). Our results indicate that the lateral rectus angle is significantly more inwardly rotated in patients with exotropia. These findings should contribute to a deeper understanding of the extraocular muscles in patients with this condition.
en-copyright=
kn-copyright=
en-aut-name=ChiharaYuki
en-aut-sei=Chihara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamasakiIchiro
en-aut-sei=Hamasaki
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataKiyo
en-aut-sei=Shibata
en-aut-mei=Kiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorisawaShin
en-aut-sei=Morisawa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonoReika
en-aut-sei=Kono
en-aut-mei=Reika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanenagaKeisuke
en-aut-sei=Kanenaga
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=exotropia
kn-keyword=exotropia
en-keyword=AS-OCT
kn-keyword=AS-OCT
en-keyword=anterior chamber angle to extraocular muscle insertion distance
kn-keyword=anterior chamber angle to extraocular muscle insertion distance
en-keyword=muscle width
kn-keyword=muscle width
en-keyword=muscle fiber angle
kn-keyword=muscle fiber angle
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=345
end-page=352
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibition of Air-Exposure Stress?Induced Autolysis in Clostridium perfringens by Zn2+
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Clostridium perfringens is a pathogenic anaerobe that causes gas gangrene and food poisoning. Although autolysin-mediated reorganization of the bacterial cell wall is crucial for cell division, excessive autolysin activity induced by stressors can lead to cell lysis. In C. perfringens, air exposure is a significant stressor that causes cell lysis, and Acp (N-acetylglucosaminidase) is known to be a major autolysin. To further facilitate C. perfringens research, a technology to prevent air-induced cell lysis must be developed. This study investigated the role of Acp in air-induced autolysis and explored potential inhibitors that would prevent cell lysis during experimental procedures. Morphological analyses confirmed that Acp functions as an autolysin in C. perfringens, as acpdeficient strains exhibited filamentous growth. The mutants exhibited negligible autolysis under air-exposure stress, confirming the involvement of Acp in the autolytic process. We also evaluated the effects of various divalent cations on Acp activity in vitro and identified Zn2+ as a potent inhibitor. Brief treatment with a Zn2+- containing buffer induced dose-dependent cell elongation and autolysis inhibition in C. perfringens. These findings demonstrate that simple Zn2+ treatment before experiments stabilizes C. perfringens cells, reducing autolysis under aerobic conditions and facilitating various biological studies, except morphological analyses.
en-copyright=
kn-copyright=
en-aut-name=MatsunagaNozomu
en-aut-sei=Matsunaga
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EgusaSeira
en-aut-sei=Egusa
en-aut-mei=Seira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AonoRiyo
en-aut-sei=Aono
en-aut-mei=Riyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamaiEiji
en-aut-sei=Tamai
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HitusmotoYasuo
en-aut-sei=Hitusmoto
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaSeiichi
en-aut-sei=Katayama
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=2
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=3
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University
kn-affil=
affil-num=5
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=6
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
en-keyword=Clostridium perfringens
kn-keyword=Clostridium perfringens
en-keyword=autolysin
kn-keyword=autolysin
en-keyword=zinc
kn-keyword=zinc
en-keyword=air-exposure autolysis
kn-keyword=air-exposure autolysis
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=2787
end-page=2793
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Accuracy of Contrast-enhanced CT in Diagnosing Small-sized cT3a Renal Cell Carcinoma and Analysis of Factors Predicting Downstaging to pT1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: This study assessed the accuracy of preoperative contrast-enhanced computed tomography (CECT) scans in staging small-sized, locally advanced (cT3a) renal cell carcinoma (RCC) and identified predictors of pathological downstaging following surgery.
Patients and Methods: Seventy-six patients who underwent radical nephrectomy for cT3aN0M0 RCC with tumors ?7 cm were analyzed. Preoperative CECT evaluated features such as venous, peritumoral, or renal sinus fat, and urinary tract invasion, predictive values, and concordance index between radiological and pathological findings were calculated for these categories. The study also examined the impact of clinicopathologic factors on downstaging.
Results: Of 76 patients with cT3 RCC, 37% were down-staged to pT1. Down-staged cases had a higher proportion of male patients and non-clear cell carcinoma (86% vs. 58%, 32% vs. 6%; p=0.02, p=0.007, respectively). Multiple cT3a factors were less common in down-staged cases (4% vs. 23%, p=0.04). Non-clear cell carcinoma was significantly associated with downstaging compared to clear cell carcinoma (75% vs. 30%, p=0.006). Multivariate analysis confirmed non-clear cell carcinoma as an independent predictor (odds ratio=8.2, p=0.01). For venous invasion, CECT sensitivity and positive predictive value were high (73.5% and 83.3%, respectively) and the degree of agreement was substantial (κ=0.62).
Conclusion: The accuracy of preoperative CECT was acceptable for detecting venous invasion. The downstaging to pT1 occurred in 37% of cT3a RCC cases in the final pathology, with non-clear cell carcinoma being a significant predictor.
en-copyright=
kn-copyright=
en-aut-name=BEKKUKENSUKE
en-aut-sei=BEKKU
en-aut-mei=KENSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHINAGAKASUMI
en-aut-sei=YOSHINAGA
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=INOUESHOTA
en-aut-sei=INOUE
en-aut-mei=SHOTA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MITSUIYOSUKE
en-aut-sei=MITSUI
en-aut-mei=YOSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YAMANOITOMOAKI
en-aut-sei=YAMANOI
en-aut-mei=TOMOAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KAWADATATSUSHI
en-aut-sei=KAWADA
en-aut-mei=TATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOMINAGAYUSUKE
en-aut-sei=TOMINAGA
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SADAHIRATAKUYA
en-aut-sei=SADAHIRA
en-aut-mei=TAKUYA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KATAYAMASATOSHI
en-aut-sei=KATAYAMA
en-aut-mei=SATOSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IWATATAKEHIRO
en-aut-sei=IWATA
en-aut-mei=TAKEHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NISHIMURASHINGO
en-aut-sei=NISHIMURA
en-aut-mei=SHINGO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EDAMURAKOHEI
en-aut-sei=EDAMURA
en-aut-mei=KOHEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KOBAYASHITOMOKO
en-aut-sei=KOBAYASHI
en-aut-mei=TOMOKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ARAKIMOTOO
en-aut-sei=ARAKI
en-aut-mei=MOTOO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Contrast?enhanced CT
kn-keyword=Contrast?enhanced CT
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=staging
kn-keyword=staging
en-keyword=T3a
kn-keyword=T3a
en-keyword=downstaging
kn-keyword=downstaging
END
start-ver=1.4
cd-journal=joma
no-vol=105
cd-vols=
no-issue=4
article-no=
start-page=1157
end-page=1167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants.
en-copyright=
kn-copyright=
en-aut-name=NagaoKoki
en-aut-sei=Nagao
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaRyusuke
en-aut-sei=Yokoyama
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Cuscuta
kn-keyword=Cuscuta
en-keyword=Environmental conditions
kn-keyword=Environmental conditions
en-keyword=Germination
kn-keyword=Germination
en-keyword=Hormone responses
kn-keyword=Hormone responses
en-keyword=Seedling growth
kn-keyword=Seedling growth
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=4
article-no=
start-page=51
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer-associated fibroblast-derived SOD3 enhances lymphangiogenesis to drive metastasis in lung adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite advancements in diagnostic and therapeutic strategies, lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality due to its aggressive metastatic potential. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme that regulates oxidative stress and is regarded as a tumor suppressor. However, studies have demonstrated that SOD3 can either promote or inhibit cell proliferation and survival in various cancers, and its molecular mechanisms within the tumor microenvironment are poorly understood. In this study, we report a breakthrough in uncovering the role of SOD3 derived from cancer-associated fibroblasts (CAFs) in LUAD. Using LUAD xenograft models co-implanted with SOD3-overexpressing CAFs (CAFSOD3), we observe an aggressive tumor phenotype characterized by increased lymphangiogenesis and lymphatic vessel invasion (LVI) of the tumor. Additionally, LUAD patients with elevated SOD3 levels exhibit a higher incidence of LVI and metastasis. Notably, RNA sequencing of CAFSOD3 reveals that SOD3-mediated VEGF-dependent tumor progression and lymphangiogenesis are up-regulated. Furthermore, single-cell transcriptomic analysis of LUAD clinical samples confirms a strong correlation between SOD3 expression in fibroblasts and characteristics of tumor exacerbation, such as lymphangiogenesis and metastasis. These findings underscore new insights into the role of CAF-derived SOD3 in LUAD progression and highlight its potential as a biomarker and therapeutic target.
en-copyright=
kn-copyright=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MashimaTomoha
en-aut-sei=Mashima
en-aut-mei=Tomoha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TorigataKosuke
en-aut-sei=Torigata
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabuTomohiro
en-aut-sei=Habu
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoSachio
en-aut-sei=Ito
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Medicine, Kobe University
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Thoracic Surgery, National Hospital Organization, Shikoku Cancer Center
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
en-keyword=Superoxide dismutase 3
kn-keyword=Superoxide dismutase 3
en-keyword=Lymphangiogenesis
kn-keyword=Lymphangiogenesis
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Metastasis
kn-keyword=Metastasis
en-keyword=Lung adenocarcinoma
kn-keyword=Lung adenocarcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250926
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific induction of right ventricular-like cardiomyocytes from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Applications employing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require well-characterized, chamber-specific hPSC-CMs. Distinct first heart field (FHF) and second heart field (SHF) cardiac progenitor populations give rise to the left ventricular (LV) and right ventricular (RV) cardiomyocytes, respectively. This developmental difference in cardiomyocyte origin suggests that chamber-specific cardiomyocytes have unique characteristics. Therefore, efficient strategies to differentiate human pluripotent stem cells (hPSCs) specifically to LV-like or RV-like cardiomyocytes are needed and it is still unknown whether there is a phenotypic difference between LV-like cardiomyocytes and RV-like cardiomyocytes derived from hPSCs.
Methods An established hPSC cardiac differentiation protocol employing sequential GSK3β inhibition followed by Wnt inhibition (GiWi) was modified by addition of insulin or BMP antagonists during mesoderm formation. Cardiac progenitor populations were evaluated for FHF and SHF markers, and differentiated hPSC-CMs were characterized for chamber-specific markers.
Results The GiWi protocol produced mainly FHF-like progenitor cells that gave rise to LV-like cardiomyocytes. Inhibition of endogenous BMP signaling during mesoderm induction using insulin or BMP antagonists reduced expression of FHF markers and increased expression of SHF markers in cardiac progenitor cells. hPSC-CMs arising from the SHF-like progenitor cells showed an RV-like gene expression pattern and exhibited phenotypic differences in spontaneous contraction rate, Ca2+ transients, and cell size compared to control LV-like cardiomyocytes.
Conclusion This study establishes methodology to generate RV-like hPSC-CMs to support the development of disease modeling research using chamber-specific hPSC-CMs.
en-copyright=
kn-copyright=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoRyushi
en-aut-sei=Sato
en-aut-mei=Ryushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AdachiRiki
en-aut-sei=Adachi
en-aut-mei=Riki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuSatoshi
en-aut-sei=Shimizu
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurokawaJunko
en-aut-sei=Kurokawa
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhangJianhua
en-aut-sei=Zhang
en-aut-mei=Jianhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KampTimothy J.
en-aut-sei=Kamp
en-aut-mei=Timothy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biomedical Informatics and Molecular Biology, The Sakaguchi Laboratory, Keio University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=7
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=8
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=9
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Human pluripotent stem cell-derived cardiomyocytes
kn-keyword=Human pluripotent stem cell-derived cardiomyocytes
en-keyword=Anterior second heart field
kn-keyword=Anterior second heart field
en-keyword=Right ventricle
kn-keyword=Right ventricle
en-keyword=Bone morphogenetic protein
kn-keyword=Bone morphogenetic protein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Establishment of a regenerative endodontic procedures model of mature mouse teeth and evaluation of the wound healing process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As the pulp regeneration for non-vital teeth is one of the ultimate clinical achievements, regenerative endodontic procedures (REPs) have become the most explored treatment modality. In this technique, periodontal tissue is guided from the apical region into the root canal and pulp chamber to promote attachment. It is well established that immature teeth are effective targets for treatment. However, the indications for this treatment have not yet expanded sufficiently to encompass mature teeth with closed apical apex. In the present study, a mouse model of REPs in mature teeth was established, employing the maxillary first molar mesial root. μCT analyses disclosed that the distance from the occlusal surface to the physiological apex of the maxillary first molar mesial root in mice is 2.14 mm?±?0.08 mm, and the distance from the occlusal surface to the periapical alveolar bone is 2.46 mm?±?0.10 mm. Mesial root canal was treated with several sizes of k-files, and 15# k-file was identified as the most suitable k-file for use (P?=?0.0007). During the regenerative process, spindle-shaped fibroblast-like cells, fibrous tissue formation, and mineralized tissue formation were identified on days 14 and 28. This study demonstrated that it is feasible to use the maxillary first molar mesial root as a REPs model for mature teeth and provided a detailed protocol and analysis of the healing process.
en-copyright=
kn-copyright=
en-aut-name=WangXiuting
en-aut-sei=Wang
en-aut-mei=Xiuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiShigeki
en-aut-sei=Suzuki
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsaiShin-Ho
en-aut-sei=Tsai
en-aut-mei=Shin-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasakiKarin
en-aut-sei=Nagasaki
en-aut-mei=Karin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FahrezaRahmad Rifqi
en-aut-sei=Fahreza
en-aut-mei=Rahmad Rifqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriMasato
en-aut-sei=Omori
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamadaSatoru
en-aut-sei=Yamada
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=2
en-affil=Department of Operative Dentistry, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Operative Dentistry, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=5
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=6
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
affil-num=7
en-affil=Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry
kn-affil=
en-keyword=Regenerative endodontic procedures
kn-keyword=Regenerative endodontic procedures
en-keyword=Establishment of protocols
kn-keyword=Establishment of protocols
en-keyword=Mouse experimental model
kn-keyword=Mouse experimental model
en-keyword=Mature teeth
kn-keyword=Mature teeth
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=18
article-no=
start-page=2927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250911
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lacticaseibacillus rhamnosus Probio-M9 Alters the Gut Microbiota and Mitigates Pulmonary Hypertension in a Rat Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Intestinal microbiota plays an important role in the progression of pulmonary hypertension (PH). Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown protective effects against inflammation and remodeling. We investigated whether Probio-M9 supplementation could improve the pathology of PH. Methods: The monocrotaline (MCT)-induced PH model rats are created followed by Probio-M9 treatment. Microbiota and pathological analyses were performed to investigate the therapeutic effects of Probio-M9. Results: Probio-M9 significantly suppressed cardiovascular remodeling and reduced mortality in rats. Analysis of the fecal microbiota revealed that Probio-M9 significantly altered the gut microbiota of MCT model rats. Specifically, Alistipes sp009774895 and Duncaniella muris populations increased, whereas Limosilactobacillus reuteri_D, Ligilactobacillus apodeme and Monoglobus sp900542675 decreased compared to those in the MCT group. Focusing on the expression of GPNMB in macrophages and the localization of CD44, we found that the number of these cells increased in the MCT group but significantly decreased with Probio-M9 treatment. In lung tissue from PH patients, more GPNMB-positive macrophages were found than non-PH lungs, and an increase in CD44-positive cells was confirmed in the vicinity of GPNMB. Conclusions: Probio-M9 had a significant impact on the intestinal microbiota and GPNMB/CD44 positive cells in the lungs of PH rats.
en-copyright=
kn-copyright=
en-aut-name=ZhaoZhixin
en-aut-sei=Zhao
en-aut-mei=Zhixin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiGaopeng
en-aut-sei=Li
en-aut-mei=Gaopeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhmichiKiyomi
en-aut-sei=Ohmichi
en-aut-mei=Kiyomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiXiaodong
en-aut-sei=Li
en-aut-mei=Xiaodong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZhaoFeiyan
en-aut-sei=Zhao
en-aut-mei=Feiyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshikawaKaori
en-aut-sei=Ishikawa
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshikawaRyou
en-aut-sei=Ishikawa
en-aut-mei=Ryou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YokotaNaoya
en-aut-sei=Yokota
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SunZhihong
en-aut-sei=Sun
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KuraharaLin Hai
en-aut-sei=Kurahara
en-aut-mei=Lin Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, Kagawa University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=5
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Kagawa University Hospital
kn-affil=
affil-num=7
en-affil=Department of Diagnostic Pathology, Kagawa University Hospital
kn-affil=
affil-num=8
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=10
en-affil=Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
en-keyword=pulmonary artery remodeling
kn-keyword=pulmonary artery remodeling
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=gut microbiota
kn-keyword=gut microbiota
en-keyword=macrophages
kn-keyword=macrophages
en-keyword=GPNMB
kn-keyword=GPNMB
en-keyword=CD44
kn-keyword=CD44
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=7
article-no=
start-page=1044
end-page=1060
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxygen supply is a prerequisite for response to aluminum in cultured cells of tobacco (Nicotiana tabacum)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Responses to aluminum (Al) were investigated in tobacco cells (cell line SL) in a calcium-sucrose solution for up to 24 h under shaking (aerobic) condition. Microarray analysis of upregulated and downregulated genes under Al exposure and following Gene Ontology (GO) enrichment analysis of biological process category revealed only one GO term to be enriched for the upregulated genes, “response to chitin,” annotated with genes encoding transcription factors (NtERF1 and NtMYB3) and MAP kinase (WIPK), and nine GO terms for the downregulated genes, including “cell wall loosening” and “lipid transport,” annotated with genes encoding expansin (NtEXPA4) and lipid transfer protein (LTP)/LTP-like (NtLTP3 and NtEIG-C29), respectively. Al triggered the production of nitric oxide (NO) then reactive oxygen species (ROS). Addition of NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide decreased the levels of NO and a part of the transcriptional changes described above, but increased the levels of ROS and a loss of growth capacity, suggesting a role of the NO to induce the transcriptional changes partly and to repress these toxic responses under Al exposure. Under non-shaking (anaerobic) condition, the cells exhibited upregulation of several hypoxia-responsive genes. The cells exposed to Al exhibited the same level of Al accumulation but much lower levels of the Al responses including NO production, ROS production, a loss of growth capacity, citrate secretion, and a part of the transcriptional changes described above, compared with the cells under shaking condition. These results suggest that coexistence of oxygen with Al is necessary to trigger the Al responses related to toxicity and tolerance.
en-copyright=
kn-copyright=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakayuki
en-aut-sei=Sasaki
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoYoko
en-aut-sei=Yamamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=aluminum toxicity
kn-keyword=aluminum toxicity
en-keyword=aluminum-responsive genes
kn-keyword=aluminum-responsive genes
en-keyword=cell wall loosening
kn-keyword=cell wall loosening
en-keyword=chitin-responsive genes
kn-keyword=chitin-responsive genes
en-keyword=dioxygen
kn-keyword=dioxygen
en-keyword=hypoxia
kn-keyword=hypoxia
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=21
article-no=
start-page=11479
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dennd2c Negatively Controls Multinucleation and Differentiation in Osteoclasts by Regulating Actin Polymerization and Protrusion Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoclasts are bone-resorbing multinucleated giant cells formed by the fusion of monocyte/macrophage lineages. Various small GTPases are involved in the multinucleation and differentiation of osteoclasts. However, the roles of small GTPases regulatory molecules in osteoclast differentiation remain unclear. In the present study, we examined the role of Dennd2c, a putative guanine nucleotide exchange factor for Rab GTPases, in osteoclast differentiation. Knockdown of Dennd2c promoted osteoclast differentiation, resorption, and expression of osteoclast markers. Morphologically, Dennd2c knockdown induced the formation of larger osteoclasts with several protrusions. In contrast, overexpression of Dennd2c inhibited the multinucleation and differentiation of osteoclasts, bone resorption, and the expression of osteoclast markers. Dennd2c-overexpressing macrophages exhibited spindle-shaped mononuclear cells and long thin protrusions. Treatment of Dennd2c-overexpressing cells with the Cdc42 inhibitor ML-141 or the Rac1 inhibitor 6-thio-GTP prevented protrusion formation. Moreover, treatment of Dennd2c-overexpressing cells with the actin polymerization inhibitor latrunculin B restored multinucleated and TRAP-positive osteoclast formation. These results indicate that Dennd2c negatively regulates osteoclast differentiation and multinucleation by modulating protrusion formation in macrophages.
en-copyright=
kn-copyright=
en-aut-name=KoyanagiYu
en-aut-sei=Koyanagi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaiEiko
en-aut-sei=Sakai
en-aut-mei=Eiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaguchiYu
en-aut-sei=Yamaguchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FarhanaFatima
en-aut-sei=Farhana
en-aut-mei=Fatima
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TairaYohsuke
en-aut-sei=Taira
en-aut-mei=Yohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHiroshi
en-aut-sei=Murata
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsukubaTakayuki
en-aut-sei=Tsukuba
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=2
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=3
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=4
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=5
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=6
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=8
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
en-keyword=osteoclast
kn-keyword=osteoclast
en-keyword=actin polymerization
kn-keyword=actin polymerization
en-keyword=protrusion formation
kn-keyword=protrusion formation
en-keyword=Dennd2c
kn-keyword=Dennd2c
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=20056
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials.
en-copyright=
kn-copyright=
en-aut-name=OshimaRisa
en-aut-sei=Oshima
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanishiKo
en-aut-sei=Nakanishi
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkasakaTsukasa
en-aut-sei=Akasaka
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimojiShinji
en-aut-sei=Shimoji
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraTeppei
en-aut-sei=Nakamura
en-aut-mei=Teppei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMariko
en-aut-sei=Nakamura
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TamadaIkkei
en-aut-sei=Tamada
en-aut-mei=Ikkei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugayaTsutomu
en-aut-sei=Sugaya
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=5
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University
kn-affil=
affil-num=7
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center
kn-affil=
affil-num=11
en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven
kn-affil=
affil-num=12
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=13
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
en-keyword=Phosphopullulan
kn-keyword=Phosphopullulan
en-keyword=Polysaccharide
kn-keyword=Polysaccharide
en-keyword=ADME
kn-keyword=ADME
en-keyword=Animal study
kn-keyword=Animal study
en-keyword=Endodontic sealer
kn-keyword=Endodontic sealer
END
start-ver=1.4
cd-journal=joma
no-vol=142
cd-vols=
no-issue=
article-no=
start-page=104967
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=F?lster-HolstRegina
en-aut-sei=F?lster-Holst
en-aut-mei=Regina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Bl?merSophia
en-aut-sei=Bl?mer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EbsenMichael
en-aut-sei=Ebsen
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=R?ckenChristoph
en-aut-sei=R?cken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=3
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=4
en-affil=St?dtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Bacterial sialidase
kn-keyword=Bacterial sialidase
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Cytokines
kn-keyword=Cytokines
en-keyword=Infection
kn-keyword=Infection
en-keyword=Bifidobacteria
kn-keyword=Bifidobacteria
en-keyword=Phages
kn-keyword=Phages
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disruption of the Enterococcus faecalis?Induced Biofilm on the Intraocular Lens Using Bacteriophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis?induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis?induced biofilms.
en-copyright=
kn-copyright=
en-aut-name=KishimotoTatsuma
en-aut-sei=Kishimoto
en-aut-mei=Tatsuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaKen
en-aut-sei=Fukuda
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaWaka
en-aut-sei=Ishida
en-aut-mei=Waka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwanaAozora
en-aut-sei=Kuwana
en-aut-mei=Aozora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TodokoroDaisuke
en-aut-sei=Todokoro
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashiroKenji
en-aut-sei=Yamashiro
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
en-keyword=biofilm
kn-keyword=biofilm
en-keyword=bacteriophage
kn-keyword=bacteriophage
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=endophthalmitis
kn-keyword=endophthalmitis
en-keyword=cataract
kn-keyword=cataract
en-keyword=enterococcus faecalis
kn-keyword=enterococcus faecalis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 ?g/mL and 16 ?g/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30?40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BoonruamkaewPhetcharat
en-aut-sei=Boonruamkaew
en-aut-mei=Phetcharat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=8
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=anionic AMP
kn-keyword=anionic AMP
en-keyword=AMP
kn-keyword=AMP
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=FN33
kn-keyword=FN33
en-keyword=genome
kn-keyword=genome
en-keyword=molecular dynamics simulations
kn-keyword=molecular dynamics simulations
en-keyword=MRSA
kn-keyword=MRSA
en-keyword=Virgibacillus chiguensis
kn-keyword=Virgibacillus chiguensis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250811
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RNA Delivery Using a Graphene Oxide-Polyethylenimine Hybrid Inhibiting Myotube Differentiation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) conjugated with short polyethylenimine (PEI) chains (GO-PEI) has been designed as a candidate nanocarrier for small interfering RNA (siRNA) delivery to mammalian cells based on the efficient interaction between the positively charged GO-based platform and the negatively charged siRNA. The function and efficiency of siRNA delivery using GO-PEI were compared to those using the positive control Lipofectamine RNAiMax by analyzing the differentiation to myotubes, and myogenin gene and protein expression in C2C12 cells. RNAiMax transfection induced cellularization and reduction of both myogenin gene and protein expression, suggesting that the differentiation of C2C12 cells was triggered by gene silencing. While GO-PEI also promoted cellularization, the myogenin gene expression remained comparable to scrambled controls, whereas the protein levels were higher than those observed with RNAiMax. Mechanistically, we attributed the reduced gene silencing efficiency of GO-PEI to a poor endosomal escape, despite strong siRNA complexation. This limitation was likely due to a low buffering capacity of GO-PEI, as a significant fraction of nitrogen atoms were already protonated, reducing the availability of free amines necessary for endosomal disruption. An appropriate chemical modification to enhance siRNA release from the endosomes is therefore essential for advancing the development of GO-based platforms as versatile and efficient nanocarriers in gene therapy applications.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraKoji
en-aut-sei=Matsuura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GaoZhengfeng
en-aut-sei=Gao
en-aut-mei=Zhengfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=2
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=3
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS
kn-affil=
en-keyword=graphene oxide
kn-keyword=graphene oxide
en-keyword=polyethylenimine
kn-keyword=polyethylenimine
en-keyword=myotubes
kn-keyword=myotubes
en-keyword=myogenin
kn-keyword=myogenin
en-keyword=small interfering RNA
kn-keyword=small interfering RNA
en-keyword=transfection
kn-keyword=transfection
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=065001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inert structural transition in 4H and 6H SiC at high pressure and temperature: a Raman spectroscopy study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We conducted Raman spectroscopy measurements of 4H-SiC and 6H-SiC up to 69 GPa and 1023 K to assess the stability and bonding of SiC at high pressure and temperature. Both optic and acoustic modes were observed at wide pressure and temperature ranges. The temperature shifts of the Raman frequencies were fitted by the equation with the Bose?Einstein distribution function, and we found that the shifts were almost insensitive to the pressure. The mode Gr?neisen coefficients weakly depend on the pressure and temperature, suggesting the sluggish transition of the crystal structure, unlike the previous experiments showing the transition or decomposition of SiC at high pressure and temperature conditions. Inert transitions are confirmed by Raman measurements and annealing experiments using multiple high-pressure apparatuses. The crystallinity may be a hidden critical parameter in the experiments to determine the stable polytypes of SiC under high pressure and temperature.
en-copyright=
kn-copyright=
en-aut-name=MaitaniShuhou
en-aut-sei=Maitani
en-aut-mei=Shuhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SinmyoRyosuke
en-aut-sei=Sinmyo
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YozaKenji
en-aut-sei=Yoza
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=2
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=3
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=Bruker Japan
kn-affil=
en-keyword=SiC
kn-keyword=SiC
en-keyword=Raman
kn-keyword=Raman
en-keyword=phase transitions
kn-keyword=phase transitions
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=high temperature
kn-keyword=high temperature
en-keyword=diamond anvil cell
kn-keyword=diamond anvil cell
en-keyword=crystal structure
kn-keyword=crystal structure
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=9
article-no=
start-page=846
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2?14), surfactants, and temperatures up to 40 °C for 12 h. The AMP demonstrated 4 ?g/mL of MIC and 4?8 ?g/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=bacterial genome
kn-keyword=bacterial genome
en-keyword=biosynthetic gene cluster
kn-keyword=biosynthetic gene cluster
en-keyword=Klebsiella pneumoniae
kn-keyword=Klebsiella pneumoniae
en-keyword=Mangrove
kn-keyword=Mangrove
en-keyword=mass spectrometry
kn-keyword=mass spectrometry
en-keyword=NNS5-6
kn-keyword=NNS5-6
en-keyword=Paenibacillus thiaminolyticus
kn-keyword=Paenibacillus thiaminolyticus
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=9
article-no=
start-page=1135
end-page=1151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250910
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC?CXCL1?CXCR2 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1?CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC?CXCL1?CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes.
en-copyright=
kn-copyright=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsukiToshiomi
en-aut-sei=Katsuki
en-aut-mei=Toshiomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoToshiyuki
en-aut-sei=Ko
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoMasamichi
en-aut-sei=Ito
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatagiriMikako
en-aut-sei=Katagiri
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaMasayuki
en-aut-sei=Kubota
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaShintaro
en-aut-sei=Yamada
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraTakahiro
en-aut-sei=Nakamura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AkibaYohei
en-aut-sei=Akiba
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KoukaThukaa
en-aut-sei=Kouka
en-aut-mei=Thukaa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KomuroKaoruko
en-aut-sei=Komuro
en-aut-mei=Kaoruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraMai
en-aut-sei=Kimura
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ItoShogo
en-aut-sei=Ito
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KomuroIssei
en-aut-sei=Komuro
en-aut-mei=Issei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaKeiichi
en-aut-sei=Fukuda
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IedaMasaki
en-aut-sei=Ieda
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=3
article-no=
start-page=394
end-page=403
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and Crystal Structure of Ilmenite-Type Silicate with Pyrope Composition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Akimotoite, ilmenite-type MgSiO3 high-pressure polymorph can be stable in the lower-mantle transition zone along average mantle and subducting slab geotherms. Significant amounts of Al2O3 can be incorporated into the structure, having the pyrope (Mg3Al2Si3O12) composition. Previous studies have investigated the effect of Al2O3 on its crystal structure at nearly endmember compositions. In this study, we synthesized high-quality ilmenite-type Mg3Al2Si3O12 phase at 27 GPa and 1073 K by means of a Kawai-type multi-anvil press and refined the crystal structure at ambient conditions using a synchrotron X-ray diffraction data via the Rietveld method to examine the effect of Al2O3. The unit-cell lattice parameters were determined to be a = 4.7553(7) ?, c = 13.310(2) ?, and V = 260.66(6) ?3, with Z = 6 (hexagonal, R3?
). The volume of the present phase was placed on the akimotoite-corundum endmember join. However, the refined structure showed a strong nonlinear behavior of the a- and c-axes, which can be explained by Al incorporation into the MgO6 and SiO6 octahedral sites, which are distinctly different each other. Ilmenite-type Mg3Al2Si3O12 phase may be found in shocked meteorites and can be a good indicator for shock conditions at relatively low temperatures of 1027?1127 K.
en-copyright=
kn-copyright=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SinmyoRyosuke
en-aut-sei=Sinmyo
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuraTomoo
en-aut-sei=Katsura
en-aut-mei=Tomoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, School of Science and Technology, Meiji University
kn-affil=
affil-num=3
en-affil=Bavarian Research Institute of Experimental Geochemistry and Geophysics, University of Bayreuth
kn-affil=
en-keyword=ilmenite
kn-keyword=ilmenite
en-keyword=akimotoite
kn-keyword=akimotoite
en-keyword=pyrope
kn-keyword=pyrope
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=X-ray diffraction
kn-keyword=X-ray diffraction
en-keyword=crystal structure
kn-keyword=crystal structure
en-keyword=Rietveld analysis
kn-keyword=Rietveld analysis
en-keyword=mantle
kn-keyword=mantle
en-keyword=subducting slab
kn-keyword=subducting slab
en-keyword=corundum
kn-keyword=corundum
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=pcaf098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thylakostasis: key factors in thylakoid membrane organization with emphasis on biogenesis and remodeling proteins in vascular plants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thylakoid membrane (TM), a defining feature for almost all oxygen-evolving photosynthetic organisms, serves as the structural foundation for light-driven energy conversion. In vascular plants, the TM evolved into a complex architecture composed of single-layered stroma thylakoids and stacked grana thylakoids, enabling the spatial organization of two photosystems (PSII and PSI) to optimize light capture and energy transfer. In addition, two membrane regions, one connecting these two compartments (grana margin) and the other corresponding to the curvature domain in grana, function in dissipating excess energy, balancing electron transfer, and maintaining functional PSII. Recent advances in electron microscopy imaging and proteome analysis of membrane subcompartments have provided new insights into the structure and dynamic adaptations of the TM in response to diverse environmental conditions. To describe the mechanisms that govern TM architecture, dynamics, and integrity, I am introducing the concept of “thylakostasis” (thylakoid homeostasis). Here, I provide an overview of the molecular components and processes central to thylakostasis, including the biosynthesis of lipids, chlorophyll, and proteins. I focus particularly on the membrane remodeling proteins whose functions have been elucidated recently, such as VIPP1, a member of the evolutionarily conserved PspA/ESCRT-III superfamily; FZL, a dynamin-like GTPase; and CURT1, a curvature-inducing protein unique to photosynthetic organisms. Together, these factors orchestrate TM biogenesis, remodeling, and adaptive flexibility that is essential for photosynthetic efficiency.
en-copyright=
kn-copyright=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=chloroplast
kn-keyword=chloroplast
en-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
kn-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
en-keyword=grana
kn-keyword=grana
en-keyword=membrane trafficking
kn-keyword=membrane trafficking
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=stroma thylakoid
kn-keyword=stroma thylakoid
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=10
article-no=
start-page=4724
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells.
en-copyright=
kn-copyright=
en-aut-name=JiangYuli
en-aut-sei=Jiang
en-aut-mei=Yuli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiangJian
en-aut-sei=Liang
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChunyan
en-aut-sei=Wang
en-aut-mei=Chunyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanLi
en-aut-sei=Tan
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagawaShingo
en-aut-sei=Nagawa
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute for Translational Brain Reaearch, Fudan University
kn-affil=
affil-num=2
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
en-keyword=BAM1
kn-keyword=BAM1
en-keyword=WOX1
kn-keyword=WOX1
en-keyword=margin cells
kn-keyword=margin cells
en-keyword=auxin
kn-keyword=auxin
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250818
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Precise stratification of prognosis in pancreatic ductal adenocarcinoma patients based on pre- and postoperative genomic information
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all cancers; hence, multidisciplinary treatment is essential for patients with PDAC. Although the resectability status, tumour marker, KRAS circulating tumour DNA (mutKRAS-ctDNA) mutations, and GATA binding 6 (GATA6) expression status are promising prognostic biomarkers, their effective integration before and after surgery remains unclear.
Methods In this retrospective cohort study, patients with PDAC who had undergone radical resection were enrolled, and pre- and postoperative independent factors associated with poor prognosis were identified using Cox hazard modelling. Risk stratification systems were developed using the identified prognostic factors and investigated for the ability to predict prognosis.
Results A total of 91 patients with PDAC were included (median follow-up duration, 28 months). Borderline resectable or locally advanced cancer at diagnosis, elevated carbohydrate antigen 19?9 (CA19-9) level, and mutKRAS-ctDNA-positive status were identified as independent preoperative factors associated with poor prognosis. The postoperative factors significantly associated with shorter overall survival were low GATA6 expression, elevated CA19-9 level, and mutKRAS-ctDNA-positive status. Finally, the preoperative and postoperative risk scoring systems developed using Cox modelling hazard ratio values could significantly stratify prognosis after curative resection for PDAC.
Conclusion A risk stratification system based on liquid biopsy, specialised for each phase (pre- and post-surgery), has been proven to be a useful, simple, and practical prognostic prediction clinical tool to determine the optimal multidisciplinary treatment protocol for PDAC.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoKokichi
en-aut-sei=Miyamoto
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Biomedical Informatics, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Pancreatic ductal adenocarcinoma
kn-keyword=Pancreatic ductal adenocarcinoma
en-keyword=Risk stratification
kn-keyword=Risk stratification
en-keyword=Prognosis
kn-keyword=Prognosis
en-keyword=Tumour marker
kn-keyword=Tumour marker
en-keyword=KRAS
kn-keyword=KRAS
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9?MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9?MCAM?ERK?c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK?c-Jun pathway. The S100A8/A9?signaling axis may represent a novel therapeutic target in GC.
en-copyright=
kn-copyright=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PanBo
en-aut-sei=Pan
en-aut-mei=Bo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WuFangping
en-aut-sei=Wu
en-aut-mei=Fangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXu
en-aut-sei=Zhang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunBei
en-aut-sei=Sun
en-aut-mei=Bei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Faculties of Educational and Research Management Field, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=S100 protein
kn-keyword=S100 protein
en-keyword=MCAM
kn-keyword=MCAM
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Metastasis
kn-keyword=Metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=412
end-page=437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biophysical regulation of extracellular matrix in systemic lupus erythematosus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by immune dysregulation and multi-organ damage. Recent advances have underscored the critical involvement of extracellular matrix (ECM) biophysical properties in shaping immune cell behavior and metabolic states that contribute to disease progression. This review systematically delineates the pathological remodeling of ECM biophysics in SLE, with a focus on their roles in mechanotransduction, immune-metabolic interplay, and organ-specific tissue injury. By integrating current evidence, we highlight how ECM-derived mechanical cues orchestrate aberrant immune responses and propose new perspectives for targeting ECM-immune crosstalk in the development of organ-specific, mechanism-based therapies for SLE.
en-copyright=
kn-copyright=
en-aut-name=LiQiwei
en-aut-sei=Li
en-aut-mei=Qiwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiQiang
en-aut-sei=Li
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XiaoZhaoyang
en-aut-sei=Xiao
en-aut-mei=Zhaoyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NARUSEKeiji
en-aut-sei=NARUSE
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=systemic lupus erythematosus (SLE)
kn-keyword=systemic lupus erythematosus (SLE)
en-keyword=extracellular matrix (ECM)
kn-keyword=extracellular matrix (ECM)
en-keyword=mechanotransduction
kn-keyword=mechanotransduction
en-keyword=mechanism
kn-keyword=mechanism
en-keyword=immune regulation
kn-keyword=immune regulation
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=organ-specific damage
kn-keyword=organ-specific damage
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=67
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Depletion of Lysyl Oxidase-Like 4 (LOXL4) Attenuates Colony Formation in vitro and Collagen Deposition in vivo Breast Cancer Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lysyl oxidase (LOX) family proteins have recently become a topic in cancer progression. Our recent study found a high expression of LOX-like 4 (LOXL4) in MDA-MB-231 cells. Objective: To reveal the impact of depleted LOXL4 in both in vitro and in vivo breast cancer models from a histological perspective. Material and Method: Endogenous LOXL4 was depleted using the CRISPR/Cas9 on MDA-MB-231 parental cells. Based on the LOXL4 protein expression, the clone was determined for the next experiment, thus generating MDA-MB-231 LOXL4 KO. Cell assay was conducted using colony formation assay (n=3) followed by crystal violet staining. The indicated cells were inoculated orthotopically to female BALB/c nude mice (n=5). At the end of the experiment, tumors were isolated, fixed, and prepared for Masson Trichrome staining. Result: CRISPR/Cas9 completely depleted LOXL4 expression on clone number #2-22. Depletion of LOXL4 reduced the colony size formed by MDA-MB-231 cells. MDA-MB-231 LOXL4 KO #2-22 derived tumors showed depressed tumor volume compared to the parental group. Reduced collagen was also observed from the Masson Trichrome staining (p<0.001). Conclusion: Depletion of LOXL4 downregulates the growth of MDA-MB-231 cells in vitro and collagen deposition in vivo.
en-copyright=
kn-copyright=
en-aut-name=Ni Luh Gede Yoni Komalasari
en-aut-sei=Ni Luh Gede Yoni Komalasari
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=I Gde Haryo Ganesha
en-aut-sei=I Gde Haryo Ganesha
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=I Gusti Nyoman Sri Wiryawan
en-aut-sei=I Gusti Nyoman Sri Wiryawan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=3
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=Good health
kn-keyword=Good health
en-keyword=Lysyl oxidase
kn-keyword=Lysyl oxidase
en-keyword=Extracellular matrix
kn-keyword=Extracellular matrix
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudohypoxia induced by iron chelator activates tumor immune response in lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypoxia-inducible factor (HIF) signaling plays a critical role in immune cell function. Pseudohypoxia is characterized as iron-mediated stabilization of HIF-1α under normoxic conditions, which can be induced by iron chelators. This study explored whether iron chelators exert antitumor effects by enhancing tumor immune responses and elucidating the underlying mechanisms. The iron chelators Super?polyphenol 10 (SP10) and Deferoxamine (DFO) were used to create iron-deficient and pseudohypoxia conditions. Pseudohypoxia induced by iron chelators stimulates IL-2 secretion from T cells and from both human and murine nonsmall cell lung cancer (NSCLC) cell lines (A549, PC-3, and LLC). Administration of SP10 reduced tumor growth when LLC tumors were implanted in C57BL/6 mice; however, this was not observed in immunodeficient RAG1-deficient C57BL/6 mice. SP10 itself did not directly inhibit LLC cells proliferation in vitro, suggesting an activation of the tumor immune response. SP10 synergistically enhanced the efficacy of PD-1 antibody therapy in lung cancer by increasing the number of tumor-infiltrating lymphocytes (TILs). In conclusion, iron chelation-induced pseudohypoxia activates tumor immune responses by directly upregulating HIF-1α, augmenting T cell function, and inducing IL-2 secretion from T cells, and cancer cells, thereby amplifying the immune efficacy of the PD-1 antibody in lung cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeradaManato
en-aut-sei=Terada
en-aut-mei=Manato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=iron
kn-keyword=iron
en-keyword=hypoxia-inducible factor
kn-keyword=hypoxia-inducible factor
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=17
article-no=
start-page=8145
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC?glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC?GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses.
en-copyright=
kn-copyright=
en-aut-name=SunRuitong
en-aut-sei=Sun
en-aut-mei=Ruitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoAina
en-aut-sei=Yano
en-aut-mei=Aina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=benzyl isothiocyanate
kn-keyword=benzyl isothiocyanate
en-keyword=multidrug resistance
kn-keyword=multidrug resistance
en-keyword=glutathione S-transferase
kn-keyword=glutathione S-transferase
en-keyword=NBDHEX
kn-keyword=NBDHEX
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=c-Jun N-terminal kinase
kn-keyword=c-Jun N-terminal kinase
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27047
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of Streptococcus mutans harboring the cnm gene encoding cell surface protein Cnm in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dental caries is a highly prevalent infectious disease primarily caused by the pathogenic bacterium Streptococcus mutans, which has also been associated with systemic disease. A 120-kDa collagen-binding protein (Cnm) produced by S. mutans contributes to cardiovascular disease pathogenicity. Few studies have addressed the current prevalence of S. mutans and the cnm gene in Japanese children or examined caries pathology in relation to cnm presence. Here, we investigated the prevalence of S. mutans and the distribution of cnm-positive S. mutans among 490 children who visited two university hospitals in Japan. The caries experience index (dmft/DMFT) was calculated, and the collagen-binding ability of cnm-positive S. mutans strains was assessed. S. mutans was isolated from the oral cavities of 158 patients (36.8%); 10.1% (16/158) harbored cnm-positive S. mutans. When caries experience indices were compared across dentitions, patients harboring cnm-positive strains had significantly higher dmft/DMFT scores than those with cnm-negative strains (P?0.05). Additionally, a positive correlation was observed between the collagen-binding capacity of cnm-positive S. mutans and the dmft/DMFT score (r?=?0.601, P?0.05). These findings suggest that cnm contributes to caries progression through collagen-mediated adherence to tooth surfaces. The presence of cnm-positive S. mutans may represent a risk factor for increased caries susceptibility in children.
en-copyright=
kn-copyright=
en-aut-name=SuehiroYuto
en-aut-sei=Suehiro
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaMakoto
en-aut-sei=Okuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsuguMasatoshi
en-aut-sei=Otsugu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiaiMarin
en-aut-sei=Ochiai
en-aut-mei=Marin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMisato
en-aut-sei=Takagi
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TojoFumikazu
en-aut-sei=Tojo
en-aut-mei=Fumikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MikasaYusuke
en-aut-sei=Mikasa
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaShuhei
en-aut-sei=Naka
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Matsumoto-NakanoMichiyo
en-aut-sei=Matsumoto-Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapirattanakulJinthana
en-aut-sei=Lapirattanakul
en-aut-mei=Jinthana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkawaRena
en-aut-sei=Okawa
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=5
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=6
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Microbiology, Faculty of Dentistry, Mahidol University
kn-affil=
affil-num=11
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=12
en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=13
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=Collagen-binding protein
kn-keyword=Collagen-binding protein
en-keyword=Cnm
kn-keyword=Cnm
en-keyword=Prevalence
kn-keyword=Prevalence
en-keyword=Dental caries
kn-keyword=Dental caries
en-keyword=Japanese population
kn-keyword=Japanese population
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=8
article-no=
start-page=e70325
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiotoxicity Assessment of EGFR Tyrosine Kinase Inhibitors Using Human iPS Cell‐Derived Cardiomyocytes and FDA Adverse Events Reporting System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advances in the development of anti-cancer drugs have contributed to prolonged survival of cancer patients. In contrast, drug-induced cardiotoxicity, particularly cardiac contractile dysfunction, is of growing concern in cancer treatment. Therefore, it is important to understand the risks of anti-cancer drug-induced cardiac contractile dysfunction in drug development. We have previously developed image-based motion analysis using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to assess the effect of drugs on contractility. However, the utility and predictive potential of image-based motion analysis using hiPSC-CMs for anti-cancer drug-induced cardiac contractile dysfunction have not been well understood. Here we focused on epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and investigated the correlation between the hiPSC-CMs data and clinical signals of adverse events related to cardiac contractile dysfunction. We examined the effects of the four EGFR-TKIs, osimertinib, gefitinib, afatinib, and erlotinib, on the contractility of hiPSC-CMs using image-based motion analysis. We found that osimertinib decreased contraction velocity and deformation distance in a dose- and time-dependent manner, whereas gefitinib, afatinib, and erlotinib had little effect on these parameters. Next, we examined the real-world data of the EGFR-TKIs using FDA Adverse Event Reporting System (FAERS; JAPIC AERS). Only osimertinib showed significant clinical signals of adverse events related to cardiac contractile dysfunction. These data suggest that hiPSC-CM data correlate with clinical signals in FAERS analysis for four EGFR-TKIs. Thus, image-based motion analysis using hiPSC-CMs can be a useful platform for predicting the risk of anti-cancer drug-induced cardiac contractile dysfunction in patients.
en-copyright=
kn-copyright=
en-aut-name=YanagidaShota
en-aut-sei=Yanagida
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawagishiHiroyuki
en-aut-sei=Kawagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoMitsuo
en-aut-sei=Saito
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaYasunari
en-aut-sei=Kanda
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=2
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=3
en-affil=Japan Pharmaceutical Information Center (JAPIC)
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
en-keyword=cardiomyocytes
kn-keyword=cardiomyocytes
en-keyword=cardiotoxicity
kn-keyword=cardiotoxicity
en-keyword=contractility
kn-keyword=contractility
en-keyword=EGFR-tyrosine kinase inhibitor
kn-keyword=EGFR-tyrosine kinase inhibitor
en-keyword=FAERS
kn-keyword=FAERS
en-keyword=human iPS cell
kn-keyword=human iPS cell
END
start-ver=1.4
cd-journal=joma
no-vol=188
cd-vols=
no-issue=
article-no=
start-page=118137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unravelling the cardioprotective effects of calcitriol in Sunitinib-induced toxicity: A comprehensive in silico and in vitro study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sunitinib (SUN), a drug used to treat advanced renal cell carcinoma and other cancers, causes cardiotoxicity. This study aimed to identify a potential drug candidate to counteract SUN-induced cardiotoxicity. We analysed real-world data from adverse event report databases of existing clinically approved drugs to identify potential candidates. Through in silico analyses and in vitro experiments, the mechanisms of action were determined. The study identified calcitriol (CTL), an active form of vitamin D, as a promising candidate against SUN-induced cardiotoxicity. In H9c2 cells, SUN decreased cell viability significantly, whereas CTL mitigated this effect significantly. The SUN-treated group exhibited increased autophagy in H9c2 cells, which was reduced significantly in the CTL group. Bioinformatics analysis using Ingenuity Pathway Analysis revealed the mechanistic target of rapamycin (mTOR) as a common factor between autophagy and CTL. Notably, rapamycin, an mTOR inhibitor, nullified the effects of CTL on cell viability and autophagy. Furthermore, SUN treatment led to significant reductions in cardiomyocyte diameters and increases in their widths, changes that were inhibited by CTL. SUN also induced morphological changes in surviving H9c2 cells, causing them to adopt a rounded shape, whereas CTL improved their morphology to resemble the elongated shape of the control group. In conclusion, the findings of the present study suggest that CTL has the potential to prevent SUN-induced cardiomyocyte damage through autophagy, particularly via mTOR-mediated pathways. The findings indicate that CTL could serve as an effective prophylactic agent against SUN-induced cardiotoxicity, offering a promising avenue for further research and potential clinical applications.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshika
en-aut-sei=Sakamoto
en-aut-mei=Yoshika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaMitsuhiro
en-aut-sei=Goda
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomochikaNanami
en-aut-sei=Tomochika
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakawaWakana
en-aut-sei=Murakawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AizawaFuka
en-aut-sei=Aizawa
en-aut-mei=Fuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiKenta
en-aut-sei=Yagi
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Izawa-IshizawaYuki
en-aut-sei=Izawa-Ishizawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshizawaKeisuke
en-aut-sei=Ishizawa
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=6
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
en-keyword=Sunitinib
kn-keyword=Sunitinib
en-keyword=Advanced renal cell carcinoma
kn-keyword=Advanced renal cell carcinoma
en-keyword=Cardiotoxicity
kn-keyword=Cardiotoxicity
en-keyword=Calcitriol
kn-keyword=Calcitriol
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=MTOR
kn-keyword=MTOR
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=1305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery and Functional Characterization of Novel Aquaporins in Tomato (Solanum lycopersicum): Implications for Ion Transport and Salinity Tolerance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to its economic importance and cultivation under moderate salinity conditions in Japan. A swelling assay using X. laevis oocyte confirmed that all five examined tomato SlPIP2 isoforms showed water transport activity. Among them, two-electrode voltage clamp (TEVC) experiments showed that only SlPIP2;1, SlPIP2;4, and SlPIP2;8 transport Na+ and K+, with no transport activity for Cs+, Rb+, Li+, or Cl?. CaCl2 (1.8 mM) reduced ionic currents by approximately 45% compared to 30 ?M free-Ca2+. These isoforms function as very low-affinity Na+ and K+ transporters. Expression analysis showed that SlPIP2;4 and SlPIP2;8 had low, stable expression, while SlPIP2;1 was strongly upregulated in roots NaCl treatment (200 mM, 17days), suggesting distinct physiological roles for these ion-conducting AQPs (icAQPs). These data hypothesized that tomato icAQPs play a critical role in ion homeostasis, particularly under salinity stress. In conclusion, the first icAQPs have been identified in the dicotyledonous crop. These icAQPs are essential for plant resilience under salt stress.
en-copyright=
kn-copyright=
en-aut-name=PaulNewton Chandra
en-aut-sei=Paul
en-aut-mei=Newton Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImranShahin
en-aut-sei=Imran
en-aut-mei=Shahin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsumotoAnri
en-aut-sei=Mitsumoto
en-aut-mei=Anri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Aquaporin (AQP)
kn-keyword=Aquaporin (AQP)
en-keyword=ion transport
kn-keyword=ion transport
en-keyword=plasma membrane intrinsic proteins (PIPs)
kn-keyword=plasma membrane intrinsic proteins (PIPs)
en-keyword=tomato
kn-keyword=tomato
en-keyword=oocytes
kn-keyword=oocytes
en-keyword=water transport
kn-keyword=water transport
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p?0.05) were noted during infection to Int407 cell-line. Additionally, LF-EIEC exhibited extensive colonization of the mouse intestine and expressed severe keratoconjunctivitis in guinea pigs. Together, our findings highlight LF-EIEC as an emerging pathogenic variant warranting heightened surveillance and comprehensive investigation to better understand its epidemiological and clinical significance.
en-copyright=
kn-copyright=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HalderProlay
en-aut-sei=Halder
en-aut-mei=Prolay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SamantaProsenjit
en-aut-sei=Samanta
en-aut-mei=Prosenjit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShawSreeja
en-aut-sei=Shaw
en-aut-mei=Sreeja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BosePuja
en-aut-sei=Bose
en-aut-mei=Puja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RoyDeboleena
en-aut-sei=Roy
en-aut-mei=Deboleena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RoyNivedita
en-aut-sei=Roy
en-aut-mei=Nivedita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RamamurthyThandavarayan
en-aut-sei=Ramamurthy
en-aut-mei=Thandavarayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoleyHemanta
en-aut-sei=Koley
en-aut-mei=Hemanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MukhopadhyayAsish Kumar
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=2
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=3
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=4
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=6
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=7
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=8
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=9
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=10
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=11
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=12
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=14
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
en-keyword=Antibiotic resistance
kn-keyword=Antibiotic resistance
en-keyword=Bacterial infections
kn-keyword=Bacterial infections
en-keyword=Diarrhoea
kn-keyword=Diarrhoea
en-keyword=Enteroinvasive Escherichia coli
kn-keyword=Enteroinvasive Escherichia coli
en-keyword=Keratoconjunctivitis
kn-keyword=Keratoconjunctivitis
en-keyword=Pathogenesis
kn-keyword=Pathogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bioengineered chondrocyte-products from human induced pluripotent stem cells are useful for repairing articular cartilage injury in minipig model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The capacity of articular cartilage for self-repair is limited. Therefore, wide-ranging cartilage damage rarely resolves spontaneously, leading to the development of osteoarthritis. Previously, we developed human-induced pluripotent stem cell (hiPSC)-derived expandable human limb-bud-like mesenchymal (ExpLBM) cells with stable expansion and high chondrogenic capacity. In this study, various forms of articular cartilage-like tissue were fabricated using ExpLBM technology and evaluated to examine their potential as biomaterials. ExpLBM cells derived from hiPSCs were used to produce particle-like cartilage tissue and plate-like cartilage tissue. The cartilaginous particles and cartilaginous plates were transplanted into a minipig osteochondral defect model, and cartilage engraftment was histologically evaluated. For both transplanted cartilaginous particles and cartilaginous plates, good Safranin O staining and integration with the surrounding tissue were observed. Cartilaginous particles and cartilaginous plates made using hiPSCs-derived ExpLBM cells are effective for the regeneration of cartilage after injury.
en-copyright=
kn-copyright=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisawaYuki
en-aut-sei=Fujisawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HanakiShojiro
en-aut-sei=Hanaki
en-aut-mei=Shojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtakeShigeo
en-aut-sei=Otake
en-aut-mei=Shigeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyazawaShinichi
en-aut-sei=Miyazawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=5
article-no=
start-page=1302
end-page=1309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=X-ray fluorescence holography under high-pressure conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study reports the first application of X-ray fluorescence holography (XFH) under high-pressure conditions. We integrated XFH with a diamond anvil cell to investigate the local structure around Sr atoms in single-crystal SrTiO3 under high pressure. By utilizing nano-polycrystalline diamond anvils and a yttrium filter, we effectively eliminated significant background noise from both the anvils and the gasket. This optimized experimental configuration enabled the measurement of Sr?Kα holograms of the SrTiO3 sample at pressures up to 13.3?GPa. The variation of lattice constants with pressure was calculated by the shifts of Kossel lines, and real-space images of the atomic structures were reconstructed from the Sr?Kα holograms at different pressures. This work successfully demonstrates the feasibility of employing XFH under high-pressure conditions as a novel method for visualizing pressure-induced changes in the three-dimensional local structure around the specified element.
en-copyright=
kn-copyright=
en-aut-name=ZhanXinhui
en-aut-sei=Zhan
en-aut-mei=Xinhui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshimatsuNaoki
en-aut-sei=Ishimatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraKoji
en-aut-sei=Kimura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HappoNaohisa
en-aut-sei=Happo
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekharHalubai
en-aut-sei=Sekhar
en-aut-mei=Halubai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoTomoko
en-aut-sei=Sato
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakajimaNobuo
en-aut-sei=Nakajima
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawamuraNaomi
en-aut-sei=Kawamura
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HigashiKotaro
en-aut-sei=Higashi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SekizawaOki
en-aut-sei=Sekizawa
en-aut-mei=Oki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KadobayashiHirokazu
en-aut-sei=Kadobayashi
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiRitsuko
en-aut-sei=Eguchi
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubozonoYoshihiro
en-aut-sei=Kubozono
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TajiriHiroo
en-aut-sei=Tajiri
en-aut-mei=Hiroo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HosokawaShinya
en-aut-sei=Hosokawa
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsushitaTomohiro
en-aut-sei=Matsushita
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ShinmeiToru
en-aut-sei=Shinmei
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrifuneTetsuo
en-aut-sei=Irifune
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HayashiKoichi
en-aut-sei=Hayashi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=2
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=3
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Graduate School of Information Sciences, Hiroshima City University
kn-affil=
affil-num=5
en-affil=Institute of Industrial Nanomaterials, Kumamoto University
kn-affil=
affil-num=6
en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK
kn-affil=
affil-num=7
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=8
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=9
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=11
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=12
en-affil=Graduate School of Science, University of Hyogo
kn-affil=
affil-num=13
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=14
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=15
en-affil=Faculty of Materials for Energy, Shimane University
kn-affil=
affil-num=16
en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology
kn-affil=
affil-num=17
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=18
en-affil=Geodynamics Research Center, PIAS, Ehime University
kn-affil=
affil-num=19
en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology
kn-affil=
en-keyword=X-ray fluorescence holography
kn-keyword=X-ray fluorescence holography
en-keyword=high pressure
kn-keyword=high pressure
en-keyword=SrTiO3
kn-keyword=SrTiO3
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=3
article-no=
start-page=1025
end-page=1033
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Angiogenin-induced Osteoclastogenesis Mediates Bone Destruction in Oral Squamous Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Bone destruction caused by oral cancer severely impacts patient quality of life. This study aimed to clarify the role of angiogenin (ANG) in osteoclastogenesis and oral cancer-induced bone destruction.
Materials and Methods: Recombinant ANG was used to assess its effects on osteoclast formation and bone resorption activity in bone marrow cultures. ANG-knockdown oral squamous carcinoma HSC-2 cells (ANG-RNAi) were transplanted into intramedullary cavities of femurs. Bone destruction was radiologically analyzed, while angiogenesis and osteoclast induction in the surrounding area of the transplanted lesion were histologically examined.
Results: Recombinant ANG promoted osteoclast formation and bone resorption activity. Transplantation of ANG-RNAi cells significantly reduced tumor growth and bone destruction properties compared to transplantation of control cells. Histological analysis revealed lower angiogenesis and fewer osteoclast induction in the ANG-RNAi cells-transplanted group.
Conclusion: ANG mediates oral cancer-induced bone destruction by promoting osteoclast formation and resorption. These findings suggest that ANG could be a potential therapeutic target for suppressing tumor growth, angiogenesis, and bone destruction in oral cancer therapy.
en-copyright=
kn-copyright=
en-aut-name=AOKIKASUMI
en-aut-sei=AOKI
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHITANINANA
en-aut-sei=YOSHITANI
en-aut-mei=NANA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KURIONAITO
en-aut-sei=KURIO
en-aut-mei=NAITO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YOSHIOKANORIE
en-aut-sei=YOSHIOKA
en-aut-mei=NORIE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TERAMACHIJUMPEI
en-aut-sei=TERAMACHI
en-aut-mei=JUMPEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IKEGAMEMIKA
en-aut-sei=IKEGAME
en-aut-mei=MIKA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OKAMURAHIROHIKO
en-aut-sei=OKAMURA
en-aut-mei=HIROHIKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IBARAGISOICHIRO
en-aut-sei=IBARAGI
en-aut-mei=SOICHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Surgery, Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Function and Anatomy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Angiogeninoste
kn-keyword=Angiogeninoste
en-keyword=oclastogenesis
kn-keyword=oclastogenesis
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=osteoclasts
kn-keyword=osteoclasts
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=2
article-no=
start-page=49
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2024 Incentive Award of the Okayama Medical Association in Cancer Research (2024 Hayashibara Prize and Yamada Prize)
kn-title=令和6年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=直井勇人
kn-aut-sei=直井
kn-aut-mei=勇人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 腫瘍微小環境学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neutrophil-to-lymphocyte ratio affects the impact of proton pump inhibitors on efficacy of immune checkpoint inhibitors in patients with non?small-cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The neutrophil-to-lymphocyte ratio (NLR) at the initiation of immune checkpoint inhibitor (ICI) therapy is a known predictor of prognosis. Proton pump inhibitors (PPIs) reportedly attenuate the therapeutic efficacy of ICIs. However, the attenuation effects are not consistently observed across all patients. This study aimed to evaluate whether NLR serves as a stratification factor to determine the impact of PPI on the efficacy of ICI.
Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (??4) and lower NLR (4)). PPI use was defined as the administration of PPIs within 30 days before or after ICI initiation. The primary outcome was progression-free survival (PFS) and the secondary outcome was overall survival (OS).
Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n?=?61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p?0.01, median OS: 3.3 vs. 19.6 months; p?=?0.015). Conversely, in the lower NLR group (n?=?71), no significant difference in PFS and OS was observed between PPI users and non-PPI users (median PFS: 2.8 vs. 7.3 months, p?=?0.83, median OS: 17.6 vs. 24.4 months, p?=?0.40).
Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoTakefumi
en-aut-sei=Ito
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=Neutrophil-to-lymphocyte ratio
kn-keyword=Neutrophil-to-lymphocyte ratio
en-keyword=Non-small-cell lung cancer
kn-keyword=Non-small-cell lung cancer
en-keyword=Proton pump inhibitor
kn-keyword=Proton pump inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70104
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adequacy evaluation of 22‐gauge needle endoscopic ultrasound‐guided tissue acquisition samples and glass slides preparation for successful comprehensive genomic profiling testing: A single institute experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: This study aimed to evaluate the successful sequencing rate of Foundation One CDx (F1CDx) using small tissue samples obtained with a 22-gauge needle (22G) through endoscopic ultrasound-guided fine needle acquisition (EUS-TA) and to propose guidelines for tissue quantity evaluation criteria and proper slide preparation in clinical practice.
Methods: Between June 2019 and April 2024, 119 samples of 22G EUS-TA collected for F1CDx testing at Himeji Red Cross Hospital were retrospectively reviewed. Tissue adequacy was only assessed based on tumor cell percentage (?20%). The procedure stopped when white tissue fragments reached 20 mm during macroscopic on-site evaluation. The specimens were prepared using both ‘tissue preserving sectioning’ to retain tissue within formalin-fixed paraffin-embedded blocks and the ‘thin sectioning matched needle gauge and tissue length’ method with calculation to ensure minimal unstained slides for the 1 mm3 sample volume criterion. Tissue area from HE slides and sample volume were measured, and F1CDx reports were analyzed.
Results: Of 119 samples, 108 (90.8%) were suitable for F1CDx. Excluding the cases not submitted for testing, in the 45 cases where F1CDx was done using 22G EUS-TA samples, eight (17.8%) had a sum of tissue area tissue of 25 mm2 or greater in the HE-stained sample. However, all cases met the F1CDx 1 mm3 volume criterion by submitting > 30 unstained slides per sample. As a result, 43 of 45 cases (95.6%) were successfully analyzable.
Conclusions: The 22G EUS-TA needle is an effective tool for providing the sufficient tissue volume required for F1CDx.
en-copyright=
kn-copyright=
en-aut-name=NagataniTami
en-aut-sei=Nagatani
en-aut-mei=Tami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WaniYoji
en-aut-sei=Wani
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakataniMasahiro
en-aut-sei=Takatani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FushimiSoichiro
en-aut-sei=Fushimi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriShinichiro
en-aut-sei=Hori
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KaiKyohei
en-aut-sei=Kai
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiTetsuya
en-aut-sei=Okazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathology, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=5
en-affil=Division of Medical Support, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Internal Medicine, Japanese Red Cross Society, Himeji Red Cross Hospital
kn-affil=
affil-num=12
en-affil=Clinical Genomic Medicine, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biliary tract cancer
kn-keyword=biliary tract cancer
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=endoscopic ultrasound-guided fine needle aspiration
kn-keyword=endoscopic ultrasound-guided fine needle aspiration
en-keyword=endoscopic ultrasound-guided fine needle biopsy
kn-keyword=endoscopic ultrasound-guided fine needle biopsy
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=10
article-no=
start-page=2373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor?stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
en-copyright=
kn-copyright=
en-aut-name=AizawaYuka
en-aut-sei=Aizawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagaKenta
en-aut-sei=Haga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshibaNagako
en-aut-sei=Yoshiba
en-aut-mei=Nagako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YortchanWitsanu
en-aut-sei=Yortchan
en-aut-mei=Witsanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakadaSho
en-aut-sei=Takada
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaRintaro
en-aut-sei=Tanaka
en-aut-mei=Rintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoEriko
en-aut-sei=Naito
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Ab?Tatsuya
en-aut-sei=Ab?
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaSatoshi
en-aut-sei=Maruyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamazakiManabu
en-aut-sei=Yamazaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanumaJun-ichi
en-aut-sei=Tanuma
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TomiharaKei
en-aut-sei=Tomihara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TogoShinsaku
en-aut-sei=Togo
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=2
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=4
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=5
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=6
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=7
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=8
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=9
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=10
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=11
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=15
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=cancer-associated fibroblasts
kn-keyword=cancer-associated fibroblasts
en-keyword=oral mucosa
kn-keyword=oral mucosa
en-keyword=patient-derived
kn-keyword=patient-derived
en-keyword=organotypic culture
kn-keyword=organotypic culture
en-keyword=3D in vitro model
kn-keyword=3D in vitro model
en-keyword=polarity
kn-keyword=polarity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=3
article-no=
start-page=e70167
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Occupational therapist‐guided exercise increased white blood cell and neutrophil counts during clozapine treatment: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Moderate exercise increases white blood cells and neutrophils. However, there are no reports on the relationship between exercise intensity and these cells. We observed a patient taking clozapine whose white blood cell and neutrophil counts were borderline. Supervised exercise therapy with an occupational therapist stabilized these counts.
Case Presentation: A 50-year-old woman with treatment-resistant schizophrenia was prescribed clozapine. By Day 63, the clozapine dosage had been increased to 450?mg/day. Additionally, she was advised to perform a 30-min walking exercise program 1 h before blood tests. Exercise therapy supervised by an occupational therapist was performed eight times, and self-training was performed five times. Exercise intensity was monitored using the Borg Scale for subjective evaluation and the Karvonen formula for objective evaluation. Supervised exercise therapy with an occupational therapist resulted in greater increases on the Borg Scale and Karvonen formula than did self-training. It also induced increases in white blood cells and neutrophils. Her psychiatric symptoms improved, and she was discharged on Day 71. A blood test taken after discharge revealed that her white blood cell and neutrophil counts were within the normal range and she continued to take clozapine for 2 years. She has since been able to enjoy a calm and relaxed life at home.
Conclusion: Exercise involving subjective and objective evaluation by an occupational therapist effectively increased white blood cells and neutrophils during clozapine treatment. Supervised exercise therapy by an occupational therapist is important when self-exercise is insufficient for continuing clozapine treatment.
en-copyright=
kn-copyright=
en-aut-name=HinotsuKenji
en-aut-sei=Hinotsu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhyaYoshio
en-aut-sei=Ohya
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaTakahiro
en-aut-sei=Asada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=clozapine
kn-keyword=clozapine
en-keyword=exercise
kn-keyword=exercise
en-keyword=leukopenia
kn-keyword=leukopenia
en-keyword=neutropenia
kn-keyword=neutropenia
en-keyword=occupational therapist
kn-keyword=occupational therapist
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=9
article-no=
start-page=4310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=2
en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SLC transporter
kn-keyword=SLC transporter
en-keyword=ABC transporter
kn-keyword=ABC transporter
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-α?induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-α
kn-keyword=tumor necrosis factor-α
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=1863
cd-vols=
no-issue=
article-no=
start-page=149752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Amyloid-beta
kn-keyword=Amyloid-beta
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Neumentix
kn-keyword=Neumentix
en-keyword=Phagocytosis
kn-keyword=Phagocytosis
en-keyword=Survival rate
kn-keyword=Survival rate
END
start-ver=1.4
cd-journal=joma
no-vol=140
cd-vols=
no-issue=
article-no=
start-page=745
end-page=776
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 °C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShahriarMamun
en-aut-sei=Shahriar
en-aut-mei=Mamun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KhanM. Azizur R.
en-aut-sei=Khan
en-aut-mei=M. Azizur R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Taufiq-YapYun Hin
en-aut-sei=Taufiq-Yap
en-aut-mei=Yun Hin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MohantaSuman C.
en-aut-sei=Mohanta
en-aut-mei=Suman C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=19
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=20
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Advanced materials
kn-keyword=Advanced materials
en-keyword=Fuel cell
kn-keyword=Fuel cell
en-keyword=Hydrogen gas generation
kn-keyword=Hydrogen gas generation
en-keyword=Proton exchange membrane
kn-keyword=Proton exchange membrane
en-keyword=Polymer
kn-keyword=Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=1
article-no=
start-page=144
end-page=156
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lymphadenectomy and chemotherapy are effective treatments for patients with 2023 international federation of gynecology and obstetrics stage IIC-high risk endometrial cancer in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background In early-stage endometrial cancer (EC), the treatment of aggressive histological subtypes (endometrioid carcinoma grade 3, serous carcinoma, clear-cell carcinoma, undifferentiated carcinoma, mixed carcinoma, and carcinosarcoma) is controversial. We aimed to investigate the treatment of patients with International Federation of Gynecology and Obstetrics (FIGO) stage IC and stage IIC EC according to the 2023 classification.
Methods We retrospectively identified patients with FIGO 2023 stage IC, IIC-intermediate risk (IIC-I), and IIC-high risk (IIC-H) EC who underwent adjuvant therapy or observation after surgery at eight medical institutions from 2004 to 2023. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan?Meier estimates and univariate and multivariate analyses.
Results The PFS and OS were significantly worse in patients with FIGO 2023 stage IIC-H EC than in those with FIGO 2023 stage IIC-I EC (PFS: p?=?0.008 and OS: p?=?0.006). According to the FIGO 2023 stage IIC-H classification, lymphadenectomy and chemotherapy resulted in better prognoses regarding both PFS and OS (p?0.001 for both) than other treatments. Our findings suggest that lymphadenectomy and chemotherapy effectively reduced vaginal stump and lymph node metastases in FIGO 2023 stage IIC-H EC (p?0.001 and p?=?0.008, respectively). Furthermore, in the multivariate analysis, not undergoing lymphadenectomy or chemotherapy were independent predictors of recurrence and poor prognoses in patients with FIGO 2023 stage IIC-H EC (p?0.001 and p?=?0.031, respectively).
Conclusion Lymphadenectomy and chemotherapy resulted in better prognoses regarding both recurrence and survival in patients with FIGO 2023 stage IIC high-risk EC.
en-copyright=
kn-copyright=
en-aut-name=TaniYoshinori
en-aut-sei=Tani
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YorimitsuMasae
en-aut-sei=Yorimitsu
en-aut-mei=Masae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiNoriko
en-aut-sei=Seki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanishiMie
en-aut-sei=Nakanishi
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItouHironori
en-aut-sei=Itou
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimizuMiyuki
en-aut-sei=Shimizu
en-aut-mei=Miyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoDan
en-aut-sei=Yamamoto
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaEtsuko
en-aut-sei=Takahara
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Kagawa Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, National Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Fukuyama City Hospital
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Endometrial cancer
kn-keyword=Endometrial cancer
en-keyword=FIGO 2023
kn-keyword=FIGO 2023
en-keyword=Stage IIC high risk
kn-keyword=Stage IIC high risk
en-keyword=Lymphadenectomy
kn-keyword=Lymphadenectomy
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=329
cd-vols=
no-issue=1
article-no=
start-page=L183
end-page=L196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=ImakiireSatomi
en-aut-sei=Imakiire
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuroKeiji
en-aut-sei=Kimuro
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeimei
en-aut-sei=Yoshida
en-aut-mei=Keimei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKohei
en-aut-sei=Masaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiRyo
en-aut-sei=Izumi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImabayashiMisaki
en-aut-sei=Imabayashi
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTakanori
en-aut-sei=Watanabe
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshikawaTomohito
en-aut-sei=Ishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosokawaKazuya
en-aut-sei=Hosokawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushimaShouji
en-aut-sei=Matsushima
en-aut-mei=Shouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HashimotoToru
en-aut-sei=Hashimoto
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShinoharaKeisuke
en-aut-sei=Shinohara
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsukiShunsuke
en-aut-sei=Katsuki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatobaTetsuya
en-aut-sei=Matoba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HiranoKatsuya
en-aut-sei=Hirano
en-aut-mei=Katsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsutsuiHiroyuki
en-aut-sei=Tsutsui
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AbeKohtaro
en-aut-sei=Abe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
en-keyword=factor Xa
kn-keyword=factor Xa
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=proteinase-activated receptor
kn-keyword=proteinase-activated receptor
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary hypertension
kn-keyword=pulmonary hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design.
en-copyright=
kn-copyright=
en-aut-name=ImDohyun
en-aut-sei=Im
en-aut-mei=Dohyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JormakkaMika
en-aut-sei=Jormakka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JugeNarinobu
en-aut-sei=Juge
en-aut-mei=Narinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KishikawaJun-ichi
en-aut-sei=Kishikawa
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugitaYukihiko
en-aut-sei=Sugita
en-aut-mei=Yukihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NodaTakeshi
en-aut-sei=Noda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UemuraTomoko
en-aut-sei=Uemura
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShiimuraYuki
en-aut-sei=Shiimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaHidetsugu
en-aut-sei=Asada
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Applied Biology, Kyoto Institute of Technology
kn-affil=
affil-num=5
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=6
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=7
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2503029
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polyglycerol‐Grafted Graphene Oxide with pH‐Responsive Charge‐Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=charge conversion
kn-keyword=charge conversion
en-keyword=in vivo tumor internalization
kn-keyword=in vivo tumor internalization
en-keyword=non-specific interaction
kn-keyword=non-specific interaction
en-keyword=pH-responsiveness
kn-keyword=pH-responsiveness
en-keyword=polyglycerol-grafted graphene oxide
kn-keyword=polyglycerol-grafted graphene oxide
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e003250
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM?defined as LVEF of ?45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ?14/mm?, including ?4 monocytes/mm?, with CD3+ T lymphocytes of?7/mm?. Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan?Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm? (low); 13 of 13.1?23.9/mm? (moderate); and T lymphocytes of ?24?/mm? (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ?5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakafumi
en-aut-sei=Nakayama
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgoKeiko Ohta
en-aut-sei=Ogo
en-aut-mei=Keiko Ohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuganoYasuo
en-aut-sei=Sugano
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokokawaTetsuro
en-aut-sei=Yokokawa
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaYoshihiko
en-aut-sei=Ikeda
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroeMichiaki
en-aut-sei=Hiroe
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatakeyamaKinta
en-aut-sei=Hatakeyama
en-aut-mei=Kinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Ishibashi-UedaHatsue
en-aut-sei=Ishibashi-Ueda
en-aut-mei=Hatsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DohiKaoru
en-aut-sei=Dohi
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AnzaiToshihisa
en-aut-sei=Anzai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SeoYoshihiro
en-aut-sei=Seo
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Imanaka-YoshidaKyoko
en-aut-sei=Imanaka-Yoshida
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keiyu Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiology, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=10
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1151
end-page=1159
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.
en-copyright=
kn-copyright=
en-aut-name=Furuya-IkudeChiemi
en-aut-sei=Furuya-Ikude
en-aut-mei=Chiemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KittaAkane
en-aut-sei=Kitta
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNaoko
en-aut-sei=Tomonobu
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawasakiYoshihiro
en-aut-sei=Kawasaki
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=2
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
en-keyword=NCF-1 (p47phox)
kn-keyword=NCF-1 (p47phox)
en-keyword=ROS
kn-keyword=ROS
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Tumor growth
kn-keyword=Tumor growth
en-keyword=Apoptosis
kn-keyword=Apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=12
article-no=
start-page=2664
end-page=2671
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long‐term outcomes of endoscopic resection of superficial esophageal squamous cell carcinoma in late‐elderly patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: As the population ages, the number of elderly patients with superficial esophageal squamous cell carcinoma (ESCC) is increasing. We aimed to clarify the indications for endoscopic resection (ER) in late-elderly patients with ESCC in terms of life expectancy.
Methods: Patients aged ?75 years who underwent ER for ESCC at our institution from January 2005 to December 2018 were enrolled. Clinical data, including the Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists physical status (ASA-PS), Charlson comorbidity index, and prognostic nutritional index (PNI), were collected at the time of ER. The main outcome measure was overall survival (OS).
Results: Two hundred eight consecutive patients were enrolled. The patients' median age was 78 years (range, 75?89 years). The 5-year follow-up rate was 88.5% (median follow-up period, 6.6 years). The 5-year OS rate was 79.2% (95% confidence interval [CI], 72.2?84.8), and 5-year net survival standardized for age, sex, and calendar year was 1.04 (95% CI, 0.98?1.09). In the multivariate analysis, an ASA-PS of 3 (hazard ratio, 2.45; 95% CI, 1.16?5.17) and PNI of <44.0 (hazard ratio, 2.73; 95% CI, 1.38?5.40) were independent prognostic factors. When neither of these factors was met, the 5-year OS rate was 87.8% (95% CI, 80.0?92.9), and 5-year net survival was 1.08 (95% CI, 1.02?1.14).
Conclusions: ER for ESCC in late-elderly patients may improve life expectancy. ER is recommended in patients with a good ASA-PS and PNI.
en-copyright=
kn-copyright=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiKeisuke
en-aut-sei=Fukui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Societal Safety Sciences, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=endoscopic resection
kn-keyword=endoscopic resection
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=late-elderly patient
kn-keyword=late-elderly patient
en-keyword=long-term outcome
kn-keyword=long-term outcome
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
en-copyright=
kn-copyright=
en-aut-name=KatadaChikatoshi
en-aut-sei=Katada
en-aut-mei=Chikatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaTetsuji
en-aut-sei=Yokoyama
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoTomonori
en-aut-sei=Yano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHaruhisa
en-aut-sei=Suzuki
en-aut-mei=Haruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurueYasuaki
en-aut-sei=Furue
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoyamaHisashi
en-aut-sei=Doyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoikeTomoyuki
en-aut-sei=Koike
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaokiMasashi
en-aut-sei=Tamaoki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawataNoboru
en-aut-sei=Kawata
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraoMotohiro
en-aut-sei=Hirao
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgataTakashi
en-aut-sei=Ogata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatagiriAtsushi
en-aut-sei=Katagiri
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamanouchiTakenori
en-aut-sei=Yamanouchi
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KiyokawaHirofumi
en-aut-sei=Kiyokawa
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakuboHirofumi
en-aut-sei=Kawakubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KonnoMaki
en-aut-sei=Konno
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhashiShinya
en-aut-sei=Ohashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KishimotoYo
en-aut-sei=Kishimoto
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KanoKoichi
en-aut-sei=Kano
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MureKanae
en-aut-sei=Mure
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HayashiRyuichi
en-aut-sei=Hayashi
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IshikawaHideki
en-aut-sei=Ishikawa
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MutoManabu
en-aut-sei=Muto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Health and Promotion, National Institute of Public Health
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Endoscopy, Hokkaido University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Endoscopy, Shizuoka Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Tochigi Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=22
en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital
kn-affil=
affil-num=23
en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Public Health, Wakayama Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East
kn-affil=
affil-num=26
en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=27
en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center
kn-affil=
affil-num=28
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=alcohol
kn-keyword=alcohol
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=field cancerization
kn-keyword=field cancerization
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=JEC study
kn-keyword=JEC study
END
start-ver=1.4
cd-journal=joma
no-vol=207
cd-vols=
no-issue=
article-no=
start-page=108683
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracranial activity of sotorasib vs docetaxel in pretreated KRAS G12C-mutated advanced non-small cell lung cancer from a global, phase 3, randomized controlled trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To assess the efficacy and safety of sotorasib in patients with brain metastases using data from the phase 3 CodeBreaK 200 study, which evaluated sotorasib in adults with pretreated advanced or metastatic KRAS G12C-mutated non-small cell lung cancer (NSCLC).
Materials and methods: Patients with KRAS G12C-mutated NSCLC who progressed after platinum-based chemotherapy and checkpoint inhibitor therapy were randomized 1:1 to sotorasib or docetaxel. An exploratory post-hoc analysis evaluated central nervous system (CNS) progression-free survival (PFS) and time to CNS progression in patients with treated and stable brain metastases at baseline. Measures were assessed by blinded independent central review per study-modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
Results: Of the patients randomly assigned to receive sotorasib (n=171) or docetaxel (n=174), baseline CNS metastases were present in 40 (23%) and 29 (17%) patients, respectively. With a median follow-up of 20.0 months for this patient subgroup, median CNS PFS was longer with sotorasib compared with docetaxel (9.6 vs 4.5 months; hazard ratio, 0.43 [95% CI, 0.20?0.92]; P=0.02). Among patients with baseline treated CNS lesions of ?10 mm, the percentage of patients who achieved CNS tumor shrinkage of ?30% was two-fold higher with sotorasib than docetaxel (33.3% vs 15.4%). Treatment-related adverse events among patients with CNS lesions at baseline were consistent with those of the overall study population.
Conclusions: These results suggest intracranial activity with sotorasib complements the overall PFS benefit observed with sotorasib vs docetaxel, with safety outcomes similar to those in the general CodeBreaK 200 population.
Clinical trials registration number: NCT04303780.
en-copyright=
kn-copyright=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyrigosKonstantinos
en-aut-sei=Syrigos
en-aut-mei=Konstantinos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiviLorenzo
en-aut-sei=Livi
en-aut-mei=Lorenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PaulusAstrid
en-aut-sei=Paulus
en-aut-mei=Astrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimSang-We
en-aut-sei=Kim
en-aut-mei=Sang-We
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYuanbin
en-aut-sei=Chen
en-aut-mei=Yuanbin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GriesingerFrank
en-aut-sei=Griesinger
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZalcmanGerard
en-aut-sei=Zalcman
en-aut-mei=Gerard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HughesBrett G.M.
en-aut-sei=Hughes
en-aut-mei=Brett G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=S?rensenJens Benn
en-aut-sei=S?rensen
en-aut-mei=Jens Benn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlaisNormand
en-aut-sei=Blais
en-aut-mei=Normand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FerreiraCarlos G.M.
en-aut-sei=Ferreira
en-aut-mei=Carlos G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LindsayColin R.
en-aut-sei=Lindsay
en-aut-mei=Colin R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WardPatrick J.
en-aut-sei=Ward
en-aut-mei=Patrick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ObiozorCynthia Chinedu
en-aut-sei=Obiozor
en-aut-mei=Cynthia Chinedu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WangYang
en-aut-sei=Wang
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PetersSolange
en-aut-sei=Peters
en-aut-mei=Solange
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Erasmus MC Cancer Institute, University Medical Center
kn-affil=
affil-num=2
en-affil=Sotiria General Hospital
kn-affil=
affil-num=3
en-affil=Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence
kn-affil=
affil-num=4
en-affil=Centre Hospitalier Universitaire de Li?ge
kn-affil=
affil-num=5
en-affil=Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine
kn-affil=
affil-num=6
en-affil=The Cancer & Hematology Centers of Western Michigan
kn-affil=
affil-num=7
en-affil=Medical Oncology Department, Vall d’Hebron University Hospital
kn-affil=
affil-num=8
en-affil=Pius-Hospital Oldenburg
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Hospital Bichat-Claude Bernard
kn-affil=
affil-num=11
en-affil=The Prince Charles Hospital, University of Queensland
kn-affil=
affil-num=12
en-affil=Rigshospitalet
kn-affil=
affil-num=13
en-affil=Department of Medicine, Centre Hospitalier de l’Universit? de Montr?al
kn-affil=
affil-num=14
en-affil=Oncoclinicas
kn-affil=
affil-num=15
en-affil=Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust
kn-affil=
affil-num=16
en-affil=University Clinical Centre, Medical University of Gdansk
kn-affil=
affil-num=17
en-affil=SCRI at OHC
kn-affil=
affil-num=18
en-affil=Amgen Inc.
kn-affil=
affil-num=19
en-affil=Amgen Inc.
kn-affil=
affil-num=20
en-affil=Lausanne University Hospital
kn-affil=
en-keyword=Brain metastases
kn-keyword=Brain metastases
en-keyword=KRAS G12C-mutated
kn-keyword=KRAS G12C-mutated
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=NSCLC
kn-keyword=NSCLC
en-keyword=Randomized controlled trial
kn-keyword=Randomized controlled trial
en-keyword=Sotorasib
kn-keyword=Sotorasib
en-keyword=Survival
kn-keyword=Survival
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien?Dindo classification grade II?V on postoperative day (POD) 3?5. EM was defined as achieving an ICU Mobility Scale (IMS) ?7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE.
en-copyright=
kn-copyright=
en-aut-name=NOZAWAYasuaki
en-aut-sei=NOZAWA
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HARADAKazuhiro
en-aut-sei=HARADA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NOMAKazuhiro
en-aut-sei=NOMA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KATAYAMAYoshimi
en-aut-sei=KATAYAMA
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HAMADAMasanori
en-aut-sei=HAMADA
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OZAKIToshifumi
en-aut-sei=OZAKI
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Graduate School of Health Science Studies, Kibi International University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
en-keyword=Early mobilization
kn-keyword=Early mobilization
en-keyword=Postoperative pneumonia
kn-keyword=Postoperative pneumonia
en-keyword=Orthostatic intolerance
kn-keyword=Orthostatic intolerance
en-keyword=Thoracic esophageal squamous cell carcinoma
kn-keyword=Thoracic esophageal squamous cell carcinoma
en-keyword=Robot-assisted minimally invasive esophagectomy
kn-keyword=Robot-assisted minimally invasive esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=279
end-page=282
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaMao
en-aut-sei=Yoshikawa
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital
kn-affil=
en-keyword=gallbladder metastasis
kn-keyword=gallbladder metastasis
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=oligometastatic disease
kn-keyword=oligometastatic disease
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=231
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ? 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ? 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ? 2 nm/ml.
en-copyright=
kn-copyright=
en-aut-name=KardanM Enes
en-aut-sei=Kardan
en-aut-mei=M Enes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ErdemIlknur
en-aut-sei=Erdem
en-aut-mei=Ilknur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YildizEmre
en-aut-sei=Yildiz
en-aut-mei=Emre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KirazNuri
en-aut-sei=Kiraz
en-aut-mei=Nuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=?elikkolAliye
en-aut-sei=?elikkol
en-aut-mei=Aliye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=4
en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=5
en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University
kn-affil=
en-keyword=geriatrics
kn-keyword=geriatrics
en-keyword=gram-negative bacteria
kn-keyword=gram-negative bacteria
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 ?g/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 ?g/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10× MIC, with killing rates during the first 3 h ranging from 4.04 ± 0.01 to 4.31 ± 0.03 h?1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 ?g/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 ?g/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=2
article-no=
start-page=151495
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
en-copyright=
kn-copyright=
en-aut-name=TamuraShiori
en-aut-sei=Tamura
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PasangClarissa Ellice Talitha
en-aut-sei=Pasang
en-aut-mei=Clarissa Ellice Talitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaMinami
en-aut-sei=Tsuda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaShilan
en-aut-sei=Ma
en-aut-mei=Shilan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShindoHiromasa
en-aut-sei=Shindo
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhkuboTomoki
en-aut-sei=Ohkubo
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiyamaYoichi
en-aut-sei=Fujiyama
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaiMiho
en-aut-sei=Tamai
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TagawaYoh-ichi
en-aut-sei=Tagawa
en-aut-mei=Yoh-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=8
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=9
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=10
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
en-keyword=Intestine chip
kn-keyword=Intestine chip
en-keyword=Inflammatory bowel disease
kn-keyword=Inflammatory bowel disease
en-keyword=Co-culture
kn-keyword=Co-culture
en-keyword=Tri-culture
kn-keyword=Tri-culture
en-keyword=Fluidic device
kn-keyword=Fluidic device
en-keyword=Disease model
kn-keyword=Disease model
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Inflammation
kn-keyword=Inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=272
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EsakiKayoko
en-aut-sei=Esaki
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GreimelPeter
en-aut-sei=Greimel
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShingaiNanoka
en-aut-sei=Shingai
en-aut-mei=Nanoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OyaYasushi
en-aut-sei=Oya
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaTakeo
en-aut-sei=Yoshikawa
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences
kn-affil=
affil-num=10
en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=12
en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Juvenile amyotrophic lateral sclerosis
kn-keyword=Juvenile amyotrophic lateral sclerosis
en-keyword=SPTLC1
kn-keyword=SPTLC1
en-keyword=Sphingolipids
kn-keyword=Sphingolipids
en-keyword=Mosaicism
kn-keyword=Mosaicism
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=
article-no=
start-page=1477
end-page=1486
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predictive Value of Tumor ERCC1 Expression for Treatment Outcomes After Adjuvant Chemotherapy in Patients with Completely Resected Non-Small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To evaluate the predictive value of tumor expression of the excision repair cross-complementation group 1 gene (ERCC1) for the treatment outcomes after platinum-based adjuvant chemotherapy in patients with completely resected non-small cell lung cancer (NSCLC).
Methods: In this study, we conducted immunohistochemical analysis using a mouse monoclonal anti-ERCC1 antibody (clone 8F1) of operative specimens obtained from 238 patients enrolled in the SLCG0401 study which compared paclitaxel plus carboplatin (CBDCA+PTX) with uracil-tegafur (UFT) as adjuvant chemotherapy for stage IB-IIIA NSCLC. The overall survival (OS) of the patients was compared according to the ERCC1 expression status and adjuvant chemotherapy employed.
Results: Of the 238 specimens, 102 (42.9%) showed a positive result for ERCC1 expression. There were no significant differences in the patient characteristics or OS between the tumor ERCC1-positive and -negative patient groups. Among the patients with ERCC1-negative tumors, there was no significant difference in the survival between patient groups treated with CBDCA+PTX and UFT (HR=0.932, 95% CI: 0.52? 1.67, p=0.814). However, among the patients with ERCC1-positive tumors, CBDCA+PTX treatment tended to yield an inferior outcome, in terms of the OS, as compared with UFT treatment (HR=1.852, 95% CI: 0.92? 3.73, p=0.080). Multivariate analysis showed that ERCC1 expression was not an independent predictor of the OS following CBDCA+PTX treatment in completely resected NSCLC patients.
Conclusion: In completely resected NSCLC patients with positive tumor ERCC1 expression, adjuvant CBDCA+PTX treatment tended to yield an inferior outcome as compared with UFT treatment in terms of the OS. However, immunohistochemical analysis with the 8F1 antibody cannot be used for clinical decision making at this point.
en-copyright=
kn-copyright=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaishoShinsuke
en-aut-sei=Saisho
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=postoperative adjuvant chemotherapy
kn-keyword=postoperative adjuvant chemotherapy
en-keyword=platinum-based chemotherapy
kn-keyword=platinum-based chemotherapy
en-keyword=excision repair crosscomplementation group 1 gene
kn-keyword=excision repair crosscomplementation group 1 gene
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non?small cell lung cancer
kn-keyword=non?small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S?1
kn-keyword=S?1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparable Clinical Outcomes Between Segmentectomy and Lobectomy for NSCLC With Unsuspected N1/N2: A Multicenter Real-World Data Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Segmentectomy for lung cancer has been increasingly performed. However, evidence regarding the necessity of additional surgical resection after the diagnosis of unsuspected N1 or N2 lymph node metastasis is limited.
Methods We conducted a multicenter, real-world data study of patients with any clinical T and N0 non-small cell lung cancer (NSCLC) who underwent lobectomy or segmentectomy between 2012 and 2021 and who subsequently received a diagnosis of pathologic N1 or N2 lymph node metastasis. Patients were categorized into lobectomy and segmentectomy groups. We analyzed overall survival (OS), recurrence-free survival (RFS), cumulative recurrence rates, and recurrence patterns using both unadjusted and propensity score?adjusted cohorts.
Results A total of 736 patients were in the lobectomy group, and 70 were in the segmentectomy group. In the unadjusted cohort, segmentectomy-treated patients were older, had a lower preoperative percentage of vital capacity, had smaller tumors, and received less postoperative adjuvant chemotherapy. The 5-year OS was significantly worse in the segmentectomy group (P = .011), with no significant differences in 5-year RFS or cumulative recurrence rates. In the propensity score?adjusted cohort, there were no significant differences in OS, RFS, or recurrence rates; however, the segmentectomy group had a higher rate of local recurrence.
Conclusions In patients with unsuspected N1 or N2 NSCLC, analysis using a cohort adjusted for patient background with propensity scores revealed no differences in OS, RFS, or cumulative recurrence rates between segmentectomy and lobectomy. This finding suggests that additional resection of the remaining segments may not be necessary for these patients. However, the higher rate of local recurrence in the segmentectomy group warrants careful consideration.
en-copyright=
kn-copyright=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UenoTsuyoshi
en-aut-sei=Ueno
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMototsugu
en-aut-sei=Watanabe
en-aut-mei=Mototsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MisaoTakahiko
en-aut-sei=Misao
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WashioKazuhiro
en-aut-sei=Washio
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkutaniDaisuke
en-aut-sei=Okutani
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayamaMakio
en-aut-sei=Hayama
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UomotoMasashi
en-aut-sei=Uomoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaEiji
en-aut-sei=Yamada
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KurosakiTakeshi
en-aut-sei=Kurosaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YaginumaYuji
en-aut-sei=Yaginuma
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamataOsamu
en-aut-sei=Kawamata
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NishikawaHitoshi
en-aut-sei=Nishikawa
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OtsukaTomoaki
en-aut-sei=Otsuka
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaTakeshi
en-aut-sei=Yoshikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=HayashiTatsuro
en-aut-sei=Hayashi
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=7
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=8
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=9
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=10
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=11
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=12
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=13
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=14
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=15
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=16
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=17
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=18
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=19
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=20
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=21
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=22
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=23
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=24
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=25
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=26
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=27
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in liquid biopsy for bone and soft-tissue sarcomas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone and soft-tissue sarcomas are a heterogeneous group of malignant tumors originating from mesenchymal tissues, accounting for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. While blood-based tumor markers are available in major types of cancers, evidence demonstrating useful circulating biomarkers is limited in bone and soft-tissue sarcomas. Despite the development of combined modality treatments, a significant proportion of sarcoma patients respond poorly to chemotherapy or radiotherapy, leading to local relapse or distant metastasis. However, imaging methods, such as X-ray, computed tomography, positron emission tomography, magnetic resonance imaging, and scintigraphy, are mostly used to detect or monitor tumor development. Liquid biopsy is an emerging minimally invasive diagnostic technique that detects tumor-derived molecules in body fluids, including circulating tumor cells, circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and circulating extracellular vesicles. This method offers new possibilities for early tumor detection, prognostic evaluation, and therapeutic monitoring and may serve as a benchmark for treatment modification. This review focuses on the current technological advances in liquid biopsy for bone and soft-tissue sarcoma and explores its potential role in guiding personalized treatments. If these modalities could determine resistance to ongoing therapy or the presence of minimal residual disease at the end of the treatment protocol, the obtained data would be important for determining whether to change treatment approaches or add adjuvant therapies.
en-copyright=
kn-copyright=
en-aut-name=WangYilang
en-aut-sei=Wang
en-aut-mei=Yilang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimaruTakahiko
en-aut-sei=Ishimaru
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Liquid biopsy
kn-keyword=Liquid biopsy
en-keyword=Bone sarcoma
kn-keyword=Bone sarcoma
en-keyword=Soft-tissue sarcoma
kn-keyword=Soft-tissue sarcoma
en-keyword=Circulating tumor cells
kn-keyword=Circulating tumor cells
en-keyword=Circulating nucleic acids
kn-keyword=Circulating nucleic acids
en-keyword=Circulating microvesicles
kn-keyword=Circulating microvesicles
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology.
en-copyright=
kn-copyright=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaOsamu
en-aut-sei=Yokota
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiTakashi
en-aut-sei=Haraguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawanoTomohito
en-aut-sei=Kawano
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nakashima-YasudaHanae
en-aut-sei=Nakashima-Yasuda
en-aut-mei=Hanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HasegawaMasato
en-aut-sei=Hasegawa
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HosonoYasuyuki
en-aut-sei=Hosono
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TeradaSeishi
en-aut-sei=Terada
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Zikei Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Amyotrophic lateral sclerosis
kn-keyword=Amyotrophic lateral sclerosis
en-keyword=Heat shock protein
kn-keyword=Heat shock protein
en-keyword=DNAJC7
kn-keyword=DNAJC7
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=Live-cell imaging
kn-keyword=Live-cell imaging
en-keyword=Zebrafish disease model
kn-keyword=Zebrafish disease model
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression???50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p?=?0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=MoriTakeru
en-aut-sei=Mori
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaMio
en-aut-sei=Kitagawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaTomokazu
en-aut-sei=Hasegawa
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomeyaMasanori
en-aut-sei=Someya
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuchiyaTakaaki
en-aut-sei=Tsuchiya
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GochoToshio
en-aut-sei=Gocho
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateMirei
en-aut-sei=Date
en-aut-mei=Mirei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriiMariko
en-aut-sei=Morii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Autoantibodies
kn-keyword=Autoantibodies
en-keyword=PACIFIC regimen
kn-keyword=PACIFIC regimen
en-keyword=ICIs
kn-keyword=ICIs
en-keyword=Immune monitoring
kn-keyword=Immune monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=e00110-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)?1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroyuki
en-aut-sei=Yamada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotozonoChihiro
en-aut-sei=Motozono
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiSho
en-aut-sei=Yamasaki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TorrellesJordi B.
en-aut-sei=Torrelles
en-aut-mei=Jordi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TurnerJoanne
en-aut-sei=Turner
en-aut-mei=Joanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=3
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=5
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=6
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=7
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=8
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=Mycobacterium tuberculosis
kn-keyword=Mycobacterium tuberculosis
en-keyword=pyroptosis
kn-keyword=pyroptosis
en-keyword=caspase
kn-keyword=caspase
en-keyword=RNA-Seq
kn-keyword=RNA-Seq
en-keyword=cytokine
kn-keyword=cytokine
en-keyword=fibroblasts
kn-keyword=fibroblasts
END
start-ver=1.4
cd-journal=joma
no-vol=779
cd-vols=
no-issue=
article-no=
start-page=152453
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1,2-naphthoquinone enhances IFN-γ-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-γ-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-γ production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-γ-induced activation of dendritic cells and promotes the activation of CD8 T cells.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazatoKanon
en-aut-sei=Miyazato
en-aut-mei=Kanon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobataKai
en-aut-sei=Kobata
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=1,2-Napthoquinone
kn-keyword=1,2-Napthoquinone
en-keyword=Dendritic cell
kn-keyword=Dendritic cell
en-keyword=IFN-γ
kn-keyword=IFN-γ
en-keyword=MHC-I
kn-keyword=MHC-I
en-keyword=CD8 T cell
kn-keyword=CD8 T cell
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=3474
end-page=3475
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250806
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gene replacement therapy for centronuclear myopathy: A breakthrough in complex genetic muscle disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=8
article-no=
start-page=522
end-page=532
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6?305??M, MIC: 0.5?128??g?ml?1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTeruhiko
en-aut-sei=Ishikawa
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiYoko
en-aut-sei=Eguchi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgarashiMasayuki
en-aut-sei=Igarashi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkajimaToshihide
en-aut-sei=Okajima
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitaKohei
en-aut-sei=Mita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYuri
en-aut-sei=Yamasaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumikuraKaho
en-aut-sei=Sumikura
en-aut-mei=Kaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkumuraTaisei
en-aut-sei=Okumura
en-aut-mei=Taisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabuchiYuna
en-aut-sei=Tabuchi
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiChigusa
en-aut-sei=Hayashi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PasquaMartina
en-aut-sei=Pasqua
en-aut-mei=Martina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ColucciaMarco
en-aut-sei=Coluccia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ProssedaGianni
en-aut-sei=Prosseda
en-aut-mei=Gianni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ColonnaBianca
en-aut-sei=Colonna
en-aut-mei=Bianca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KohayakawaChie
en-aut-sei=Kohayakawa
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TaniAkiyoshi
en-aut-sei=Tani
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HarutaJun-ichi
en-aut-sei=Haruta
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=UtsumiRyutaro
en-aut-sei=Utsumi
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University
kn-affil=
affil-num=3
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=4
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=11
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=12
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=13
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=14
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=15
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=16
en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=17
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=18
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual roles of suberin deposition at the endodermal Casparian strip in manganese uptake of rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice roots are characterized by having two Casparian strips (CSs) at the exodermis and endodermis, where transporters for mineral nutrients are expressed. However, the exact role of the CS in expression of the transporters and subsequent nutrient uptake is poorly understood. Here, we first investigated the role of the CS in manganese (Mn) uptake by using a rice mutant (oscasp1) defective in formation of the endodermal CS. Knockout of OsCASP1 resulted in decreased Mn uptake under limited Mn conditions, but increased Mn uptake at high Mn concentration. Immunostaining revealed that knockout of OsCASP1 did not affect the cell specificity of localization of two transporters (OsNramp5 and OsMTP9) required for Mn uptake, but decreased the protein abundance of these transporters at the endodermis regardless of Mn concentrations tested. Furthermore, we found that overaccumulation of suberin at the endodermis of the mutants suppressed the expression of two transporters; the expression of the two transporters was only observed in the endodermal cells without suberin deposition, but not in the cells with suberin deposition. Taken together, our results indicate that there are two roles for the CS in Mn uptake; maintaining normal expression of the transporters at limited Mn concentration and preventing Mn diffusion to the stele at high Mn concentration.
en-copyright=
kn-copyright=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Casparian strip
kn-keyword=Casparian strip
en-keyword=endodermis
kn-keyword=endodermis
en-keyword=manganese transporter
kn-keyword=manganese transporter
en-keyword=rice
kn-keyword=rice
en-keyword=root
kn-keyword=root
en-keyword=suberin deposition
kn-keyword=suberin deposition
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=3
article-no=
start-page=99
end-page=117
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Golli?myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli?myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli?myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli?myelin basic protein knockout through the generation of conditional knockout mice (Golli?myelin basic proteinsfl/fl; E3CreN), in which Golli?myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli?myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli?myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli?myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli?myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli?myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaSaki
en-aut-sei=Nishioka
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTomoyuki
en-aut-sei=Yamanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeManabu
en-aut-sei=Abe
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImamuraYukio
en-aut-sei=Imamura
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyasakaTomohiro
en-aut-sei=Miyasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KakudaNobuto
en-aut-sei=Kakuda
en-aut-mei=Nobuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimogoriTomomi
en-aut-sei=Shimogori
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamakawaKazuhiro
en-aut-sei=Yamakawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IkawaMasahito
en-aut-sei=Ikawa
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NukinaNobuyuki
en-aut-sei=Nukina
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=3
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=4
en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University
kn-affil=
affil-num=5
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=6
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=7
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science
kn-affil=
affil-num=10
en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science
kn-affil=
affil-num=11
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=12
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
en-keyword=Golli-MBP
kn-keyword=Golli-MBP
en-keyword=Cerebellar granule neuron
kn-keyword=Cerebellar granule neuron
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Conditional knockout
kn-keyword=Conditional knockout
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Gastric Atypical Lipomatous Tumor/Well‐Differentiated Liposarcoma With Endoscopic Morphological Changes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lipomatous tumor/well-differentiated liposarcoma is a locally aggressive mesenchymal neoplasm composed of adipocytes and stromal cells. Gastric cases are exceedingly rare, and their malignant potential remains unclear. We report a case of a woman in her 60s who was found to have multiple submucosal tumor-like lesions of the stomach. Over time, the tumors increased in size, requiring a laparoscopic partial gastrectomy. Histological examination revealed a tumor composed of both fatty tissue and fibrous stroma with nuclear atypia. Immunohistochemistry showed positivity for CDK4 and MDM2, and fluorescence in situ hybridization confirmed MDM2 amplification, leading to a diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma. This case presented an unusual gastric manifestation, with multiple submucosal tumor-like lesions on endoscopy and exhibiting progressive morphological changes over several years.
en-copyright=
kn-copyright=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoteShizuma
en-aut-sei=Omote
en-aut-mei=Shizuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SonobeHiroshi
en-aut-sei=Sonobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoRyosuke
en-aut-sei=Hamano
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InagakiMasaru
en-aut-sei=Inagaki
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Fukuyama Minami Hospital
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=atypical lipomatous tumor
kn-keyword=atypical lipomatous tumor
en-keyword=CDK4
kn-keyword=CDK4
en-keyword=MDM2
kn-keyword=MDM2
en-keyword=stomach
kn-keyword=stomach
en-keyword=well-differentiated liposarcoma
kn-keyword=well-differentiated liposarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ?12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs.
en-copyright=
kn-copyright=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaNaohiro
en-aut-sei=Okada
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHiroaki
en-aut-sei=Inoue
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Neutron Therapy Research Center, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=199
cd-vols=
no-issue=
article-no=
start-page=108027
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan?Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy?61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group?42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group?37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era.
en-copyright=
kn-copyright=
en-aut-name=HorinouchiHidehito
en-aut-sei=Horinouchi
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHaruyasu
en-aut-sei=Murakami
en-aut-mei=Haruyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaHideyuki
en-aut-sei=Harada
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobueTomotaka
en-aut-sei=Sobue
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTomohiro
en-aut-sei=Kato
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AtagiShinji
en-aut-sei=Atagi
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokitoTakaaki
en-aut-sei=Tokito
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OizumiSatoshi
en-aut-sei=Oizumi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeMasahiro
en-aut-sei=Seike
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MioTadashi
en-aut-sei=Mio
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SoneTakashi
en-aut-sei=Sone
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwaoChikako
en-aut-sei=Iwao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwaneTakeshi
en-aut-sei=Iwane
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KotoRyo
en-aut-sei=Koto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsuboiMasahiro
en-aut-sei=Tsuboi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Radiation Therapy, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente
kn-affil=
affil-num=6
en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center
kn-affil=
affil-num=7
en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Kanazawa University Hospital
kn-affil=
affil-num=14
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=15
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=16
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East
kn-affil=
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Adjuvant therapy
kn-keyword=Adjuvant therapy
en-keyword=Neoadjuvant therapy
kn-keyword=Neoadjuvant therapy
en-keyword=Chemoradiotherapy
kn-keyword=Chemoradiotherapy
en-keyword=Observational study
kn-keyword=Observational study
en-keyword=Retrospective study
kn-keyword=Retrospective study
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=40
article-no=
start-page=3355-
end-page=3364
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plain language summary: tarlatamab for patients with previously treated small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AhnMyung-Ju
en-aut-sei=Ahn
en-aut-mei=Myung-Ju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KorantzisIppokratis
en-aut-sei=Korantzis
en-aut-mei=Ippokratis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MajemMargarita
en-aut-sei=Majem
en-aut-mei=Margarita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Juan-VidalOscar
en-aut-sei=Juan-Vidal
en-aut-mei=Oscar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HandzhievSabin
en-aut-sei=Handzhiev
en-aut-mei=Sabin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IzumiHiroki
en-aut-sei=Izumi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WolfJ?rgen
en-aut-sei=Wolf
en-aut-mei=J?rgen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlackhallFiona
en-aut-sei=Blackhall
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ReckMartin
en-aut-sei=Reck
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AlvarezJean Bustamante
en-aut-sei=Alvarez
en-aut-mei=Jean Bustamante
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HummelHorst-Dieter
en-aut-sei=Hummel
en-aut-mei=Horst-Dieter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SandsJacob
en-aut-sei=Sands
en-aut-mei=Jacob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkamatsuHiroaki
en-aut-sei=Akamatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OwonikokoTaofeek K.
en-aut-sei=Owonikoko
en-aut-mei=Taofeek K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RamalingamSuresh S.
en-aut-sei=Ramalingam
en-aut-mei=Suresh S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=BorghaeiHossein
en-aut-sei=Borghaei
en-aut-mei=Hossein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohnsonMelissa L.
en-aut-sei=Johnson
en-aut-mei=Melissa L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HuangShuang
en-aut-sei=Huang
en-aut-mei=Shuang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MukherjeeSujoy
en-aut-sei=Mukherjee
en-aut-mei=Sujoy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MinochaMukul
en-aut-sei=Minocha
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=JiangTony
en-aut-sei=Jiang
en-aut-mei=Tony
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MartinezPablo
en-aut-sei=Martinez
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AndersonErik S.
en-aut-sei=Anderson
en-aut-mei=Erik S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=Paz-AresLuis
en-aut-sei=Paz-Ares
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=2
en-affil=Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
affil-num=3
en-affil=Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology
kn-affil=
affil-num=4
en-affil=Department of Medical Oncology, Saint Loukas Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Hospital de la Santa Creu i Sant Pau
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Klinische Abteilung f?r Pneumologie, Universit?tsklinikum Krems
kn-affil=
affil-num=9
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=10
en-affil=Seoul National University Bundang Hospital
kn-affil=
affil-num=11
en-affil=Department of Oncology and Radiotherapy and Early Phase Clinical Trials Center, Medical University of Gdansk
kn-affil=
affil-num=12
en-affil=Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne
kn-affil=
affil-num=13
en-affil=Christie NHS Foundation Trust and University of Manchester
kn-affil=
affil-num=14
en-affil=Lungen Clinic, Airway Research Center North, German Center for Lung Research
kn-affil=
affil-num=15
en-affil=West Virginia University Health Sciences Center
kn-affil=
affil-num=16
en-affil=Translational Oncology?Early Clinical Trial Unit, Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center, Universit?tsklinikum W?rzburg
kn-affil=
affil-num=17
en-affil=Department of Pulmonary Medicine, Erasmus MC Cancer Institute
kn-affil=
affil-num=18
en-affil=Dana?Farber Cancer Institute, Harvard Medical School
kn-affil=
affil-num=19
en-affil=Wakayama Medical University Hospital
kn-affil=
affil-num=20
en-affil=Division of Hematology?Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center
kn-affil=
affil-num=21
en-affil=Winship Cancer Institute of Emory University
kn-affil=
affil-num=22
en-affil=Fox Chase Cancer Center
kn-affil=
affil-num=23
en-affil=Sarah Cannon Research Institute at Tennessee Oncology
kn-affil=
affil-num=24
en-affil=Amgen
kn-affil=
affil-num=25
en-affil=Amgen
kn-affil=
affil-num=26
en-affil=Amgen
kn-affil=
affil-num=27
en-affil=Amgen
kn-affil=
affil-num=28
en-affil=Amgen
kn-affil=
affil-num=29
en-affil=Amgen
kn-affil=
affil-num=30
en-affil=Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc
kn-affil=
en-keyword=Clinical trials
kn-keyword=Clinical trials
en-keyword=DeLLphi-301
kn-keyword=DeLLphi-301
en-keyword=DLL3
kn-keyword=DLL3
en-keyword=Immunotherapy
kn-keyword=Immunotherapy
en-keyword=SCLC
kn-keyword=SCLC
en-keyword=Small cell lung cancer
kn-keyword=Small cell lung cancer
en-keyword=T cell
kn-keyword=T cell
en-keyword=Tarlatamab
kn-keyword=Tarlatamab
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=23
article-no=
start-page=2715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predicting Surgical Site Infections in Spine Surgery: Association of Postoperative Lymphocyte Reduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Postoperative lymphopenia is reported as an excellent indicator to predict surgical-site infection (SSI) after spine surgery. However, there is still controversy concerning which serological markers can predict spinal SSI. This study aims to evaluate excellent and early indicators for detecting SSI, focusing on spine instrumented surgery. Materials and Methods: This study included 268 patients who underwent spinal instrumented surgery from January 2022 to December 2023 (159 female and 109 male, average 62.9 years). The SSI group included 20 patients, and the non-SSI group comprised 248 patients. Surgical time, intraoperative blood loss, and glycemic levels were measured in both groups. The complete blood cell counts, differential counts, albumin, and C-reactive protein (CRP) levels were measured pre-surgery and postoperative on Days 1, 3, and 7. In comparing the groups, the Mann?Whitney U test analysis was used for continuous variables, while the chi-squared test and Fisher’s exact test were used for dichotomous variables. Results: The incidence of SSI after spinal instrumentation was 7.46% and was relatively higher in scoliosis surgery. The SSI group had significantly longer surgical times (248 min vs. 180 min, p = 0.0004) and a higher intraoperative blood loss (772 mL vs. 372 mL, p < 0.0001) than the non-SSI group. In the SSI group, the Day 3 (10.5 ± 6.2% vs. 13.8 ± 6.0%, p = 0.012) and Day 7 (14.4 ± 4.8% vs. 18.8 ± 7.1%, p = 0.012) lymphocyte ratios were lower than the non-SSI group. Albumin levels on Day 1 in the SSI group were lower than in the non-SSI group (2.94 ± 0.30 mg/dL vs. 3.09 ± 0.38 mg/dL, p = 0.045). There is no difference in CRP and lymphocyte count between the two groups. Conclusions: SSI patients had lower lymphocyte percentages than non-SSI patients, which was a risk factor for SSI, with constant high inflammation. The Day 3 lymphocyte percentage may predict SSI after spinal instrumented surgery.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuDongwoo
en-aut-sei=Yu
en-aut-mei=Dongwoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JainMukul
en-aut-sei=Jain
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HengChristan
en-aut-sei=Heng
en-aut-mei=Christan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=instrumentation
kn-keyword=instrumentation
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=lymphocyte
kn-keyword=lymphocyte
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=2
article-no=
start-page=395
end-page=412.e6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
en-copyright=
kn-copyright=
en-aut-name=YaoNa
en-aut-sei=Yao
en-aut-mei=Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinouchiKenichiro
en-aut-sei=Kinouchi
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshtianiKousha Changizi
en-aut-sei=Ashtiani
en-aut-mei=Kousha Changizi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbdelkarimSherif
en-aut-sei=Abdelkarim
en-aut-mei=Sherif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoHiroyuki
en-aut-sei=Morimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TorimitsuTakuto
en-aut-sei=Torimitsu
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KozumaTakahide
en-aut-sei=Kozuma
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwaharaAkihide
en-aut-sei=Iwahara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KosugiShotaro
en-aut-sei=Kosugi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKyosuke
en-aut-sei=Kato
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TonomuraShun
en-aut-sei=Tonomura
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraToshifumi
en-aut-sei=Nakamura
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItohArata
en-aut-sei=Itoh
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaguchiShintaro
en-aut-sei=Yamaguchi
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshinoJun
en-aut-sei=Yoshino
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrieJunichiro
en-aut-sei=Irie
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=SatohAkiko
en-aut-sei=Satoh
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MikamiYohei
en-aut-sei=Mikami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UchidaShusaku
en-aut-sei=Uchida
en-aut-mei=Shusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UekiTakatoshi
en-aut-sei=Ueki
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=BaldiPierre
en-aut-sei=Baldi
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiKaori
en-aut-sei=Hayashi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ItohHiroshi
en-aut-sei=Itoh
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=5
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=6
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=7
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=21
en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University
kn-affil=
affil-num=22
en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=24
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=25
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=26
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=27
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=28
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
en-keyword=circadian rhythm
kn-keyword=circadian rhythm
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=circadian clock
kn-keyword=circadian clock
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=developmental origins of health and disease
kn-keyword=developmental origins of health and disease
en-keyword=obesity
kn-keyword=obesity
en-keyword=leptin
kn-keyword=leptin
en-keyword=time-restricted feeding
kn-keyword=time-restricted feeding
en-keyword=caloric restriction
kn-keyword=caloric restriction
en-keyword=eating behavior
kn-keyword=eating behavior
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-Iba?ezJos? T.
en-aut-sei=Ascencio-Iba?ez
en-aut-mei=Jos? T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=Hafr?nAnders
en-aut-sei=Hafr?n
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasi?w-JaroszewskaBeata
en-aut-sei=Hasi?w-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=Hern?ndezCarmen
en-aut-sei=Hern?ndez
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=L?pez-LambertiniPaola M.
en-aut-sei=L?pez-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=M?kinenKristiina
en-aut-sei=M?kinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJes?s
en-aut-sei=Navas-Castillo
en-aut-mei=Jes?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=Pall?sVicente
en-aut-sei=Pall?s
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-Gonz?lezPedro L.
en-aut-sei=Ramos-Gonz?lez
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-P?ggelerKatja R.
en-aut-sei=Richert-P?ggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=?af??ov?Dana
en-aut-sei=?af??ov?
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=Sanfa?onH?l?ne
en-aut-sei=Sanfa?on
en-aut-mei=H?l?ne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=S?meraMerike
en-aut-sei=S?mera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRen? A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=Ren? A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Fran?ais de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortali?as
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Gen?ticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=466
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification.
en-copyright=
kn-copyright=
en-aut-name=TanabeShihori
en-aut-sei=Tanabe
en-aut-mei=Shihori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuaderSabina
en-aut-sei=Quader
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoRyuichi
en-aut-sei=Ono
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoAkihisa
en-aut-sei=Yamamoto
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaMotohiro
en-aut-sei=Kojima
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PerkinsEdward J.
en-aut-sei=Perkins
en-aut-mei=Edward J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CabralHoracio
en-aut-sei=Cabral
en-aut-mei=Horacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion
kn-affil=
affil-num=3
en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine
kn-affil=
affil-num=7
en-affil=US Army Engineer Research and Development Center
kn-affil=
affil-num=8
en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=coronavirus
kn-keyword=coronavirus
en-keyword=coronaviral infection
kn-keyword=coronaviral infection
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=pathway analysis
kn-keyword=pathway analysis
en-keyword=predictionmodel
kn-keyword=predictionmodel
en-keyword=molecular network
kn-keyword=molecular network
en-keyword=molecular pathway image
kn-keyword=molecular pathway image
en-keyword=network analysis
kn-keyword=network analysis
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=4984
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=cardiomyopathy
kn-keyword=cardiomyopathy
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative therapy
kn-keyword=regenerative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=13
article-no=
start-page=7238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH.
en-copyright=
kn-copyright=
en-aut-name=LeeYoung-Hyeon
en-aut-sei=Lee
en-aut-mei=Young-Hyeon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeoMin-Ho
en-aut-sei=Yeo
en-aut-mei=Min-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoonWeon-Jong
en-aut-sei=Yoon
en-aut-mei=Weon-Jong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJongwan
en-aut-sei=Kim
en-aut-mei=Jongwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHye-Ran
en-aut-sei=Kim
en-aut-mei=Hye-Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=3
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=4
en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)
kn-affil=
affil-num=5
en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anatomy, College of Medicine, Dongguk University
kn-affil=
affil-num=7
en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology
kn-affil=
en-keyword=metabolic dysfunction-associated steatohepatitis
kn-keyword=metabolic dysfunction-associated steatohepatitis
en-keyword=Distylium racemosum
kn-keyword=Distylium racemosum
en-keyword=ethyl acetate fraction
kn-keyword=ethyl acetate fraction
en-keyword=extract
kn-keyword=extract
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=8
article-no=
start-page=1621
end-page=1630
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Percutaneous cryoablation versus robot-assisted partial nephrectomy for small renal cell carcinoma: a retrospective cost analysis at Japanese single-institution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: No direct cost comparison has been conducted between percutaneous cryoablation (PCA) and robot-assisted partial nephrectomy (RAPN) for clinical T1a renal cell carcinoma (RCC) in Japan. This study aimed to compare their costs.
Methods: We retrospectively analyzed data from 212 PCAs (including 155 with transcatheter arterial embolization) and 119 RAPN cases performed between December 2017 and May 2022.
Results: PCA patients were older with higher American Society of Anesthesiologists scores, Charlson Comorbidity Index, and history of previous RCC treatment, cardiovascular disease, and antithrombotic drug use than RAPN patients. PCA was associated with a significantly shorter procedure time and hospitalization duration with fewer major complications than those associated with RAPN. While PCA incurred a slightly lower total cost (1,123,000 vs. 1,155,000 yen), it had a significantly higher procedural cost (739,000 vs. 693,000 yen) and markedly worse total (? 93,000 vs. 249,000 yen) and procedural income-expenditure balance (? 189,000 vs. 231,000 yen) than those of RAPN. After statistical adjustment, PCA demonstrated significantly higher total (difference: 114,000 yen) and procedural costs (difference: 72,000 yen), alongside significantly worse total (difference: ? 358,000 yen) and procedural income-expenditure balances (difference: ? 439,000 yen). The incremental cost-effectiveness ratio was more favorable for PCA than for RAPN.
Conclusion: For high- risk patients, PCA demonstrated a safer option with shorter hospitalization duration than those of RAPN. Although PCA was more cost-effective, its higher procedural cost and unfavorable income-expenditure balance require careful evaluation, especially for large tumors that require three or more needles.
en-copyright=
kn-copyright=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Renal cancer
kn-keyword=Renal cancer
en-keyword=Cryoablation
kn-keyword=Cryoablation
en-keyword=Robot-assisted partial nephrectomy
kn-keyword=Robot-assisted partial nephrectomy
en-keyword=Cost
kn-keyword=Cost
en-keyword=Cost effectiveness
kn-keyword=Cost effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27163
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade???3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade???3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of???2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23?4.54, p?=?0.01) and a low neutrophil/eosinophil ratio (NER) of???40.0 (OR: 2.78, 95% CI 1.39?5.53, p?=?0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade???3 TRAEs and help determine individualized treatment strategies in patients with mRCC.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KuroseKyohei
en-aut-sei=Kurose
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AzumaHaruhito
en-aut-sei=Azuma
en-aut-mei=Haruhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=28
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=30
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=32
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=ICI
kn-keyword=ICI
en-keyword=Eosinophil
kn-keyword=Eosinophil
en-keyword=Immune-related adverse event
kn-keyword=Immune-related adverse event
en-keyword=Treatment-related adverse event
kn-keyword=Treatment-related adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=13
article-no=
start-page=e172988
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LAG3 regulates antibody responses in a murine model of kidney transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3?/? recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3?/? recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3?/? recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3?/? recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment.
en-copyright=
kn-copyright=
en-aut-name=NicosiaMichael
en-aut-sei=Nicosia
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FanRan
en-aut-sei=Fan
en-aut-mei=Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeeJuyeun
en-aut-sei=Lee
en-aut-mei=Juyeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AllGabriella
en-aut-sei=All
en-aut-mei=Gabriella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GorbachevaVictoria
en-aut-sei=Gorbacheva
en-aut-mei=Victoria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ValenzuelaJos? I.
en-aut-sei=Valenzuela
en-aut-mei=Jos? I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoYosuke
en-aut-sei=Yamamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BeaversAshley
en-aut-sei=Beavers
en-aut-mei=Ashley
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DvorinaNina
en-aut-sei=Dvorina
en-aut-mei=Nina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BaldwinWilliam M.
en-aut-sei=Baldwin
en-aut-mei=William M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ChuluyanEduardo
en-aut-sei=Chuluyan
en-aut-mei=Eduardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GaudetteBrian T.
en-aut-sei=Gaudette
en-aut-mei=Brian T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FairchildRobert L.
en-aut-sei=Fairchild
en-aut-mei=Robert L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MinBooki
en-aut-sei=Min
en-aut-mei=Booki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ValujskikhAnna
en-aut-sei=Valujskikh
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=5
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=6
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=9
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=10
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=11
en-affil=Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cient?ficas y T?cnicas, Centro de Estudios Farmacol?gicos y Bot?nicos (CEFYBO), Facultad de Medicina
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=14
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=15
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=16
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=15
article-no=
start-page=7275
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acquired Radioresistance Through Adaptive Evolution with Gamma Radiation as Selection Pressure: Increased Expression and Induction of Anti-Stress Genes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics and the difficulty of handling them experimentally. To address this, we conducted an experiment on adaptive evolution using gamma radiation as the selection pressure to generate evolved Escherichia coli with gamma radiation resistance approximately one order of magnitude greater than that of wild-type E. coli. Gene expressions in all wild-type and evolved radioresistant E. coli in the presence or absence of gamma irradiation were analyzed and compared using RNA sequencing. Under steady-state conditions, the genes involved in survival, cell recovery, DNA repair, and response following stress exposure were upregulated in evolved E. coli compared with those in wild-type E. coli. Furthermore, the evolved E. coli induced these genes more efficiently following gamma irradiation and greater DNA repair activity than that in the wild-type E. coli. Our results indicate that an increased steady-state expression of various anti-stress genes, including DNA repair-related genes, and their highly efficient induction under irradiation are responsible for the remarkable radioresistance of evolved E. coli.
en-copyright=
kn-copyright=
en-aut-name=SaitoTakeshi
en-aut-sei=Saito
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeratoHiroaki
en-aut-sei=Terato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Radiation Research, Advanced Science Research Center, Okayama University
kn-affil=
en-keyword=radioresistant bacteria
kn-keyword=radioresistant bacteria
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=adaptive evolution
kn-keyword=adaptive evolution
en-keyword=gene expression changes
kn-keyword=gene expression changes
en-keyword=anti-stress genes
kn-keyword=anti-stress genes
en-keyword=DNA repair
kn-keyword=DNA repair
en-keyword=cell recovery
kn-keyword=cell recovery
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=7
article-no=
start-page=koaf142
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancentromere analysis of Allium species reveals diverse centromere positions in onion and gigantic centromeres in garlic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In eukaryotes, centromeres interact with the kinetochore for distribution of genetic information in cell division, yet their sequence and size are diverse among species. However, their position on chromosomes is considered to be conserved within a species. In this study, we analyzed the centromeres of 3 Allium species, namely, Welsh onion (Allium fistulosum), onion (Allium cepa), and garlic (Allium sativum) via pancentromere analysis and repetitive sequence analysis of centromeres and their neighborhoods and revealed their mobility, sequence organization, and size. Among the 3 species, Welsh onion and garlic had stable centromeres, but the onion centromere appeared to be polymorphic and frequently differed in position by up to 28.0?Mb among cultivars and between multiple individuals of the same cultivar. This mobility was stabilized by hybridization with Welsh onions. Furthermore, these 3 species have very different centromere sequence organization, including differences in the existence and maturity of centromeric satellites, and differences in centromere size, with Welsh onion having a centromere of 1.9?Mb, and garlic having a centromere of ?10.6?Mb, the largest of any organism with monocentric chromosomes analyzed to date. Our pancentromere analysis of these Allium species reveals the variation in sequence organization, size, and position of this important chromosomal region.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTakashi
en-aut-sei=Akagi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie ? CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJos? L.
en-aut-sei=Jorcano
en-aut-mei=Jos? L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Mart?nCristina
en-aut-sei=Mart?n
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=12
article-no=
start-page=4932
end-page=4951
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
en-copyright=
kn-copyright=
en-aut-name=GotoYukihisa
en-aut-sei=Goto
en-aut-mei=Yukihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadotaYasuhiro
en-aut-sei=Kadota
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MbengueMalick
en-aut-sei=Mbengue
en-aut-mei=Malick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LewisJennifer D
en-aut-sei=Lewis
en-aut-mei=Jennifer D
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MakiNoriko
en-aut-sei=Maki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NgouBruno Pok Man
en-aut-sei=Ngou
en-aut-mei=Bruno Pok Man
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SklenarJan
en-aut-sei=Sklenar
en-aut-mei=Jan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DerbyshirePaul
en-aut-sei=Derbyshire
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShibataArisa
en-aut-sei=Shibata
en-aut-mei=Arisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchihashiYasunori
en-aut-sei=Ichihashi
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GuttmanDavid S
en-aut-sei=Guttman
en-aut-mei=David S
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakagamiHirofumi
en-aut-sei=Nakagami
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MenkeFrank L H
en-aut-sei=Menke
en-aut-mei=Frank L H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=RobatzekSilke
en-aut-sei=Robatzek
en-aut-mei=Silke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DesveauxDarrell
en-aut-sei=Desveaux
en-aut-mei=Darrell
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ZipfelCyril
en-aut-sei=Zipfel
en-aut-mei=Cyril
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=2
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=3
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=4
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=7
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=8
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=9
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=10
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=11
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=12
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=13
en-affil=Plant Proteomics Research Unit, RIKEN CSRS
kn-affil=
affil-num=14
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=15
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=16
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=17
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=18
en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
kn-affil=
affil-num=19
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=e88945
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Six-Year Remission With No Relapse After Four-Time Weekly Rituximab Only for Bilateral Ocular Adnexal Follicular Lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Follicular lymphoma mostly takes an indolent course, and thus, observation with watchful waiting is a main therapeutic strategy. Recent long-term studies suggest earlier treatment with rituximab monotherapy may benefit patients by delaying the need for treatment in the later phase of exacerbation. In this study, we reported a patient with bilateral orbital follicular lymphoma who received four-time weekly rituximab monotherapy as an induction therapy only and maintained the remission for 5 years with no treatment. The patient was a 51-year-old woman who developed a right upper orbital mass and was diagnosed with follicular lymphoma grade 1 by the excisional biopsy. Two years later, at the age of 53 years, she developed a left lacrimal gland mass and underwent excision. The pathological diagnosis was follicular lymphoma grade 1. She did not have any other systemic lesions by fluorodeoxyglucose positron emission tomography. At the age of 54 years, she developed a new mass on the nasal side of the right orbit and underwent weekly rituximab monotherapy (375 mg/m2) four times a month, leading to the reduction of the mass in 3 months. Two high uptake sites on the temporal and nasal side of the right superior orbit by fluorodeoxyglucose positron emission tomography disappeared one year later at the age of 55 years. She was followed with no treatment for 6 years until the age of 60 years at the latest visit. In case of a local orbital relapse, local radiotherapy would be the standard, but rituximab monotherapy as an induction therapy only was chosen in the present patient. Rituximab monotherapy in place of local radiotherapy would be a treatment option for orbital follicular lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Transfusion and Cell Therapy, Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=claustrophobia
kn-keyword=claustrophobia
en-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
kn-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=follicular lymphoma
kn-keyword=follicular lymphoma
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
kn-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
en-keyword=ocular adnexa
kn-keyword=ocular adnexa
en-keyword=orbital mass
kn-keyword=orbital mass
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=rituximab
kn-keyword=rituximab
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25?cm; inner diameter, 9?cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7?cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=14
article-no=
start-page=6927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling.
en-copyright=
kn-copyright=
en-aut-name=ItohYoshihiko
en-aut-sei=Itoh
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiKenichi
en-aut-sei=Inagaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TerasakaTomohiro
en-aut-sei=Terasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimotoEisaku
en-aut-sei=Morimoto
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakahiro
en-aut-sei=Ishii
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKimitomo
en-aut-sei=Yamaoka
en-aut-mei=Kimitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaSatoshi
en-aut-sei=Fujisawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tyrosine kinase inhibitor
kn-keyword=tyrosine kinase inhibitor
en-keyword=multiple endocrine neoplasia type 2
kn-keyword=multiple endocrine neoplasia type 2
en-keyword=paraganglioma
kn-keyword=paraganglioma
en-keyword=RET
kn-keyword=RET
en-keyword=ERK
kn-keyword=ERK
en-keyword=AKT
kn-keyword=AKT
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=118030
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
en-copyright=
kn-copyright=
en-aut-name=Aoki-SaitoHaruka
en-aut-sei=Aoki-Saito
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakakuraTakashi
en-aut-sei=Nakakura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiTsutomu
en-aut-sei=Sasaki
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraTadahiro
en-aut-sei=Kitamura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisadaTakeshi
en-aut-sei=Hisada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaShuichi
en-aut-sei=Okada
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaMasanobu
en-aut-sei=Yamada
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Anatomy, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Gunma University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diabetes, Soleiyu Asahi Clinic
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
en-keyword=(+)-Terrein
kn-keyword=(+)-Terrein
en-keyword=Brown adipose tissue
kn-keyword=Brown adipose tissue
en-keyword=Thermogenesis
kn-keyword=Thermogenesis
en-keyword=Obesity
kn-keyword=Obesity
en-keyword=PPARγ
kn-keyword=PPARγ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00678
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alkoxy‐Substituted Anthrabis(Thiadiazole)‐Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c′]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs).
en-copyright=
kn-copyright=
en-aut-name=YanYi
en-aut-sei=Yan
en-aut-mei=Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriHiroki
en-aut-sei=Mori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTomoki
en-aut-sei=Yoshino
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InamiRyuki
en-aut-sei=Inami
en-aut-mei=Ryuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJiaxin
en-aut-sei=Chang
en-aut-mei=Jiaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoJunqing
en-aut-sei=Gao
en-aut-mei=Junqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Backbone conformation
kn-keyword=Backbone conformation
en-keyword=Conjugated polymers
kn-keyword=Conjugated polymers
en-keyword=Organic solar cells
kn-keyword=Organic solar cells
en-keyword=Semiconducting polymers
kn-keyword=Semiconducting polymers
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amino Acid Substitutions in Loop C of Arabidopsis PIP2 Aquaporins Alters the Permeability of CO2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The transport of CO2 across biomembranes in plant cells is essential for efficient photosynthesis. Some aquaporins capable of CO2 transport, referred to as ‘COOporins’, are postulated to play a crucial role in leaf CO2 diffusion. However, the structural basis of CO2 permeation through aquaporins remains largely unknown. Here, we show that amino acids in loop C are critical for the CO2 permeability of Arabidopsis thaliana PIP2 aquaporins. We found that swapping tyrosine and serine in loop C to histidine and phenylalanine, which differ between AtPIP2;1 and AtPIP2;3, altered CO2 permeability when examined in the Xenopus laevis oocyte heterologous expression system. AlphaFold2 modelling indicated that these substitution induced a conformational shift in the sidechain of arginine in the aromatic/arginine (ar/R) selectivity filter and in lysine at the extracellular mouth of the monomeric pore in PIP2 aquaporins. Our findings demonstrate that distal amino acid substitutions can trigger conformational changes of the ar/R filter in the monomeric pore, modulating CO2 permeability. Additionally, phylogenetic analysis suggested that aquaporins capable of dual water/CO2 permeability are ancestral to those that are water-selective and CO2-impermeable, and CO2-selective and water impermeable.
en-copyright=
kn-copyright=
en-aut-name=TaniaShaila Shermin
en-aut-sei=Tania
en-aut-mei=Shaila Shermin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UtsugiShigeko
en-aut-sei=Utsugi
en-aut-mei=Shigeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasanoShizuka
en-aut-sei=Sasano
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=CO2 transport
kn-keyword=CO2 transport
en-keyword=monomeric pore
kn-keyword=monomeric pore
en-keyword=PIP2 aquaporin
kn-keyword=PIP2 aquaporin
en-keyword=Xenopus laevis
kn-keyword=Xenopus laevis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=23
article-no=
start-page=17720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs.
en-copyright=
kn-copyright=
en-aut-name=WangKai
en-aut-sei=Wang
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JinnaiSeihou
en-aut-sei=Jinnai
en-aut-mei=Seihou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UesakaKaito
en-aut-sei=Uesaka
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IeYutaka
en-aut-sei=Ie
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=2
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=262
cd-vols=
no-issue=2
article-no=
start-page=385
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm?1). We found that the relative value of the hydraulic resistance (rLpm?1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm?1?=?ρmCs?+?1, where ρm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp?1. We used their data to estimate Lpm?1 and rLpm?1. The values of rLpm?1 fit the above relation we found for alcohols. When we plotted the ρm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M?1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm?1) as a function of the external (π0) and internal (πi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ρm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M?1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ρm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449?461, 2004) is the decisive factor in a solute’s influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes.
en-copyright=
kn-copyright=
en-aut-name=TazawaMasashi
en-aut-sei=Tazawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WayneRandy
en-aut-sei=Wayne
en-aut-mei=Randy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Yoshida Biological Laboratory
kn-affil=
affil-num=2
en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Chara corallina
kn-keyword=Chara corallina
en-keyword=Effective osmotic pressure
kn-keyword=Effective osmotic pressure
en-keyword=Hydraulic resistance
kn-keyword=Hydraulic resistance
en-keyword=Plasma membrane
kn-keyword=Plasma membrane
en-keyword=Reflection coefficient
kn-keyword=Reflection coefficient
END
start-ver=1.4
cd-journal=joma
no-vol=599
cd-vols=
no-issue=13
article-no=
start-page=1914
end-page=1924
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438?463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435?505) directly interacted with EGFP-CaMKKα/1 residues 435?505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
en-copyright=
kn-copyright=
en-aut-name=UenoyamaShun
en-aut-sei=Uenoyama
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NittaHayato
en-aut-sei=Nitta
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukaSatomi
en-aut-sei=Ohtsuka
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuizuFutoshi
en-aut-sei=Suizu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokumitsuHiroshi
en-aut-sei=Tokumitsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=calmodulin
kn-keyword=calmodulin
en-keyword=calmodulin-kinase cascade
kn-keyword=calmodulin-kinase cascade
en-keyword=CaMKKa/
kn-keyword=CaMKKa/
en-keyword=oligomerization
kn-keyword=oligomerization
en-keyword=protein?protein interaction
kn-keyword=protein?protein interaction
en-keyword=regulatory domain
kn-keyword=regulatory domain
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=5
article-no=
start-page=705
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) “Akashinriki” is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group?associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKoki
en-aut-sei=Nakamura
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiYuichi
en-aut-sei=Kikuchi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiragaMizuho
en-aut-sei=Shiraga
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotakeToshihisa
en-aut-sei=Kotake
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaketaShin
en-aut-sei=Taketa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaYoko
en-aut-sei=Ikeda
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=awn development
kn-keyword=awn development
en-keyword=EMBRYONIC FLOWER 1 (EMF1)
kn-keyword=EMBRYONIC FLOWER 1 (EMF1)
en-keyword=homeotic genes
kn-keyword=homeotic genes
en-keyword=H3K27 trimethylation
kn-keyword=H3K27 trimethylation
en-keyword=epigenetic regulation
kn-keyword=epigenetic regulation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor Microvessels with Specific Morphology as a Prognostic Factor in Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Angiogenesis is essential for tumor progression. Microvessel density (MVD) is a widely used histological method to assess angiogenesis using immunostained sections, but its prognostic significance in esophageal cancer remains controversial. Recently, the evaluation of microvascular architecture has gained importance as a method to assess tumor aggressiveness. The present study aimed to identify the histological characteristics of tumor microvessels that are associated with the aggressiveness of esophageal squamous cell carcinoma.
Patients and Methods A total of 108 esophageal squamous cell carcinoma tissues were immunohistochemically stained with blood vessel markers and angiogenesis-related markers, including CD31, alpha smooth muscle actin, vascular endothelial growth factor A (VEGF-A), CD206, and D2-40. MVD, microvessel pericyte coverage index (MPI), and tumor vascular morphology were evaluated by microscopy.
Results MVD was significantly associated with patient outcomes, whereas neither MPI nor VEGF-A expression throughout the tumor showed a significant correlation. In addition, the presence of blood vessels encircling clusters of tumor cells, termed C-shaped microvessels, and excessively branching microvessels, termed X-shaped microvessels, was significantly associated with poor prognosis. These vessel types were also correlated with clinicopathological parameters, including deeper invasion of the primary tumor, presence of lymph node metastasis, advanced pathological stage, and distant metastasis. Focal VEGF-A immunoexpression in tumor cells was higher in areas containing C-shaped or X-shaped microvessels compared with areas lacking these vessel morphologies.
Conclusions The data suggest that tumor microvessels with specific morphologies (C-shaped and X-shaped microvessels) may serve as a promising prognostic factor in esophageal squamous cell carcinoma.
en-copyright=
kn-copyright=
en-aut-name=TunHnin Thida
en-aut-sei=Tun
en-aut-mei=Hnin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Esophageal neoplasms
kn-keyword=Esophageal neoplasms
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Microvessel density
kn-keyword=Microvessel density
en-keyword=Pericytes
kn-keyword=Pericytes
en-keyword=VEGF-A
kn-keyword=VEGF-A
en-keyword=Immunohistochemistry
kn-keyword=Immunohistochemistry
en-keyword=Prognosis
kn-keyword=Prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=4
article-no=
start-page=e70396
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22? and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable.
en-copyright=
kn-copyright=
en-aut-name=AkterRojina
en-aut-sei=Akter
en-aut-mei=Rojina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueYasuhiro
en-aut-sei=Inoue
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasumotoSaori
en-aut-sei=Masumoto
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MimataYoshiharu
en-aut-sei=Mimata
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=calcium signaling
kn-keyword=calcium signaling
en-keyword=CNGC
kn-keyword=CNGC
en-keyword=stomata
kn-keyword=stomata
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins.
en-copyright=
kn-copyright=
en-aut-name=HayakawaTohru
en-aut-sei=Hayakawa
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaSyun
en-aut-sei=Yamaoka
en-aut-mei=Syun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Bacillus thuringiensis
kn-keyword=Bacillus thuringiensis
en-keyword=mosquito-larvicidal proteins
kn-keyword=mosquito-larvicidal proteins
en-keyword=synergistic toxicity
kn-keyword=synergistic toxicity
en-keyword=Culex pipiens mosquito larvae
kn-keyword=Culex pipiens mosquito larvae
en-keyword=side-directed mutagenesis
kn-keyword=side-directed mutagenesis
en-keyword=electrophysiologic analysis
kn-keyword=electrophysiologic analysis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=311
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-occurrence of interstitial lung disease and pulmonary embolism as adverse events of adjuvant osimertinib treatment for EGFR mutant non-small cell lung cancer: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Postoperative osimertinib for EGFR mutant non-small cell lung cancer has become the standard of care. However, its adverse events in clinical practice remain unclear. We report a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment.
Case presentation A 74-year-old woman, diagnosed with left lower lobe lung adenocarcinoma harboring an EGFR mutation, underwent a left lower lobectomy with lymph node dissection. During adjuvant osimertinib therapy, the patient developed respiratory distress with hypoxia, leading to the diagnosis of interstitial lung disease. Despite immediate steroid therapy, respiratory distress persisted, the patient developed leg edema. She was diagnosed with deep vein thrombosis and pulmonary embolism via contrast-enhanced computed tomography scan. Following treatment with steroid and anticoagulation, her clinical symptoms improved rapidly, and she showed no recurrence of interstitial lung disease, pulmonary embolism, or lung cancer over the following nine months.
Conclusions We encountered a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment. In patients with osimertinib-induced interstitial lung disease, particularly when respiratory symptoms show poor improvement with steroid treatment, the possibility of pulmonary embolism complications should be suspected.
en-copyright=
kn-copyright=
en-aut-name=ManabeKenta
en-aut-sei=Manabe
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurukawaShinichi
en-aut-sei=Furukawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SenoTomoya
en-aut-sei=Seno
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimuraKousei
en-aut-sei=Ishimura
en-aut-mei=Kousei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Osimertinib
kn-keyword=Osimertinib
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Interstitial lung disease
kn-keyword=Interstitial lung disease
en-keyword=Pulmonary embolism
kn-keyword=Pulmonary embolism
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=7
article-no=
start-page=808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaKazuki
en-aut-sei=Ogawa
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiYu
en-aut-sei=Yasui
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaYoji
en-aut-sei=Wada
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraHiromichi
en-aut-sei=Nakamura
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=9
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=10
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SARM1
kn-keyword=SARM1
en-keyword=carnosol
kn-keyword=carnosol
en-keyword=NAD+
kn-keyword=NAD+
en-keyword=axon degeneration
kn-keyword=axon degeneration
en-keyword=peripheral neuropathy
kn-keyword=peripheral neuropathy
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PE?ATIRSO
en-aut-sei=PE?A
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual functions of SNAP25 in mouse taste buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III cells in mouse taste buds are considered to transmit aversive stimuli, such as sourness, to the gustatory nerve through vesicular synapses. Synaptosome-associated protein 25 (SNAP25) might contribute to synaptic vesicular release in sour sensation, although direct evidence has been lacking. Here, we demonstrated that epithelia-specific Snap25 conditional knockout (cKO) mice exhibited a significant reduction in the number of type III cells. Notably, the proportion of 5-ethynyl 2′-deoxyuridine-positive post-mitotic type III cells in Snap25 cKO mice was significantly lower on tracing day 14, but not at day 7, which suggests that SNAP25 contributes to the maintenance of type III cells. In a short-term lick test, Snap25 cKO (sour taste absent) and Snap25/ transient receptor potential vanilloid 1 double KO (sour taste and somatosensory absent) mice exhibit a significantly higher lick response to sour tastants, confirming the role of SNAP25 for sour sensation. Electrophysiological recordings of the chorda tympani nerve reveal nearly abolished ammonium and sour taste responses in Snap25 cKO mice, which concludes sour-dependent synapse transmission in type III cells. Overall, these data suggest that vesicular synapses in taste buds are indispensable for transmission of information from, and the replenishment of, sour-sensitive type III taste cells.
en-copyright=
kn-copyright=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasumatsuKeiko
en-aut-sei=Yasumatsu
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Tokyo Dental Junior College
kn-affil=
affil-num=5
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=sour taste
kn-keyword=sour taste
en-keyword=synapse
kn-keyword=synapse
en-keyword=taste buds
kn-keyword=taste buds
en-keyword=taste nerve
kn-keyword=taste nerve
en-keyword=Type III cells
kn-keyword=Type III cells
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e86695
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Managing Persistent Pupillary Membranes With Surgery or Medication: A Report of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The persistent pupillary membrane, as a congenital anomaly, is a remnant of a network of feeding blood vessels for the lens of the eye, called tunica vasculosa lentis. This study reports three patients with persistent pupillary membrane in both eyes who presented in different situations and were managed differently to achieve better vision. The first child (Case 1) who had been seen initially at the age of two years complained of severe photophobia even though he had good visual acuity, and hence, he and his family chose surgical resection of the pupillary membrane in both eyes at the age of six years just before the admission to an elementary school. He did not develop any surgical complications, such as cataract and glaucoma, and maintained the visual acuity in decimals of 1.2 in both eyes at the age of 17 years.
The second child (Case 2), who was seen first at the age of one month, had persistent pupillary membranes in both eyes, together with Peters' anomaly in the left eye. The iris process adhesion to the corneal inner surface was visualized later by optical coherence tomography. She wore full-correction glasses and obtained the visual acuity of 0.7 in the right eye, so she had no problem studying at an elementary school. She used topical 1% atropine once a week in both eyes to maintain pupillary dilation and also used 0.5% timolol and 1% brinzolamide as pressure-lowering eye drops in the left eye with Peters' anomaly.
The third patient (Case 3) with persistent pupillary membranes in both eyes complained of vision problems for the first time at the age of 49 years when she developed cataract. Surgical resection of the pupillary membrane was done in the initial phase of cataract surgery with intraocular lens implantation in both eyes. At surgical resection of the pupillary membrane, a safe and efficient way was to cut the root of the pupillary membrane on the iris surface with scissors, and then the isolated tissues of the pupillary membrane were pulled out with forceps from the side port at the corneal limbus. Pathological examinations of the excised tissues showed blood vessels with red blood cells in the lumen. In such a rare congenital disease as the persistent pupillary membrane, a case-based approach to choose a better option in different conditions from individual to individual is still required to have a better vision in learning at school and in daily working life.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=anterior segment dysgenesis
kn-keyword=anterior segment dysgenesis
en-keyword=cataract
kn-keyword=cataract
en-keyword=forceps
kn-keyword=forceps
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=persistent pupillary membrane
kn-keyword=persistent pupillary membrane
en-keyword=peters anomaly
kn-keyword=peters anomaly
en-keyword=resection
kn-keyword=resection
en-keyword=scissors
kn-keyword=scissors
en-keyword=vitrectomy cutter
kn-keyword=vitrectomy cutter
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e85680
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Whole-Eye Radiation for the Local Control of Choroidal Lymphoma in Primary Central Nervous System Lymphoma: A 14-Year Case Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Involved-site radiation therapy is effective for curative and palliative treatments of cancers, including lymphoma. This case study describes the use of whole-eye radiation for primary intraocular lymphoma occurring during primary central nervous system lymphoma. The patient, a 68-year-old man, developed personality changes and apathy two weeks after cataract surgery combined with vitrectomy for vitreous opacity in the left eye. Magnetic resonance imaging revealed a mass lesion in the left frontal lobe, and biopsy by craniotomy confirmed diffuse large B-cell lymphoma. He underwent chemotherapy using rituximab combined with high-dose methotrexate and high-dose cytarabine in association with intrathecal methotrexate and cytarabine injections, leading to complete remission. At age 75, he noticed forgetfulness, and fluorodeoxyglucose positron emission tomography and magnetic resonance imaging revealed a relapse of lymphoma in the splenium of the corpus callosum. He underwent chemotherapy using rituximab combined with high-dose methotrexate, followed by monthly rituximab monotherapy for one year and then rituximab monotherapy every two months for one year. He maintained complete remission with no treatment until age 78, when he developed subretinal choroidal lesions in the left eye and underwent whole-eye radiation at 40 Gy. One year later, he developed subretinal choroidal lesions in the right eye and underwent whole-eye radiation at 40 Gy. At age 81, he had lower limb weakness with disorientation. Magnetic resonance imaging showed a relapse of lymphoma in the right frontal to temporal lobe. The brain lesions showed a marked response to four weeks of oral tirabrutinib as a salvage therapy, but the lesions regrew, and the patient died seven months later. Throughout the treatment, he maintained a visual acuity of 0.7 (decimal scale) in both eyes. In conclusion, whole-eye radiation should be considered as a treatment option for the local control of active intraocular lymphoma, especially choroidal lesions, for patients with primary central nervous system lymphoma with no active brain lesions and without systemic treatment.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoTomofumi
en-aut-sei=Yano
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraHirotake
en-aut-sei=Nishimura
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=bruton tyrosine kinase (btk) inhibitor
kn-keyword=bruton tyrosine kinase (btk) inhibitor
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=radiation therapy (radiotherapy)
kn-keyword=radiation therapy (radiotherapy)
en-keyword=tirabrutinib
kn-keyword=tirabrutinib
en-keyword=whole-eye radiation
kn-keyword=whole-eye radiation
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=e83484
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Detailed Ophthalmic and Pathological Features of Choroidal Metastasis From Breast Cancer: A Case Series of Five Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Breast cancer causes choroidal metastases on rare occasions. This study presented the eye manifestations of choroidal metastases from breast cancer and their response to treatments in detail as well as their pathological correlation in five patients. The patients' age at the diagnosis of breast cancer ranged from 24 to 69 years (median: 37 years). The time from the diagnosis of breast cancer to the detection of metastases was concurrent in one patient, two years later in three patients, and six years later in the other patient. The time from the detection of systemic metastases to the detection of choroidal metastases was the same in one patient, while it ranged from one to seven years later in four patients. Choroidal metastases were in the unilateral eye of four patients, whereas they were in both eyes of one patient. Choroidal metastases manifested as one or a few nodular or flat choroidal lesions with serous retinal detachment. As for the treatment of choroidal metastases, enucleation of the right eye was chosen based on the patient's wish as well as the family's wish in the earliest patient when cancer notification was not the norm in Japan. In the other four patients, whole-eye radiation was performed to reduce the choroidal metastatic lesions. As regards the prognosis, which was available in four patients, three patients died within one year from the diagnosis of choroidal metastases, while one patient died one year and eight months later. Regarding the pathology of breast cancer, which was available in four patients, immunostaining of the preserved enucleated eye in the earliest patient revealed that breast cancer cells in the choroidal metastatic lesion were positive for estrogen receptor and negative for progesterone receptor and human epidermal growth factor receptor 2 (HER2). Invasive ductal carcinoma in two patients was positive for estrogen receptor and negative for HER2, while invasive ductal carcinoma in the other patient was triple-negative for estrogen receptor, progesterone receptor, and HER2 with a high Ki-67 index. In conclusion, the prognosis for life was poor in patients with breast cancer who developed choroidal metastases. Choroidal metastatic lesions showed a response to whole-eye radiation to improve the quality of vision at the end of life. Vision-related symptoms should be monitored in the course of chemotherapy for systemic metastases.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MuraokaAtsushi
en-aut-sei=Muraoka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Kagawa Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=choroidal metastasis
kn-keyword=choroidal metastasis
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=her2
kn-keyword=her2
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=invasive ductal carcinoma
kn-keyword=invasive ductal carcinoma
en-keyword=ki-67
kn-keyword=ki-67
en-keyword=progesterone receptor
kn-keyword=progesterone receptor
en-keyword=radiation
kn-keyword=radiation
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)?expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=2
article-no=
start-page=232
end-page=243
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcomes of allogeneic SCT versus tisagenlecleucel in patients with R/R LBCL and poor prognostic factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the efficacy of tisagenlecleucel (tisa-cel) and allogeneic hematopoietic stem cell transplantation (allo-SCT) for patients with relapsed and/or refractory (r/r) large B-cell lymphoma (LBCL) with poor prognostic factors, defined as performance status (PS)???2, multiple extranodal lesions (EN), chemorefractory disease, or higher lactate dehydrogenase (LDH). Overall, the allo-SCT group demonstrated worse progression-free survival (PFS), higher non-relapse mortality, and a similar relapse/progression rate. Notably, the tisa-cel group showed better PFS than the allo-SCT group among patients with chemorefractory disease (3.2 vs. 2.0 months, p?=?0.092) or higher LDH (4.0 vs. 2.0 months, p =?0.018), whereas PFS in the two cellular therapy groups was similar among those with PS???2 or multiple EN. Survival time after relapse post-cellular therapy in patients with poor prognostic factors was 1.6 with allo-SCT and 4.6 months with tisa-cel. These findings were confirmed in a propensity score matching cohort. In conclusion, tisa-cel resulted in better survival than allo-SCT in patients with poor prognostic factors. However, patients who relapsed post-cellular therapy had dismal outcomes regardless of therapy. Further strategies are warranted to improve outcomes in these patients.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=CAR-T cell therapy
kn-keyword=CAR-T cell therapy
en-keyword=Tisagenlecleucel
kn-keyword=Tisagenlecleucel
en-keyword=Poor prognostic factors
kn-keyword=Poor prognostic factors
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=388.e1
end-page=388.e14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS.
en-copyright=
kn-copyright=
en-aut-name=KonumaTakaaki
en-aut-sei=Konuma
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaMachiko
en-aut-sei=Fujioka
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FuseKyoko
en-aut-sei=Fuse
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosoiHiroki
en-aut-sei=Hosoi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasamotoYosuke
en-aut-sei=Masamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawaMasashi
en-aut-sei=Sawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishidaTetsuya
en-aut-sei=Nishida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshikawaJun
en-aut-sei=Ishikawa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakamaeHirohisa
en-aut-sei=Nakamae
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasegawaYuta
en-aut-sei=Hasegawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OnizukaMakoto
en-aut-sei=Onizuka
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawamuraKoji
en-aut-sei=Kawamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhbikiMarie
en-aut-sei=Ohbiki
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ItonagaHidehiro
en-aut-sei=Itonaga
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Hematology, Sasebo City General Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University
kn-affil=
affil-num=4
en-affil=Department of Hematology/Oncology, Wakayama Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology, Toranomon Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Osaka International Cancer Institute
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Hematology, Hokkaido University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Tokai University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Hematology and oncology, Kurashiki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hematology, Jichi Medical University
kn-affil=
affil-num=20
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=21
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=22
en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital
kn-affil=
en-keyword=Granulocyte colony-stimulating factor
kn-keyword=Granulocyte colony-stimulating factor
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Bone marrow transplantation
kn-keyword=Bone marrow transplantation
en-keyword=Peripheral blood stem cell transplantation
kn-keyword=Peripheral blood stem cell transplantation
en-keyword=Cord blood transplantation
kn-keyword=Cord blood transplantation
en-keyword=Myelodysplastic syndrome
kn-keyword=Myelodysplastic syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=145
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea.
en-copyright=
kn-copyright=
en-aut-name=du PlooyXander
en-aut-sei=du Plooy
en-aut-mei=Xander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CardonaJuan J.
en-aut-sei=Cardona
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TabiraYoko
en-aut-sei=Tabira
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BubbKathleen Carol
en-aut-sei=Bubb
en-aut-mei=Kathleen Carol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Tulane University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College
kn-affil=
affil-num=6
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
en-keyword=Digastric muscles
kn-keyword=Digastric muscles
en-keyword=Intermediate tendon
kn-keyword=Intermediate tendon
en-keyword=Trochlea
kn-keyword=Trochlea
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Fascia
kn-keyword=Fascia
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells.
en-copyright=
kn-copyright=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=airborne pollutants
kn-keyword=airborne pollutants
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=stomatal closure
kn-keyword=stomatal closure
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=5
article-no=
start-page=733
end-page=747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
en-copyright=
kn-copyright=
en-aut-name=LiangDi
en-aut-sei=Liang
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangDongyong
en-aut-sei=Yang
en-aut-mei=Dongyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiTai
en-aut-sei=Li
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuZhe
en-aut-sei=Zhu
en-aut-mei=Zhe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanBingxiao
en-aut-sei=Yan
en-aut-mei=Bingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HeYang
en-aut-sei=He
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiXiaoyuan
en-aut-sei=Li
en-aut-mei=Xiaoyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhaiKeran
en-aut-sei=Zhai
en-aut-mei=Keran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiuJiyun
en-aut-sei=Liu
en-aut-mei=Jiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DengYiwen
en-aut-sei=Deng
en-aut-mei=Yiwen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WuXu Na
en-aut-sei=Wu
en-aut-mei=Xu Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LiuJunzhong
en-aut-sei=Liu
en-aut-mei=Junzhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HeZuhua
en-aut-sei=He
en-aut-mei=Zuhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=4
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=5
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, ShanghaiTech University
kn-affil=
affil-num=8
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=9
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=12
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=13
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=14
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
en-keyword=Prenylated Rab acceptor
kn-keyword=Prenylated Rab acceptor
en-keyword=PigmR
kn-keyword=PigmR
en-keyword=Trafficking vesicles
kn-keyword=Trafficking vesicles
en-keyword=OsRab5a
kn-keyword=OsRab5a
en-keyword=Blast resistance
kn-keyword=Blast resistance
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery.
en-copyright=
kn-copyright=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakuraHiroaki
en-aut-sei=Takakura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SamridRarinthorn
en-aut-sei=Samrid
en-aut-mei=Rarinthorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LoukasMarios
en-aut-sei=Loukas
en-aut-mei=Marios
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=9
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=10
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=Embryology
kn-keyword=Embryology
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Radiology
kn-keyword=Radiology
en-keyword=Cadaver
kn-keyword=Cadaver
en-keyword=Mandible
kn-keyword=Mandible
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=18981
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of galectin-9 in the development of gestational diabetes mellitus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galectin-9 (Gal-9) is highly expressed in trophoblasts in placenta. Interaction between Gal-9 and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is important for the differentiation of tissue resident natural killer (trNK) cells in placenta and maintenance of normal pregnancy. Furthermore, the enhanced maternal systemic inflammation associated with increased proinflammatory cytokines in preeclampsia is mediated by enhanced interaction between Gal-9 and Tim-3. However, the role of Gal-9 in gestational diabetes (GDM) remains unexplored. Plasma Gal-9 levels were elevated at 3rd trimester in pregnant women with GDM and positively correlated with placenta and newborn weight. Lgals9 knockout pregnant mice fed with high fat diet (HFD KO) demonstrated maternal glucose intolerance and fetus macrosomia compared with controls (HFD WT). In HFD KO, increased proliferating cells, reduced apoptosis, and autophagy impairment were observed in junctional zones. The number of trNK cells and percentage of Tim-3?+?trNK increased, while early apoptosis percentage in Tim-3?+?trNK was reduced in placenta of HFD KO. The elevation of plasma Gal-9 may be a biomarker for prediction of maternal glucose intolerance and fetal macrosomia in pregnant women with GDM and Gal-9 functions as a compensation factor for GDM by inducing apoptosis in Tim-3?+?trNK cells.
en-copyright=
kn-copyright=
en-aut-name=AlbuayjanHaya Hamed Hassan
en-aut-sei=Albuayjan
en-aut-mei=Haya Hamed Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugawaraRyosuke
en-aut-sei=Sugawara
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OiYukiko
en-aut-sei=Oi
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KannoAyaka
en-aut-sei=Kanno
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangBoXuan
en-aut-sei=Yang
en-aut-mei=BoXuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaharaToshihisa
en-aut-sei=Tahara
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NojimaIchiro
en-aut-sei=Nojima
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=孔辺細胞のシグナル伝達におけるGUARD CELL HYDROGEN PEROXIDE-RESISTANT1と内因性アブシジン酸の役割
kn-title=Roles of GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 and endogenous abscisic acid in guard-cell signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHAIEK Oumayma
en-aut-sei=SHAIEK Oumayma
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=持続可能な発展に向けた携帯電話リサイクルの推進:消費者行動分析、デジタルトランスフォーメーション戦略、および革新的インセンティブメカニズムの統合
kn-title=Optimizing cell phone recycling for sustainable development: Integrating consumer behavior analysis, digital transformation strategies, and innovative incentive mechanisms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DUYuxin
en-aut-sei=DU
en-aut-mei=Yuxin
kn-aut-name=杜余?
kn-aut-sei=杜
kn-aut-mei=余?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=稲わら施用水田土壌からのCH4およびCO2 排出抑制に向けた底質微生物燃料電池の開発
kn-title=Development of sediment microbial fuel cells to reduce CH4 and CO2 emissions from straw-amended paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ADHENA TESFAU BEKELE
en-aut-sei=ADHENA TESFAU BEKELE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスIII型細胞におけるCcn3の機能の探索
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Kuanyu Wang
en-aut-sei=Kuanyu Wang
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=上顎洞に認められた扁平上皮癌および非扁平上皮癌のCT画像の評価
kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ASAUMIYuka
en-aut-sei=ASAUMI
en-aut-mei=Yuka
kn-aut-name=浅海結華
kn-aut-sei=浅海
kn-aut-mei=結華
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=細胞自己凝集化技術を用いた内皮層反転血管構造を有するユニークなin vitro血管モデルの開発
kn-title=Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HASHIMOTOShingo
en-aut-sei=HASHIMOTO
en-aut-mei=Shingo
kn-aut-name=橋本真悟
kn-aut-sei=橋本
kn-aut-mei=真悟
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END