start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=11 article-no= start-page=348 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Coronal Cementum and Reduced Enamel Epithelium on Occlusal Surface of Impacted Wisdom Tooth in a Human en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: There is only limited research on the coronal cementum of a tooth, and the mechanisms of its forming process are not well-defined. This report presents a coronal cementum on the occlusal surfaces of enamel in an impacted wisdom tooth in a human, which is not nearly the cervical portion. Materials and Methods: The tooth (Tooth #1) was derived from a 46-year-old female. Histological analysis, including hematoxylin and eosin (HE) and toluidine blue (TB) staining, and Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometer (SEM-EDS) analysis of the extracted tooth were conducted. Radiographic examination showed that Tooth #1 was horizontally impacted in the maxilla and had the apex of a single root placed between the buccal and palatal roots of Tooth #2. Results: Coronal cementum was distributed widely on the enamel, and reduced enamel epithelium was also found with enamel matrix proteins histologically. The formation of acellular cementum was observed to be more predominant than that of the cellular cementum in Tooth #1. SEM showed that the occlusal cementum connected directly with enamel. Calcium mapping revealed an almost similar occlusal cementum and enamel. In addition, the spectrum of elements in coronal cementum resembled the primary cementum according to SEM-EDS. Discussion: Thus, coronal cementogenesis in impacted human teeth might be related to the existence of reduced enamel epithelium. en-copyright= kn-copyright= en-aut-name=HorieNaohiro en-aut-sei=Horie en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurataMasaru en-aut-sei=Murata en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MinamidaYasuhito en-aut-sei=Minamida en-aut-mei=Yasuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagayasuHiroki en-aut-sei=Nagayasu en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimoTsuyoshi en-aut-sei=Shimo en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkazawaToshiyuki en-aut-sei=Akazawa en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujigiwaHidetsugu en-aut-sei=Tsujigiwa en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaikelYoussef en-aut-sei=Haikel en-aut-mei=Youssef kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido kn-affil= affil-num=2 en-affil=Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido kn-affil= affil-num=3 en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido kn-affil= affil-num=4 en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido kn-affil= affil-num=5 en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido kn-affil= affil-num=6 en-affil=Industrial Technology and Environment Research Development, Hokkaido Research Organization kn-affil= affil-num=7 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=8 en-affil=Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche médicale Unité Mixte de Recherche (INSERM UMR) _S 1121, University of Strasbourg kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=coronal cementum kn-keyword=coronal cementum en-keyword=human kn-keyword=human en-keyword=reduced epithelium kn-keyword=reduced epithelium en-keyword=impacted tooth kn-keyword=impacted tooth END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=391 end-page=395 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Trend of Digital Biomarkers (dBM) as Endpoints in Clinical Trials: Secondary Analysis of Open Data en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study examined clinical trial trends to guide digital biomarker (dBM) guideline development. Analysis of 2005–2023 data was conducted to assess the frequency and types of dBM used as endpoints (dEP) in these trials and the associated target diseases. Clinical trials using dEP increased from 0–7 per year (2005–2019) to 15–20 annually from 2020. Endocrine and metabolic conditions were the most common targets, showing a distinct disease distribution compared to overall trials. Most measurements used actigraphy devices or blood glucose sensors, with glucose sensors focusing on metabolic conditions while actigraphy covered broader applications. Additionally, 42.4% of trials used dEP as primary endpoints. While dEP use is growing, it remains limited in disease scope and device variety. Expanding both would enhance their utility in clinical research. en-copyright= kn-copyright= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjohMina en-aut-sei=Honjoh en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Clinical endpoint, kn-keyword=Clinical endpoint, en-keyword=clinical outcomes kn-keyword=clinical outcomes en-keyword=wearable devices kn-keyword=wearable devices END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e06765 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Droplet Transportation on Janus Harp Wires for Enhanced Fog Harvesting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ensuring freshwater resources is a vital issue for human beings worldwide. Fog harvesting is one promising way to provide water from unconventional sources. However, clogging by the captured liquid depresses the fog harvesting performance. Here, a harp-shaped Janus harvesting system, which has thin wires with a superhydrophobic side facing the fog stream and a superhydrophilic back side to transport the droplets, is used to yield simultaneous fog capturing and water transport abilities. Attached droplets on the Janus wire transported along the periphery avoided clogging and enhanced the performance. The Janus system thus suppressed the increase and fluctuations of actual shade coefficients, which indicated blockage of the fog stream. This optimized the design of the harvester. Experiments using a multilayered Janus harvester demonstrated a significant enhancement compared with that constructed with mono-wettability wires. Overall, the results indicated the promise of droplet transportation on single wires for improving fog harvesting, as well as for other applications such as oil mist recovery and demulsification. en-copyright= kn-copyright= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaTaku en-aut-sei=Ishikawa en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=droplet transport kn-keyword=droplet transport en-keyword=fog harvesting kn-keyword=fog harvesting en-keyword=janus wire kn-keyword=janus wire en-keyword=wettability difference kn-keyword=wettability difference END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=32 article-no= start-page=e2501933122 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250805 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions—a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues—K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12—creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species. en-copyright= kn-copyright= en-aut-name=Nguyen ThaoTran en-aut-sei=Nguyen Thao en-aut-mei=Tran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UranoRyo en-aut-sei=Urano en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangPeitong en-aut-sei=Wang en-aut-mei=Peitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinodaWataru en-aut-sei=Shinoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=8 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=barley kn-keyword=barley en-keyword=aluminum resistance kn-keyword=aluminum resistance en-keyword=membrane protein structure kn-keyword=membrane protein structure en-keyword=citrate transporter kn-keyword=citrate transporter en-keyword=MATE transporter kn-keyword=MATE transporter END start-ver=1.4 cd-journal=joma no-vol=90 cd-vols= no-issue=1 article-no= start-page=29 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elucidation of the phylogenetic relationships among <i>Alpinia</i> species native to the Nansei Islands, Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Alpinia species (A. intermedia, A. zerumbet, A. formosana, A. uraiensis, and unidentified strains native to the Daito Islands), which are native to the Nansei Islands, Japan are ornamental plants that can be used as resources to produce seasonings and antibacterial and antiviral substances. Despite the usefulness of these plants, little scientific research has been conducted on their phylogenetic relationships. In this study, their phylogenetic relationships were examined based on genomic and chloroplast DNA polymorphisms, repetitive sequence abundance, and cytogenetic perspectives. The results indicated that A. formosana is most likely the outcome of a hybrid of A. zerumbet and A. intermedia, and the unidentified strains native to the Daito Islands are the outcomes of a hybrid of A. zerumbet and A. uraiensis. Immunostaining with a newly produced anti-centromere-specific histone H3 (CENH3) antibody revealed that the number of chromosomes in these species was 2n=48. en-copyright= kn-copyright= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NarusakaMari en-aut-sei=Narusaka en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NarusakaYoshihiro en-aut-sei=Narusaka en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS) kn-affil= affil-num=3 en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS) kn-affil= en-keyword=Alpinia kn-keyword=Alpinia en-keyword=Nansei Islands kn-keyword=Nansei Islands en-keyword=Chromosome number kn-keyword=Chromosome number en-keyword=CENH3 (centromere-specific histone H3) kn-keyword=CENH3 (centromere-specific histone H3) END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=12 article-no= start-page=e202402802 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90–92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research. en-copyright= kn-copyright= en-aut-name=TekAhmet L en-aut-sei=Tek en-aut-mei=Ahmet L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Yıldız AkkamışHümeyra en-aut-sei=Yıldız Akkamış en-aut-mei=Hümeyra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaKeisuke en-aut-sei=Tanaka en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHisato en-aut-sei=Kobayashi en-aut-mei=Hisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University kn-affil= affil-num=4 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=5 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=8 article-no= start-page=522 end-page=532 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6–305 µM, MIC: 0.5–128 µg ml−1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity. en-copyright= kn-copyright= en-aut-name=IshikawaTeruhiko en-aut-sei=Ishikawa en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EguchiYoko en-aut-sei=Eguchi en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IgarashiMasayuki en-aut-sei=Igarashi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkajimaToshihide en-aut-sei=Okajima en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitaKohei en-aut-sei=Mita en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamasakiYuri en-aut-sei=Yamasaki en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumikuraKaho en-aut-sei=Sumikura en-aut-mei=Kaho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkumuraTaisei en-aut-sei=Okumura en-aut-mei=Taisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TabuchiYuna en-aut-sei=Tabuchi en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiChigusa en-aut-sei=Hayashi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PasquaMartina en-aut-sei=Pasqua en-aut-mei=Martina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ColucciaMarco en-aut-sei=Coluccia en-aut-mei=Marco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ProssedaGianni en-aut-sei=Prosseda en-aut-mei=Gianni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ColonnaBianca en-aut-sei=Colonna en-aut-mei=Bianca kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KohayakawaChie en-aut-sei=Kohayakawa en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TaniAkiyoshi en-aut-sei=Tani en-aut-mei=Akiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HarutaJun-ichi en-aut-sei=Haruta en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=UtsumiRyutaro en-aut-sei=Utsumi en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=2 en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University kn-affil= affil-num=3 en-affil=Institute of Microbial Chemistry (BIKAKEN) kn-affil= affil-num=4 en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University kn-affil= affil-num=5 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=10 en-affil=Institute of Microbial Chemistry (BIKAKEN) kn-affil= affil-num=11 en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome kn-affil= affil-num=12 en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome kn-affil= affil-num=13 en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome kn-affil= affil-num=14 en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome kn-affil= affil-num=15 en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=16 en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=17 en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=18 en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tailoring Mechanical Properties and Ionic Conductivity of Poly(ionic liquid)-Based Ion Gels by Tuning Anion Compositions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Poly(ionic liquid) (PIL)-based ion gels have emerged as promising materials for advanced electrochemical applications because of their excellent miscibility with ionic liquids (IL), tunable mechanical properties, and high ionic conductivity. Despite extensive studies on PIL-based ion gels, a comprehensive understanding of how different anion combinations in the system affect physicochemical properties is lacking. In this study, we systematically investigate the effect of different anion species, such as bis(trifluoromethanesulfonyl)imide (TFSI) and hexafluorophosphate (PF6), on the mechanical, viscoelastic, and ion conductive behaviors of PIL-based ion gels. We investigate the interplay between anion size, packing density, and polymer segmental dynamics by varying the anion composition in both the PIL network and IL component. Rheological analysis and uniaxial tensile testing results indicate that PF6-containing ion gels exhibit enhanced higher Young’s modulus because of their restricted chain mobility resulting in higher glass transition temperature (Tg). In addition, we confirm the anion exchange between PIL and IL during gel preparation and find that the mechanical and ion conductive properties of the gels are governed by the total molar ratio of anions in the gels. Our findings highlight that tuning the anion composition in PIL-based ion gels provides an effective strategy to tailor their performance, with potential applications for flexible electronics and solid-state electrochemical devices. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MizutaniYuna en-aut-sei=Mizutani en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=3 en-affil=Material Science and Engineering Department, The Pennsylvania State University, 80 Pollock Road, State College kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=poly(ionic liquid) kn-keyword=poly(ionic liquid) en-keyword=anion exchange kn-keyword=anion exchange en-keyword=gel kn-keyword=gel en-keyword=conductivity kn-keyword=conductivity en-keyword=toughness kn-keyword=toughness END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrostatically‐Driven Collapse of Polyelectrolytes: The Role of the Solvent's Dielectric Constant en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of ε ≃ 12 − 180 is investigated. For high and intermediate ε media, typical polyelectrolyte behavior is observed: the correlation length (ξ) scales with concentration (c) as ξ ∼ c−1∕2, as predicted by various theories. When the dielectric constant of the solvent decreases below ≃ 22, a scaling of ξ ∼ c−1∕3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions. en-copyright= kn-copyright= en-aut-name=GulatiAnish en-aut-sei=Gulati en-aut-mei=Anish kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MengLingzi en-aut-sei=Meng en-aut-mei=Lingzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Physical Chemistry, RWTH Aachen University kn-affil= affil-num=2 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=4 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= en-keyword=counterion kn-keyword=counterion en-keyword=dipole kn-keyword=dipole en-keyword=polyelectrolyte kn-keyword=polyelectrolyte en-keyword=SANS kn-keyword=SANS en-keyword=SAXS kn-keyword=SAXS en-keyword=scattering kn-keyword=scattering END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=9 article-no= start-page=e70105 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrahigh‐Field MR‐Compatible Mechanical Tactile Stimulator for Investigating Somatosensory Processing in Small‐Bodied Animals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Common marmosets (Callithrix jacchus), small-bodied New World primates that share similar sensory processing pathways with human beings, have gained great interests. Their small body size allows imaging of brain activity with high spatial resolution and on a whole-brain scale using ultrahigh-field (UHF) magnetic resonance imaging (MRI) scanners. However, the strong magnetic field and the small size of the hand and forearm pose challenges in delivering tactile stimulation during fMRI experiments. In the present study, we developed an MR-compatible tactile dual-point stimulator to provide high-precision mechanical stimulation for exploring somatosensory processing in small-bodied animals. The study population consisted of a water phantom and three male common marmosets. Cerebral blood volume (CBV) weighted fMRI data were obtained with a gradient echo (GE), echo-planar imaging (EPI) sequence at 7T scanner. The output performance of the device was tested by a pressure sensor. The MR compatibility of the device was verified by measuring the temporal signal-to-noise ratio (tSNR) of a water phantom. To test the effectiveness of tactile stimulation, we conducted block designed tactile stimulation experiments on marmosets. A one-way repeated measures ANOVA was conducted for comparing the tSNR results. We performed one-sample t-tests to investigate the negative response of the forearm and hand stimulation with a threshold of t > 1.96 (p < 0.05). Performance tests revealed that mechanical stimulation (averaged force: 31.69 g) was applied with a delay of 12 ms. Phantom experiments confirmed that there was no significant difference in the tSNR among three (10 Hz, 1 Hz, and no-stimulus) conditions (F (2, 798) = 0.71, p = 0.49). The CBV activity results showed that the stimulator successfully elicited hand and forearm somatosensory activations in primary somatosensory areas. These results indicated that the device is well suited for small-bodied animal somatosensory studies. en-copyright= kn-copyright= en-aut-name=WangChenyu en-aut-sei=Wang en-aut-mei=Chenyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImaiHirohiko en-aut-sei=Imai en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukunagaMasaki en-aut-sei=Fukunaga en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoHiroki en-aut-sei=Yamamoto en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekiKazuhiko en-aut-sei=Seki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanakawaTakashi en-aut-sei=Hanakawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmedaTatsuya en-aut-sei=Umeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Innovation Research Center for Quantum Medicine, Gifu University School of Medicine kn-affil= affil-num=3 en-affil=Section of Brain Function Information, National Institute for Physiological Sciences kn-affil= affil-num=4 en-affil=Graduate School of Human and Environmental Studies, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurophysiology, National Center of Neurology and Psychiatry kn-affil= affil-num=7 en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=primary somatosensory cortex kn-keyword=primary somatosensory cortex en-keyword=small-bodied animals kn-keyword=small-bodied animals en-keyword=tactile stimulation device kn-keyword=tactile stimulation device en-keyword=ultrahigh-field magnetic resonance imaging kn-keyword=ultrahigh-field magnetic resonance imaging END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=11 article-no= start-page=6155 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia–resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric–differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SpirrettFiona en-aut-sei=Spirrett en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KiriharaSoshu en-aut-sei=Kirihara en-aut-mei=Soshu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=3 en-affil=Joining and Welding Research Institute, Osaka University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuven kn-affil= affil-num=7 en-affil=Joining and Welding Research Institute, Osaka University kn-affil= en-keyword=additive manufacturing kn-keyword=additive manufacturing en-keyword=subtractive manufacturing kn-keyword=subtractive manufacturing en-keyword=dental prosthesis kn-keyword=dental prosthesis en-keyword=ceramic prosthesis kn-keyword=ceramic prosthesis en-keyword=zirconia laminates kn-keyword=zirconia laminates en-keyword=stereolithography kn-keyword=stereolithography en-keyword=thermogravimetry–differential thermal analysis kn-keyword=thermogravimetry–differential thermal analysis en-keyword=X-ray diffraction kn-keyword=X-ray diffraction en-keyword=scanning electron microscopy kn-keyword=scanning electron microscopy END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=2 article-no= start-page=395 end-page=412.e6 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease. en-copyright= kn-copyright= en-aut-name=YaoNa en-aut-sei=Yao en-aut-mei=Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinouchiKenichiro en-aut-sei=Kinouchi en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AshtianiKousha Changizi en-aut-sei=Ashtiani en-aut-mei=Kousha Changizi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbdelkarimSherif en-aut-sei=Abdelkarim en-aut-mei=Sherif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimotoHiroyuki en-aut-sei=Morimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TorimitsuTakuto en-aut-sei=Torimitsu en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KozumaTakahide en-aut-sei=Kozuma en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwaharaAkihide en-aut-sei=Iwahara en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KosugiShotaro en-aut-sei=Kosugi en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKyosuke en-aut-sei=Kato en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TonomuraShun en-aut-sei=Tonomura en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakamuraToshifumi en-aut-sei=Nakamura en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItohArata en-aut-sei=Itoh en-aut-mei=Arata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamaguchiShintaro en-aut-sei=Yamaguchi en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshinoJun en-aut-sei=Yoshino en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IrieJunichiro en-aut-sei=Irie en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SatohAkiko en-aut-sei=Satoh en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=MikamiYohei en-aut-sei=Mikami en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UchidaShusaku en-aut-sei=Uchida en-aut-mei=Shusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=UekiTakatoshi en-aut-sei=Ueki en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=BaldiPierre en-aut-sei=Baldi en-aut-mei=Pierre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiKaori en-aut-sei=Hayashi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=ItohHiroshi en-aut-sei=Itoh en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Computer Science, University of California kn-affil= affil-num=5 en-affil=Department of Computer Science, University of California kn-affil= affil-num=6 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=7 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=8 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=9 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=10 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=18 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=21 en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University kn-affil= affil-num=22 en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=23 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=24 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=25 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=26 en-affil=Department of Computer Science, University of California kn-affil= affil-num=27 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=28 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= en-keyword=circadian rhythm kn-keyword=circadian rhythm en-keyword=metabolism kn-keyword=metabolism en-keyword=circadian clock kn-keyword=circadian clock en-keyword=pregnancy kn-keyword=pregnancy en-keyword=developmental origins of health and disease kn-keyword=developmental origins of health and disease en-keyword=obesity kn-keyword=obesity en-keyword=leptin kn-keyword=leptin en-keyword=time-restricted feeding kn-keyword=time-restricted feeding en-keyword=caloric restriction kn-keyword=caloric restriction en-keyword=eating behavior kn-keyword=eating behavior END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(−) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(−) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DürrwaldRalf en-aut-sei=Dürrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-AstúaJuliana en-aut-sei=Freitas-Astúa en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesMárcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=Márcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=ØklandArnfinn Lodden en-aut-sei=Økland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNoël en-aut-sei=Tordo en-aut-mei=Noël kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Nacional de Tecnología Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnología Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Pará kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV. en-copyright= kn-copyright= en-aut-name=RubinoLuisa en-aut-sei=Rubino en-aut-mei=Luisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbrahamianPeter en-aut-sei=Abrahamian en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnWenxia en-aut-sei=An en-aut-mei=Wenxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArandaMiguel A. en-aut-sei=Aranda en-aut-mei=Miguel A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Ascencio-IbañezJosé T. en-aut-sei=Ascencio-Ibañez en-aut-mei=José T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BlouinArnaud G. en-aut-sei=Blouin en-aut-mei=Arnaud G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CandresseThierry en-aut-sei=Candresse en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CantoTomas en-aut-sei=Canto en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=CaoMengji en-aut-sei=Cao en-aut-mei=Mengji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=CarrJohn P. en-aut-sei=Carr en-aut-mei=John P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ChoWon Kyong en-aut-sei=Cho en-aut-mei=Won Kyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ConstableFiona en-aut-sei=Constable en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=DasguptaIndranil en-aut-sei=Dasgupta en-aut-mei=Indranil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DigiaroMichele en-aut-sei=Digiaro en-aut-mei=Michele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ElbeainoToufic en-aut-sei=Elbeaino en-aut-mei=Toufic kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FargetteDenis en-aut-sei=Fargette en-aut-mei=Denis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=FilardoFiona en-aut-sei=Filardo en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FischerMatthias G. en-aut-sei=Fischer en-aut-mei=Matthias G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FontdevilaNuria en-aut-sei=Fontdevila en-aut-mei=Nuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FoxAdrian en-aut-sei=Fox en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=Freitas-AstuaJuliana en-aut-sei=Freitas-Astua en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FuchsMarc en-aut-sei=Fuchs en-aut-mei=Marc kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=GeeringAndrew D.W. en-aut-sei=Geering en-aut-mei=Andrew D.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=GhafariMahan en-aut-sei=Ghafari en-aut-mei=Mahan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HafrénAnders en-aut-sei=Hafrén en-aut-mei=Anders kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=HammondJohn en-aut-sei=Hammond en-aut-mei=John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=HammondRosemarie en-aut-sei=Hammond en-aut-mei=Rosemarie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=Hasiów-JaroszewskaBeata en-aut-sei=Hasiów-Jaroszewska en-aut-mei=Beata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=HebrardEugenie en-aut-sei=Hebrard en-aut-mei=Eugenie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=HernándezCarmen en-aut-sei=Hernández en-aut-mei=Carmen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=HilyJean-Michel en-aut-sei=Hily en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=HosseiniAhmed en-aut-sei=Hosseini en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=HullRoger en-aut-sei=Hull en-aut-mei=Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=Inoue-NagataAlice K. en-aut-sei=Inoue-Nagata en-aut-mei=Alice K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=JordanRamon en-aut-sei=Jordan en-aut-mei=Ramon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=KreuzeJan F. en-aut-sei=Kreuze en-aut-mei=Jan F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=LeisnerScott en-aut-sei=Leisner en-aut-mei=Scott kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=LettJean-Michel en-aut-sei=Lett en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=LiChengyu en-aut-sei=Li en-aut-mei=Chengyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=LiFan en-aut-sei=Li en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=LiJun Min en-aut-sei=Li en-aut-mei=Jun Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=López-LambertiniPaola M. en-aut-sei=López-Lambertini en-aut-mei=Paola M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=Lopez-MoyaJuan J. en-aut-sei=Lopez-Moya en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MaclotFrancois en-aut-sei=Maclot en-aut-mei=Francois kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=MäkinenKristiina en-aut-sei=Mäkinen en-aut-mei=Kristiina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MartinDarren en-aut-sei=Martin en-aut-mei=Darren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MassartSebastien en-aut-sei=Massart en-aut-mei=Sebastien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MillerW. Allen en-aut-sei=Miller en-aut-mei=W. Allen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MohammadiMusa en-aut-sei=Mohammadi en-aut-mei=Musa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=MollovDimitre en-aut-sei=Mollov en-aut-mei=Dimitre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=MullerEmmanuelle en-aut-sei=Muller en-aut-mei=Emmanuelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NagataTatsuya en-aut-sei=Nagata en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=Navas-CastilloJesús en-aut-sei=Navas-Castillo en-aut-mei=Jesús kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=NeriyaYutaro en-aut-sei=Neriya en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=Ochoa-CoronaFrancisco M. en-aut-sei=Ochoa-Corona en-aut-mei=Francisco M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=PallásVicente en-aut-sei=Pallás en-aut-mei=Vicente kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=PappuHanu en-aut-sei=Pappu en-aut-mei=Hanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=PetrzikKarel en-aut-sei=Petrzik en-aut-mei=Karel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=PoogginMikhail en-aut-sei=Pooggin en-aut-mei=Mikhail kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=PrigigalloMaria Isabella en-aut-sei=Prigigallo en-aut-mei=Maria Isabella kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=Ramos-GonzálezPedro L. en-aut-sei=Ramos-González en-aut-mei=Pedro L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=RibeiroSimone en-aut-sei=Ribeiro en-aut-mei=Simone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=Richert-PöggelerKatja R. en-aut-sei=Richert-Pöggeler en-aut-mei=Katja R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=RoumagnacPhilippe en-aut-sei=Roumagnac en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=RoyAvijit en-aut-sei=Roy en-aut-mei=Avijit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=ŠafářováDana en-aut-sei=Šafářová en-aut-mei=Dana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=SaldarelliPasquale en-aut-sei=Saldarelli en-aut-mei=Pasquale kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=SanfaçonHélène en-aut-sei=Sanfaçon en-aut-mei=Hélène kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=SarmientoCecilia en-aut-sei=Sarmiento en-aut-mei=Cecilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=ScheetsKay en-aut-sei=Scheets en-aut-mei=Kay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=SchravesandeWillem E.W. en-aut-sei=Schravesande en-aut-mei=Willem E.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=SealSusan en-aut-sei=Seal en-aut-mei=Susan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=ShimomotoYoshifumi en-aut-sei=Shimomoto en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=SõmeraMerike en-aut-sei=Sõmera en-aut-mei=Merike kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=StavoloneLivia en-aut-sei=Stavolone en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=StewartLucy R. en-aut-sei=Stewart en-aut-mei=Lucy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=TeycheneyPierre-Yves en-aut-sei=Teycheney en-aut-mei=Pierre-Yves kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=ThomasJohn E. en-aut-sei=Thomas en-aut-mei=John E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=ThompsonJeremy R. en-aut-sei=Thompson en-aut-mei=Jeremy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=TiberiniAntonio en-aut-sei=Tiberini en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=TomitakaYasuhiro en-aut-sei=Tomitaka en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=TzanetakisIoannis en-aut-sei=Tzanetakis en-aut-mei=Ioannis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=UmberMarie en-aut-sei=Umber en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=UrbinoCica en-aut-sei=Urbino en-aut-mei=Cica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=van den BurgHarrold A. en-aut-sei=van den Burg en-aut-mei=Harrold A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=Van der VlugtRené A.A. en-aut-sei=Van der Vlugt en-aut-mei=René A.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=VarsaniArvind en-aut-sei=Varsani en-aut-mei=Arvind kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=VerhageAdriaan en-aut-sei=Verhage en-aut-mei=Adriaan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=VillamorDan en-aut-sei=Villamor en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=von BargenSusanne en-aut-sei=von Bargen en-aut-mei=Susanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WetzelThierry en-aut-sei=Wetzel en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=WylieStephen J. en-aut-sei=Wylie en-aut-mei=Stephen J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=YangCaixia en-aut-sei=Yang en-aut-mei=Caixia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZerbiniF. Murilo en-aut-sei=Zerbini en-aut-mei=F. Murilo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhangSong en-aut-sei=Zhang en-aut-mei=Song kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=2 en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory kn-affil= affil-num=3 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=4 en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC kn-affil= affil-num=5 en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University kn-affil= affil-num=6 en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET kn-affil= affil-num=7 en-affil=Plant Protection Department kn-affil= affil-num=8 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=9 en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC) kn-affil= affil-num=10 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= affil-num=11 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=12 en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University kn-affil= affil-num=13 en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University kn-affil= affil-num=14 en-affil=University of Delhi South Campu kn-affil= affil-num=15 en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET kn-affil= affil-num=16 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=17 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=18 en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC kn-affil= affil-num=19 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=20 en-affil=Virus South Data kn-affil= affil-num=21 en-affil=Queensland Department of Primary Industries kn-affil= affil-num=22 en-affil=Max Planck Institute for Marine Microbiology kn-affil= affil-num=23 en-affil=Plant Protection Department kn-affil= affil-num=24 en-affil=Fera Science Ltd (Fera), York Biotech Campus kn-affil= affil-num=25 en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation kn-affil= affil-num=26 en-affil=Plant Pathology, Cornell University kn-affil= affil-num=27 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=28 en-affil=Department of Biology, University of Oxford kn-affil= affil-num=29 en-affil=Swedish University of Agriculture kn-affil= affil-num=30 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=31 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory kn-affil= affil-num=32 en-affil=Institute of Plant Protection-NRI kn-affil= affil-num=33 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=34 en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC kn-affil= affil-num=35 en-affil=Institut Français de la Vigne et du Vin kn-affil= affil-num=36 en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection kn-affil= affil-num=37 en-affil=Retired from John Innes Centre kn-affil= affil-num=38 en-affil=Embrapa Hortaliças kn-affil= affil-num=39 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=40 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=41 en-affil=International Potato Center (CIP) kn-affil= affil-num=42 en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=43 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=44 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=45 en-affil=Department of Biological Sciences, University of Toledo kn-affil= affil-num=46 en-affil=CIRAD, UMR PVBMT kn-affil= affil-num=47 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=48 en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University kn-affil= affil-num=49 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=50 en-affil=Instituto de Patología Vegetal (IPAVE), INTA, Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET kn-affil= affil-num=51 en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB) kn-affil= affil-num=52 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=53 en-affil=Department of Agricultural Sciences, University of Helsinki kn-affil= affil-num=54 en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town kn-affil= affil-num=55 en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege kn-affil= affil-num=56 en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University kn-affil= affil-num=57 en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources kn-affil= affil-num=58 en-affil=USDA-APHIS, Plant Protection and Quarantine kn-affil= affil-num=59 en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE kn-affil= affil-num=60 en-affil=Instituto de Ciências Biológicas, Universidade de Brasília kn-affil= affil-num=61 en-affil=Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas kn-affil= affil-num=62 en-affil=Utsunomiya University kn-affil= affil-num=63 en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics kn-affil= affil-num=64 en-affil=Saga University kn-affil= affil-num=65 en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC kn-affil= affil-num=66 en-affil=Department of Plant Pathology, Washington State University kn-affil= affil-num=67 en-affil=Institute of Plant Molecular Biology kn-affil= affil-num=68 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD kn-affil= affil-num=69 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=70 en-affil=Applied Molecular Biology Laboratory, Instituto Biológico de São Paulo kn-affil= affil-num=71 en-affil=Embrapa Recursos Genéticos e Biotecnologia kn-affil= affil-num=72 en-affil=Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics kn-affil= affil-num=73 en-affil=CIRAD, UMR PHIM kn-affil= affil-num=74 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA kn-affil= affil-num=75 en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University kn-affil= affil-num=76 en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc kn-affil= affil-num=77 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=78 en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada kn-affil= affil-num=79 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=80 en-affil=Strategic Planning Headquarters, NARO kn-affil= affil-num=81 en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University kn-affil= affil-num=82 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=83 en-affil=Natural Resources Institute, University of Greenwich kn-affil= affil-num=84 en-affil=Kochi Agricultural Research Center kn-affil= affil-num=85 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=86 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=87 en-affil=Currently unaffiliated kn-affil= affil-num=88 en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Université de la Réunion kn-affil= affil-num=89 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=90 en-affil=Plant Health and Environment Laboratory kn-affil= affil-num=91 en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification kn-affil= affil-num=92 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=93 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=94 en-affil=INRAE, UR ASTRO kn-affil= affil-num=95 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=96 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=97 en-affil=Wageningen University and Research kn-affil= affil-num=98 en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University kn-affil= affil-num=99 en-affil=Rijk Zwaan Breeding B.V. kn-affil= affil-num=100 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=101 en-affil=Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences kn-affil= affil-num=102 en-affil=The University of Queensland kn-affil= affil-num=103 en-affil=Dienstleistungszentrum Ländlicher Raum Rheinpfalz kn-affil= affil-num=104 en-affil=North Carolina State University kn-affil= affil-num=105 en-affil=Food Futures Institute, Murdoch University kn-affil= affil-num=106 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=107 en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa kn-affil= affil-num=108 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=12 article-no= start-page=2429 end-page=2437 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy. en-copyright= kn-copyright= en-aut-name=KurogiHaruna en-aut-sei=Kurogi en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumarAshutosh en-aut-sei=Kumar en-aut-mei=Ashutosh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SawadaDaisuke en-aut-sei=Sawada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangKam Y.J. en-aut-sei=Zhang en-aut-mei=Kam Y.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN kn-affil= affil-num=9 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=9 article-no= start-page=2604 end-page=2611 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA–PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior. en-copyright= kn-copyright= en-aut-name=SchorrKathrin en-aut-sei=Schorr en-aut-mei=Kathrin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenXinyu en-aut-sei=Chen en-aut-mei=Xinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Arias-LozaAnahi Paula en-aut-sei=Arias-Loza en-aut-mei=Anahi Paula kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LangJohannes en-aut-sei=Lang en-aut-mei=Johannes kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GoepferichAchim en-aut-sei=Goepferich en-aut-mei=Achim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pharmaceutical Technology, University of Regensburg kn-affil= affil-num=2 en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg kn-affil= affil-num=5 en-affil=Department of Pharmaceutical Technology, University of Regensburg kn-affil= affil-num=6 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pharmaceutical Technology, University of Regensburg kn-affil= en-keyword=polymer nanoparticles kn-keyword=polymer nanoparticles en-keyword=direct 99mTc-labeling kn-keyword=direct 99mTc-labeling en-keyword=single-photon emission computed tomography kn-keyword=single-photon emission computed tomography en-keyword=radio-thin layer chromatography kn-keyword=radio-thin layer chromatography en-keyword=radiocolloids kn-keyword=radiocolloids END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=11 article-no= start-page=4984 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies. en-copyright= kn-copyright= en-aut-name=VoQuan Duy en-aut-sei=Vo en-aut-mei=Quan Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=induced pluripotent stem cells kn-keyword=induced pluripotent stem cells en-keyword=cardiomyopathy kn-keyword=cardiomyopathy en-keyword=disease modeling kn-keyword=disease modeling en-keyword=drug screening kn-keyword=drug screening en-keyword=regenerative therapy kn-keyword=regenerative therapy END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=13 article-no= start-page=7238 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH. en-copyright= kn-copyright= en-aut-name=LeeYoung-Hyeon en-aut-sei=Lee en-aut-mei=Young-Hyeon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YeoMin-Ho en-aut-sei=Yeo en-aut-mei=Min-Ho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChangKyung-Soo en-aut-sei=Chang en-aut-mei=Kyung-Soo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoonWeon-Jong en-aut-sei=Yoon en-aut-mei=Weon-Jong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJongwan en-aut-sei=Kim en-aut-mei=Jongwan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimHye-Ran en-aut-sei=Kim en-aut-mei=Hye-Ran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan kn-affil= affil-num=2 en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan kn-affil= affil-num=3 en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan kn-affil= affil-num=4 en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP) kn-affil= affil-num=5 en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Anatomy, College of Medicine, Dongguk University kn-affil= affil-num=7 en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology kn-affil= en-keyword=metabolic dysfunction-associated steatohepatitis kn-keyword=metabolic dysfunction-associated steatohepatitis en-keyword=Distylium racemosum kn-keyword=Distylium racemosum en-keyword=ethyl acetate fraction kn-keyword=ethyl acetate fraction en-keyword=extract kn-keyword=extract END start-ver=1.4 cd-journal=joma no-vol=144-145 cd-vols= no-issue= article-no= start-page=109001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigating the fate of Zirconium-89 labelled antibody in cynomolgus macaques en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Preclinical pharmacokinetic studies of therapeutic antibodies in non-human primates are desired because of the difficulty in extrapolating ADME data from animal models to humans. We evaluated the pharmacokinetics of 89Zr (Zirconium-89) -labelled anti-KLH human IgG and its metabolites to confirm their non-specific/physiological accumulation in healthy cynomolgus macaques. The anti-KLH antibody was used as a negative control, ensuring that the observed distribution reflected general IgG behavior rather than antigen-specific accumulation. This provides a valuable reference for comparing the biodistribution of targeted antibodies.
Methods: Selected IgG was conjugated to desferrioxamine (DFO), labelled with 89Zr, and injected into healthy cynomolgus macaques. PET/CT images at the whole-body level were acquired at different time points, and standard uptake values (SUV) in regions of interest, such as the heart, liver, spleen, kidneys, bone, and muscles, were calculated. The distribution of a shortened antibody variant, 89Zr-labelled Fab, as well as that of [89Zr]Zr-DFO and [89Zr]Zr-oxalate, the expected metabolites of 89Zr- labelled IgG, was also assessed.
Results: After 89Zr-labelled IgG injection, the SUV in the heart, vertebral body, and muscle decreased, in line with the 89Zr concentration decrease in the circulation, whereas radioactivity increased over time in the kidneys and liver. Autoradiography of the renal sections indicated that most of the 89Zr- labelled IgG radioactivity accumulated in the renal cortex. Relatively high accumulation in the kidneys was also observed in 89Zr- labelled Fab-injected macaques, and renal autoradiographs of these animals showed that the renal cortex was the preferred accumulation site. However, [89Zr]Zr-DFO was rapidly excreted into the urine, whereas [89Zr]Zr-oxalate was highly accumulated in the epiphysis of the long bones and vertebral body.
Conclusion: In the non-human primate cynomolgus macaque, 89Zr- labelled IgG accumulated in the kidneys and the liver. However, [89Zr]Zr-DFO and 89Zr did not accumulate in these organs. This preclinical pharmacokinetic study performed with human IgG in a non-human primate model using PET is of great significance as it sheds light on the basic fate and distribution of 89Zr- labelled IgG. en-copyright= kn-copyright= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraSadaaki en-aut-sei=Kimura en-aut-mei=Sadaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NodaAkihiro en-aut-sei=Noda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiYoshihiro en-aut-sei=Murakami en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiSosuke en-aut-sei=Miyoshi en-aut-mei=Sosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkehiMasaru en-aut-sei=Akehi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchiaiKazuhiko en-aut-sei=Ochiai en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Astellas Pharma Inc. kn-affil= affil-num=3 en-affil=Astellas Pharma Inc. kn-affil= affil-num=4 en-affil=Astellas Pharma Inc. kn-affil= affil-num=5 en-affil=Astellas Pharma Inc. kn-affil= affil-num=6 en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University kn-affil= affil-num=8 en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=PET imaging kn-keyword=PET imaging en-keyword=Zirconium-89 kn-keyword=Zirconium-89 en-keyword=Therapeutic antibodies kn-keyword=Therapeutic antibodies en-keyword=Non-human primates kn-keyword=Non-human primates END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=9 article-no= start-page=1203 end-page=1205 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Technique for Implanting the Second Valve Accompanied by Simultaneous Snorkel Stenting en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UekiYuta en-aut-sei=Ueki en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraShohei en-aut-sei=Hara en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=sinus sequestration kn-keyword=sinus sequestration en-keyword=snorkel stenting kn-keyword=snorkel stenting en-keyword=structural valve deterioration kn-keyword=structural valve deterioration en-keyword=TAVR-in-TAVR kn-keyword=TAVR-in-TAVR en-keyword=transvalvular leakage kn-keyword=transvalvular leakage END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=14 article-no= start-page=e2024GL114146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite en-subtitle= kn-subtitle= en-abstract= kn-abstract=Small-scale scatterers observed in the mid-lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)-bearing stishovite with four compositions at simultaneously high P-T conditions combining Raman spectroscopy and X-ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum-Pacific region. These results deepen our understanding on the complex features of mid-lower mantle seismic scatterers and corresponding dynamic processes. en-copyright= kn-copyright= en-aut-name=YuYingxin en-aut-sei=Yu en-aut-mei=Yingxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangYouyue en-aut-sei=Zhang en-aut-mei=Youyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiLuo en-aut-sei=Li en-aut-mei=Luo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangXinyue en-aut-sei=Zhang en-aut-mei=Xinyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangDenglei en-aut-sei=Wang en-aut-mei=Denglei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaoZhu en-aut-sei=Mao en-aut-mei=Zhu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SunNingyu en-aut-sei=Sun en-aut-mei=Ningyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangYanyao en-aut-sei=Zhang en-aut-mei=Yanyao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiXinyang en-aut-sei=Li en-aut-mei=Xinyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LiWancai en-aut-sei=Li en-aut-mei=Wancai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SpezialeSergio en-aut-sei=Speziale en-aut-mei=Sergio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZhangDongzhou en-aut-sei=Zhang en-aut-mei=Dongzhou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LinJung‐Fu en-aut-sei=Lin en-aut-mei=Jung‐Fu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=4 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=5 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=6 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=7 en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=8 en-affil=Earth and Planetary Sciences, Stanford University kn-affil= affil-num=9 en-affil=State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University kn-affil= affil-num=10 en-affil=CAS Key Laboratory of Crust‐Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=11 en-affil=GFZ German Research Centre for Geosciences kn-affil= affil-num=12 en-affil=GeoSoilEnviroCARS, University of Chicago kn-affil= affil-num=13 en-affil=Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin kn-affil= affil-num=14 en-affil=Institute for Planetary Materials, Okayama University kn-affil= en-keyword=(Al, H)-bearing stishovite kn-keyword=(Al, H)-bearing stishovite en-keyword=phase transition kn-keyword=phase transition en-keyword=mid-lower mantle kn-keyword=mid-lower mantle en-keyword=small-scale seismic scatterers kn-keyword=small-scale seismic scatterers END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=5 article-no= start-page=686 end-page=689 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=L or M1—Critical Challenges in Mediation Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methods for causal mediation analysis have developed dramatically over the past few decades.1–7 In the causal mediation literature, several causal quantities—or estimands—have been proposed, including natural direct and indirect effects, interventional direct and indirect effects, and separable direct and indirect effects. As another possible causal estimand, Chen and Lin8 proposed separable path-specific effects, which is an extension of the separable effects framework to cases that involve multiple ordered mediators. In this commentary, I briefly discuss the newly proposed method from a broader perspective on causal mediation analysis. For readers less familiar with common causal mediation approaches, please see related literature.1–3,9–11 en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=3 article-no= start-page=104810 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99°C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field. en-copyright= kn-copyright= en-aut-name=TakanoAruto en-aut-sei=Takano en-aut-mei=Aruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmaliDennis V. en-aut-sei=Umali en-aut-mei=Dennis V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WardhanaApril H. en-aut-sei=Wardhana en-aut-mei=April H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SawitriDyah H. en-aut-sei=Sawitri en-aut-mei=Dyah H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeramotoIsao en-aut-sei=Teramoto en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HatabuToshimitsu en-aut-sei=Hatabu en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KidoYasutoshi en-aut-sei=Kido en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekoAkira en-aut-sei=Kaneko en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SasaiKazumi en-aut-sei=Sasai en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatohHiromitsu en-aut-sei=Katoh en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsubayashiMakoto en-aut-sei=Matsubayashi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College kn-affil= affil-num=3 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=4 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=6 en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=8 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=9 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=10 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=11 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= en-keyword=Coccidian parasite kn-keyword=Coccidian parasite en-keyword=Eimeria tenella kn-keyword=Eimeria tenella en-keyword=Extraction kn-keyword=Extraction en-keyword=Molecular identification kn-keyword=Molecular identification en-keyword=Oocyst kn-keyword=Oocyst END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=2401783 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene. en-copyright= kn-copyright= en-aut-name=NicolussiPaola en-aut-sei=Nicolussi en-aut-mei=Paola kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PiloGiovannantonio en-aut-sei=Pilo en-aut-mei=Giovannantonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CanceddaMaria Giovanna en-aut-sei=Cancedda en-aut-mei=Maria Giovanna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PengGuotao en-aut-sei=Peng en-aut-mei=Guotao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChauNgoc Do Quyen en-aut-sei=Chau en-aut-mei=Ngoc Do Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=De la CadenaAlejandro en-aut-sei=De la Cadena en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=VannaRenzo en-aut-sei=Vanna en-aut-mei=Renzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SamadYarjan Abdul en-aut-sei=Samad en-aut-mei=Yarjan Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AhmedTanweer en-aut-sei=Ahmed en-aut-mei=Tanweer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MarcellinoJeremia en-aut-sei=Marcellino en-aut-mei=Jeremia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TeddeGiuseppe en-aut-sei=Tedde en-aut-mei=Giuseppe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GiroLinda en-aut-sei=Giro en-aut-mei=Linda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YlmazerAcelya en-aut-sei=Ylmazer en-aut-mei=Acelya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=LoiFederica en-aut-sei=Loi en-aut-mei=Federica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=CartaGavina en-aut-sei=Carta en-aut-mei=Gavina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SecchiLoredana en-aut-sei=Secchi en-aut-mei=Loredana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Dei GiudiciSilvia en-aut-sei=Dei Giudici en-aut-mei=Silvia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MacciocuSimona en-aut-sei=Macciocu en-aut-mei=Simona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=PolliDario en-aut-sei=Polli en-aut-mei=Dario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=LigiosCiriaco en-aut-sei=Ligios en-aut-mei=Ciriaco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=CerulloGiulio en-aut-sei=Cerullo en-aut-mei=Giulio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FerrariAndrea en-aut-sei=Ferrari en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=FadeelBengt en-aut-sei=Fadeel en-aut-mei=Bengt kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FranzoniGiulia en-aut-sei=Franzoni en-aut-mei=Giulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=DeloguLucia Gemma en-aut-sei=Delogu en-aut-mei=Lucia Gemma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=2 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=3 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=4 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=5 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=6 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=7 en-affil=Istituto di Fotonica e Nanotecnologie – CNR kn-affil= affil-num=8 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=9 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=10 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=11 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=12 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= affil-num=13 en-affil=Department of Biomedical Engineering, Ankara University kn-affil= affil-num=14 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=15 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=16 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=17 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=18 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=19 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=20 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=22 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=23 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=24 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=25 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=26 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=27 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= en-keyword=2D materials kn-keyword=2D materials en-keyword=biocompatibility kn-keyword=biocompatibility en-keyword=immune system kn-keyword=immune system en-keyword=porcine model kn-keyword=porcine model en-keyword=toxicity kn-keyword=toxicity END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=4 article-no= start-page=263 end-page=272 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering en-subtitle= kn-subtitle= en-abstract= kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. en-copyright= kn-copyright= en-aut-name=FerrerasAndrea en-aut-sei=Ferreras en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatesanzAna en-aut-sei=Matesanz en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MendizabalJabier en-aut-sei=Mendizabal en-aut-mei=Jabier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArtolaKoldo en-aut-sei=Artola en-aut-mei=Koldo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AcedoPablo en-aut-sei=Acedo en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JorcanoJosé L. en-aut-sei=Jorcano en-aut-mei=José L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RuizAmalia en-aut-sei=Ruiz en-aut-mei=Amalia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ReinaGiacomo en-aut-sei=Reina en-aut-mei=Giacomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MartínCristina en-aut-sei=Martín en-aut-mei=Cristina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=2 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=3 en-affil=Domotek ingeniería prototipado y formación S.L. kn-affil= affil-num=4 en-affil=Domotek ingeniería prototipado y formación S.L. kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=7 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=8 en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford kn-affil= affil-num=9 en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology kn-affil= affil-num=10 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= en-keyword=photothermal therapy kn-keyword=photothermal therapy en-keyword=graphene derivatives kn-keyword=graphene derivatives en-keyword=4D bioprinting kn-keyword=4D bioprinting en-keyword=alginate kn-keyword=alginate en-keyword=tissue engineering kn-keyword=tissue engineering END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical Generation of Sulfonamidyl Radicals via Anodic Oxidation of Hydrogen Bonding Complexes: Applications to Electrosynthesis of Benzosultams en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amidyl radicals and sulfonamidyl radicals are widely used in the field of organic synthesis. In particular, the electrochemical oxidation of amides in the presence of bases is one of the most practical methods for generating amidyl radicals. However, it is often difficult to observe the “true” radical precursor, such as an amide anion and/or a hydrogen bonding complex with an amide and a base. We found that a sulfonamide and Bu4NOAc form a 1:1 hydrogen bonding complex by spectroscopic experiments. Cyclic voltammetry suggested that 1:1 hydrogen bonding complexes should be oxidized predominantly under the optimized conditions to afford a sulfonamidyl radical via the proton-coupled electron transfer (PCET) process by the oxidation of the complex. Thus-generated sulfonamidyl radicals could be used in the electrochemical synthesis of a variety of benzosultams. en-copyright= kn-copyright= en-aut-name=OkumuraYasuyuki en-aut-sei=Okumura en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=electrochemical generation kn-keyword=electrochemical generation en-keyword=sulfonamidyl radicals kn-keyword=sulfonamidyl radicals en-keyword=hydrogen bonding complexes kn-keyword=hydrogen bonding complexes en-keyword=anodic oxidation kn-keyword=anodic oxidation en-keyword=proton-coupled electron transfer kn-keyword=proton-coupled electron transfer en-keyword=electrosynthesis kn-keyword=electrosynthesis en-keyword=benzosultams kn-keyword=benzosultams en-keyword=cyclization kn-keyword=cyclization END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=11 article-no= start-page=uhae248 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies. en-copyright= kn-copyright= en-aut-name=NagasakaKyoka en-aut-sei=Nagasaka en-aut-mei=Kyoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraKazusa en-aut-sei=Nishimura en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotokiKo en-aut-sei=Motoki en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamagataKeigo en-aut-sei=Yamagata en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiyamaSoichiro en-aut-sei=Nishiyama en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaneHisayo en-aut-sei=Yamane en-aut-mei=Hisayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaoRyutaro en-aut-sei=Tao en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakazakiTetsuya en-aut-sei=Nakazaki en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=9 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=6 article-no= start-page=271 end-page=285 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil en-subtitle= kn-subtitle= en-abstract= kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25 cm; inner diameter, 9 cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7 cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system. en-copyright= kn-copyright= en-aut-name=BekeleAdhena Tesfau en-aut-sei=Bekele en-aut-mei=Adhena Tesfau kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkaoSatoshi en-aut-sei=Akao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=straw kn-keyword=straw en-keyword=methane mitigation kn-keyword=methane mitigation en-keyword=SMFC kn-keyword=SMFC en-keyword=microorganisms kn-keyword=microorganisms en-keyword=current generation kn-keyword=current generation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=34 article-no= start-page=36114 end-page=36121 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Engineering Zeolitic-Imidazolate-Framework-Derived Mo-Doped Cobalt Phosphide for Efficient OER Catalysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Designing a cheap, competent, and durable catalyst for the oxygen evolution reaction (OER) is exceedingly necessary for generating oxygen through a water-splitting reaction. In this project, we have designed a ZIF-67-originated molybdenum-doped cobalt phosphide (CoP) using a simplistic dissolution–regrowth method using Na2MoO4 and a subsequent phosphidation process. This leads to the formation of an exceptional hollow nanocage morphology that is useful for enhanced catalytic activity. Metal–organic frameworks, especially ZIF-67, can be used both as a template and as a metal (cobalt) precursor. Molybdenum-doped CoP was fabricated through a two-step synthesis process, and the fabricated Mo-doped CoP showed excellent catalytic activity during the OER with a lower value of overpotential. Furthermore, the effect of the Mo amount on the catalytic activity has been explored. The best catalyst (CoMoP-2) showed an onset potential of around 1.49 V at 10 mA cm–2 to give rise to a Tafel slope of 62.1 mV dec–1. The improved catalytic activity can be attributed to the increased porosity and surface area of the resultant catalyst. en-copyright= kn-copyright= en-aut-name=RahmanMohammad Atiqur en-aut-sei=Rahman en-aut-mei=Mohammad Atiqur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=CaiZe en-aut-sei=Cai en-aut-mei=Ze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoushumyZannatul Mumtarin en-aut-sei=Moushumy en-aut-mei=Zannatul Mumtarin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TagawaRyuta en-aut-sei=Tagawa en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HidakaYoshiharu en-aut-sei=Hidaka en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IslamMd. Saidul en-aut-sei=Islam en-aut-mei=Md. Saidul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SekineYoshihiro en-aut-sei=Sekine en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IdaShintaro en-aut-sei=Ida en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayamiShinya en-aut-sei=Hayami en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=6 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=9 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=10 en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University kn-affil= affil-num=11 en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=120296 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications. en-copyright= kn-copyright= en-aut-name=KimuraRyota en-aut-sei=Kimura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ferré-PujolPilar en-aut-sei=Ferré-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Virus adsorption kn-keyword=Virus adsorption en-keyword=Dye adsorption kn-keyword=Dye adsorption en-keyword=Cationic polymer composites kn-keyword=Cationic polymer composites en-keyword=Adsorbent kn-keyword=Adsorbent en-keyword=Aggregation kn-keyword=Aggregation END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=76 article-no= start-page=10544 end-page=10547 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions. en-copyright= kn-copyright= en-aut-name=AhmedMd Razu en-aut-sei=Ahmed en-aut-mei=Md Razu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnayaIsrael Ortiz en-aut-sei=Anaya en-aut-mei=Israel Ortiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas en-subtitle= kn-subtitle= en-abstract= kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and − 900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was < 0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at − 900 HU had a maximum difference between facilities of > 5%, and the dose difference corresponding to an LN-300 lung CT value difference of > 20 HU was > 1% at a field size of 2 × 2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used. en-copyright= kn-copyright= en-aut-name=NomuraMia en-aut-sei=Nomura en-aut-mei=Mia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotoShunsuke en-aut-sei=Goto en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaMizuki en-aut-sei=Yoshioka en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYuiko en-aut-sei=Kato en-aut-mei=Yuiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsunodaAyaka en-aut-sei=Tsunoda en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiokaKunio en-aut-sei=Nishioka en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiology, Tokuyama Central Hospital kn-affil= affil-num=7 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Computed tomography kn-keyword=Computed tomography en-keyword=Dose calculation kn-keyword=Dose calculation en-keyword=Inter-facility variation kn-keyword=Inter-facility variation en-keyword=Low-density regions kn-keyword=Low-density regions en-keyword=Percentage depth dose kn-keyword=Percentage depth dose en-keyword=Radiation therapy planning system kn-keyword=Radiation therapy planning system END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=213 end-page=231 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RKPM: Restricted Kernel Page Mechanism to Mitigate Privilege Escalation Attacks en-subtitle= kn-subtitle= en-abstract= kn-abstract=Kernel memory corruption attacks against operating systems exploit kernel vulnerabilities to overwrite kernel data. Kernel address space layout randomization makes it difficult to identify kernel data by randomizing their virtual address space. Control flow integrity (CFI) prevents unauthorized kernel code execution by verifying kernel function calls. However, these countermeasures do not prohibit writing to kernel data. If the virtual address of privileged information is specified and CFI is circumvented, the privileged information can be modified by a kernel memory corruption attack. In this paper, we propose a restricted kernel page mechanism (RKPM) to mitigate kernel memory corruption attacks by introducing restricted kernel pages to protect the kernel data specified in the kernel. The RKPM focuses on the fact that kernel memory corruption attacks attempt to read the virtual addresses around the privileged information. The RKPM adopts page table mapping handling and a memory protection key to control the read and write restrictions of the restricted kernel pages. This allows us to mitigate kernel memory corruption attacks by capturing reads to the restricted kernel page before the privileged information is overwritten. As an evaluation of the RKPM, we confirmed that it can mitigate privilege escalation attacks on the latest Linux kernel. We also measured that there was a certain overhead in the kernel performance. This study enhances kernel security by mitigating privilege escalation attacks through the use of software or hardware based restricted kernel pages. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=66 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=kdMonitor: Kernel Data Monitor for Detecting Kernel Memory Corruption en-subtitle= kn-subtitle= en-abstract= kn-abstract=Privilege escalation attacks through memory corruption via kernel vulnerabilities pose significant threats to operating systems. Although the extended Berkley Packet Filter has been employed to trace kernel code execution by inserting interrupts before and after kernel code invocations, it does not track operations before and after kernel data writes, thus hindering effective kernel data monitoring. In this study, we introduce a kernel data monitor (kdMonitor), which is a novel security mechanism designed to detect unauthorized alterations in the monitored kernel data of a dedicated kernel page. The kdMonitor incorporates two distinct methods. The first is periodic monitoring which regularly outputs the monitored kernel data of the dedicated kernel pages. The second is dynamic monitoring, which restricts write access to a dedicated kernel page, supplements any write operations with page faults, and outputs the monitored kernel data of dedicated kernel pages. kdMonitor enables real-time tracking of specified kernel data of the dedicated kernel page residing in the kernel's virtual memory space from the separated machine. Using kdMonitor, we demonstrated its capability to pinpoint tampering with user process privileged information stemming from privilege escalation attacks on the kernel. Through an empirical evaluation, we validated the effectiveness of kdMonitor in detecting privilege escalation attacks by user processes on Linux. Performance assessments revealed that kdMonitor achieved an attack detection time of 0.83 seconds with an overhead of 0.726 %. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Okayama University,Faculty of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Vulnerability countermeasure kn-keyword=Vulnerability countermeasure en-keyword=Operating system security kn-keyword=Operating system security en-keyword=System security kn-keyword=System security END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=222 end-page=234 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=vkTracer: Vulnerable Kernel Code Tracing to Generate Profile of Kernel Vulnerability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vulnerable kernel codes are a threat to an operating system kernel. An adversary’s user process can forcefully invoke a vulnerable kernel code to cause privilege escalation or denial of service (DoS). Although service providers or security operators have to determine the effect of kernel vulnerabilities on their environment to decide the kernel updating, the list of vulnerable kernel codes are not provided from the common vulnerabilities and exposures (CVE) report. It is difficult to identify the vulnerable kernel codes from the exploitation result of the kernel which indicates the account information or the kernel suspension. To identify the details of kernel vulnerabilities, this study proposes a vulnerable kernel code tracer (vkTracer), which employs an alternative viewpoint using proof-of-concept (PoC) code to create a profile of kernel vulnerability. vkTracer traces the user process of the PoC code and the running kernel to hook the invocation of the vulnerable kernel codes. Moreover, vkTracer extracts the whole kernel component’s information using the running and static kernel image and debug section. The evaluation results indicated that vkTracer could trace PoC code executions (e.g., privilege escalation and DoS), identify vulnerable kernel codes, and generate kernel vulnerability profiles. Furthermore, the implementation of vkTracer revealed that the identification overhead ranged from 5.2683 s to 5.2728 s on the PoC codes and the acceptable system call latency was 3.7197 μs. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Faculty of Natural Science and Technology, Okayama University kn-affil= en-keyword=Kernel vulnerability kn-keyword=Kernel vulnerability en-keyword=Dynamic analysis kn-keyword=Dynamic analysis en-keyword=System security kn-keyword=System security END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=ncaf080 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy. en-copyright= kn-copyright= en-aut-name=MaedaTakahiko en-aut-sei=Maeda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraMakoto en-aut-sei=Hara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamasakiHiroyuki en-aut-sei=Yamasaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaharaMakoto en-aut-sei=Nakahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Hyogo Prefectural Kobe Children’s Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center kn-affil= affil-num=5 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=7 article-no= start-page=902 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KameyamaTakeru en-aut-sei=Kameyama en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=antimicrobial kn-keyword=antimicrobial en-keyword=denture liner kn-keyword=denture liner en-keyword=cetylpyridiniumchloride kn-keyword=cetylpyridiniumchloride en-keyword=drug release kn-keyword=drug release en-keyword=drug recharge kn-keyword=drug recharge END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=5 article-no= start-page=e70046 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spider mite tetranins elicit different defense responses in different host habitats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant. en-copyright= kn-copyright= en-aut-name=EndoYukiko en-aut-sei=Endo en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaMiku en-aut-sei=Tanaka en-aut-mei=Miku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemuraTakuya en-aut-sei=Uemura en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimuraKaori en-aut-sei=Tanimura en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DesakiYoshitake en-aut-sei=Desaki en-aut-mei=Yoshitake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OzawaRika en-aut-sei=Ozawa en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BonzanoSara en-aut-sei=Bonzano en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaffeiMassimo E. en-aut-sei=Maffei en-aut-mei=Massimo E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArimuraGen‐ichiro en-aut-sei=Arimura en-aut-mei=Gen‐ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=3 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=8 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= en-keyword=Cucumis sativus kn-keyword=Cucumis sativus en-keyword=elicitor kn-keyword=elicitor en-keyword=Phaseolus vulgaris kn-keyword=Phaseolus vulgaris en-keyword=spider mite (Tetranychus urticae) kn-keyword=spider mite (Tetranychus urticae) en-keyword=tetranin kn-keyword=tetranin END start-ver=1.4 cd-journal=joma no-vol=637 cd-vols= no-issue=8046 article-no= start-page=744 end-page=748 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ‘centrophilic’ retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes. en-copyright= kn-copyright= en-aut-name=TsukaharaSayuri en-aut-sei=Tsukahara en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BousiosAlexandros en-aut-sei=Bousios en-aut-mei=Alexandros kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Perez-RomanEstela en-aut-sei=Perez-Roman en-aut-mei=Estela kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSota en-aut-sei=Yamaguchi en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeduqueBasile en-aut-sei=Leduque en-aut-mei=Basile kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoAimi en-aut-sei=Nakano en-aut-mei=Aimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaishMatthew en-aut-sei=Naish en-aut-mei=Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakabeAkihisa en-aut-sei=Osakabe en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHidetaka en-aut-sei=Ito en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EderaAlejandro en-aut-sei=Edera en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TominagaSayaka en-aut-sei=Tominaga en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Juliarni en-aut-sei=Juliarni en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatoKae en-aut-sei=Kato en-aut-mei=Kae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OdaShoko en-aut-sei=Oda en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InagakiSoichi en-aut-sei=Inagaki en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LorkovićZdravko en-aut-sei=Lorković en-aut-mei=Zdravko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BergerFrédéric en-aut-sei=Berger en-aut-mei=Frédéric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawabeAkira en-aut-sei=Kawabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=QuadranaLeandro en-aut-sei=Quadrana en-aut-mei=Leandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HendersonIan en-aut-sei=Henderson en-aut-mei=Ian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KakutaniTetsuji en-aut-sei=Kakutani en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=3 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=4 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=6 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=8 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Center for Genetic Resource Information, National Institute of Genetics kn-affil= affil-num=10 en-affil=Faculty of Science, Hokkaido University kn-affil= affil-num=11 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=12 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Integrated Genetics, National Institute of Genetics kn-affil= affil-num=15 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=17 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=20 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=21 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=22 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=23 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=118030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6 J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180 mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties. en-copyright= kn-copyright= en-aut-name=Aoki-SaitoHaruka en-aut-sei=Aoki-Saito en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakakuraTakashi en-aut-sei=Nakakura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTsutomu en-aut-sei=Sasaki en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraTadahiro en-aut-sei=Kitamura en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisadaTakeshi en-aut-sei=Hisada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaShuichi en-aut-sei=Okada en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasanobu en-aut-sei=Yamada en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=3 en-affil=Department of Anatomy, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Gunma University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Diabetes, Soleiyu Asahi Clinic kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= en-keyword=(+)-Terrein kn-keyword=(+)-Terrein en-keyword=Brown adipose tissue kn-keyword=Brown adipose tissue en-keyword=Thermogenesis kn-keyword=Thermogenesis en-keyword=Obesity kn-keyword=Obesity en-keyword=PPARγ kn-keyword=PPARγ END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=From Carboxylic Acids or Their Derivatives to Amines and Ethers: Modern Decarboxylative Approaches for Sustainable C–N and C–O Bond Formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification. en-copyright= kn-copyright= en-aut-name=YanWeidan en-aut-sei=Yan en-aut-mei=Weidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TianTian en-aut-sei=Tian en-aut-mei=Tian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e00678 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Alkoxy‐Substituted Anthrabis(Thiadiazole)‐Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c′]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs). en-copyright= kn-copyright= en-aut-name=YanYi en-aut-sei=Yan en-aut-mei=Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriHiroki en-aut-sei=Mori en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshinoTomoki en-aut-sei=Yoshino en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InamiRyuki en-aut-sei=Inami en-aut-mei=Ryuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChangJiaxin en-aut-sei=Chang en-aut-mei=Jiaxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoJunqing en-aut-sei=Gao en-aut-mei=Junqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Aggregation kn-keyword=Aggregation en-keyword=Backbone conformation kn-keyword=Backbone conformation en-keyword=Conjugated polymers kn-keyword=Conjugated polymers en-keyword=Organic solar cells kn-keyword=Organic solar cells en-keyword=Semiconducting polymers kn-keyword=Semiconducting polymers END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=8 article-no= start-page=1653 end-page=1660 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chemical composition of essential oil of Acacia crassicarpa Benth. (Fabaceae) from Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=This research aimed to identify the volatile compounds found in the fresh leaves of Acacia crassicarpa Benth. This is the first phytochemical investigation of this species. Essential oils from the leaves of A. crassicarpa were obtained by hydro-distillation and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Sixty-one compounds accounting for 95.8% of the leaf oil were identified. The classes of compounds identified in the oil sample were aldehydes (30.7%), sesquiterpene hydrocarbons (25.2%), alkanes (19.1%), oxygenated monoterpenes (3.6%) oxygenated sesquiterpenes (2.3%), monoterpene hydrocarbons (0.8%) and others (14.2%). The major constituents in the leaf oil were tridecanal (24.5%), (E)-caryophyllene (11.7%), n-heneicosane (7.2%), squalene (6.5%), and 7-tetradecenal (5.9%). en-copyright= kn-copyright= en-aut-name=Quoc DoanTuan en-aut-sei=Quoc Doan en-aut-mei=Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tien DinhTai en-aut-sei=Tien Dinh en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=K. MatsumotoTetsuya en-aut-sei=K. Matsumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DinhDien en-aut-sei=Dinh en-aut-mei=Dien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiNaoko en-aut-sei=Miki en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirobeMuneto en-aut-sei=Hirobe en-aut-mei=Muneto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Thi NguyenHoai en-aut-sei=Thi Nguyen en-aut-mei=Hoai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Hue Union of Science and Technology Associations (HUSTA) kn-affil= affil-num=3 en-affil=Graduate School of Science and Engineering, Ibaraki University kn-affil= affil-num=4 en-affil=Phong Dien Nature Reserve, Phong Dien district, Thua Thien Hue province kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University kn-affil= en-keyword=Acacia crassicarpa kn-keyword=Acacia crassicarpa en-keyword=Essential oil kn-keyword=Essential oil en-keyword=Tridecanal kn-keyword=Tridecanal en-keyword=(E)-Caryophyllene kn-keyword=(E)-Caryophyllene END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10712 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone “florigen” differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses. en-copyright= kn-copyright= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiToshiki en-aut-sei=Fujii en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShaoJi Feng en-aut-sei=Shao en-aut-mei=Ji Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanukiShota en-aut-sei=Watanuki en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=12857 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250414 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=OsPIP2;4 aquaporin water channel primarily expressed in roots of rice mediates both water and nonselective Na+ and K+ conductance en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aquaporin (AQP)-dependent water transport across membranes is indispensable in plants. Recent evidence shows that several AQPs, including plasma membrane intrinsic proteins (PIPs), facilitate the electrogenic transport of ions as well as water transport and are referred to as ion-conducting aquaporins (icAQPs). The present study attempted to identify icAQPs that exhibit cation transport activity among PIPs from rice. Electrophysiological experiments on 11 OsPIPs using Xenopus laevis oocytes revealed that OsPIP2;4 mediated the electrogenic transport of alkali monovalent cations with the selectivity sequence of Na+ ≈ K+ > Rb+ > Cs+ > Li+, suggesting non-selective cation conductance for Na+ and K+. Transcripts of OsPIP2;4 were abundant in the elongation and mature zones of roots with similar expression levels between the root stelar and remaining outer parts in the cultivar Nipponbare. Immunostaining using sections of the crown roots of Nipponbare plants revealed the expression of OsPIP2;4 in the exodermis and sclerenchyma of the surface region and in the endodermis and pericycle of the stelar region. The present results provide novel insights into OsPIP2;4-dependent non-selective Na+ and K+ transport and its physiological roles in rice. en-copyright= kn-copyright= en-aut-name=TranSen Thi Huong en-aut-sei=Tran en-aut-mei=Sen Thi Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitoYunosuke en-aut-sei=Mito en-aut-mei=Yunosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnishiAya en-aut-sei=Onishi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigaAyaka en-aut-sei=Higa en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoShuntaro en-aut-sei=Ono en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=PaulNewton Chandra en-aut-sei=Paul en-aut-mei=Newton Chandra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HorieRie en-aut-sei=Horie en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HaradaYoshihiko en-aut-sei=Harada en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HorieTomoaki en-aut-sei=Horie en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=9 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=10 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= en-keyword=Ion-conducting Aquaporins kn-keyword=Ion-conducting Aquaporins en-keyword=Non-selective cation channel kn-keyword=Non-selective cation channel en-keyword=Rice kn-keyword=Rice en-keyword=Roots kn-keyword=Roots END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=23 article-no= start-page=17720 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs. en-copyright= kn-copyright= en-aut-name=WangKai en-aut-sei=Wang en-aut-mei=Kai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JinnaiSeihou en-aut-sei=Jinnai en-aut-mei=Seihou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UesakaKaito en-aut-sei=Uesaka en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IeYutaka en-aut-sei=Ie en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= affil-num=2 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= affil-num=3 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=5 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue= article-no= start-page=155745 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent progress on phenothiazine organophotoredox catalysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photoredox catalysis has garnered significant attention in recent years due to its broad applicability in visible-light-induced organic transformations. While significant progress has been made in the development of highly oxidizing catalysts, such as acridinium catalysts, there remains a notable shortage of strongly reducing organophotoredox catalysts. Phenothiazines are widely used as photoredox catalysts owing to their unique redox potentials, particularly their low excited-state oxidation potentials (Eox* = −1.35 V to −3.51 V vs. SCE). Thus, they can be applied to a variety of photoredox reactions with oxidative-quenching cycles, and effectively reduce various organic molecules, such as aryl and alkyl halides, alkenes, malonyl peroxides, cobalt complexes, and redox-active esters. Due to their unique properties, this review focuses on the recent advances in phenothiazine organophotoredox catalysis. en-copyright= kn-copyright= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Phenothiazine kn-keyword=Phenothiazine en-keyword=Photoredox catalysis kn-keyword=Photoredox catalysis en-keyword=Visible light kn-keyword=Visible light en-keyword=Radical kn-keyword=Radical END start-ver=1.4 cd-journal=joma no-vol=965 cd-vols= no-issue=1 article-no= start-page=52 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unraveling the Cr Isotopes of Ryugu: An Accurate Aqueous Alteration Age and the Least Thermally Processed Solar System Material en-subtitle= kn-subtitle= en-abstract= kn-abstract=The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn–Cr method using bulk samples, yielding an age of 4.13 + 0.62/−0.55 Myr after the formation of Ca–Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/−0.67 Myr ago. The higher 55Mn/52Cr, ε54Cr, and initial ε53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 ± 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The ε54Cr and initial ε53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct Δ'17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk. en-copyright= kn-copyright= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RatnayakeDilan M. en-aut-sei=Ratnayake en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiklusicakNoah en-aut-sei=Miklusicak en-aut-mei=Noah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunihiroTak en-aut-sei=Kunihiro en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaguchiChie en-aut-sei=Sakaguchi en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiKatsura en-aut-sei=Kobayashi en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AbeMasanao en-aut-sei=Abe en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiAkiko en-aut-sei=Miyazaki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakatoAiko en-aut-sei=Nakato en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakazawaSatoru en-aut-sei=Nakazawa en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishimuraMasahiro en-aut-sei=Nishimura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OkadaTatsuaki en-aut-sei=Okada en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SaikiTakanao en-aut-sei=Saiki en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeruiFuyuto en-aut-sei=Terui en-aut-mei=Fuyuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TsudaYuichi en-aut-sei=Tsuda en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UsuiTomohiro en-aut-sei=Usui en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeSei-ichiro en-aut-sei=Watanabe en-aut-mei=Sei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YadaToru en-aut-sei=Yada en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YogataKasumi en-aut-sei=Yogata en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshikawaMakoto en-aut-sei=Yoshikawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=7 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=8 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=9 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=10 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=11 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=12 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=13 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=14 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=15 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=16 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=17 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=18 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=19 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=20 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=21 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=22 en-affil=Department of Earth and Planetary Sciences, Nagoya University kn-affil= affil-num=23 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=24 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=25 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=26 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=599 cd-vols= no-issue=13 article-no= start-page=1914 end-page=1924 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438–463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435–505) directly interacted with EGFP-CaMKKα/1 residues 435–505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain. en-copyright= kn-copyright= en-aut-name=UenoyamaShun en-aut-sei=Uenoyama en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NittaHayato en-aut-sei=Nitta en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhtsukaSatomi en-aut-sei=Ohtsuka en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuizuFutoshi en-aut-sei=Suizu en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TokumitsuHiroshi en-aut-sei=Tokumitsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=6 en-affil= kn-affil= en-keyword=calmodulin kn-keyword=calmodulin en-keyword=calmodulin-kinase cascade kn-keyword=calmodulin-kinase cascade en-keyword=CaMKKa/ kn-keyword=CaMKKa/ en-keyword=oligomerization kn-keyword=oligomerization en-keyword=protein–protein interaction kn-keyword=protein–protein interaction en-keyword=regulatory domain kn-keyword=regulatory domain END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=5 article-no= start-page=705 end-page=721 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development en-subtitle= kn-subtitle= en-abstract= kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) “Akashinriki” is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group–associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development. en-copyright= kn-copyright= en-aut-name=NakamuraKoki en-aut-sei=Nakamura en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiYuichi en-aut-sei=Kikuchi en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiragaMizuho en-aut-sei=Shiraga en-aut-mei=Mizuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KotakeToshihisa en-aut-sei=Kotake en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaketaShin en-aut-sei=Taketa en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaYoko en-aut-sei=Ikeda en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science and Engineering, Saitama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=barley kn-keyword=barley en-keyword=awn development kn-keyword=awn development en-keyword=EMBRYONIC FLOWER 1 (EMF1) kn-keyword=EMBRYONIC FLOWER 1 (EMF1) en-keyword=homeotic genes kn-keyword=homeotic genes en-keyword=H3K27 trimethylation kn-keyword=H3K27 trimethylation en-keyword=epigenetic regulation kn-keyword=epigenetic regulation END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=13 article-no= start-page=9595 end-page=9603 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microagglomerate of VO2 Particles Packing Paraffin Wax Using Capillary Force as a Latent Thermal Energy Storage Medium en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study proposed a material to retain paraffin wax with vanadium dioxide (VO2) particles as a latent thermal energy storage medium, an alternative to core–shell microcapsules containing phase change materials. VO2 microparticles, which were synthesized through a sol–gel method and annealing process, were dispersed in the oil-in-water microemulsion to obtain microagglomerates of VO2 microparticles. The average diameter of microagglomerates was 5 μm, and they retained paraffin wax at the vacancies among VO2 particles. Although the microagglomerates had no complete shells similar to core–shell microcapsules, the microagglomerates successfully trapped paraffin wax droplets without any leakage even in a high-temperature environment. It was because capillary forces acting among VO2 particles strictly prevented any leakage of paraffin waxes. The differential scanning calorimetry revealed that the microagglomerates contained only 16.5 wt % of n-octadecane, used as a paraffin wax. However, since VO2 particles can release or absorb latent heat due to their metal–insulator phase transition, the proposed microagglomerates exhibited higher thermal energy storage densities than phase change microcapsules whose shells do not show phase transitions. Moreover, the microagglomerates exhibited higher thermal conductivity than microcapsules with amorphous inorganic shells because the VO2 particles were crystallized through annealing. The proposed microagglomerate is a promising form for further improving the thermal energy storage density and thermal performance of the latent thermal energy storage medium, especially in the temperature range of 30 to 70 °C. en-copyright= kn-copyright= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiKaketo en-aut-sei=Yamauchi en-aut-mei=Kaketo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=microagglomerate kn-keyword=microagglomerate en-keyword=vanadium dioxide kn-keyword=vanadium dioxide en-keyword=paraffin wax kn-keyword=paraffin wax en-keyword=latent thermal energy storage medium kn-keyword=latent thermal energy storage medium en-keyword=capillary force kn-keyword=capillary force en-keyword=thermal energy storage density kn-keyword=thermal energy storage density en-keyword=thermal conductivity kn-keyword=thermal conductivity END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=26 article-no= start-page=12024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Collective motions in the primary coordination sphere: a critical functional framework for catalytic activity of the oxygen-evolving complex of photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic water oxidation, vital for dioxygen production and light energy conversion, is catalyzed by the oxygen-evolving complex of photosystem II, where the inorganic Mn4CaO5 cluster acts as the catalytic core. In this study, we investigate the functional significance of collective motions of amino acid side chains within the primary coordination sphere of the Mn cluster, focusing on their role in modulating the energetic demands for catalytic transformations in the S3 state. We applied regularized canonical correlation analysis to quantitatively correlate the three-dimensional arrangement of coordinating atoms with catalytic driving forces computed via density functional theory. Our analysis reveals that distinct collective side chain motions profoundly influence the energetic requirements for structural reconfigurations of the Mn cluster, achieved through expansion and contraction of the ligand cavity while fine-tuning its geometry to stabilize key intermediates. Complementary predictions from a neural network-based machine learning model indicate that the coordination sphere exerts a variable energetic impact on the catalytic transformations of the Mn cluster, depending on the S-state environment. Integrated computational analyses suggest that the extended lifetime of the S3YZ˙ state, consistently observed after three flash illuminations, may result from slow, progressive protein dynamics that continuously reshape the energy landscape, thereby shifting the equilibrium positions of rapid, reversible chemical processes over time. Overall, our findings demonstrate that collective motions in the primary coordination sphere constitute an active, dynamic framework essential for the efficient execution of multi-electron catalysis under ambient conditions, while simultaneously achieving a high selectivity with irreversible nature required for effective 3O2 evolution. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of temperature cycles on the sleep-like state in Hydra vulgaris en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris.
Results Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5° C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light–dark cycles at a constant temperature.
Conclusions These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state. en-copyright= kn-copyright= en-aut-name=SatoAya en-aut-sei=Sato en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SekiguchiManabu en-aut-sei=Sekiguchi en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakadaKoga en-aut-sei=Nakada en-aut-mei=Koga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItohTaichi Q. en-aut-sei=Itoh en-aut-mei=Taichi Q. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Systems Life Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= en-keyword=Hydra kn-keyword=Hydra en-keyword=Sleep kn-keyword=Sleep en-keyword=Temperature kn-keyword=Temperature en-keyword=Environmental cues kn-keyword=Environmental cues END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10819 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload. en-copyright= kn-copyright= en-aut-name=YoshinariYuto en-aut-sei=Yoshinari en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakashi en-aut-sei=Nishimura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoShu en-aut-sei=Kondo en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoHiromu en-aut-sei=Tanimoto en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiTomoe en-aut-sei=Kobayashi en-aut-mei=Tomoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NiwaRyusuke en-aut-sei=Niwa en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=2 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=6 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=7 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=8 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=7 article-no= start-page=1073 end-page=1082 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250520 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure. en-copyright= kn-copyright= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangShuyan en-aut-sei=Wang en-aut-mei=Shuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Ion channel kn-keyword=Ion channel en-keyword=Artificial lipid bilayer kn-keyword=Artificial lipid bilayer en-keyword=Suction fixation kn-keyword=Suction fixation en-keyword=Soft agarose bead kn-keyword=Soft agarose bead en-keyword=Current recording kn-keyword=Current recording END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=18 article-no= start-page=2413456 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter Shibae en-subtitle= kn-subtitle= en-abstract= kn-abstract=The reaction center-light harvesting 1 (RC-LH1) complex converts solar energy into electrical energy, driving the initiation of photosynthesis. The authors present a cryo-electron microscopy structure of the RC-LH1 isolated from a marine photoheterotrophic bacterium Dinoroseobacter shibae. The RC comprises four subunits, including a three-heme cytochrome (Cyt) c protein, and is surrounded by a closed LH ring composed of 17 pairs of antenna subunits. Notably, a novel subunit with an N-terminal “helix-turn-helix” motif embedded in the gap between the RC and the LH ring is identified. The purified RC-LH1 complex exhibits high stability in solutions containing Mg2+ or Ca2+. The periplasmic Cyt c2 is predicted to bind at the junction between the Cyt subunit and the membrane plane, enabling electron transfer from Cyt c2 to the proximal heme of the tri-heme Cyt, and subsequently to the special pair of bacteriochlorophylls. These findings provide structural insights into the efficient energy and electron transfer processes within a distinct type of RC-LH1, and shed light on evolutionary adaptations of photosynthesis. en-copyright= kn-copyright= en-aut-name=WangWeiwei en-aut-sei=Wang en-aut-mei=Weiwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuYanting en-aut-sei=Liu en-aut-mei=Yanting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GuJiayi en-aut-sei=Gu en-aut-mei=Jiayi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AnShaoya en-aut-sei=An en-aut-mei=Shaoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaCheng en-aut-sei=Ma en-aut-mei=Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoHaichun en-aut-sei=Gao en-aut-mei=Haichun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JiaoNianzhi en-aut-sei=Jiao en-aut-mei=Nianzhi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian‐Ren en-aut-sei=Shen en-aut-mei=Jian‐Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=BeattyJohn Thomas en-aut-sei=Beatty en-aut-mei=John Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoblížekMichal en-aut-sei=Koblížek en-aut-mei=Michal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ZhangXing en-aut-sei=Zhang en-aut-mei=Xing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZhengQiang en-aut-sei=Zheng en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChenJing‐Hua en-aut-sei=Chen en-aut-mei=Jing‐Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=2 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=3 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=4 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=5 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=7 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Department of Microbiology & Immunology, University of British Columbia kn-affil= affil-num=10 en-affil=Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science kn-affil= affil-num=11 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=12 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=13 en-affil=College of Life Sciences, Zhejiang University kn-affil= en-keyword=energy transfer kn-keyword=energy transfer en-keyword=photoheterotrophic bacteria kn-keyword=photoheterotrophic bacteria en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=reaction center kn-keyword=reaction center en-keyword=structure kn-keyword=structure END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurotransmitter and Receptor Mapping in Drosophila Circadian Clock Neurons via T2A-GAL4 Screening en-subtitle= kn-subtitle= en-abstract= kn-abstract=The circadian neuronal network in the brain comprises central pacemaker neurons and associated input and output pathways. These components work together to generate coherent rhythmicity, synchronize with environmental time cues, and convey circadian information to downstream neurons that regulate behaviors such as the sleep/wake cycle. To mediate these functions, neurotransmitters and neuromodulators play essential roles in transmitting and modulating signals between neurons. In Drosophila melanogaster, approximately 240 brain neurons function as clock neurons. Previous studies have identified several neurotransmitters and neuromodulators, including the Pigment-dispersing factor (PDF) neuropeptide, along with their corresponding receptors in clock neurons. However, our understanding of the neurotransmitters and receptors involved in the circadian system remains incomplete. In this study, we conducted a T2A-GAL4-based screening for neurotransmitter and receptor genes expressed in clock neurons. We identified 2 neurotransmitter-related genes and 22 receptor genes. Notably, while previous studies had reported the expression of 6 neuropeptide receptor genes in large ventrolateral neurons (l-LNv), we also found that 14 receptor genes—including those for dopamine, serotonin, and γ-aminobutyric acid—are expressed in l-LNv neurons. These findings suggest that l-LNv neurons serve as key integrative hubs within the circadian network, receiving diverse external signals. en-copyright= kn-copyright= en-aut-name=FukudaAyumi en-aut-sei=Fukuda en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoAika en-aut-sei=Saito en-aut-mei=Aika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=clock neurons kn-keyword=clock neurons en-keyword=neurotransmitter kn-keyword=neurotransmitter en-keyword=T2A-GAL4 kn-keyword=T2A-GAL4 en-keyword=immunostaining kn-keyword=immunostaining en-keyword=Drosophila kn-keyword=Drosophila END start-ver=1.4 cd-journal=joma no-vol=297 cd-vols= no-issue= article-no= start-page=128540 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic paper-based analytical devices for antioxidant vitamins C and E in foods en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we developed microfluidic paper-based analytical devices (μPADs) for the determination of antioxidant vitamins. The proposed μPADs utilize the reduction of metal ions by hydrophilic and hydrophobic antioxidant vitamins, which is followed by colorimetric reactions with chelating reagents. Hydrophilic vitamin C reduces Fe(III) to Fe(II) and forms a stable Fe(II)-bathophenanthroline complex in an aqueous solution. By contrast, this complex is unstable in organic solvents, and hydrophobic vitamin E requires Fe(III) and bathophenanthroline to be replaced with Cu(II) and bathocuproine. In these results, the relationship between the logarithm of a vitamin's concentration and its color intensity was linear and ranged from 4.4 to 35 mg L−1 for ascorbic acid and 50–200 mg L−1 for α-tocopherol. The limits of detection, estimated from the standard deviation of blank samples, were 3.1 mg L−1 for ascorbic acid and either 27 mg L−1 (in hexane) or 48 mg L−1 (in ethanol) for α-tocopherol. The proposed method was used to quantify vitamin C in bell peppers, mandarin oranges, kiwifruit, and lemons, as well as vitamin E in almonds, almond milk, and dietary supplements. The results demonstrate the effectiveness of these μPADs for the practical analysis of antioxidant vitamins in food samples. en-copyright= kn-copyright= en-aut-name=KawaharaMana en-aut-sei=Kawahara en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Vitamin C kn-keyword=Vitamin C en-keyword=Vitamin E kn-keyword=Vitamin E en-keyword=Antioxidant vitamin kn-keyword=Antioxidant vitamin en-keyword=Metal complex kn-keyword=Metal complex END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two types of analytical instruments and devices—one sophisticated high-performance instrument and another portable device—have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter–detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable. en-copyright= kn-copyright= en-aut-name=SeetasangSasikarn en-aut-sei=Seetasang en-aut-mei=Sasikarn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Point-of-care testing kn-keyword=Point-of-care testing en-keyword=Onsite analysis kn-keyword=Onsite analysis en-keyword=Paper-based analytical device kn-keyword=Paper-based analytical device en-keyword=Paired emitter–detector light-emitting diode kn-keyword=Paired emitter–detector light-emitting diode en-keyword=Photometer kn-keyword=Photometer en-keyword=Environmental analysis kn-keyword=Environmental analysis en-keyword=Food analysis kn-keyword=Food analysis END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=12 article-no= start-page=2916 end-page=2926.e3 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxytocin facilitates human touch-induced play behavior in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions. en-copyright= kn-copyright= en-aut-name=HayashiHimeka en-aut-sei=Hayashi en-aut-mei=Himeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TateishiSayaka en-aut-sei=Tateishi en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InutsukaAyumu en-aut-sei=Inutsuka en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaejimaSho en-aut-sei=Maejima en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakumaYasuo en-aut-sei=Sakuma en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnakaTatsushi en-aut-sei=Onaka en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GrinevichValery en-aut-sei=Grinevich en-aut-mei=Valery kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=4 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=6 en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School kn-affil= affil-num=7 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=8 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=9 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= en-keyword=tickling kn-keyword=tickling en-keyword=oxytocin kn-keyword=oxytocin en-keyword=oxytocin receptor kn-keyword=oxytocin receptor en-keyword=ventrolateral part of the ventromedial hypothalamus kn-keyword=ventrolateral part of the ventromedial hypothalamus en-keyword=affinity-like behaviors kn-keyword=affinity-like behaviors END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=100242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers en-subtitle= kn-subtitle= en-abstract= kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications. en-copyright= kn-copyright= en-aut-name=MaemotoHayaki en-aut-sei=Maemoto en-aut-mei=Hayaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzakiRyohei en-aut-sei=Suzaki en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItakaKeiji en-aut-sei=Itaka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=mRNA kn-keyword=mRNA en-keyword=Photochemical internalization kn-keyword=Photochemical internalization en-keyword=Photosensitizer kn-keyword=Photosensitizer END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=4 article-no= start-page=329 end-page=334 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe en-subtitle= kn-subtitle= en-abstract= kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels. en-copyright= kn-copyright= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Human BK channel kn-keyword=Human BK channel en-keyword=Artificial lipid bilayer recording kn-keyword=Artificial lipid bilayer recording en-keyword=Ion channel current kn-keyword=Ion channel current en-keyword=Single-channel recording kn-keyword=Single-channel recording END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=2 article-no= start-page=99 end-page=108 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Evaluation of Drying Process of a Slurry Droplet Containing Water-soluble Polymer kn-title=水溶性高分子含有スラリー液滴乾燥過程の評価 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The granulation process of a slurry droplet containing a water-soluble polymer in a spray dryer is investigated. Although there have been many studies on the drying behavior of a single-component slurry droplet, there have been few reports for a multicomponent slurry droplet. This is due to the complexity and difficulty in evaluating the drying behavior of a multicomponent slurry droplet. Therefore, for the production of granules from multicomponent materials by a spray dryer, its operating conditions are usually determined by trial and error. To optimize the practical granule production process, the drying behavior of multicomponent slurry droplets should be studied. In this study, the drying behavior of a silica slurry droplet containing polyvinyl alcohol (PVA) is investigated. The drying behavior of a droplet suspended on the tip of a needle was observed. The effect of the volume fraction of PVA on the drying behavior and the morphology of a dried granule is studied. The effect of drying condition on the granule formation process is also investigated. As a result, the structure of dried granules was strongly influenced by PVA concentration. Segregation of PVA in the dried granules was observed. Based on the results, the drying process diagram is presented. en-copyright= kn-copyright= en-aut-name=NakasoKoichi en-aut-sei=Nakaso en-aut-mei=Koichi kn-aut-name=中曽浩一 kn-aut-sei=中曽 kn-aut-mei=浩一 aut-affil-num=1 ORCID= en-aut-name=YamashitaDaichi en-aut-sei=Yamashita en-aut-mei=Daichi kn-aut-name=山下大智 kn-aut-sei=山下 kn-aut-mei=大智 aut-affil-num=2 ORCID= en-aut-name=AoyamaYutaro en-aut-sei=Aoyama en-aut-mei=Yutaro kn-aut-name=青山祐太郎 kn-aut-sei=青山 kn-aut-mei=祐太郎 aut-affil-num=3 ORCID= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name=三野泰志 kn-aut-sei=三野 kn-aut-mei=泰志 aut-affil-num=4 ORCID= en-aut-name=GotohKuniaki en-aut-sei=Gotoh en-aut-mei=Kuniaki kn-aut-name=後藤邦彰 kn-aut-sei=後藤 kn-aut-mei=邦彰 aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 en-keyword=Spray Dryer kn-keyword=Spray Dryer en-keyword=Drying kn-keyword=Drying en-keyword=Droplet kn-keyword=Droplet en-keyword=Slurry kn-keyword=Slurry en-keyword=Water-Soluble Polymer kn-keyword=Water-Soluble Polymer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=One-pot synthesis of trans-2,3-diaminoindolines through 2,3-diamination of electrophilic indolines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite recent advances in the synthesis of 2,3-diaminoindole derivatives, construction of 2,3-diaminoindolines, whose two amine moieties on each molecule differ from one another has yet to be achieved. In this work, we developed a concise one-pot protocol for differentiated diamination involving reacting a C2,C3-electrophilic indole reagent with amines to access a variety of previously inaccessible 2,3-diaminoindolines. Furthermore, the synthetic utility of this protocol was demonstrated by a successful gram-scale reaction and further transformation of the 2,3-diaminoindolines. en-copyright= kn-copyright= en-aut-name=KoboriYuito en-aut-sei=Kobori en-aut-mei=Yuito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202510319 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a Vinylated Cyclic Allene: A Fleeting Strained Diene for the Diels–Alder Reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fleeting molecules possessing strained multiple bonds are important components in organic synthesis due to their ability to undergo various chemical reactions driven by the release of strain energy. Although the use of strained π-bonds as 2π components, represented by dienophiles in Diels–Alder reactions, has been well studied, “the strained diene (4π component) approach” for molecular construction remains underexplored. Herein, we report the design of a vinyl cyclic allene (1-vinyl-1,2-cyclohexadiene) as a highly reactive strained diene and the development of its Diels–Alder reactions. Experimental and computational studies of vinyl cyclic allenes revealed that this diene system undergoes cycloaddition with dienophiles regio- and stereoselectively under mild reaction conditions. These studies also provide insight into the reactivity and selectivity of the system. The strained diene approach enables the convergent construction of polycyclic molecules through bond disconnections distinct from conventional retrosynthetic analysis, thus offering an efficient strategy for the assembly of functional molecules. en-copyright= kn-copyright= en-aut-name=MizoguchiHaruki en-aut-sei=Mizoguchi en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataTakumi en-aut-sei=Obata en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraiTaiki en-aut-sei=Hirai en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KomatsuManaka en-aut-sei=Komatsu en-aut-mei=Manaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakakuraAkira en-aut-sei=Sakakura en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Activation strain model kn-keyword=Activation strain model en-keyword=Carbocycles kn-keyword=Carbocycles en-keyword=Diels–Alder reaction kn-keyword=Diels–Alder reaction en-keyword=Strained diene kn-keyword=Strained diene en-keyword=Vinylated cyclic allene kn-keyword=Vinylated cyclic allene END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Towards SBOM-based Access Control for Transparent and Explicit Program Execution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although a Software Bill of Materials (SBOM) plays a key role in software transparency, inconsistencies in SBOM descriptions can undermine its value. To address this, we propose a novel approach to program access control, SBOMAC, which leverages Mandatory Access Control (MAC) systems to ensure transparent and explicit program execution. In this study, we identify the challenges associated with implementing this approach and present preliminary investigation results to address these challenges. en-copyright= kn-copyright= en-aut-name=ShimamotoYuta en-aut-sei=Shimamoto en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UekawaHiroyuki en-aut-sei=Uekawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkiyamaMitsuaki en-aut-sei=Akiyama en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=NTT Social Informatics Laboratories kn-affil= affil-num=3 en-affil=NTT Social Informatics Laboratories kn-affil= affil-num=4 en-affil=Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=946 article-no= start-page=24-00128 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of a guideline proposal system for correcting cutting conditions based on the overhang length of ball end-mills kn-title=ボールエンドミルの突き出し長さに応じた切削条件補正システムの開発 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the field of die and mold machining, determining appropriate cutting conditions is crucial. Factors such as tool geometry, machining path, work material characteristics, machining efficiency, and finishing accuracy must be taken into consideration. However, the current method of determining cutting conditions relies heavily on the intuition and experience of skilled engineers, and there is a need for a system to replace such knowledge. One of the critical factors affecting machining accuracy and efficiency is the tool overhang length, which is directly related to tool geometry. Unfortunately, there is no clear guideline for its determination. In a previous study, researchers developed a system to quickly derive cutting conditions using a data mining method and Random Forest Regression (RFR) applied to a tool catalog database. In this study, we constructed a new cutting condition compensation system based on the existing model, which accounts for the tool overhang length. The results of cutting experiments under high aspect ratio overhang lengths confirm that the correction coefficients proposed by the system are significant. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name=児玉紘幸 kn-aut-sei=児玉 kn-aut-mei=紘幸 aut-affil-num=1 ORCID= en-aut-name=MORIYAYuki en-aut-sei=MORIYA en-aut-mei=Yuki kn-aut-name=守屋祐輝 kn-aut-sei=守屋 kn-aut-mei=祐輝 aut-affil-num=2 ORCID= en-aut-name=MORIMOTOTatsuo en-aut-sei=MORIMOTO en-aut-mei=Tatsuo kn-aut-name=盛元達雄 kn-aut-sei=盛元 kn-aut-mei=達雄 aut-affil-num=3 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name=大橋一仁 kn-aut-sei=大橋 kn-aut-mei=一仁 aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 学術研究院環境生命自然科学学域 affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 大学院環境生命自然科学研究科 affil-num=3 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 大学院環境生命自然科学研究科 affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 学術研究院環境生命自然科学学域 en-keyword=Data mining kn-keyword=Data mining en-keyword=Cutting conditions kn-keyword=Cutting conditions en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Random Forest Regression kn-keyword=Random Forest Regression en-keyword=Ball end-mill kn-keyword=Ball end-mill en-keyword=Tool overhang length kn-keyword=Tool overhang length END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=3 article-no= start-page=337 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on the Grinding Temperature of Workpiece in Side Plunge Grinding Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grinding is used to finish thrust metal attachment parts, such as crankshafts, which have both journal and thrust surfaces. In side plunge grinding, a thrust surface and a cylindrical surface of a shaft workpiece with collars are finished in a single plunge grinding process. However, the surface quality near the ground internal corner, where grinding fluid may not penetrate, can deteriorate, causing high residual stress and cracks owing to grinding heat. While it has been reported that quality issues at the inner corners of the ground surface can be mitigated by reducing the grinding point temperature through efficient cooling fluid supply, the mechanisms of grinding phenomena and heat generation in side plunge grinding are not yet fully understood. In this study, the variations in the grinding temperature at the thrust surface of a workpiece with a collar were experimentally investigated using a wire/workpiece thermocouple to clarify these phenomena. The results revealed a significant increase in the grinding temperature at the corners of the grinding zone. However, it slightly decreases as the thermocouple output approaches the center of the workpiece, indicating a slight effect of the grinding speed. The surface temperature of the workpiece in side plunge grinding is primarily influenced by the wheel depth-of-cut in the thrust direction. Additionally, the effect of workpiece rotational speed and grinding infeed speed on temperature distribution has been demonstrated. en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuidaMotoki en-aut-sei=Kuida en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=grinding kn-keyword=grinding en-keyword=thrust surface kn-keyword=thrust surface en-keyword=grinding temperature kn-keyword=grinding temperature en-keyword=thermocouple kn-keyword=thermocouple END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=85 end-page=104 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CyNER: Information Extraction from Unstructured Text of CTI Sources with Noncontextual IOCs en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cybersecurity threats have been increasing and growing more sophisticated year by year. In such circumstances, gathering Cyber Threat Intelligence (CTI) and following up with up-to-date threat information is crucial. Structured CTI such as Structured Threat Information eXpression (STIX) is particularly useful because it can automate security operations such as updating FW/IDS rules and analyzing attack trends. However, as most CTIs are written in natural language, manual analysis with domain knowledge is required, which becomes quite time-consuming.
In this work, we propose CyNER, a method for automatically structuring CTIs and converting them into STIX format. CyNER extracts named entities in the context of CTI and then extracts the relations between named entities and IOCs in order to convert them into STIX. In addition, by using key phrase extraction, CyNER can extract relations between IOCs that lack contextual information, such as those listed at the bottom of a CTI, and named entities. We describe our design and implementation of CyNER and demonstrate that it can extract named entities with the F-measure of 0.80 and extract relations between named entities and IOCs with the maximum accuracy of 81.6%. Our analysis of structured CTI showed that CyNER can extract IOCs that are not included in existing reputation sites, and that it can automatically extract IOCs that have been exploited for a long time and across multiple attack groups. CyNER is thus expected to contribute to the efficiency of CTI analysis. en-copyright= kn-copyright= en-aut-name=FujiiShota en-aut-sei=Fujii en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaguchiNobutaka en-aut-sei=Kawaguchi en-aut-mei=Nobutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShigemotoTomohiro en-aut-sei=Shigemoto en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research & Development Group, Hitachi, Ltd. kn-affil= affil-num=3 en-affil=Research & Development Group, Hitachi, Ltd. kn-affil= affil-num=4 en-affil=Faculty of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=292 end-page=297 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analyzing Post-injection Attacker Activities in IoT Devices: A Comprehensive Log Analysis Approach en-subtitle= kn-subtitle= en-abstract= kn-abstract=With the continuous proliferation of Internet of Things (IoT) devices, malware threats that specifically target these devices continue to increase. The urgent need for robust security measures is predicated on a comprehensive understanding of the behavioral patterns of IoT malware. However, previous studies have often overlooked the analysis of command sequences in Telnet logs. This study bridges this research gap by examining the post-injection behaviors of attackers. By analyzing a vast dataset comprising more than ten million logs collected from an IoT honeypot, we reveal three distinct post-injection activity patterns, each with unique characteristics. These patterns provide pivotal insights that not only help distinguish between legitimate operations and attempted attacks, but also drive the development of robust cybersecurity measures that effectively deter such behaviors. The nuances discovered in this study contribute significantly to IoT security by enhancing our understanding of malware tactics and informing targeted defense strategies. en-copyright= kn-copyright= en-aut-name=VictorHervet en-aut-sei=Victor en-aut-mei=Hervet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Malware analysis kn-keyword=Malware analysis en-keyword=IoT kn-keyword=IoT en-keyword=Honeypot kn-keyword=Honeypot en-keyword=Log analysis kn-keyword=Log analysis en-keyword=Attack patterns kn-keyword=Attack patterns END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=274 end-page=278 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevention Method for Stack Buffer Overflow Attack in TA Command Calls in OP-TEE en-subtitle= kn-subtitle= en-abstract= kn-abstract=TEE systems provide normal world and secure world. It is impossible to gain access to the secure world directly from the normal world. However, vulnerabilities in the secure world can cause attacks to compromise the secure world. In this study, we investigate the security features applied to trusted applications (TA) in OP-TEE and clarify the lack of protection against stack buffer overflow in TA command calls. We also propose a method for preventing attacks that exploit stack buffer overflows in TA command calls. In addition, the experimental results show that attacks on the vulnerable TAs can be prevented with the proposed method and the overhead can be evaluated. en-copyright= kn-copyright= en-aut-name=ShibaKaito en-aut-sei=Shiba en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Trusted execution environment kn-keyword=Trusted execution environment en-keyword=Stack overflow prevention method kn-keyword=Stack overflow prevention method en-keyword=System security kn-keyword=System security END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=161 end-page=167 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of Effectiveness of MAC Systems Based on LSM for Protecting IoT Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=Numerous active attacks targeting Internet of Things (IoT) devices exist. They exploit the latest vulnerabilities discovered in IoT devices. Therefore, Mandatory Access Control (MAC) systems based on Linux Security Modules (LSM), such as SELinux and AppArmor, are effective security features for IoT devices because they can mitigate the impact of attacks even if software vulnerabilities are discovered. However, they are not adopted by most IoT devices. The existing approaches are insufficient for investigating the causes of this problem.In this study, we comprehensively investigated what factors can affect the applicability of MAC systems based on LSM in IoT devices. We focused on how frequently cases can occur where they cannot be adopted, owing to each factor. To increase the comprehensiveness of the factors affecting the adoption of MAC systems in IoT devices, we investigated the kernel version, CPU architecture, and support for BusyBox in addition to the investigation of resources, which conducted in previous studies. We also conducted simulated experiments based on the attack method of Mirai to investigate whether MAC systems can protect against IoT malware. Finally, we discuss the impact of a combination of these factors on MAC system adoption. en-copyright= kn-copyright= en-aut-name=MikiMasato en-aut-sei=Miki en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Mandatory Access Control System kn-keyword=Mandatory Access Control System en-keyword=IoT Security kn-keyword=IoT Security en-keyword=Linux Security Modules kn-keyword=Linux Security Modules END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=236 end-page=244 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Non Real-Time Data Transmission Performance Analysis of PROFINET for Assuring Data Transmission Quality en-subtitle= kn-subtitle= en-abstract= kn-abstract=The industrial Ethernet PROFINET supports three different data transmission modes: isochronous real-time (IRT), real-time (RT), and non real-time (NRT) transmitting data requiring hard, soft, and no real-time performances, respectively. The data transmission latency in the NRT increased with the amount of data transmission in the IRT, RT, and NRT. Therefore, the quality of data transmission in NRT may degrade as the amount of data transmission in IRT, RT, and NRT increases. In this study, we derived the average data transmission latency in an NRT with data transmission in IRT and RT by applying stochastic processes. This allowed us to maintain the quality of data transmission in the NRT by adjusting the number of devices connected to the network and the number of applications transmitting data in the NRT so that the average latency of data in the NRT does not exceed a certain value. en-copyright= kn-copyright= en-aut-name=NorimatsuTakashi en-aut-sei=Norimatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Industrial Ethernet kn-keyword=Industrial Ethernet en-keyword=PROFINET kn-keyword=PROFINET en-keyword=Non Real Time kn-keyword=Non Real Time en-keyword=Real-Time kn-keyword=Real-Time en-keyword=Isochronous Real Time kn-keyword=Isochronous Real Time END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=267 end-page=273 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Supporting Multiple OS Types on Estimation of System Call Hook Point by Virtual Machine Monitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methods to hook system calls issued by a guest operating system (OS) running on a virtual machine using a virtual machine monitor are proposed. The address of the hook point is derived from the guest OS’s source code and established prior to the kernel startup process. Due to changes in system call processing in OS updates and address space layout randomization, the addresses of these hook points cannot always be pre-determined before the kernel startup process. To address this challenge, a method for estimating the system call hook point is proposed in Linux by analyzing the guest OS memory on x86-64 CPUs rather than pre-calculation. Although the method supports Linux, the method can be extended to support other OS types. In this paper, we propose a method to extend the method to support additional OSes. Specifically, we present analysis results and a novel method for estimating hook points on FreeBSD, NetBSD, and OpenBSD. The effectiveness of our proposed method is also demonstrated through evaluation. en-copyright= kn-copyright= en-aut-name=SatoMasaya en-aut-sei=Sato en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoriTaku en-aut-sei=Omori en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniguchiHideo en-aut-sei=Taniguchi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama Prefectural University kn-affil= affil-num=2 en-affil=Okayama Prefectural University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= en-keyword=system call kn-keyword=system call en-keyword=virtual machine monitor kn-keyword=virtual machine monitor en-keyword=operating system kn-keyword=operating system END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=107 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation Towards Detecting Landing Websites for Fake Japanese Shopping Websites en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, the number of victims of fake shopping websites that imitate legitimate ones to defraud people has been increasing. It has been shown that fake shopping websites use legitimate defaced landing websites as their leading paths. Therefore, if the detection of landing websites for fake shopping websites can be achieved, it can assist in addressing these websites and reduce the opportunities for users to be redirected to fake shopping websites. In this study, we collect and investigate existing landing websites that redirect users to fake Japanese shopping websites and identify effective features for detecting them. We identified effective search terms for collecting landing websites for fake Japanese shopping websites and found that using Google searches with queries of top-level domain and product names was effective. We also investigated the conditions for activating analytical evasion functions in the collected landing websites for fake Japanese shopping websites and clarified the differences in search results between crawlers and users. en-copyright= kn-copyright= en-aut-name=MichishitaDaigo en-aut-sei=Michishita en-aut-mei=Daigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=227 cd-vols= no-issue= article-no= start-page=110168 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The hidden cation-selective pore in ion-conducting aquaporin OsPIP2;4 from rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ion-conducting aquaporins (icAQPs) transport ions as well as water. Although the molecular mechanism of how AQPs establish selective permeability for water molecules is well understood, the ion-transporting mechanism in icAQPs has not yet been fully elucidated. In this study, we investigated the molecular mechanism of cation transport in OsPIP2;4, an icAQP in rice, by homology modeling and the electrophysiological analysis using Xenopus laevis oocytes. Water and ion transport assays using OsPIP2;4 T227M and G278K mutants strongly suggested that water- and cation-transporting pathways are independent of each other. Data from amino acid substitutions V54I and A143G in OsPIP2;4 led to the identification of a novel hidden pathway for cation transport located on the side surfaces of the tetramer channel, where two protomers are in contact, which is distinct from conventional monomeric pores and the tetrameric central pore in AQPs. Moreover, the present results provide the possibility that this hypothetical hidden pore also functions in the barley icAQP HvPIP2;8. The overall structure of this novel pathway appears to differ from the structure of general cation channels. However, the arrangement of hydrophilic amino acids at the entrance of the pathway of OsPIP2;4 was found to be comparable to that of some cation channels, which implies that the molecular mechanism of dehydration of hydrated ions might resemble that of the channels. Although direct structural evidence is needed to confirm the proposed pathway, the present study can be a stepping stone toward unraveling the mechanism of dual water and ion transport through icAQPs in plants. en-copyright= kn-copyright= en-aut-name=OnoShuntaro en-aut-sei=Ono en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TranSen Thi Huong en-aut-sei=Tran en-aut-mei=Sen Thi Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UtsugiShigeko en-aut-sei=Utsugi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorieTomoaki en-aut-sei=Horie en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Rice kn-keyword=Rice en-keyword=Barley kn-keyword=Barley en-keyword=Ion transport kn-keyword=Ion transport en-keyword=Ion-conducting aquaporin (icAQP) kn-keyword=Ion-conducting aquaporin (icAQP) en-keyword=Plasma membrane intrinsic protein (PIP) kn-keyword=Plasma membrane intrinsic protein (PIP) END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=7 article-no= start-page=110291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A repertoire of visible light–sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457–517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light–sensitive opsins, including the uniquely tuned Opn5. en-copyright= kn-copyright= en-aut-name=NagataYuya en-aut-sei=Nagata en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoNorio en-aut-sei=Miyamoto en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniokaYuki en-aut-sei=Tanioka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamanakaYuji en-aut-sei=Yamanaka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKuto en-aut-sei=Takahashi en-aut-mei=Kuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ObayashiKohei en-aut-sei=Obayashi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukamotoHisao en-aut-sei=Tsukamoto en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaiKen en-aut-sei=Takai en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaTakahiro en-aut-sei=Yamashita en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=11 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=12 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Biophysics, Graduate School of Science, Kyoto University kn-affil= affil-num=14 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=opsin kn-keyword=opsin en-keyword=G protein–coupled receptor kn-keyword=G protein–coupled receptor en-keyword=signal transduction kn-keyword=signal transduction en-keyword=photoreceptor kn-keyword=photoreceptor en-keyword=vision kn-keyword=vision en-keyword=photobiology kn-keyword=photobiology en-keyword=vent shrimp kn-keyword=vent shrimp en-keyword=deep sea kn-keyword=deep sea en-keyword=molecular evolution kn-keyword=molecular evolution END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transformation of α,β-Unsaturated Aldehydes with a Small Amount of Electricity: Cyanosilylation, Isomerization, and Nucleophilic Addition en-subtitle= kn-subtitle= en-abstract= kn-abstract=An electrochemical method was developed to convert α,β-unsaturated aldehydes into carboxylic acid derivatives via cyanosilylation, isomerization, and nucleophilic addition. This reaction is more sustainable than the usual electrochemical organic reaction because this reaction proceeds catalytically with active species generated by a very small amount of electricity. Furthermore, scale-up synthesis with a flow reactor has been achieved. en-copyright= kn-copyright= en-aut-name=FujiiMayu en-aut-sei=Fujii en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UenoNanaho en-aut-sei=Ueno en-aut-mei=Nanaho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=166 cd-vols= no-issue=8 article-no= start-page=bqaf102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)–expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone. en-copyright= kn-copyright= en-aut-name=OtsukaMai en-aut-sei=Otsuka en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyamaMaho en-aut-sei=Moriyama en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EgoshiSakura en-aut-sei=Egoshi en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoYuki en-aut-sei=Goto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GuTingting en-aut-sei=Gu en-aut-mei=Tingting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraAtsushi P en-aut-sei=Kimura en-aut-mei=Atsushi P kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaraguchiShogo en-aut-sei=Haraguchi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BentleyGeorge E en-aut-sei=Bentley en-aut-mei=George E kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University kn-affil= affil-num=8 en-affil=Department of Biochemistry, Showa University School of Medicine kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=12 en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Neuromedin U kn-keyword=Neuromedin U en-keyword=rat kn-keyword=rat en-keyword=motivation kn-keyword=motivation en-keyword=activity kn-keyword=activity en-keyword=testosterone kn-keyword=testosterone en-keyword=wheel-running kn-keyword=wheel-running END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=32 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stability and water solubility of calcium ferrite-type aluminum-rich phase: implications for deep water cycle caused by subducting basaltic crusts en-subtitle= kn-subtitle= en-abstract= kn-abstract=The subducting crustal materials serve as a crucial channel for transporting water to the lower mantle. Recent experimental studies suggest that crustal materials such as basaltic crust can be a main water carrier and reservoir playing an important role on water cycling in the lower mantle. Despite being a primary mineral in crustal materials, the water solubility of calcium ferrite-type (CF) phase and its stability are unclear yet. A recent phase relation study of hydrous basalts showed Na-depletion in lower-mantle minerals, suggesting the presence of fluid possibly with high Na concentration and the absence of CF phase along the low-temperature slab geotherms, where Al-rich hydrous phase H and ferropericlase appear instead. These phases could consequently produce Na-depleted CF phase when reaching the dehydration temperature of Al-rich hydrous phase H. In this study, we investigated the stability and water solubility of CF-type MgAl2O4, which is a main CF component in a hydrous basalt, in water-bearing systems at 26–32 GPa and 1200–1900 °C using a Kawai-type multi-anvil press. Our results indicate that the stability of the CF phase is strongly influenced by water content in the system. Water contents of recovered CF phases estimated by Fourier-transform infrared spectroscopy show a limited variation between 73 and 87 ppm wt at a pressure of 26 GPa and temperatures of 1500–1900 °C. We suggest that CF phase could not be a primary water carrier at lower mantle depths. This emphasizes contributions of hydrous aluminous silica minerals to Earth’s deep water cycling and heterogeneous structures in the lower mantle due to the strong water partitioning to this phase compared with other constituent minerals. en-copyright= kn-copyright= en-aut-name=ZhangXinyue en-aut-sei=Zhang en-aut-mei=Xinyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MashinoIzumi en-aut-sei=Mashino en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiiTakayuki en-aut-sei=Ishii en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Water solubility kn-keyword=Water solubility en-keyword=CF phase kn-keyword=CF phase en-keyword=Single crystal kn-keyword=Single crystal en-keyword=FTIR kn-keyword=FTIR en-keyword=MORB kn-keyword=MORB END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=e70119 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative quality control of 3D water tank using image analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objective: Accurate beam data acquisition using three-dimensional (3D) water tanks is essential for beam commissioning and quality control (QC) in clinical radiation therapy. This study introduces a novel method for quantitative QC of the system, utilizing MV images and webcam videos. The stability of the motor drive speed and the positional accuracy of the fixture were evaluated under two measurement modes: “continuous mode” and “step-by-step mode.”
Methods: A TRUFIX mounting system (PTW Freiburg Inc., Germany) was used to attach the center of the steel ball to its top, ensuring alignment with the water surface of the tank. To assess deviations from the radiation isocenter, MV images were acquired and compared with digitally reconstructed radiographs (DRRs). These evaluations were performed at different speed settings (slow, medium, and fast) using ET CT Body Marker (BRAINLAB Inc., USA) mounted on the drive unit. A webcam was utilized to capture the images, and custom-developed tracking software was employed to analyze deviations in driving speed and positional errors.
Results: The mean error of the radiation isocenter was 0.37 ± 0.09 mm. As the motor drive speed increased, the discrepancy between the set speed and the actual speed observed in the analysis also became larger. In “continuous mode,” the deviation from the displayed value was greater than that observed in “step-by-step mode.”
Conclusion: It is demonstrated that the proposed analysis method can quantitatively evaluate radiation isocenter misalignment, tank setup position deviation, and both the indicated drive speed values and their stability. At higher drive speeds, the “step-by-step mode” showed smaller deviations from the indicated values. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanishiDaiki en-aut-sei=Nakanishi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, NHO Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Division of Radiology, Department of Medical Technology, Kyushu University Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= affil-num=10 en-affil=Department of Healthcare Science, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=3D water tank kn-keyword=3D water tank en-keyword=drive speed stability kn-keyword=drive speed stability en-keyword=quality control kn-keyword=quality control en-keyword=radiation isocenter kn-keyword=radiation isocenter en-keyword=x-ray image analysis kn-keyword=x-ray image analysis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=78 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiwakiKiyoshi en-aut-sei=Ishiwaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiramatsuFutoshi en-aut-sei=Hiramatsu en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiToshihisa en-aut-sei=Sasaki en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IseHiroki en-aut-sei=Ise en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyagawaTakashi en-aut-sei=Miyagawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaTakeshi en-aut-sei=Maeda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkahiraShinsuke en-aut-sei=Okahira en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HamaguchiTakashi en-aut-sei=Hamaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaguchiTatsuya en-aut-sei=Kawaguchi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FunadaNorihiro en-aut-sei=Funada en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoShuhei en-aut-sei=Yamamoto en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MukaiYuki en-aut-sei=Mukai en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Department of Healthcare Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Higashi-Hiroshima Medical Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=8 en-affil=Department of Radiology, NHO Kanmon Medical Center kn-affil= affil-num=9 en-affil=Department of Radiology, NHO Kochi National Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, NHO Yamaguchi-Ube Medical Center kn-affil= affil-num=11 en-affil=Department of Radiology, NHO Okayama Medical Center kn-affil= affil-num=12 en-affil=Department of Radiology, NHO Shikoku Medical Center for Children and Adults kn-affil= affil-num=13 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=14 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=15 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=17 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=18 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=19 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=20 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= en-keyword=Radiation therapy kn-keyword=Radiation therapy en-keyword=Quality control kn-keyword=Quality control en-keyword=Failure mode and effects analysis kn-keyword=Failure mode and effects analysis en-keyword=Cost-effectiveness kn-keyword=Cost-effectiveness END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=3 article-no= start-page=976 end-page=991 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities I(Q) measured with different scattering contrasts are de­com­posed into partial scattering functions S(Q) of the self- and cross-correlations between components. Since the measurement has a measurement error, S(Q) must be estimated statistically from I(Q). If no prior knowledge about S(Q) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of S(Q), based on Gaussian process regression using prior knowledge about the smoothness and flatness of S(Q). We demonstrate the method using synthetic core–shell and experimental polyrotaxane SANS data. en-copyright= kn-copyright= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajimaShinya en-aut-sei=Miyajima en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKazuaki en-aut-sei=Tanaka en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MayumiKoichi en-aut-sei=Mayumi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science and Engineering, Iwate University kn-affil= affil-num=3 en-affil=Global Center for Science and Engineering, Waseda University kn-affil= affil-num=4 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= en-keyword=contrast variation small-angle neutron scattering kn-keyword=contrast variation small-angle neutron scattering en-keyword=CV-SANS kn-keyword=CV-SANS en-keyword=partial scattering functions kn-keyword=partial scattering functions en-keyword=multi-component systems kn-keyword=multi-component systems en-keyword=statistical methods kn-keyword=statistical methods en-keyword=Bayesian inference kn-keyword=Bayesian inference en-keyword=contrast variation kn-keyword=contrast variation en-keyword=Gaussian process regression kn-keyword=Gaussian process regression END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Leg-biting fights reduce the number of sperm transferred by the loser and in draws in Zophobas atratus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intra-sexual selection has been observed across a wide range of species. Male-male combat can not only determine the winner and loser but also affect subsequent reproductive success. The effects of combat outcomes on reproduction are thought to depend on the reproductive ecology of the target species. However, to our knowledge, studies examining the impact of combat outcomes on sperm competition and fitness remain limited. In the giant mealworm (Zophobas atratus), male’s combat involves biting each other's hind legs. Females mated to the losers of leg-biting contests had significantly fewer eggs and fewer offspring than females mated to males that were not in a contest. Possible explanations for this fitness reduction include the inability of males to transfer sperm effectively due to the combat outcome or the inability of their sperm to fertilize eggs due to female cryptic sperm choice, and the mechanisms underlying this reduction remain unclear. Previous studies have observed distorted mating postures in losing males, leading us to hypothesize that leg-biting during combat might affect sperm transfer. To test this, we allowed uncontested males, winners, losers, and males with a draw outcome to mate with females and compared the number of sperm within the female’s spermatheca. Additionally, we examined the correlation between combat duration and sperm count. Results showed that losers and males with draw transferred fewer sperm than non-combat males. Moreover, the longer the combat duration, the fewer sperm males were able to transfer. These findings suggest that the reduction in sperm transferred was affected by both losing in combat and prolonged combat duration in leg-biting encounters. en-copyright= kn-copyright= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Male combat kn-keyword=Male combat en-keyword=Male-male competition kn-keyword=Male-male competition en-keyword=Sperm transfer kn-keyword=Sperm transfer en-keyword=Sperm biology kn-keyword=Sperm biology END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=733 end-page=747 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants. en-copyright= kn-copyright= en-aut-name=LiangDi en-aut-sei=Liang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangDongyong en-aut-sei=Yang en-aut-mei=Dongyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiTai en-aut-sei=Li en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuZhe en-aut-sei=Zhu en-aut-mei=Zhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanBingxiao en-aut-sei=Yan en-aut-mei=Bingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HeYang en-aut-sei=He en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiXiaoyuan en-aut-sei=Li en-aut-mei=Xiaoyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhaiKeran en-aut-sei=Zhai en-aut-mei=Keran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiuJiyun en-aut-sei=Liu en-aut-mei=Jiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DengYiwen en-aut-sei=Deng en-aut-mei=Yiwen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WuXu Na en-aut-sei=Wu en-aut-mei=Xu Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LiuJunzhong en-aut-sei=Liu en-aut-mei=Junzhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HeZuhua en-aut-sei=He en-aut-mei=Zuhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=4 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=5 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=School of Life Science and Technology, ShanghaiTech University kn-affil= affil-num=8 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=13 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=14 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= en-keyword=Prenylated Rab acceptor kn-keyword=Prenylated Rab acceptor en-keyword=PigmR kn-keyword=PigmR en-keyword=Trafficking vesicles kn-keyword=Trafficking vesicles en-keyword=OsRab5a kn-keyword=OsRab5a en-keyword=Blast resistance kn-keyword=Blast resistance END start-ver=1.4 cd-journal=joma no-vol=695 cd-vols= no-issue= article-no= start-page=137727 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tunable interlayer distance in graphene oxide through alkylamine surface coverage and chain length en-subtitle= kn-subtitle= en-abstract= kn-abstract=Layered materials have unique structures that can be modified by adjusting the space between layers through pillaring or surface functionalization. Unlike typical crystalline layered materials, graphene oxide (GO) possesses reactive oxygenated functional groups, which lead to spontaneous reduction and stacking upon thermal treatment. Here, we investigated the functionalization of GO with different amounts of hexylamine to control the degree of surface coverage. Furthermore, octylamine and dodecylamine were employed to confirm the effect of the alkyl chain length on the interlayer distance of the resultant GO derivatives. Subsequent thermal treatment produced reduced GO (rGO) functionalized with alkylamines, demonstrating the retention of the interlayer distance. Additionally, amine-functionalized rGOs exhibited varying porous structures. en-copyright= kn-copyright= en-aut-name=Ortiz-AnayaIsrael en-aut-sei=Ortiz-Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Layered material kn-keyword=Layered material en-keyword=Interlayer distance kn-keyword=Interlayer distance en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Alkylamines kn-keyword=Alkylamines en-keyword=Nitrogen physisorption kn-keyword=Nitrogen physisorption END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=RP99858 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingJian en-aut-sei=Xing en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHaruya en-aut-sei=Ogawa en-aut-mei=Haruya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ラジカルを経由する有機合成反応に用いる可視光応答型ナノカーボン触媒の開発 kn-title=Visible-Light-Responsive Nanocarbon Catalyst for Radical-Mediated Organic Transformations en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MD RAZU AHMED en-aut-sei=MD RAZU AHMED en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=トリウム229原子核アイソマー状態からの脱励起光の観測 kn-title=Observation of the Radiative Decay from the Isomeric State of Thorium-229 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OKAIKoichi en-aut-sei=OKAI en-aut-mei=Koichi kn-aut-name=岡井晃一 kn-aut-sei=岡井 kn-aut-mei=晃一 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=和歌山県紀伊半島の四万十帯の美山付加コンプレックスと竜神付加コンプレックスにおける構造性メランジュの未固結から岩石化初期の剪断変形構造に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAKESUENorito en-aut-sei=TAKESUE en-aut-mei=Norito kn-aut-name=竹末勘人 kn-aut-sei=竹末 kn-aut-mei=勘人 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化 kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KUWADAEriko en-aut-sei=KUWADA en-aut-mei=Eriko kn-aut-name=桒田恵理子 kn-aut-sei=桒田 kn-aut-mei=恵理子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=タンパク質の限界発現により引き起こされるタンパク質毒性と細胞表現型の解析 kn-title=Analysis of Protein Toxicity and Cellular Phenotypes Triggered by the Maximum Overexpression of Proteins in Yeast en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NAMBAShotaro en-aut-sei=NAMBA en-aut-mei=Shotaro kn-aut-name=難波匠太郎 kn-aut-sei=難波 kn-aut-mei=匠太郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=酸化グラフェンの3次元組織化による吸着特性の精密制御 kn-title=Tuning the 3D Structure of Graphene Oxide Assembly for Precisely Controlled Adsorption Properties en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ISRAEL ORTIZ ANAYA en-aut-sei=ISRAEL ORTIZ ANAYA en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=複雑な分子骨格の迅速構築を指向した1,2-転位を基盤とする合成法の開発 kn-title=Development of synthetic methods for complex molecular frameworks via 1,2-rearrangement reactions en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KAMADAHidetoshi en-aut-sei=KAMADA en-aut-mei=Hidetoshi kn-aut-name=鎌田英寿 kn-aut-sei=鎌田 kn-aut-mei=英寿 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=有機電解合成における反応素過程の機構解明のための事例研究 kn-title=Deeper Mechanistic Understanding of Some Reaction Processes in Electroorganic Synthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NIKIYuta en-aut-sei=NIKI en-aut-mei=Yuta kn-aut-name=仁木祐太 kn-aut-sei=仁木 kn-aut-mei=祐太 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=高性能ワイヤ放電加工のための油加工液特性の最適化に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LIUShixian en-aut-sei=LIU en-aut-mei=Shixian kn-aut-name=劉世賢 kn-aut-sei=劉 kn-aut-mei=世賢 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=組紐製造技術による繊維強化型人工筋肉の製作手法の確立と変位センシングの実現 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TIANWEIHANG en-aut-sei=TIAN en-aut-mei=WEIHANG kn-aut-name=田偉航 kn-aut-sei=田 kn-aut-mei=偉航 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=数理統計学と情報理論を用いた限定的な事前情報下での意思決定補助手法に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TANABASHIShuto en-aut-sei=TANABASHI en-aut-mei=Shuto kn-aut-name=棚橋秀斗 kn-aut-sei=棚橋 kn-aut-mei=秀斗 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Bサイト金属カチオン置換に伴う結晶構造変化を利用したハロゲン化物ペロブスカイト材料のバンドギャップ制御 kn-title=Bandgap tuning of halide perovskite materials using crystal structure changes associated with B-site metal cation substitution en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=THIRI HTUN en-aut-sei=THIRI HTUN en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Dockerイメージ生成およびFlutterプログラミング演習問題解答のためのWebアプリケーションシステムの実装 kn-title=Implementations of Web Application Systems for Docker Image Generation and Flutter Programming Exercise Answer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LYNN HTET AUNG en-aut-sei=LYNN HTET AUNG en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=リハビリ目的の運動ゲームシステムにおけるゲーム操作のためのハンドジェスチャーの研究 kn-title=A Study of Hand Gestures for Controlling Video Games in Rehabilitation Exergame System en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=RADHIATUL HUSNA en-aut-sei=RADHIATUL HUSNA en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=IEEE 802.11n2.4GHz無線LANにおける動作AP構成手法の高度化に関する研究 kn-title=Enhancements of Active Access-Point Configuration for IEEE 802.11n 2.4GHz Wireless Local-Area Network en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Mousumi Saha en-aut-sei=Mousumi Saha en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=行動の社会的要因:歩行者の衝突回避におけるダイナミクスの定量化 kn-title=Social Factors in Motion: Quantifying the Dynamics of Dyad–Individual Collision Avoidance en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Adrien Thibaud Marie GREGORJ en-aut-sei=Adrien Thibaud Marie GREGORJ en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=TCP/IPインターネットプロトコルスイートを利用したエンドツーエンドの通信の情報セキュリティの研究 kn-title=A Study on Information Security for End-to-End Communication by TCP/IP Internet Protocol Suite en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NORIMATSUTakashi en-aut-sei=NORIMATSU en-aut-mei=Takashi kn-aut-name=乗松隆志 kn-aut-sei=乗松 kn-aut-mei=隆志 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ベンゾチアジアゾール系有機光起電力ドナー材料の合成と性質 kn-title=Synthesis and Properties of Benzothiadiazole-Based Organic Photovoltaic Donor Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YANYi en-aut-sei=YAN en-aut-mei=Yi kn-aut-name=闫艺 kn-aut-sei=闫 kn-aut-mei=艺 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=パラジウム触媒によるカルボン酸誘導体の脱カルボニル化を伴うハロゲン化反応 kn-title=Palladium-Catalyzed Decarbonylative Halogenation of Carboxylic Acid Derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TIANTian en-aut-sei=TIAN en-aut-mei=Tian kn-aut-name=田天 kn-aut-sei=田 kn-aut-mei=天 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=分子シミュレーション及び積分方程式理論に基づく水中または単純液体中における溶質間有効相互作用に関する研究 kn-title=Molecular Simulation and Integral Equation Studies of the Solute-Solute Effective Interactions in Water and Simple Liquids en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NAITOHidefumi en-aut-sei=NAITO en-aut-mei=Hidefumi kn-aut-name=内藤秀文 kn-aut-sei=内藤 kn-aut-mei=秀文 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=イオンモデル開発を伴うアルコール及びPNIPAM水溶液の分子シミュレーション研究 kn-title=MOLECULAR SIMULATION STUDY ON AQUEOUS SOLUTIONS OF ALCOHOLS AND PNIPAM WITH DEVELOPMENT OF ION MODELS en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAIRAAoi en-aut-sei=TAIRA en-aut-mei=Aoi kn-aut-name=平良碧生 kn-aut-sei=平良 kn-aut-mei=碧生 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=げっ歯類における性的二型行動とそのホルモン調節機構 kn-title=Sexually dimorphic behavior and its hormonal regulation in rodents en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HAYASHIHimeka en-aut-sei=HAYASHI en-aut-mei=Himeka kn-aut-name=林姫花 kn-aut-sei=林 kn-aut-mei=姫花 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=分光法とペーパー分析デバイスに基づく酵素活性測定法の開発 kn-title=Development of Enzyme Activity Assays Based on Spectrometric Methods and Paper-Based Analytical Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=RENJIANCHAO en-aut-sei=REN en-aut-mei=JIANCHAO kn-aut-name=任健超 kn-aut-sei=任 kn-aut-mei=健超 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=マイクロ流体ペーパー分析デバイスによる窒素化合物の現場環境分析法の開発 kn-title=Development of on-site environmental analytical methods for nitrogen compounds using microfluidic paper-based analytical devices en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UMEDA (ISOYAMA)Mika en-aut-sei=UMEDA (ISOYAMA) en-aut-mei=Mika kn-aut-name=梅田(礒山)美華 kn-aut-sei=梅田(礒山) kn-aut-mei=美華 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=焼成による二次元物質上での物質形成を用いたナノポーラス材料の構造設計 kn-title=Structural Design of Nanoporous Materials with Substance Formation on Two-Dimensional Materials Using Calcination en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAKEUCHIYuki en-aut-sei=TAKEUCHI en-aut-mei=Yuki kn-aut-name=武内裕城 kn-aut-sei=武内 kn-aut-mei=裕城 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=炭素材料の内部状態解析に向けた固体NMR観測手法の革新と応用 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ANDOHideka en-aut-sei=ANDO en-aut-mei=Hideka kn-aut-name=安東映香 kn-aut-sei=安東 kn-aut-mei=映香 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=酸化グラフェンを用いた新規ナノ多孔性炭素の合成と特性評価 kn-title=Synthesis and characterization of novel nanoporous carbons using graphene oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LIZhao en-aut-sei=LI en-aut-mei=Zhao kn-aut-name=李昭 kn-aut-sei=李 kn-aut-mei=昭 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=宇宙マイクロ波背景放射観測衛星のための全天スキャン戦略の設計と系統的効果の制御 kn-title=Design of the full-sky scanning strategy and systematic effect control in a cosmic microwave background probe en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAKASEYusuke en-aut-sei=TAKASE en-aut-mei=Yusuke kn-aut-name=髙瀬祐介 kn-aut-sei=髙瀬 kn-aut-mei=祐介 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=経口胆道鏡検査におけるAIを用いた色素内視鏡画像への疑似変換 kn-title=Virtual indigo carmine chromoendoscopy images: a novel modality for peroral cholangioscopy using artificial intelligence technology (with video) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SATORyosuke en-aut-sei=SATO en-aut-mei=Ryosuke kn-aut-name=佐藤亮介 kn-aut-sei=佐藤 kn-aut-mei=亮介 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=295 cd-vols= no-issue= article-no= start-page=128303 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (μPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This μPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the μPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L−1 with a detection limit of 0.089 mg L−1 and a quantification limit of 0.269 mg L−1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this μPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This μPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NambaHaruka en-aut-sei=Namba en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Phosphate kn-keyword=Phosphate en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Solid-phase extraction kn-keyword=Solid-phase extraction en-keyword=Anion exchanger kn-keyword=Anion exchanger en-keyword=Molybdenum blue method kn-keyword=Molybdenum blue method END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=20 article-no= start-page=eadv7488 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem I supercomplex from Galdieria sulphuraria close to an ancestral red alga en-subtitle= kn-subtitle= en-abstract= kn-abstract=Red algae exhibit unique photosynthetic adaptations, characterized by photosystem I (PSI) supercomplexes containing light-harvesting complexes (LHCs), forming PSI-LHCI supercomplexes. In this study, we solved the PSI-LHCI structure of Galdieria sulphuraria NIES-3638 at 2.19-angstrom resolution using cryo-electron microscopy, revealing a PSI monomer core associated with seven LHCI subunits. Structural analysis uncovered the absence of phylloquinones, the common secondary electron acceptor in PSI of photosynthetic organisms, suggesting adaptation to a benzoquinone-like molecule. Phylogenetic analysis suggests that G. sulphuraria retains traits characteristic of an ancestral red alga, including distinctive LHCI binding and interaction patterns. Variations in LHCI composition and interactions across red algae, particularly in red-lineage chlorophyll a/b-binding-like protein and red algal LHCs, highlight evolutionary divergence and specialization. These findings not only deepen our understanding of red algal PSI-LHCI diversification but also enable us to predict features of an ancestral red algal PSI-LHCI supercomplex, providing a framework to explore evolutionary adaptations from an ancestral red alga. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=3 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=4 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=5 article-no= start-page=e0320426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications. en-copyright= kn-copyright= en-aut-name=SariYuita Arum en-aut-sei=Sari en-aut-mei=Yuita Arum kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazawaAtsushi en-aut-sei=Nakazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaniYudi Arimba en-aut-sei=Wani en-aut-mei=Yudi Arimba kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=4175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores. en-copyright= kn-copyright= en-aut-name=La RoccaRomain en-aut-sei=La Rocca en-aut-mei=Romain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsaiPi-Cheng en-aut-sei=Tsai en-aut-mei=Pi-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=157 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=10 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= en-keyword=advanced glycation end product kn-keyword=advanced glycation end product en-keyword=aging kn-keyword=aging en-keyword=cartilage kn-keyword=cartilage en-keyword=collagen kn-keyword=collagen en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol=192 cd-vols= no-issue=5 article-no= start-page=58 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel. en-copyright= kn-copyright= en-aut-name=BufetovAlexander I. en-aut-sei=Bufetov en-aut-mei=Alexander I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawamotoYosuke en-aut-sei=Kawamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Steklov Mathematical Institute of RAS kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Random matrices kn-keyword=Random matrices en-keyword=Intertwining relation kn-keyword=Intertwining relation en-keyword=Interacting Brownian motions kn-keyword=Interacting Brownian motions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202500439 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=2-Hydroxy-3-(Pyrrolidin-1-yl)-Indolines: A Platform for Accessing Decorated Deaminokynurenines Enabled by a Double Tautomeric Control en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study we introduce indoline hemiaminals as phenacyl bromide surrogates for the synthesis of deaminokynurenine derivatives through cyclic-linear tautomeric intermediates. The reaction proceeds through a tandem process involving the ring opening of indoline hemiaminals, generating transient acyclic aldehydes which are then trapped with in situ generated enolate species. Our protocol overcomes traditional dilemma in production of polar-mismatch 1,4-dicarbonyl compounds by utilizing a transient highly electrophilic linear aldehyde and late-stage transposition of carbonyl moiety. The synthetic utility of our transformation was demonstrated by follow-up transformations, including the first total synthesis of quinoline-2,4-dione alkaloid. en-copyright= kn-copyright= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Deaminokynurenines kn-keyword=Deaminokynurenines en-keyword=Enolates kn-keyword=Enolates en-keyword=Indoline hemiaminals kn-keyword=Indoline hemiaminals en-keyword=Potassium tertbutoxide kn-keyword=Potassium tertbutoxide en-keyword=Tautomerism kn-keyword=Tautomerism END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=18 article-no= start-page=4737 end-page=4741 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical Oxidation of Benzyl Alcohols via Hydrogen Atom Transfer Mediated by 2,2,2-Trifluoroethanol en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a novel electrochemical oxidation of benzyl alcohols. We found that trifluoroethanol plays a role as a hydrogen atom transfer (HAT) mediator, enabling the oxidation of electron-deficient substrates that are difficult to directly oxidize on electrode surfaces. Density functional theory calculations, cyclic voltammetry measurements, and constant potential electrolysis studies supported the proposed HAT mechanism. Moreover, the obtained carbonyl compounds could be functionalized in an electrochemical one-pot manner, further highlighting their synthetic utility. en-copyright= kn-copyright= en-aut-name=KawajiriTakahiro en-aut-sei=Kawajiri en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosoyaMasahiro en-aut-sei=Hosoya en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GodaSatoshi en-aut-sei=Goda en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd. kn-affil= affil-num=2 en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd. kn-affil= affil-num=3 en-affil=API R&D Laboratory, Research Division, Shionogi & Co., Ltd. kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=1 article-no= start-page=241001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metamorphic pressure-temperature conditions of garnet granulite from the Eastern Iratsu body in the Sambagawa belt, SW Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several coarse-grained mafic bodies with evidence for eclogite-facies metamorphism are present in the Besshi area of the Sambagawa subduction-type metamorphic belt, SW Japan. Among them the granulite-bearing Eastern Iratsu metagabbro body involves an unresolved problem of whether it originated in the hanging-wall or footwall side of the subduction zone. The key to settle this problem is its relationship with the adjacent Western Iratsu metabasaltic body, which includes thick marble layer and certainly has the footwall ocean-floor origin. Several previous studies consider that the Western and Eastern Iratsu bodies were originally coherent in the footwall side and formed the shallower and deeper parts of a thick oceanic crust, respectively. The validity of this hypothesis may be assessed by deriving pressure-temperature history of the Eastern Iratsu body, or especially the pressure (depth) condition of the granulite-facies metamorphism before the eclogite-facies overprinting because, if the pressure was relatively high, the oceanic crust assumed in the above hypothesis might be too thick to tectonically achieve the present-day adjacence of the two bodies on the geological map. This study petrologically analyzes a garnet-bearing granulite from the Eastern Iratsu body and newly reports stable coexistence of garnet and orthopyroxene in the sample. By utilizing a garnet-orthopyroxene geothermobarometer, the minimum P-T conditions of the granulite-facies stage was estimated to be 0.8 GPa (∼ 27 km in depth) and 780 °C. If the Western and Eastern Iratsu bodies were assumed to have formed a coherent oceanic crust before their subduction, the original thickness of it was >27 km and this demands unusually strong ductile shortening (<1/9) or unrealistically large vertical displacement on intraplate faulting, suggesting invalidity of the assumption. The Western and Eastern Iratsu bodies, therefore, are originally bounded by subduction-boundary fault and the obtained pressure of 0.8 GPa can be interpreted to represent that of the hanging-wall lower continental crust in the subduction zone, where the Eastern Iratsu body originated. After the granulite-facies metamorphism, the Western Iratsu body, which was located near the footwall surface, initiated subduction and was subsequently juxtaposed with the above-located Eastern Iratsu body at the corresponding depth (∼ 27 km or greater) along the subduction boundary. en-copyright= kn-copyright= en-aut-name=NAKAMURADaisuke en-aut-sei=NAKAMURA en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AOYAMutsuki en-aut-sei=AOYA en-aut-mei=Mutsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OKAMURATomoki en-aut-sei=OKAMURA en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Sambagawa belt kn-keyword=Sambagawa belt en-keyword=Iratsu body kn-keyword=Iratsu body en-keyword=Metagabbro kn-keyword=Metagabbro en-keyword=Granulite kn-keyword=Granulite en-keyword=Hanging wall kn-keyword=Hanging wall END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70087 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence. en-copyright= kn-copyright= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunishiKotomi en-aut-sei=Kunishi en-aut-mei=Kotomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture,Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=horizontal gene transfer kn-keyword=horizontal gene transfer en-keyword=integrative and conjugative elements kn-keyword=integrative and conjugative elements en-keyword=pathogenicity island kn-keyword=pathogenicity island en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=tabtoxin kn-keyword=tabtoxin END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=94 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years. en-copyright= kn-copyright= en-aut-name=SamTruong Thao en-aut-sei=Sam en-aut-mei=Truong Thao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=hydrological model kn-keyword=hydrological model en-keyword=drought kn-keyword=drought en-keyword=coffee irrigation kn-keyword=coffee irrigation en-keyword=water-saving technique kn-keyword=water-saving technique en-keyword=water allocation kn-keyword=water allocation END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=9 article-no= start-page=1983 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Initial Bonding Performance to CAD/CAM Restorative Materials: The Impact of Stepwise Concentration Variation in 8-Methacryloxyoctyl Trimethoxy Silane and 3-Methacryloxypropyl Trimethoxy Silane on Feldspathic Ceramic, Lithium Disilicate Glass-Ceramic, and Polymer-Infiltrated Ceramic en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the effects of varying concentrations of two distinct silane agents, 8-methacryloxyoctyl trimethoxy silane (8-MOTS) and 3-methacryloxypropyl trimethoxy silane (γ-MPTS), on their initial bonding efficacy to feldspathic ceramic (FC), lithium disilicate glass-ceramic (LD) and polymer-infiltrated ceramic (PIC) specimens, in 10% increments for concentrations ranging from 10% to 40%. Shear bond strengths between the ceramic substrates and the luting material were assessed following 24 h incubation in distilled water. For FC, the median value of shear bond strength peaked at 20% of γ-MPTS (7.4 MPa), while 8-MOTS exhibited a concentration-dependent increase, reaching its highest value at 40% (13.1 MPa). For LD, γ-MPTS above 10% yielded similar strength median values (10.2 MPa), whereas 8-MOTS at 30% (15.8 MPa) and 40% (13.4 MPa) yielded higher strength values than at 10% (2.9 MPa) and 20% (4.1 MPa), with the highest median value exhibited at 30%. For PIC, both γ-MPTS and 8-MOTS demonstrated similarly low bond strength values which were not significantly different from the non-silane-treated specimens. When applied on silica-based FC and LD, silane revealed a concentration-dependent bonding effect, with 8-MOTS exhibiting superior bond strength to γ-MPTS. However, PIC, characterized by a high inorganic filler content, demonstrated limited bondability with both silanes. en-copyright= kn-copyright= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwaharaMiho en-aut-sei=Kuwahara en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IrieMasao en-aut-sei=Irie en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshizaneMai en-aut-sei=Yoshizane en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiyamaKentaro en-aut-sei=Akiyama en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=2 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Health Research Institute, National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=4 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=6 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=silane coupling kn-keyword=silane coupling en-keyword=bond strength kn-keyword=bond strength en-keyword=ceramic kn-keyword=ceramic en-keyword=feldspathic kn-keyword=feldspathic en-keyword=lithium kn-keyword=lithium en-keyword=polymer-infiltrated ceramic kn-keyword=polymer-infiltrated ceramic en-keyword=CAD/CAM kn-keyword=CAD/CAM END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=715 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TRPV2 mediates stress resilience in mouse cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The heart dynamically compensates for haemodynamic stress, but how this resilience forms during cardiac growth is not clear. Using a temporally inducible, cardiac-specific knockout in mice we show that the Transient receptor potential vanilloid family 2 (TRPV2) channel is crucial for the maturation of cardiomyocyte stress resilience. TRPV2 defects in growing hearts lead to small morphology, abnormal intercalated discs, weak contractility, and low expression of serum response factor and Insulin-like growth factor-1 (IGF-1) signalling. Individual cardiomyocytes of TRPV2-deficient hearts show reduced contractility with abnormal Ca2+ handling. In cultured neonatal cardiomyocytes, mechanical Ca2+ response, excitation-contraction coupling, sarcoplasmic reticulum Ca2+ content, actin formation, nuclear localisation of Myocyte enhancer factor 2c, and IGF-1 expression require TRPV2. TRPV2-deficient hearts show a defective response to dobutamine stress and no compensatory hypertrophic response to phenylephrine administration, but no stress response to pressure overload. These data suggest TRPV2 mediates the maturation of cardiomyocyte stress resilience, and will advance therapeutic interventions and drug discovery for heart disease. en-copyright= kn-copyright= en-aut-name=DongYubing en-aut-sei=Dong en-aut-mei=Yubing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangGuohao en-aut-sei=Wang en-aut-mei=Guohao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UjiharaYoshihiro en-aut-sei=Ujihara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChenYanzhu en-aut-sei=Chen en-aut-mei=Yanzhu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatanosakaKimiaki en-aut-sei=Katanosaka en-aut-mei=Kimiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatanosakaYuki en-aut-sei=Katanosaka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana. en-copyright= kn-copyright= en-aut-name=KuroeKana en-aut-sei=Kuroe en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=poly T3E mutant kn-keyword=poly T3E mutant en-keyword=type III effector kn-keyword=type III effector en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=4 article-no= start-page=043024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of the thorium-229 defect structure in CaF2 crystals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advancements in laser excitation of the low-energy thorium-229 (229Th) nuclear isomeric state in calcium fluoride (CaF2) single crystals render this system a promising candidate for a solid-state nuclear clock. Nonetheless, the precise experimental determination of the microscopic ion configuration surrounding the doped 229Th and its electronic charge state remains a critical challenge. Such characterization is essential for precisely controlling the clock transition and evaluating the performance of this solid-state nuclear clock system. In this study, we use x-ray absorption fine structure spectroscopy of 229Th:CaF2 to investigate the charge state and coordination environment of doped 229Th. The results indicate that 229Th displays a 4+ oxidation state at the substitutional site of a Ca2+ ion, with charge compensated provided by two F− ions positioned at interstitial sites adjacent to 229Th. en-copyright= kn-copyright= en-aut-name=TakatoriS. en-aut-sei=Takatori en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PimonM. en-aut-sei=Pimon en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PollittS. en-aut-sei=Pollitt en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BartokosM. en-aut-sei=Bartokos en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BeeksK. en-aut-sei=Beeks en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GrueneisA. en-aut-sei=Grueneis en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirakiT. en-aut-sei=Hiraki en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HonmaT. en-aut-sei=Honma en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HosseiniN. en-aut-sei=Hosseini en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeitnerA. en-aut-sei=Leitner en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaT. en-aut-sei=Masuda en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorawetzI en-aut-sei=Morawetz en-aut-mei=I kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NittaK. en-aut-sei=Nitta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkaiK. en-aut-sei=Okai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=RiebnerT. en-aut-sei=Riebner en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SchadenF. en-aut-sei=Schaden en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SchummT. en-aut-sei=Schumm en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SekizawaO. en-aut-sei=Sekizawa en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SikorskyT. en-aut-sei=Sikorsky en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiY. en-aut-sei=Takahashi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=De ColCol, L. Toscani en-aut-sei=De Col en-aut-mei=Col, L. Toscani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamamotoR. en-aut-sei=Yamamoto en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YomogidaT. en-aut-sei=Yomogida en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YoshimiA. en-aut-sei=Yoshimi en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshimuraK. en-aut-sei=Yoshimura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=3 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=4 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=5 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=6 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=9 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=10 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=12 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=13 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=15 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=16 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=17 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=18 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=19 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=20 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=21 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=23 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= en-keyword=solid-state nuclear clock kn-keyword=solid-state nuclear clock en-keyword=thorium-229 kn-keyword=thorium-229 en-keyword=XAFS kn-keyword=XAFS END start-ver=1.4 cd-journal=joma no-vol=116 cd-vols= no-issue=5 article-no= start-page=1214 end-page=1226 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Regulatory T (Treg) cells have an immunosuppressive function, and programmed death-1 (PD-1)-expressing Treg cells reportedly induce resistance to PD-1 blockade therapies through their reactivation. However, the effects of antigenicity on PD-1 expression in Treg cells and the resistance to PD-1 blockade therapy remain unclear. Here, we show that Treg cells gain high PD-1 expression through an antigen with high antigenicity. Additionally, tumors with high antigenicity for Treg cells were resistant to PD-1 blockade in vivo due to PD-1+ Treg-cell infiltration. Because such PD-1+ Treg cells have high cytotoxic T lymphocyte antigen (CTLA)-4 expression, resistance could be overcome by combination with an anti-CTLA-4 monoclonal antibody (mAb). Patients who responded to combination therapy with anti-PD-1 and anti-CTLA-4 mAbs sequentially after primary resistance to PD-1 blockade monotherapy showed high Treg cell infiltration. We propose that the high antigenicity of Treg cells confers resistance to PD-1 blockade therapy via high PD-1 expression in Treg cells, which can be overcome by combination therapy with an anti-CTLA-4 mAb. en-copyright= kn-copyright= en-aut-name=MatsuuraHiroaki en-aut-sei=Matsuura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NinomiyaToshifumi en-aut-sei=Ninomiya en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MutoYoshinori en-aut-sei=Muto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=5 en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=7 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=8 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= en-keyword=antigenicity kn-keyword=antigenicity en-keyword=cancer immunotherapy kn-keyword=cancer immunotherapy en-keyword=CTLA-4 kn-keyword=CTLA-4 en-keyword=PD-1 kn-keyword=PD-1 en-keyword=regulatory T cell kn-keyword=regulatory T cell END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=8 article-no= start-page=18515 end-page=18529 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources. en-copyright= kn-copyright= en-aut-name=ShimomuraYu en-aut-sei=Shimomura en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakashi en-aut-sei=Asano en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiharaAyumi en-aut-sei=Ishihara en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NodaSusumu en-aut-sei=Noda en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=4 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=214 cd-vols= no-issue= article-no= start-page=32 end-page=41 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Medaka approach to evolutionary social neuroscience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies. en-copyright= kn-copyright= en-aut-name=AnsaiSatoshi en-aut-sei=Ansai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Hiraki-KajiyamaTowako en-aut-sei=Hiraki-Kajiyama en-aut-mei=Towako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaRyutaro en-aut-sei=Ueda en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekiTakahide en-aut-sei=Seki en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoiSaori en-aut-sei=Yokoi en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsumuraTakafumi en-aut-sei=Katsumura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeuchiHideaki en-aut-sei=Takeuchi en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=3 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Hokkaido University kn-affil= affil-num=6 en-affil=School of Medicine, Kitasato University kn-affil= affil-num=7 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= en-keyword=Evolutionary neuroscience kn-keyword=Evolutionary neuroscience en-keyword=Comparative neuroscience kn-keyword=Comparative neuroscience en-keyword=Medaka bioresource kn-keyword=Medaka bioresource en-keyword=Visual mate preference kn-keyword=Visual mate preference en-keyword=Sexual selection kn-keyword=Sexual selection en-keyword=Genetic manipulation kn-keyword=Genetic manipulation END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=1 article-no= start-page=1 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Improved sedimentary layer model including the accretionary prism in the fore-arc region of the Ryukyu arc, Japan kn-title=南西諸島の前弧域における付加体を含む堆積層のモデル化 en-subtitle= kn-subtitle= en-abstract= kn-abstract= We combine the recent seismic reflection profiles to construct a new seismic velocity model of the sedimentary layer incorporating the accretionary prism along the Ryukyu trench. In constructing the new model, we refer to the zoning (ZONE1 to ZONE4) identified by Okamura et al. (2017, Tectonophys.). The construction process consists of the following steps: First, we digitize either unconformities or VP=4 to 5 km/s lines as the seismic basement, whichever is more clearly identifiable. Second, the digitized thickness data of the sedimentary layer from the reflection profiles are geometrically modeled and interpolated to make the three-dimensional structure model. Finally, we supplement the external region of the constructed 3-D sedimentary model using the J-SHIS model provided by the NIED to complete the velocity structure model in the entire Ryukyu arc. The main features of our model are as follows: In ZONE1, off Ishigaki-jima island, the thick sedimentary layer extends about 50 km wide from the Ryukyu trench. In ZONE2, off Miyako-jima island, the thinner layer compared to the other zones is found near the trench, with a thin sedimentary terrace covering the area behind it. In ZONE3, off Okinawa-jima island, the sedimentary layer deepens as it approaches the trench. In ZONE4, off Tokara islands, the deepest layer among all zones is identified. We then conduct 3-D finite-difference simulations of seismic wave propagation using the new and the previous models to confirm the improvement of the new model. In the simulations, the effects of the accretionary prism along the Ryukyu trench on the seismic wave propagation are clearly identified. en-copyright= kn-copyright= en-aut-name=KOMATSUMasanao en-aut-sei=KOMATSU en-aut-mei=Masanao kn-aut-name=小松正直 kn-aut-sei=小松 kn-aut-mei=正直 aut-affil-num=1 ORCID= en-aut-name=URAKAMISohei en-aut-sei=URAKAMI en-aut-mei=Sohei kn-aut-name=浦上想平 kn-aut-sei=浦上 kn-aut-mei=想平 aut-affil-num=2 ORCID= en-aut-name=OKAMOTOTaro en-aut-sei=OKAMOTO en-aut-mei=Taro kn-aut-name=岡元太郎 kn-aut-sei=岡元 kn-aut-mei=太郎 aut-affil-num=3 ORCID= en-aut-name=TAKENAKAHiroshi en-aut-sei=TAKENAKA en-aut-mei=Hiroshi kn-aut-name=竹中博士 kn-aut-sei=竹中 kn-aut-mei=博士 aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama Gakuin University kn-affil=岡山学院大学 affil-num=2 en-affil=Formerly Department of Earth Sciences, Okayama University kn-affil=元・岡山大学大学院自然科学研究科 affil-num=3 en-affil=Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo kn-affil=東京科学大学理学院地球惑星科学系 affil-num=4 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 en-keyword=Sedimentary layer model kn-keyword=Sedimentary layer model en-keyword=Accretionary prism kn-keyword=Accretionary prism en-keyword=Ryukyu arc kn-keyword=Ryukyu arc END start-ver=1.4 cd-journal=joma no-vol=220 cd-vols= no-issue= article-no= start-page=115401 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic landscape and clinical impact of homologous recombination repair gene mutation in small bowel adenocarcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Small bowel adenocarcinoma (SBA) is a rare malignancy with a poor prognosis and limited treatment options. Although homologous recombination deficiency has been studied as a biomarker for other cancer types, the clinical and genomic implications of homologous recombination repair (HRR) gene mutations in SBA remain unclear.
Methods: We retrospectively analyzed the data of 628 patients with advanced or recurrent SBA from a nationwide genomic database. Patients were categorized into HRR mutation and non-HRR mutation groups and compared for their clinical and genomic characteristics including tumor mutational burden (TMB) and microsatellite instability-high (MSI-H) were compared. Treatment efficacy and overall survival (OS) were assessed based on HRR gene mutation status and primary tumor site (duodenal adenocarcinoma [DA] vs. small intestinal carcinoma [SIC]).
Results: Patients with the HRR mutations had higher frequencies of TMB and MSI-H than those without the mutation (P < 0.0001). In DA, HRR gene mutation positivity was associated with improved OS and higher overall response rates (ORR) to platinum-based chemotherapy (OS: not reached vs. 23.5 months, P = 0.040; ORR: 33 % vs. 19 %, P = 0.046), whereas no significant associations were observed with SIC.
Conclusion: HRR gene mutation may be a potential biomarker for platinum-based chemotherapy efficacy in SBA, especially in DA, highlighting the need for site-specific therapies. en-copyright= kn-copyright= en-aut-name=OzatoToshiki en-aut-sei=Ozato en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Homologous recombination repair kn-keyword=Homologous recombination repair en-keyword=Small bowel adenocarcinoma kn-keyword=Small bowel adenocarcinoma en-keyword=Genome kn-keyword=Genome END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=2323 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides. en-copyright= kn-copyright= en-aut-name=AndoYushin en-aut-sei=Ando en-aut-mei=Yushin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoboAkinao en-aut-sei=Kobo en-aut-mei=Akinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakawaAyako en-aut-sei=Yamakawa en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonomaSuzuna en-aut-sei=Konoma en-aut-mei=Suzuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiYuki en-aut-sei=Kobayashi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NurekiOsamu en-aut-sei=Nureki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItohYuzuru en-aut-sei=Itoh en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=4 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=9 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=10 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions. en-copyright= kn-copyright= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FangShihao en-aut-sei=Fang en-aut-mei=Shihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NopriantoMitsuhiro en-aut-sei=Noprianto en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PuspitaningayuPradini en-aut-sei=Puspitaningayu en-aut-mei=Pradini kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya kn-affil= en-keyword=creep test kn-keyword=creep test en-keyword=Raspberry Pi kn-keyword=Raspberry Pi en-keyword=dial gauge kn-keyword=dial gauge en-keyword=needle reading kn-keyword=needle reading en-keyword=smart lighting kn-keyword=smart lighting END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=2 article-no= start-page=43 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250317 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Iodine-Catalyzed Synthesis of 3,3-Disubstituted Isatins: Total Synthesis of Indole Alkaloid, 3,3-Dimethoxy-2-oxindole en-subtitle= kn-subtitle= en-abstract= kn-abstract=3,3-Dialkoxy-2-oxindoles are prevalent in natural products and exhibit unique biological activities. Among them, acyclic alkoxy analogues show instability in acidic conditions, making access to acyclic isatin ketals highly challenging. Conventional methods for the synthesis of 3,3-dialkoxy-2-oxindoles usually require strongly acidic and harsh reaction conditions, resulting in a low overall efficiency. Herein, we report on an acid- and metal-free protocol for the synthesis of 3,3-dialkoxy-2-oxindoles from isatins through an iodine-catalyzed ketalization. This photochemical protocol does not require the use of any specific reagents such as metal catalysts. Furthermore, the total synthesis of an unprecedented 2-oxindole alkaloid bearing 3,3-dimethoxy moiety is achieved. en-copyright= kn-copyright= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsaiShota en-aut-sei=Asai en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=School of Pharmacy, Shujitsu University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=3,3-dialkoxyisatins kn-keyword=3,3-dialkoxyisatins en-keyword=isatins kn-keyword=isatins en-keyword=ketalization kn-keyword=ketalization en-keyword=iodine kn-keyword=iodine en-keyword=indole alkaloid kn-keyword=indole alkaloid END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=3 article-no= start-page=374 end-page=380 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect Modification in Settings with “Truncation by Death” en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidemiologic studies recruiting individuals with higher-than-population-average mortality can be affected by “truncation by death,” whereby the outcome of interest (e.g., quality of life) is considered not to be defined for individuals who die before the end of follow-up. Here, we use the potential outcomes framework and principal stratification to derive conditions under which the survivor average causal effect, an estimand defined for the “always-survivors” stratum, is modified by a variable that represents a possible common cause of survival and the outcome of interest and by a variable that only affects survival. Further, we show that this principal effect can be expressed as a weighted average of this treatment effect for individuals with each level of these variables, and that these weights depend not only on the relative frequencies of the levels in the total population but also on the “always-survivors” principal stratum. We also discuss the implications of this work for the transportability of the survivor average causal effect. en-copyright= kn-copyright= en-aut-name=GonçalvesBronner P. en-aut-sei=Gonçalves en-aut-mei=Bronner P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Comparative Biomedical Sciences, Faculty of Health and Medical Sciences, University of Surrey kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Causal inference kn-keyword=Causal inference en-keyword=Effect modification kn-keyword=Effect modification en-keyword=Principal stratification kn-keyword=Principal stratification en-keyword=Transportability kn-keyword=Transportability END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=e70793 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Differences and Distinct TP53 Mutation Site-Linked Chemosensitivity in Early- and Late-Onset Gastric Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Gastric cancer (GC) in younger patients often exhibits aggressive behavior and a poorer prognosis than that in older patients. Although the clinical differences may stem from oncogenic gene variations, it is unclear whether genetic differences exist between these groups. This study compared the genetic profiles of early- and late-onset GC and evaluated their impact on treatment outcomes.
Methods: We analyzed genetic data from 1284 patients with GC in the Japanese nationwide Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, comparing early-onset (<= 39 years; n = 143) and late-onset (>= 65 years; n = 1141) groups. The influence of TP53 mutations on the time to treatment failure (TTF) with platinum-based chemotherapy and the sensitivity of cancer cells with different TP53 mutation sites to oxaliplatin were assessed in vitro.
Results: Early- and late-onset GC showed distinct genetic profiles, with fewer neoantigen-associated genetic changes observed in early-onset cases. In particular, TP53 has distinct mutation sites; R175H and R273 mutations are more frequent in early- and late-onset GC, respectively. The R175H mutation showed higher sensitivity to oxaliplatin in vitro, consistent with the longer TTF in early-onset patients (17.3 vs. 7.0 months, p = 0.013) when focusing on the patients with TP53 mutations.
Conclusion: Genomic differences, particularly in TP53 mutation sites, between early- and late-onset GC support the need for age-specific treatment strategies. en-copyright= kn-copyright= en-aut-name=KamioTomohiro en-aut-sei=Kamio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirosunaKensuke en-aut-sei=Hirosuna en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OzatoToshiki en-aut-sei=Ozato en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=early-onset gastric cancer kn-keyword=early-onset gastric cancer en-keyword=oxaliplatin kn-keyword=oxaliplatin en-keyword=TP53 kn-keyword=TP53 END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=6 article-no= start-page=1108 end-page=1116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spray-drying of polymer solutions across a broad concentration range and the subsequent formation of a few micro- ∼nano-meter sized fibers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spray drying is a widely utilized technique for the concentration and fine particulation of dried products. This study demonstrated that a versatile spray dryer, equipped with a two-fluid nozzle atomizer, can convert polymer solutions into nanoscale fibers by manipulating the conditions of the polymer solutions. The polymers employed in this research included polyvinylpyrrolidones (Mw 24.5 k to 60 kDa), dextrans (70 k to 450–650 kDa), pullulan, gum Arabic, Eudragit and agar, with methanol and water serving as solvents. Various combinations of polymers and solvents were subjected to spray drying at polymer concentrations ranging from 5 to 1000 g/L. Scanning electron microscopy analyses of the spray-dried samples indicated that the products transitioned from micrometer-sized particles to sub-micrometer fibers in several instances when the polymer concentrations exceeded specific threshold levels. The investigation also explored the relationship between these threshold concentrations and the surface tension and viscosity of the polymer solutions. en-copyright= kn-copyright= en-aut-name=AragaChika en-aut-sei=Araga en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukushimaKaito en-aut-sei=Fukushima en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoHaruna en-aut-sei=Sato en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HondaNao en-aut-sei=Honda en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaTakato en-aut-sei=Hasegawa en-aut-mei=Takato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakasoKoichi en-aut-sei=Nakaso en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Chemical Engineering and Material Sciences, Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=8 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Sub-micron fiber kn-keyword=Sub-micron fiber en-keyword=spray-drying kn-keyword=spray-drying en-keyword=two fluid nozzle atomizer kn-keyword=two fluid nozzle atomizer en-keyword=polyvinylpyrrolidone kn-keyword=polyvinylpyrrolidone en-keyword=polysaccharide kn-keyword=polysaccharide END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=1 article-no= start-page=19 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250419 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings. en-copyright= kn-copyright= en-aut-name=SudoRyutaro en-aut-sei=Sudo en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoKohta en-aut-sei=Miyamoto en-aut-mei=Kohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdoHirofumi en-aut-sei=Ido en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Forestry and Forest Products Research Institute kn-affil= affil-num=3 en-affil=Forestry and Forest Products Research Institute kn-affil= en-keyword=Laminated veneer lumber (LVL) kn-keyword=Laminated veneer lumber (LVL) en-keyword=Partial compressive load kn-keyword=Partial compressive load en-keyword=Bearing strength kn-keyword=Bearing strength en-keyword=Embedment strength kn-keyword=Embedment strength en-keyword=Partial compression perpendicular to grain (PCPG) kn-keyword=Partial compression perpendicular to grain (PCPG) en-keyword=Adhesive layer kn-keyword=Adhesive layer END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=109 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their children’s 4-month health examination. The relationships between postpartum depression and the mothers’ background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score ≧9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the woman’s personality traits is needed. en-copyright= kn-copyright= en-aut-name=AwaiKyoko en-aut-sei=Awai en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=infertility treatment kn-keyword=infertility treatment en-keyword=assisted reproductive technology kn-keyword=assisted reproductive technology en-keyword=postpartum kn-keyword=postpartum en-keyword=postpartum depression kn-keyword=postpartum depression en-keyword=personality trait kn-keyword=personality trait END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=93 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacher’s roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession. en-copyright= kn-copyright= en-aut-name=TsuchieRina en-aut-sei=Tsuchie en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsumuraHideki en-aut-sei=Tsumura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=work engagement kn-keyword=work engagement en-keyword=school teachers kn-keyword=school teachers en-keyword=insomnia kn-keyword=insomnia en-keyword=psychological distress kn-keyword=psychological distress en-keyword=neck pain kn-keyword=neck pain END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=75 end-page=80 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Potential for Radiation Dose Reduction in Temporal Bone CT Imaging Using Photon-Counting Detector CT en-subtitle= kn-subtitle= en-abstract= kn-abstract=Temporal bone computed tomography (CT) is frequently performed for pediatric patients with ear diseases. Advances in CT technology have improved diagnostic imaging quality, but reduction of radiation exposure remains a goal. We evaluated the potential for radiation dose reduction in temporal bone CT examinations using porcine ear ossicles and a photon-counting detector CT system. Three scans of the bilateral temporal bone were performed on each of three pig cadaver heads. In each of seven successive imaging sessions, the radiation dose was reduced by an additional one-seventh of the recommended dose (RD). Two board-certified radiologists independently scored the resulting images on a scale of 1 to 5 points, where 5 represented the image quality at the RD. Images scoring ≥4.5 points were considered acceptable. Noise was assessed in a 2-cm-diameter region near the ear ossicles, and standard deviation was measured for each of the seven decrements from the RD. As the radiation dose decreased, the noise progressively increased, and visual assessment scores progressively decreased. Acceptable image scores were obtained at six-sevenths (4.9), five-sevenths (4.8), four-sevenths (4.7), and three-sevenths (4.6) of the RD. Thus, acceptable porcine temporal bone CT images were obtained with a radiation dose reduction of approximately 50%. en-copyright= kn-copyright= en-aut-name=HigakiFumiyo en-aut-sei=Higaki en-aut-mei=Fumiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HwangSung Il en-aut-sei=Hwang en-aut-mei=Sung Il kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitayamaTakahiro en-aut-sei=Kitayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiYuka en-aut-sei=Takahashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiology, Seoul National University Bundang Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Hospital kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=computed tomography kn-keyword=computed tomography en-keyword=photon-counting detector computed tomography kn-keyword=photon-counting detector computed tomography en-keyword=ear ossicle kn-keyword=ear ossicle en-keyword=energy-integrating detector computed tomography kn-keyword=energy-integrating detector computed tomography END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=7 article-no= start-page=2221 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle. en-copyright= kn-copyright= en-aut-name=NiYilei en-aut-sei=Ni en-aut-mei=Yilei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakimotoShuichi en-aut-sei=Wakimoto en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TianWeihang en-aut-sei=Tian en-aut-mei=Weihang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakefumi en-aut-sei=Kanda en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiDaisuke en-aut-sei=Yamaguchi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=McKibben artificial muscle kn-keyword=McKibben artificial muscle en-keyword=machine learning kn-keyword=machine learning en-keyword=optical fiber kn-keyword=optical fiber en-keyword=motion estimation kn-keyword=motion estimation END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=12 article-no= start-page=135 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elliptic virtual structure constants and generalizations of BCOV-Zinger formula to projective Fano hypersurfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we propose a method for computing genus 1 Gromov-Witten invariants of Calabi-Yau and Fano projective hypersurfaces using the B-model. Our formalism is applicable to both Calabi-Yau and Fano cases. In the Calabi-Yau case, significant cancellation of terms within our formalism occurs, resulting in an alternative representation of the BCOV-Zinger formula for projective Calabi-Yau hypersurfaces. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwataKen en-aut-sei=Kuwata en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Department of General Education, National Institute of Technology, Kagawa College kn-affil= en-keyword=Nonperturbative Effects kn-keyword=Nonperturbative Effects en-keyword=String Duality kn-keyword=String Duality en-keyword=Topological Field Theories kn-keyword=Topological Field Theories en-keyword=Topological Strings kn-keyword=Topological Strings END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue= article-no= start-page=35 end-page=37 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 16th International Symposium for Future Technology Creating Better Human Health and Society kn-title=第16回 高度医療都市を創出する未来技術国際シンポジウム en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YANGJiajia en-aut-sei=YANG en-aut-mei=Jiajia kn-aut-name=楊家家 kn-aut-sei=楊 kn-aut-mei=家家 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil=岡⼭⼤学学術研究院ヘルスシステム統合科学学域 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue= article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Corporate decision-making process for exploration time kn-title=知の探索時間についての企業の意思決定プロセス en-subtitle= kn-subtitle= en-abstract= kn-abstract=In order for companies to innovate through business co-creation, it is necessary to explore a wide range of external knowledge and technologies. However, there is no clear answer as to how much time should be spent for exploration. Under these circumstances, companies must take into account constraints such as the amount of management resources that can be invested, and make decisions about the time to spend for exploration. The purpose of this paper is to clarify the process of how companies that have introduced corporate accelerator program recognize the relationship between the program period and the results of business co-creation, and how they make decisions about the program period. We conducted a case study of several companies that have introduced corporate accelerator program in Japan. In addition, this paper established a hypothesis about decision-making about the time for exploration from case studies. en-copyright= kn-copyright= en-aut-name=SHIMIZUTakeshi en-aut-sei=SHIMIZU en-aut-mei=Takeshi kn-aut-name=志水武史 kn-aut-sei=志水 kn-aut-mei=武史 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems Okayama University kn-affil=国立大学法人岡山大学学術研究院ヘルスシステム統合科学研究学域 en-keyword=corporate accelerator program kn-keyword=corporate accelerator program en-keyword=co-creation kn-keyword=co-creation en-keyword=exploration kn-keyword=exploration en-keyword=Time Compression Diseconomies kn-keyword=Time Compression Diseconomies END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=75 end-page=99 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The best constant of the Sobolev inequality corresponding to a bending problem of a string with a rectangular spring constant en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Sobolev inequality shows that the supremum of a function defined on a whole line is estimated from the above by constant multiples of the potential energy. Among such constants, the smallest constant is the best constant. If we replace a constant by the best constant in the Sobolev inequality, then the equality holds for the best function. The aim of this paper is to find the best constant and the best function. In the background, there is a bending problem of a string with a rectangular spring constant. The Green function is an important function because the best constant and the best function consist of the Green function. en-copyright= kn-copyright= en-aut-name=YamagishiHiroyuki en-aut-sei=Yamagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KametakaYoshinori en-aut-sei=Kametaka en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Tokyo Metropolitan College of Industrial Technology kn-affil= affil-num=2 en-affil=Faculty of Engineering Science, Osaka University kn-affil= en-keyword=Sobolev inequality kn-keyword=Sobolev inequality en-keyword=Green function kn-keyword=Green function en-keyword=reproducing kernel kn-keyword=reproducing kernel END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=1 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inseparable Gauss maps and dormant opers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The present paper aims to generalize a result by H. Kaji on Gauss maps in positive characteristic and establish an interaction with the study of dormant opers and Frobenius-projective structures. We prove a correspondence between dormant opers on a smooth projective variety and closed immersions into a projective space with purely inseparable Gauss map. By using this, we determine the subfields of the function field of a smooth curve in positive characteristic induced by Gauss maps. Moreover, this correspondence gives us a Frobenius-projective structure on a Fermat hypersurface. en-copyright= kn-copyright= en-aut-name=WakabayashiYasuhiro en-aut-sei=Wakabayashi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Information Science and Technology, Osaka University kn-affil= en-keyword=Gauss map kn-keyword=Gauss map en-keyword=Frobenius-projective structure kn-keyword=Frobenius-projective structure en-keyword=dormant kn-keyword=dormant en-keyword=indigenous bundle kn-keyword=indigenous bundle en-keyword=oper kn-keyword=oper END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=100 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction:Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC).
Materials and Methods:The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC.
Results:For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity.
Conclusion:It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis. en-copyright= kn-copyright= en-aut-name=OhataMiyu en-aut-sei=Ohata en-aut-mei=Miyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiRyohei en-aut-sei=Fukui en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiDaichi en-aut-sei=Kobayashi en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamauchiTakatsugu en-aut-sei=Yamauchi en-aut-mei=Takatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HondaMitsugi en-aut-sei=Honda en-aut-mei=Mitsugi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayashiAiko en-aut-sei=Hayashi en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasegawaKoshi en-aut-sei=Hasegawa en-aut-mei=Koshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KidaKatsuhiro en-aut-sei=Kida en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University kn-affil= en-keyword=Image quality kn-keyword=Image quality en-keyword=photon-counting computed tomography kn-keyword=photon-counting computed tomography en-keyword=quantum iterative reconstruction kn-keyword=quantum iterative reconstruction en-keyword=radiomics kn-keyword=radiomics en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=143 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Hair Drawing Evaluation Algorithm for Exactness Assessment Method in Portrait Drawing Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, portrait drawing has become increasingly popular as a means of developing artistic skills and nurturing emotional expression. However, it is challenging for novices to start learning it, as they usually lack a solid grasp of proportions and structural foundations of the five senses. To address this problem, we have studied Portrait Drawing Learning Assistant System (PDLAS) for guiding novices by providing auxiliary lines of facial features, generated by utilizing OpenPose and OpenCV libraries. For PDLAS, we have also presented the exactness assessment method to evaluate drawing accuracy using the Normalized Cross-Correlation (NCC) algorithm. It calculates the similarity score between the drawing result and the initial portrait photo. Unfortunately, the current method does not assess the hair drawing, although it occupies a large part of a portrait and often determines its quality. In this paper, we present a hair drawing evaluation algorithm for the exactness assessment method to offer comprehensive feedback to users in PDLAS. To emphasize hair lines, this algorithm extracts the texture of the hair region by computing the eigenvalues and eigenvectors of the hair image. For evaluations, we applied the proposal to drawing results by seven students from Okayama University, Japan and confirmed the validity. In addition, we observed the NCC score improvement in PDLAS by modifying the face parts with low similarity scores from the exactness assessment method. en-copyright= kn-copyright= en-aut-name=ZhangYue en-aut-sei=Zhang en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FebriantiErita Cicilia en-aut-sei=Febrianti en-aut-mei=Erita Cicilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudarsonoAmang en-aut-sei=Sudarsono en-aut-mei=Amang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HsuChenchien en-aut-sei=Hsu en-aut-mei=Chenchien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=4 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=portrait drawing kn-keyword=portrait drawing en-keyword=auxiliary lines kn-keyword=auxiliary lines en-keyword=OpenPose kn-keyword=OpenPose en-keyword=OpenCV kn-keyword=OpenCV en-keyword=normalized cross-correlation (NCC) kn-keyword=normalized cross-correlation (NCC) en-keyword=hair texture kn-keyword=hair texture en-keyword=exactness assessment method kn-keyword=exactness assessment method END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=3 article-no= start-page=033907 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of density measurement at high pressure and high temperature using the x-ray absorption method combined with laser-heated diamond anvil cell en-subtitle= kn-subtitle= en-abstract= kn-abstract=The densities of liquid materials at high pressures and high temperatures are important information to understand the elastic behavior of liquids at extreme conditions, which is closely related to the formation and evolution processes of the Earth and planetary interiors. The x-ray absorption method is an effective method to measure the density of non-crystalline materials at high pressures. However, the temperature condition of the x-ray absorption method using a diamond anvil cell (DAC) has been limited to 720 K to date. To significantly expand the measurable temperature condition of this method, in this study, we developed a density measurement technique using the x-ray absorption method in combination with a laser-heated DAC. The density of solid Ni was measured up to 26 GPa and 1800 K using the x-ray absorption method and evaluated by comparison with the density obtained from the x-ray diffraction. The density of solid Ni with a thickness >17 μm was determined with an accuracy of 0.01%–2.2% (0.001–0.20 g/cm3) and a precision of 0.8%–1.8% (0.07–0.16 g/cm3) in the x-ray absorption method. The density of liquid Ni was also determined to be 8.70 ± 0.15–8.98 ± 0.38 g/cm3 at 16–23 GPa and 2230–2480 K. Consequently, the temperature limit of the x-ray absorption method can be expanded from 720 to 2480 K by combining it with a laser-heated DAC in this study. en-copyright= kn-copyright= en-aut-name=TerasakiHidenori en-aut-sei=Terasaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KaminaHiroyuki en-aut-sei=Kamina en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiSaori I. en-aut-sei=Kawaguchi en-aut-mei=Saori I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTadashi en-aut-sei=Kondo en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriokaKo en-aut-sei=Morioka en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsuruokaRyo en-aut-sei=Tsuruoka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakuraiMoe en-aut-sei=Sakurai en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YonedaAkira en-aut-sei=Yoneda en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KamadaSeiji en-aut-sei=Kamada en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiraoNaohisa en-aut-sei=Hirao en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= affil-num=4 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=5 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=7 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=9 en-affil=AD Science Incorporation kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=2485 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases. en-copyright= kn-copyright= en-aut-name=NishiiNaoko en-aut-sei=Nishii en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiTomoko en-aut-sei=Kawai en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuokaHiroki en-aut-sei=Yasuoka en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TatsumiNanami en-aut-sei=Tatsumi en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiShunai en-aut-sei=Li en-aut-mei=Shunai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukanoMoemi en-aut-sei=Tsukano en-aut-mei=Moemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OgawaDaisuke en-aut-sei=Ogawa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=VGLUT3 kn-keyword=VGLUT3 en-keyword=glutamate kn-keyword=glutamate en-keyword=podocyte kn-keyword=podocyte en-keyword=glutamatergic transmission kn-keyword=glutamatergic transmission END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=4 article-no= start-page=108334 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-. en-copyright= kn-copyright= en-aut-name=NakamaMasaki en-aut-sei=Nakama en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NojiTomoyasu en-aut-sei=Noji en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=anion transport kn-keyword=anion transport en-keyword=retinal kn-keyword=retinal en-keyword=membrane protein kn-keyword=membrane protein en-keyword=photobiology kn-keyword=photobiology END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3 article-no= start-page=124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Facial Privacy Protection with Dynamic Multi-User Access Control for Online Photo Platforms en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the digital age, sharing moments through photos has become a daily habit. However, every face captured in these photos is vulnerable to unauthorized identification and potential misuse through AI-powered synthetic content generation. Previously, we introduced SnapSafe, a secure system for enabling selective image privacy focusing on facial regions for single-party scenarios. Recognizing that group photos with multiple subjects are a more common scenario, we extend SnapSafe to support multi-user facial privacy protection with dynamic access control designed for online photo platforms. Our approach introduces key splitting for access control, an owner-centric permission system for granting and revoking access to facial regions, and a request-based mechanism allowing subjects to initiate access permissions. These features ensure that facial regions remain protected while maintaining the visibility of non-facial content for general viewing. To ensure reproducibility and isolation, we implemented our solution using Docker containers. Our experimental assessment covered diverse scenarios, categorized as "Single", "Small", "Medium", and "Large", based on the number of faces in the photos. The results demonstrate the system's effectiveness across all test scenarios, consistently performing face encryption operations in under 350 ms and achieving average face decryption times below 286 ms across various group sizes. The key-splitting operations maintained a 100% success rate across all group configurations, while revocation operations were executed efficiently with server processing times remaining under 16 ms. These results validate the system's capability in managing facial privacy while maintaining practical usability in online photo sharing contexts. en-copyright= kn-copyright= en-aut-name=SantosoAndri en-aut-sei=Santoso en-aut-mei=Andri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=facial privacy protection kn-keyword=facial privacy protection en-keyword=selective facial encryption kn-keyword=selective facial encryption en-keyword=multi-user access control kn-keyword=multi-user access control en-keyword=deep-learning applications kn-keyword=deep-learning applications en-keyword=online photo platform kn-keyword=online photo platform END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue= article-no= start-page=670 end-page=679 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemically assisted synthesis of phenacenes fluorinated at the terminal benzene rings and their electronic spectra en-subtitle= kn-subtitle= en-abstract= kn-abstract=[n]Phenacenes ([n] = 5-7), octafluorinated at the terminal benzene rings (F8-phenacenes: F8PIC, F8FUL, and F87PHEN), were photochemically synthesized, and their electronic spectra were investigated to reveal the effects of the fluorination on the electronic features of phenacene molecules. F8-Phenacenes were conveniently synthesized by the Mallory photoreaction of the corresponding fluorinated diarylethenes as the key step. Upon fluorination on the phenacene cores, the absorption and fluorescence bands of the F8-phenacenes in CHCl3 systematically red-shifted by ca. 3-5 nm compared to those of the corresponding parent phenacenes. The vibrational progressions of the absorption and fluorescence bands were little affected by the fluorination in the solution phase. In the solid state, the absorption band of F8-phenacenes appeared in the similar wavelength region for the corresponding parent phenacenes whereas their fluorescence bands markedly red-shifted and broadened. These observations suggest that the intermolecular interactions of excited-state F8-phenacene molecules are significantly different from those of the corresponding parent molecules, most likely due to different crystalline packing motifs. en-copyright= kn-copyright= en-aut-name=IshiiYuuki en-aut-sei=Ishii en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=3 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=4 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fluorescence kn-keyword=fluorescence en-keyword=fluorinated aromatics kn-keyword=fluorinated aromatics en-keyword=phenacene kn-keyword=phenacene en-keyword=photoreaction kn-keyword=photoreaction END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Robustness of Machine Learning Predictions for Determining Whether Deep Inspiration Breath-Hold Is Required in Breast Cancer Radiation Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Deep inspiration breath-hold (DIBH) is a commonly used technique to reduce the mean heart dose (MHD), which is critical for minimizing late cardiac side effects in breast cancer patients undergoing radiation therapy (RT). Although previous studies have explored the potential of machine learning (ML) to predict which patients might benefit from DIBH, none have rigorously assessed ML model performance across various MHD thresholds and parameter settings. This study aims to evaluate the robustness of ML models in predicting the need for DIBH across different clinical scenarios. Methods: Using data from 207 breast cancer patients treated with RT, we developed and tested ML models at three MHD cut-off values (240, 270, and 300 cGy), considering variations in the number of independent variables (three vs. six) and folds in the cross-validation (three, four, and five). Robustness was defined as achieving high F2 scores and low instability in predictive performance. Results: Our findings indicate that the decision tree (DT) model demonstrated consistently high robustness at 240 and 270 cGy, while the random forest model performed optimally at 300 cGy. At 240 cGy, a threshold critical to minimize late cardiac risks, the DT model exhibited stable predictive power, reducing the risk of overestimating DIBH necessity. Conclusions: These results suggest that the DT model, particularly at lower MHD thresholds, may be the most reliable for clinical applications. By providing a tool for targeted DIBH implementation, this model has the potential to enhance patient-specific treatment planning and improve clinical outcomes in RT. en-copyright= kn-copyright= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Al JamalJamal, Ghaida en-aut-sei=Al Jamal en-aut-mei=Jamal, Ghaida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujikuraMamiko en-aut-sei=Fujikura en-aut-mei=Mamiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamizakiRyo en-aut-sei=Kamizaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=13 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=radiation therapy kn-keyword=radiation therapy en-keyword=heart dose kn-keyword=heart dose en-keyword=cut-off value kn-keyword=cut-off value en-keyword=machine learning kn-keyword=machine learning en-keyword=robustness kn-keyword=robustness en-keyword=instability kn-keyword=instability en-keyword=F2 score kn-keyword=F2 score en-keyword=deep inspiration breath-hold technique kn-keyword=deep inspiration breath-hold technique en-keyword=computed tomography kn-keyword=computed tomography END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=790 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated. en-copyright= kn-copyright= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumuraYuka en-aut-sei=Fukumura en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamitsuYuki en-aut-sei=Nakamitsu en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuYudai en-aut-sei=Shimizu en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KamaruddinNurul N. en-aut-sei=Kamaruddin en-aut-mei=Nurul N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YanagiYoshinobu en-aut-sei=Yanagi en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=12 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=head and neck tumors kn-keyword=head and neck tumors en-keyword=mean kurtosis kn-keyword=mean kurtosis en-keyword=simple diffusion kurtosis imaging kn-keyword=simple diffusion kurtosis imaging en-keyword=magnetic resonance imaging kn-keyword=magnetic resonance imaging en-keyword=apparent diffusion coefficient value kn-keyword=apparent diffusion coefficient value en-keyword=diffusion kurtosis imaging kn-keyword=diffusion kurtosis imaging en-keyword=machine learning kn-keyword=machine learning en-keyword=bi-parameter analysis kn-keyword=bi-parameter analysis en-keyword=gradient boosting kn-keyword=gradient boosting en-keyword=differential diagnosis of benign and malignant kn-keyword=differential diagnosis of benign and malignant END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2. en-copyright= kn-copyright= en-aut-name=LiYajun en-aut-sei=Li en-aut-mei=Yajun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunZexu en-aut-sei=Sun en-aut-mei=Zexu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraSota en-aut-sei=Kawamura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaHiroto en-aut-sei=Tomita en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagamiKohei en-aut-sei=Yamagami en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniYoshinori en-aut-sei=Kotani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NoguchiKanako en-aut-sei=Noguchi en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakataHideaki en-aut-sei=Sakata en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=9 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physics, College of Science and Technology(CST), Nihon University kn-affil= affil-num=13 en-affil=Tokyo University of Science kn-affil= affil-num=14 en-affil=Tokyo University of Science kn-affil= affil-num=15 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=16 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=1082 end-page=1096 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti–PD-1 mAb or anti–CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti–PD-1 and anti–CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti–CTLA4 and anti–PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti–CTLA4 and anti–PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti–PD-1 mAb. B-cell–activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non–small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti–PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases. en-copyright= kn-copyright= en-aut-name=NinomiyaToshifumi en-aut-sei=Ninomiya en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KemmotsuNaoya en-aut-sei=Kemmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OkamotoIsamu en-aut-sei=Okamoto en-aut-mei=Isamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=17 en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=91 end-page=105 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Reflections of Early Care and Education Practitioners, as Indicated in the Content on the Care and Education of Kindergarten Children Published by Japan’s Ministry of Education, Culture, Sports, Science and Technology kn-title=幼稚園の保育全体に関する文部科学省公表資料に示されている保育者の振り返りの仕方の検討 en-subtitle= kn-subtitle= en-abstract= kn-abstract= 本研究では,まず,我が国の保育施設におけるカリキュラム・マネジメントに関する先行研究を概観し,カリキュラム・マネジメントを実現するために必要な,保育の目標・ねらい・内容の連関性の確保された全体的計画の作成が困難な状況にあることを確認した。続いて,保育の目標・ねらい・内容の連関性を確保する上で,そのことを可能にする保育者の振り返りの仕方が不可欠となることを踏まえて,幼稚園の保育全体に関する文部科学省公表資料に示されている,保育者の振り返りの目的,観点,方法を抽出し整理し,検討した。その結果,保育者の長期の振り返りに関して示されている記述では,具体性が乏しく,保育の目標・ねらい・内容の連関性の確保された長期指導計画及び全体的計画を作成する上で,実用的ではないことを明らかにした。 en-copyright= kn-copyright= en-aut-name=ARITASho en-aut-sei=ARITA en-aut-mei=Sho kn-aut-name=有田翔 kn-aut-sei=有田 kn-aut-mei=翔 aut-affil-num=1 ORCID= en-aut-name=YOKOMATSUTomoyoshi en-aut-sei=YOKOMATSU en-aut-mei=Tomoyoshi kn-aut-name=横松友義 kn-aut-sei=横松 kn-aut-mei=友義 aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Education, Okayama University (Master’s Course) kn-affil=岡山大学大学院教育学研究科大学院生 affil-num=2 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 en-keyword=保育者の振り返り (reflections of early care and education practitioners) kn-keyword=保育者の振り返り (reflections of early care and education practitioners) en-keyword=幼稚園 (kindergarten) kn-keyword=幼稚園 (kindergarten) en-keyword=カリキュラム・マネジメント (curriculum management) kn-keyword=カリキュラム・マネジメント (curriculum management) en-keyword=文部科学省公表資料 (the content on the care and education of kindergarten children published by Japan’s Ministry of Education, Culture, Sports, Science and Technology) kn-keyword=文部科学省公表資料 (the content on the care and education of kindergarten children published by Japan’s Ministry of Education, Culture, Sports, Science and Technology) END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2480231 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation. en-copyright= kn-copyright= en-aut-name=MutsudaKoki en-aut-sei=Mutsuda en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=mRNA translation kn-keyword=mRNA translation en-keyword=RPL10 kn-keyword=RPL10 en-keyword=suppressor mutant kn-keyword=suppressor mutant en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Droplet Impact Behavior on Convex Surfaces with a Circumferential Wettability Difference en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling the bouncing behavior of the impacting droplets is an important issue for splay cooling, icing prevention, and other applications. The bouncing behavior of impacting droplets on superhydrophobic curved surfaces and flat substrates with a wettability difference has been widely investigated, and droplets impacting these surfaces show shorter contact times than those on superhydrophobic flat surfaces and droplet transport. However, there have been few studies on the droplet impact behavior on curved surfaces with a wettability difference, where efficient droplet control could be achieved by combining the features. In the present study, droplet impact experiments were conducted using copper cylinders with different circumferential wettabilities from hydrophilic to superhydrophobic, varying the impact velocity, cylinder diameter, and rotation angle. Droplets that impacted the wettability boundary showed asymmetric deformation and moved to the hydrophilic side, owing to the driving force of the wettability difference. Moreover, the droplet behavior was classified into four types: the droplet bounced off the surface, the droplet bounced off the surface and split, the droplet attached to the surface, and the droplet attached to the surface and split. The droplet behavior was estimated by using the maximum spreading width of the droplet impacted on the flat substrate. We evaluated whether the droplets attached to the surface or bounced off the surface after impact using the Weber number and rotation angle, and the estimations were in agreement with the experimental results for cylinder diameters of 4 and 6 mm. en-copyright= kn-copyright= en-aut-name=IshikawaTaku en-aut-sei=Ishikawa en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=1757 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication. en-copyright= kn-copyright= en-aut-name=OhashiAyaka en-aut-sei=Ohashi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurodaJunpei en-aut-sei=Kuroda en-aut-mei=Junpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoYohei en-aut-sei=Kondo en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameiYasuhiro en-aut-sei=Kamei en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NonakaShigenori en-aut-sei=Nonaka en-aut-mei=Shigenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukawaSaya en-aut-sei=Furukawa en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoSakiya en-aut-sei=Yamamoto en-aut-mei=Sakiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAkira en-aut-sei=Satoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=4 en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University kn-affil= affil-num=5 en-affil=Laboratory for Biothermology, National Institute for Basic Biology kn-affil= affil-num=6 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=7 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=9 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S-nitrosylation of laforin inhibits its phosphatase activity and is implicated in Lafora disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, the relation between S-nitrosylation by nitric oxide (NO), which is over�produced under pathological conditions and neurodegenerative diseases, includingAlzheimer’s and Parkinson’s diseases, has become a focus of attention. Although mostcases of Parkinson’s disease are known to be caused by mutations in the Parkin gene, arecent finding has indicated that S-nitrosylation of Parkin affects its enzymatic activityand leads to the Parkinsonian phenotype. Therefore, it is important to understand thefunction of S-nitrosylated proteins in the pathogenesis of neurodegenerative diseases.Lafora disease (LD, OMIM 254780) is a neurodegenerative disease characterized by theaccumulation of insoluble glucans called Lafora bodies (LBs). LD is caused by mutationsin genes that encode the glucan phosphatase, Laforin, or the E3 ubiquitin ligase, Malin.In this study, we hypothesized that LD may be caused by S-nitrosylation of Laforin,which is similar to the finding that Parkinson’s disease is caused by S-nitrosylation ofParkin. To test this hypothesis, we first determined whether Laforin was S-nitrosylatedusing a biotin switch assay, and compared the three main functions of unmodified andS-nitrosylated Laforin, namely glucan- and Malin-binding activity and phosphataseactivity. Furthermore, we examined whether the numbers of LBs were changed byNO in the cells expressing wild-type Laforin. Here, we report for the first time thatS-nitrosylation of Laforin inhibited its phosphatase activity and that LB formation wasincreased by an NO donor. Our results suggest a possible hypothesis for LD pathogenesis; that is, the decrease in phosphatase activity of Laforin by S-nitrosylation leads toincreased LB formation. Therefore, LD may be caused not only by mutations in theLaforin or Malin genes, but also by the S-nitrosylation of Laforin. en-copyright= kn-copyright= en-aut-name=ToyotaRikako en-aut-sei=Toyota en-aut-mei=Rikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjoYasuko en-aut-sei=Honjo en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImajoRisa en-aut-sei=Imajo en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= en-keyword=S-Nitrosylation Of Laforin kn-keyword=S-Nitrosylation Of Laforin en-keyword=Post-Translational Modification kn-keyword=Post-Translational Modification en-keyword=Nitrosylation kn-keyword=Nitrosylation en-keyword=Phosphatase kn-keyword=Phosphatase en-keyword=Glucan-Binding kn-keyword=Glucan-Binding END start-ver=1.4 cd-journal=joma no-vol=195 cd-vols= no-issue= article-no= start-page=123743 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utility of Surgical Simulation for Tubular Retractor Surgery Using Three-Dimensional Printed Intraventricular Tumor Models: Case Series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The utility of the tubular retractor for deep-seated tumors, including intraventricular tumors, has recently been reported. However, the surgical field’s depth and narrowness can lead to blind spots, and it is crucial to prevent damage to the cortex and white matter fibers in eloquent areas. Therefore, preoperative simulation is critical for tubular retractor surgery. In this study, we investigated the benefits of threedimensional (3D)-printed intraventricular tumor models for tubular retractor surgery.
Methods: Nine patients with intraventricular central neurocytoma who underwent tubular retractor surgery at our institution between March 2013 and August 2023 were retrospectively reviewed. Fusion images and 3D-printed intraventricular tumor models were developed from preoperative computed tomography (CT) and magnetic resonance imaging (MRI). The puncture points of the tubular retractor were simulated using fusion images and 3D-printed intraventricular tumor models by 11 neurosurgeons (3 experts in brain tumors, 2 experts in areas other than brain tumors, and 6 residents). The dispersion of puncture points among 8 neurosurgeons (excluding brain tumor experts) was compared in each simulation model.
Results: These cases were categorized into two groups based on the dispersion of puncture points simulated by fusion images. Puncture point dispersion was markedly smaller in all cases when using 3D-printed intraventricular tumor models compared to simulations solely based on fusion images.
Conclusions: In intraventricular tumor surgery using a tubular retractor, 3D-printed intraventricular tumor models proved more beneficial in preoperative simulation compared to fusion images. en-copyright= kn-copyright= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraRyu en-aut-sei=Kimura en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaijoTomoya en-aut-sei=Saijo en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaJuntaro en-aut-sei=Fujita en-aut-mei=Juntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishigakiShohei en-aut-sei=Nishigaki en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkemachiRyosuke en-aut-sei=Ikemachi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=3D-printed model kn-keyword=3D-printed model en-keyword=Case series kn-keyword=Case series en-keyword=Intraventricular tumors kn-keyword=Intraventricular tumors en-keyword=Preoperative surgical simulation kn-keyword=Preoperative surgical simulation en-keyword=Tubular retractor kn-keyword=Tubular retractor END start-ver=1.4 cd-journal=joma no-vol=210 cd-vols= no-issue= article-no= start-page=112952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A microfluidic paper-based analytical device that uses gelatin film to assay protease activity via time readout en-subtitle= kn-subtitle= en-abstract= kn-abstract=Food processing, detergents, and pharmaceuticals frequently employ proteases, which are enzymes that break the chemical bonds of both proteins and peptides. In this work, we developed a microfluidic paper-based analytical device (µPAD) for protease activity assays via time readout. To accomplish this, we folded the µPAD to form layers, then inserted a water-insoluble gelatin film between the layers of paper to form the device. Lamination helps to maintain the gelatin film between the introduction zone, which is the upper layer, and the detection channel, which is the lower layer. Proteases decompose the gelatin film when it enters the introduction zone, which then allows it to flow into the detection channel. The protease activity in the sample solution determines the time required to dissolve the gelatin film, which leads to a linear relationship between the logarithm of the protease concentration and the time required to flow the solution a specific distance on the detection channel. The µPAD was used to measure proteases in concentrations that ranged from 0.25 to 1 mg L−1 for bromelain, 2.5 to 10 mg L−1 for papain, and 1 to 8 mg L−1 for trypsin. The limits of quantification for bromelain, papain, and trypsin were 0.41, 2.7, and 9.2 mg mL−1, respectively. The relative standard deviations for bromelain were smaller than 2 % for concentrations ranging from 0.5 to 1.0 mg L−1. We compared the µPAD to a commercially available protease activity assay kit, which relies on quenching fluorescein isothiocyanate-labeled casein. Both methods demonstrated the same order of activity: bromelain > papain > trypsin. The proposed device allowed the assay of bromelain in both pineapple pulp and juice, which were stored at room temperature. When first using the proposed device, the bromelain in the pulp gradually lost its activity, while the activity of the bromelain in the juice showed no significant change for five days. The µPAD requires no analytical instruments for quality control and monitoring of the protease activity in food. en-copyright= kn-copyright= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Protease kn-keyword=Protease en-keyword=Enzyme assay kn-keyword=Enzyme assay en-keyword=Time readout kn-keyword=Time readout END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=25 article-no= start-page=4757 end-page=4773 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent development of azahelicenes showing circularly polarized luminescence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, a variety of circularly polarized luminescence (CPL) dyes have been developed as next-generation chiroptical materials. Helicenes, ortho-fused aromatics, have been recognized as some of the most promising CPL dyes. Although typical carbohelicenes show CPL, weak fluorescence is often emitted in the blue region. In contrast, heteroatom-embedded helicenes (heterohelicenes) can show intense fluorescence and CPL in the visible region because heteroatoms alter the electronic states of helicene frameworks. Among various heterohelicenes, nitrogen-embedded helicenes (azahelicenes) have unique features such as facile functionalization and sensitive responses to acid/base or metal ions. Furthermore, polycyclic aromatic hydrocarbons (PAHs) containing azaborine units have been recognized as excellent luminescent materials, and the helical derivatives, B,N-embedded helicenes, have been rapidly growing recently. In this feature article, we review and summarize the synthesis and chiroptical properties of azahelicenes, which are classified into imine-type and amine-type azahelicenes and B,N-embedded helicenes. CPL switching systems of azahelicenes are also reviewed. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=5 article-no= start-page=2421 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perishable goods have a limited shelf life, and inventory should be discarded once it exceeds its shelf life. Finding optimal inventory management policies is essential since inefficient policies can lead to increased waste and higher costs. While many previous studies assume the perishable inventory is processed following the First In, First Out rule, it does not reflect customer purchasing behavior. In practice, customers' preferences are influenced by the shelf life and price of products. This study optimizes inventory and pricing policies for a perishable inventory management problem considering age-dependent probabilistic demand. However, introducing dynamic pricing significantly increases the complexity of the problem. To tackle this challenge, we propose eliminating irrational actions in dynamic programming without sacrificing optimality. To solve this problem more efficiently, we also implement a deep reinforcement learning algorithm, proximal policy optimization, to solve this problem. The results show that dynamic programming with action reduction achieved an average of 63.1% reduction in computation time compared to vanilla dynamic programming. In most cases, proximal policy optimization achieved an optimality gap of less than 10%. Sensitivity analysis of the demand model revealed a negative correlation between customer sensitivity to shelf lives or prices and total profits. en-copyright= kn-copyright= en-aut-name=NomuraYusuke en-aut-sei=Nomura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=reinforcement learning kn-keyword=reinforcement learning en-keyword=supply chain kn-keyword=supply chain en-keyword=inventory management kn-keyword=inventory management en-keyword=perishable inventory kn-keyword=perishable inventory en-keyword=dynamic pricing kn-keyword=dynamic pricing END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5248 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes of leucine-rich alpha 2 glycoprotein could be a marker of changes of endoscopic and histologic activity of ulcerative colitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Leucine-rich alpha 2 glycoprotein (LRG) is one of the serum biomarkers for disease activity of ulcerative colitis (UC). We focused on the correlation between the changes of LRG and the changes of endoscopic and histologic activity of UC, in comparison to the changes of fecal calprotectin (Fcal), fecal immunochemical test (FIT), and C-reactive protein (CRP). Seventy-nine patients with two or more colonoscopies were enrolled, and 123 paired colonoscopies and 121 paired biopsies were examined. With regard to the change of endoscopic/histologic activity between the preceding and subsequent colonoscopy, there was improvement (n = 29/45), unchanging (n = 63/36), and worsening (n = 31/40). The correlations between the changes of marker levels and endoscopic/histologic activity were Fcal; r = 0.50/0.39 and FIT; r = 0.41/0.40, LRG; r = 0.42/0.40 and CRP; r = 0.22/0.17. Furthermore, when the correlation between the changes of LRG levels and the changes of endoscopic/histological activity was compared with those of other markers, the correlation of LRG tended to be superior to those of CRP (CRP vs. LRG; p = 0.08/0.01). LRG is equivalent to fecal markers and superior to CRP, when inferring changes in disease activity of UC based on changes in its level. en-copyright= kn-copyright= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomiEriko en-aut-sei=Yasutomi en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeiKensuke en-aut-sei=Takei en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKeiko en-aut-sei=Takeuchi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyosawaJunki en-aut-sei=Toyosawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatoJun en-aut-sei=Kato en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ulcerative colitis kn-keyword=Ulcerative colitis en-keyword=Leucine-rich alpha 2 glycoprotein kn-keyword=Leucine-rich alpha 2 glycoprotein en-keyword=Biomarker kn-keyword=Biomarker END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=1543543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EndoMakoto en-aut-sei=Endo en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaNobuhiko en-aut-sei=Yokoyama en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=generative AI chatbot kn-keyword=generative AI chatbot en-keyword=large language model kn-keyword=large language model en-keyword=pediatric cancer kn-keyword=pediatric cancer en-keyword=adolescent and young adult (AYA) kn-keyword=adolescent and young adult (AYA) en-keyword=psychological support kn-keyword=psychological support END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue= article-no= start-page=106690 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=EGF-induced P-gp expression in tumor vasculature contributes to therapeutic resistance to doxorubicin-PEG-liposomes in mice bearing doxorubicin-resistant B16-BL6 tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously indicated that doxorubicin (DOX)-loaded polyethylene glycol (PEG)-modified liposomes (DOX-PEG-liposomes) were therapeutically effective in mice bearing DOX-resistant colon-26 (C26/DOX) tumors, and the efficacy was comparable in mice bearing DOX-sensitive C26 tumors. However, in the current study, DOX-PEG-liposomes exerted no therapeutic activity in DOX-resistant B16-BL6 melanoma (B16/DOX)-bearing mice, although they significantly suppressed DOX-sensitive B16 tumor growth in mice. Although we previously reported that the anti-tumor effects in C26/DOX-bearing mice were derived from the cytotoxic effects of DOX on vascular endothelial cells (VECs) in tumors, the B16/DOX tumor vasculature was not substantially damaged after administration of DOX-PEG-liposomes. In B16/DOX tumors, P-gp expression was significantly induced in the VECs, but not in the C26/DOX tumors, indicating that the high expression of P-gp in the tumor vasculature would be responsible for the lack of therapeutic effect of DOX-PEG-liposomes in B16/DOX-bearing mice. Epidermal growth factor (EGF), a possible induction factor for P-gp expression, was highly expressed in B16/DOX cells and tumor tissues, and significantly induced P-gp expression in human umbilical vein endothelial cells (HUVEC). The EGF receptor (EGFR) was also highly expressed in B16/DOX tumor VECs, suggesting that the activation of EGF/EGFR signaling may induce P-gp expression in VECs in B16/DOX tumors. en-copyright= kn-copyright= en-aut-name=MaruyamaMasato en-aut-sei=Maruyama en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaTomoki en-aut-sei=Ueda en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IenakaYusuke en-aut-sei=Ienaka en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TojoHaruka en-aut-sei=Tojo en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKenji en-aut-sei=Hyodo en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgawaraKen-ichi en-aut-sei=Ogawara en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigakiKazutaka en-aut-sei=Higaki en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Eisai Co., Ltd. kn-affil= affil-num=6 en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University kn-affil= affil-num=7 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Drug resistance kn-keyword=Drug resistance en-keyword=P-glycoprotein kn-keyword=P-glycoprotein en-keyword=Liposome kn-keyword=Liposome en-keyword=Tumor vascular endothelial cells kn-keyword=Tumor vascular endothelial cells en-keyword=Melanoma kn-keyword=Melanoma END start-ver=1.4 cd-journal=joma no-vol=209 cd-vols= no-issue= article-no= start-page=114663 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation. en-copyright= kn-copyright= en-aut-name=MaruyamaMasato en-aut-sei=Maruyama en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToriiReiya en-aut-sei=Torii en-aut-mei=Reiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHazuki en-aut-sei=Matsui en-aut-mei=Hazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HayashiHiroki en-aut-sei=Hayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaraKen-ichi en-aut-sei=Ogawara en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigakiKazutaka en-aut-sei=Higaki en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University kn-affil= affil-num=6 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Drug delivery kn-keyword=Drug delivery en-keyword=Vascular normalization kn-keyword=Vascular normalization en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Liposome kn-keyword=Liposome en-keyword=Cancer-associated fibroblast kn-keyword=Cancer-associated fibroblast END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=6666 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic fabrication of rattle shaped biopolymer microcapsules via sequential phase separation in oil droplets en-subtitle= kn-subtitle= en-abstract= kn-abstract=Multilayer microcapsules containing a small particle within a larger capsule have recently attracted considerable attention owing to their potential applications in diverse fields, including drug delivery, active ingredient storage, and chemical reactions. These complex capsules have been fabricated using interfacial polymerization or seeded emulsion polymerization. However, these methods often require complex and lengthy polymerization processes, limiting their utility, particularly in biopolymer systems. This study introduces a simple and efficient approach for preparing rattle-shaped cellulose acetate (CA) microcapsules through sequential phase separation in droplets. We systematically examine the effects of various preparation parameters, including the amount of co-solvent, initial droplet size, and flow rates, and reveal that the incorporation of a co-solvent-ethyl acetate (EA)- in the dispersed phase significantly impacts the microcapsule morphology. Our findings demonstrate a transition from a core-shell to a rattle-shaped structure as the EA concentration increases. Furthermore, the initial droplet diameter and flow rates influence microcapsule formation-larger droplets and reduced continuous-phase flow rates favor the development of multi-layered structures. These results indicate that the formation mechanism of these rattle-shaped microcapsules arises from the establishment of a radial solvent concentration gradient and subsequent phase separation within the droplets, driven by kinetic rather than thermodynamic factors. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiYuko en-aut-sei=Sakai en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKurumi en-aut-sei=Mori en-aut-mei=Kurumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Microfluidics kn-keyword=Microfluidics en-keyword=Phase separation kn-keyword=Phase separation en-keyword=Nucleation kn-keyword=Nucleation en-keyword=Multi-core kn-keyword=Multi-core en-keyword=Rattle-shaped kn-keyword=Rattle-shaped END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=217 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interchangeability of Cross-Platform Orthophotographic and LiDAR Data in DeepLabV3+-Based Land Cover Classification Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Riverine environmental information includes important data to collect, and the data collection still requires personnel's field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based Light Detection and Ranging technologies have already been applied in global environmental research, i.e., land cover classification (LCC) or environmental monitoring. For this study, the authors specifically focused on seven types of LCC (i.e., bamboo, tree, grass, bare ground, water, road, and clutter) that can be parameterized for flood simulation. A validated airborne LiDAR bathymetry system (ALB) and a UAV-borne green LiDAR System (GLS) were applied in this study for cross-platform analysis of LCC. Furthermore, LiDAR data were visualized using high-contrast color scales to improve the accuracy of land cover classification methods through image fusion techniques. If high-resolution aerial imagery is available, then it must be downscaled to match the resolution of low-resolution point clouds. Cross-platform data interchangeability was assessed by comparing the interchangeability, which measures the absolute difference in overall accuracy (OA) or macro-F1 by comparing the cross-platform interchangeability. It is noteworthy that relying solely on aerial photographs is inadequate for achieving precise labeling, particularly under limited sunlight conditions that can lead to misclassification. In such cases, LiDAR plays a crucial role in facilitating target recognition. All the approaches (i.e., low-resolution digital imagery, LiDAR-derived imagery and image fusion) present results of over 0.65 OA and of around 0.6 macro-F1. The authors found that the vegetation (bamboo, tree, grass) and road species have comparatively better performance compared with clutter and bare ground species. Given the stated conditions, differences in the species derived from different years (ALB from year 2017 and GLS from year 2020) are the main reason. Because the identification of clutter species includes all the items except for the relative species in this research, RGB-based features of the clutter species cannot be substituted easily because of the 3-year gap compared with other species. Derived from on-site reconstruction, the bare ground species also has a further color change between ALB and GLS that leads to decreased interchangeability. In the case of individual species, without considering seasons and platforms, image fusion can classify bamboo and trees with higher F1 scores compared to low-resolution digital imagery and LiDAR-derived imagery, which has especially proved the cross-platform interchangeability in the high vegetation types. In recent years, high-resolution photography (UAV), high-precision LiDAR measurement (ALB, GLS), and satellite imagery have been used. LiDAR measurement equipment is expensive, and measurement opportunities are limited. Based on this, it would be desirable if ALB and GLS could be continuously classified by Artificial Intelligence, and in this study, the authors investigated such data interchangeability. A unique and crucial aspect of this study is exploring the interchangeability of land cover classification models across different LiDAR platforms. en-copyright= kn-copyright= en-aut-name=PanShijun en-aut-sei=Pan en-aut-mei=Shijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKeisuke en-aut-sei=Yoshida en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaSatoshi en-aut-sei=Nishiyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaTakashi en-aut-sei=Kojima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoYutaro en-aut-sei=Hashimoto en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=TOKEN C. E. E. Consultants Co., Ltd. kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=airborne LiDAR bathymetry kn-keyword=airborne LiDAR bathymetry en-keyword=cross-platform kn-keyword=cross-platform en-keyword=deep learning kn-keyword=deep learning en-keyword=green LiDAR system kn-keyword=green LiDAR system en-keyword=riverine land cover classification kn-keyword=riverine land cover classification END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy. en-copyright= kn-copyright= en-aut-name=MahadevanNiranjan en-aut-sei=Mahadevan en-aut-mei=Niranjan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FernandaRozi en-aut-sei=Fernanda en-aut-mei=Rozi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoNatsuka en-aut-sei=Kohno en-aut-mei=Natsuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaoReiko en-aut-sei=Nagao en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NyeinKhin Thida en-aut-sei=Nyein en-aut-mei=Khin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Rhizoctonia solani species complex kn-keyword=Rhizoctonia solani species complex en-keyword=virulence mechanism kn-keyword=virulence mechanism en-keyword=infection behavior kn-keyword=infection behavior en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=N-hydroxypipecolic acid kn-keyword=N-hydroxypipecolic acid END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=For rapid deployments of various IoT application systems, we have developed Smart Environmental Monitoring and Analytical in Real-Time (SEMAR) as an integrated server platform. It is equipped with rich functions for collecting, analyzing, and visualizing various data. Unfortunately, the proper configuration of SEMAR with a variety of IoT devices can be complex and challenging for novice users, since it often requires technical expertise. The assistance of Generative AI can be helpful to solve this drawback. In this paper, we present an implementation of a sensor input setup assistance service for SEMAR using prompt engineering techniques and Generative AI. A user needs to define the requirement specifications and environments of the IoT application system for sensor inputs, and give them to the service. Then, the service provides step-by-step guidance on sensor connections, communicating board configurations, network connections, and communication protocols to the user, which can help the user easily set up the configuration to connect the relevant devices to SEMAR. For evaluations, we applied the proposal to the input sensor setup processes of three practical IoT application systems with SEMAR, namely, a smart light, water heater, and room temperature monitoring system. In addition, we applied it to the setup process of an IoT application system for a course for undergraduate students at the Insitut Bisnis dan Teknologi (INSTIKI), Indonesia. The results demonstrate the effectiveness of the proposed service for SEMAR. en-copyright= kn-copyright= en-aut-name=KotamaI. Nyoman Darma en-aut-sei=Kotama en-aut-mei=I. Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DesnanjayaI. Gusti Made Ngurah en-aut-sei=Desnanjaya en-aut-mei=I. Gusti Made Ngurah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Computer System Engineering, Institute of Business and Technology Indonesia kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= generative AI kn-keyword= generative AI en-keyword= review kn-keyword= review en-keyword= application server platform kn-keyword= application server platform en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor input kn-keyword= sensor input END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=91 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Application of SEMAR IoT Application Server Platform to Drone-Based Wall Inspection System Using AI Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, artificial intelligence (AI) has been adopted in a number of Internet of Things (IoT) application systems to enhance intelligence. We have developed a ready-made server with rich built-in functions to collect, process, display, analyze, and store data from various IoT devices, the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform, in which various AI techniques have been implemented to enhance its capabilities. In this paper, we present an application of SEMAR to a drone-based wall inspection system using an object detection AI model called You Only Look Once (YOLO). This system aims to detect wall cracks at high places using images taken via a camera on a flying drone. An edge computing device is installed to control the drone, sending the taken images through the Kafka system, storing them with the drone flight data, and sending the data to SEMAR. The images are analyzed via YOLO through SEMAR. For evaluations, we implemented the system using Ryze Tello for the drone and Raspberry Pi for the edge, and we evaluated the detection accuracy. The preliminary experiment results confirmed the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NopriantoNobuo en-aut-sei=Noprianto en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamakiShunya en-aut-sei=Sakamaki en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukaridhotoSritrusta en-aut-sei=Sukaridhoto en-aut-mei=Sritrusta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatics and Computer, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=7 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=8 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= AI kn-keyword= AI en-keyword= SEMAR kn-keyword= SEMAR en-keyword= crack detection kn-keyword= crack detection en-keyword= drone kn-keyword= drone en-keyword= Kafka kn-keyword= Kafka END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, enhancing campus environments through mitigations of air pollutions is an essential endeavor to support academic achievements, health, and safety of students and staffs in higher educational institutes. In laboratories, pollutants from welding, auto repairs, or chemical experiments can drastically degrade the air quality in the campus, endangering the respiratory and cognitive health of students and staffs. Besides, in universities in Indonesia, automobile emissions of harmful substances such as carbon monoxide (CO), nitrogen dioxide (NO2), and hydrocarbon (HC) have been a serious problem for a long time. Almost everybody is using a motorbike or a car every day in daily life, while the number of students is continuously increasing. However, people in many campuses including managements do not be aware these problems, since air quality is not monitored. In this paper, we present a real-time air quality monitoring system utilizing Internet of Things (IoT) integrated sensors capable of detecting pollutants and measuring environmental conditions to visualize them. By transmitting data to the SEMAR IoT application server platform via an ESP32 microcontroller, this system provides instant alerts through a web application and Telegram notifications when pollutant levels exceed safe thresholds. For evaluations of the proposed system, we adopted three sensors to measure the levels of CO, NO2, and HC and conducted experiments in three sites, namely, Mechatronics Laboratory, Power and Emission Laboratory, and Parking Lot, at the State Polytechnic of Malang, Indonesia. Then, the results reveal Good, Unhealthy, and Dangerous for them, respectively, among the five categories defined by the Indonesian government. The system highlighted its ability to monitor air quality fluctuations, trigger warnings of hazardous conditions, and inform the campus community. The correlation of the sensor levels can identify the relationship of each pollutant, which provides insight into the characteristics of pollutants in a particular scenario. en-copyright= kn-copyright= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SetiawanBudhy en-aut-sei=Setiawan en-aut-mei=Budhy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=2 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= campus air quality kn-keyword= campus air quality en-keyword= pollutant detection kn-keyword= pollutant detection en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor technology kn-keyword= sensor technology en-keyword= web application kn-keyword= web application END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202403213 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 µg/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 µg/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 µg/mL). All evaluated compounds were nontoxic at a concentration of 50 µg/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Amines kn-keyword=Amines en-keyword=Antifouling activity kn-keyword=Antifouling activity en-keyword=Barnacle kn-keyword=Barnacle en-keyword=Structure–activity relationships kn-keyword=Structure–activity relationships en-keyword=Xylemin kn-keyword=Xylemin END start-ver=1.4 cd-journal=joma no-vol=197 cd-vols= no-issue= article-no= start-page=115301 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fraglide-1 from traditional Chinese aromatic vinegar: A natural AhR antagonist for atopic dermatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Traditional Chinese Zhenjiang aromatic vinegar (Kozu) contains Fraglide-1 (FG1), a bioactive lactone with demonstrated peroxisome proliferator-activated receptor gamma (PPARγ) agonist and antioxidant activities. This study explored FG1's novel ability to antagonize the aryl hydrocarbon receptor (AhR) signaling pathway, which regulates artemin expression and contributes to itching and inflammation in atopic dermatitis. Through molecular docking simulations and cell-based assays in human keratinocytes, we demonstrated FG1's potent antagonistic activity against AhR signaling. FG1 effectively suppressed FICZ-induced inflammatory responses, including artemin expression, with potency (half maximal inhibitory concentration, IC50 = 5.1 μM) comparable to the synthetic antagonist StemRegenin 1 (SR1) while demonstrating a superior safety profile (median lethal concentration, LC50 > 100 μM vs. 27.5 μM for SR1). These findings expand our understanding of bioactive compounds from traditional fermented foods and their regulatory effects on AhR signaling, providing a foundation for future studies on FG1's role in modulating skin inflammation. en-copyright= kn-copyright= en-aut-name=KatoKosuke en-aut-sei=Kato en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkamatsuMiki en-aut-sei=Akamatsu en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakimaruSaya en-aut-sei=Kakimaru en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoreishiMayuko en-aut-sei=Koreishi en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagiMasahiro en-aut-sei=Takagi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyashitaMasahiro en-aut-sei=Miyashita en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsujinoYoshio en-aut-sei=Tsujino en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science, Technology and Innovation, Kobe University kn-affil= en-keyword=AhR kn-keyword=AhR en-keyword=Xenobiotic responsive element kn-keyword=Xenobiotic responsive element en-keyword=StemRegenin 1 kn-keyword=StemRegenin 1 en-keyword=ARNT kn-keyword=ARNT en-keyword=Atopic dermatitis kn-keyword=Atopic dermatitis en-keyword=Artemin kn-keyword=Artemin END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=8 article-no= start-page=e202418546 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=B,N‐Embedded Helical Nanographenes Showing an Ion‐Triggered Chiroptical Switching Function en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intramolecular oxidative aromatic coupling of 3,6-bis(m-terphenyl-2’-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2’-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded π-framework, which leads to the high binding constant (Ka) of 1×105 M−1. The four-coordinate boron species was converted back to the parent three-coordinate boron species with Ag+, and the chiroptical switch between the three-coordinate boron and four-coordinate boron species has been achieved via the ion recognition with the change in the color and glum values. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MichishitaSayaka en-aut-sei=Michishita en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomoIssa en-aut-sei=Yasutomo en-aut-mei=Issa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Boron kn-keyword=Boron en-keyword=Chirality kn-keyword=Chirality en-keyword=Circularly polarized luminescence kn-keyword=Circularly polarized luminescence en-keyword=Helical nanographenes kn-keyword=Helical nanographenes en-keyword=Ion sensing kn-keyword=Ion sensing END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=1 article-no= start-page=3 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of SNPs associated with reproductive and body growth traits in Vietnamese and Nepalese native buffaloes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Water buffaloes are essential to the rural economies of many developing countries, including Vietnam and Nepal, but native buffalo populations in these countries face challenges such as low productivity due to fertility and body growth issues. This study analyzed 34 SNPs in 18 genes associated with reproductive and body growth traits reported in cattle and buffalo in Vietnamese and Nepalese native buffaloes. Results showed no polymorphism at bovine SNPs in either buffalo. Further analysis with SNPs previously reported only in popular buffalo breeds, such as Murrah, found that Vietnamese buffalo were monomorphic at all sites, which may reflect reduced genetic diversity due to population decline. In contrast, Nepalese buffalo, consisting of two native breeds, showed polymorphism in 11 SNPs in 7 genes, with 10 of these matching those found in the Murrah buffalo analyzed here. These findings suggest that these SNPs may be applicable for genetic improvement in Nepalese native buffalo. This study provides valuable insights for future conservation and breeding programs aimed at enhancing reproductive and body growth performance of native buffalo in Vietnam and Nepal. en-copyright= kn-copyright= en-aut-name=Thuy ThanhNguyen en-aut-sei=Thuy Thanh en-aut-mei=Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuniedaTetsuo en-aut-sei=Kunieda en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Manoj KumarShah en-aut-sei=Manoj Kumar en-aut-mei=Shah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Thu Nu AnhLe en-aut-sei=Thu Nu Anh en-aut-mei=Le kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Van HuuNguyen en-aut-sei=Van Huu en-aut-mei=Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaeMayuko en-aut-sei=Nagae en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiTakehito en-aut-sei=Tsuji en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=National Swine Research Program kn-affil= affil-num=4 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=5 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Vietnamese native buffalo kn-keyword=Vietnamese native buffalo en-keyword=Nepalese native buffalo kn-keyword=Nepalese native buffalo en-keyword=SNPs kn-keyword=SNPs en-keyword=Reproduction kn-keyword=Reproduction en-keyword=Body growth kn-keyword=Body growth END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=6 article-no= start-page=064502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Josephson effect and odd-frequency pairing in superconducting junctions with unconventional magnets en-subtitle= kn-subtitle= en-abstract= kn-abstract=We consider Josephson junctions formed by coupling two conventional superconductors via an unconventional magnet and investigate the formation of Andreev bound states, their impact on the Josephson effect, and the emergent superconducting correlations. In particular, we focus on unconventional magnets known as 𝑑-wave altermagnets and 𝑝-wave magnets. We find that the Andreev bound states in 𝑑-wave altermagnet and 𝑝𝑦-wave magnet Josephson junctions strongly depend on the transverse momentum, with a spin splitting and low-energy minima as a function of the superconducting phase difference 𝜑. In contrast, the Andreev bound states for 𝑝𝑥-wave magnets are insensitive to the transverse momentum. We then show that the Andreev bound states can be probed by the local density of states in the middle of the junction, which also reveals that 𝑑𝑥2−𝑦2- and 𝑝-wave magnet junctions are prone to host zero energy peaks. While the zero-energy peak in 𝑑𝑥2−𝑦2-wave altermagnet junctions tends to oscillate with the magnetic order, it remains robust in 𝑝-wave magnet junctions. We then discover that the Josephson current in 𝑑-wave altermagnet junctions is composed of higher harmonics of 𝜑, which originate a 𝜙-Josephson junction behavior entirely controlled by the magnetic order in 𝑑𝑥⁢𝑦-wave altermagnets. In contrast, the Josephson current in Josephson junctions with 𝑝-wave magnets exhibits a conventional sinelike profile with a fast sign change at 𝜑=𝜋 due to zero-energy Andreev bound states. We also demonstrate that the critical currents in 𝑑-wave altermagnet Josephson junctions exhibit an oscillatory decay with the increase of the magnetic order, while the oscillations are absent in 𝑝-wave magnet junctions albeit the currents exhibit a slow decay. Furthermore, we also demonstrate that the interplay of the Josephson effect and unconventional magnetic order of 𝑑-wave altermagnets and 𝑝-wave magnets originates from odd-frequency spin-triplet 𝑠-wave superconducting correlations that are otherwise absent. Our results can serve as a guide to pursue the new functionality of Josephson junctions based on unconventional magnets. en-copyright= kn-copyright= en-aut-name=FukayaYuri en-aut-sei=Fukaya en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaKazuki en-aut-sei=Maeda en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YadaKeiji en-aut-sei=Yada en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CayaoJorge en-aut-sei=Cayao en-aut-mei=Jorge kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaYukio en-aut-sei=Tanaka en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LuBo en-aut-sei=Lu en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Environmental Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=3 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=4 en-affil=Department of Physics and Astronomy, Uppsala University kn-affil= affil-num=5 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=6 en-affil=Center for Joint Quantum Studies, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=2 article-no= start-page=54 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=White coat color in Vietnamese native buffalo is attributed to the LINE1 insertion in ASIP en-subtitle= kn-subtitle= en-abstract= kn-abstract=The coat color of the swamp buffalo is commonly dark gray, while the white coat color variant, which may have potential heat stress advantages, is also present in some Asian countries, including Vietnam. This study analyzed the most likely candidate genes, ASIP and TYR, responsible for the white coat color of Vietnamese native buffaloes. We found that LINE1 insertion in ASIP, a mutation previously reported in white swamp buffalo from other Asian countries, was exclusively found in white Vietnamese buffalo. Moreover, significantly higher expression of ASIP was confirmed in the hair follicles of white buffalo. On the other hand, no variants associated with the white phenotype were found in TYR. These findings indicate that the LINE1 insertion in ASIP is responsible for the white coat color in Vietnamese native buffalo, and that provides a crucial step towards their utilization and improved productivity in Vietnam. en-copyright= kn-copyright= en-aut-name=NguyenThuy Thanh en-aut-sei=Nguyen en-aut-mei=Thuy Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeQuan Viet en-aut-sei=Le en-aut-mei=Quan Viet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenVan Huu en-aut-sei=Nguyen en-aut-mei=Van Huu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DuongHai Thanh en-aut-sei=Duong en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsujiTakehito en-aut-sei=Tsuji en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Vietnamese buffalo kn-keyword=Vietnamese buffalo en-keyword=White coat color kn-keyword=White coat color en-keyword=LINE1 insertion kn-keyword=LINE1 insertion en-keyword=ASIP kn-keyword=ASIP END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=4 article-no= start-page=563 end-page=567 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Backside Irradiation of Ultraviolet-A for Correcting Nonuniformity Error of Gafchromic XR-QA2 Films en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: Radiochromic film is used for quality assurance and quality control of X-ray equipment in the diagnostic radiology. In addition, three-dimensional dose distribution of computed tomography (CT) is measured. To correct the nonuniformity and uncertainty of radiochromic films for dose measurement of CT, the films are preirradiated ultraviolet (UV)-A rays. There is a difference in the UV protection strength of radiochromic films. A concern exists about the effects of the UV-A irradiation intensity. We thus irradiated with UV-A rays from the backsides of the films to assess if backside irradiation was possible. Materials and Methods: Gafchromic XR-QA2 and RTQA2 were used in this study. The UV-A rays were simultaneously irradiated on the front and backsides of each film for 12 h. The yellow layer of each film was scanned and imaged. The average pixel values ± standard deviations (SDs) were compared. In the statistical analysis, a paired t-test was performed. To compare, the active-layer densities engendered by the UV-A rays. Calibration curve was created with 48 h of preirradiation of UV-A. Results: The mean pixel values ± SD for Gafchromic XR-QA2 on the front and backsides were 130.776 ± 0.812 and 81.015 ± 1.128, respectively. On the other hand, the mean pixel values ± SD for Gafchromic RTQA2 on the front and backsides were 62.299 ± 1.077 and 133.761 ± 1.365, respectively. The statistical results of the paired t-test were significantly different (P < 0.01) between both films. Fitting equation of the calibration curve is shown below. y = -390.47 ± 200 + (443.45 ± 10x80).5068 ± 0.0434. Conclusion: Based on the relationship between the sensitivity of the active layer to UV-A rays and the strength of UV protection on the surface, we concluded that backside irradiation is recommended for Gafchromic XR-QA2, and frontside irradiation is recommended for Gafchromic RTQA2. en-copyright= kn-copyright= en-aut-name=TankiNobuyoshi en-aut-sei=Tanki en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsudaToshizo en-aut-sei=Katsuda en-aut-mei=Toshizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotandaRumi en-aut-sei=Gotanda en-aut-mei=Rumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotandaTatsuhiro en-aut-sei=Gotanda en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuwanoTadao en-aut-sei=Kuwano en-aut-mei=Tadao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medical Radiation Technology, Shizuoka College of Medicalcare Science kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=6 en-affil=Department of Radiology, Osaka Center for Cancer and Cardiovascular Diseases Prevention kn-affil= en-keyword=Backside irradiation kn-keyword=Backside irradiation en-keyword=computed tomography kn-keyword=computed tomography en-keyword=reflective type radiochromic film kn-keyword=reflective type radiochromic film en-keyword=ultraviolet radiation kn-keyword=ultraviolet radiation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats.
Methods We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11–15).
Results The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells.
Conclusions Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders. en-copyright= kn-copyright= en-aut-name=ZenshoKazumasa en-aut-sei=Zensho en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsseAika en-aut-sei=Isse en-aut-mei=Aika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MisawaIchika en-aut-sei=Misawa en-aut-mei=Ichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkaMakio en-aut-sei=Oka en-aut-mei=Makio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Psychosocial Medicine, National Center for Child Health and Development kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=99 cd-vols= no-issue=3 article-no= start-page=e02166-24 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA en-subtitle= kn-subtitle= en-abstract= kn-abstract=Capsidless yadokariviruses (members of the order Yadokarivirales) with (+)RNA genomes divert the capsid of their partner icosahedral double-stranded RNA (dsRNA) viruses in different families of the order Ghabrivirales into the replication site. A yadokarivirus, AfSV2, has been reported from a German strain of the ascomycete fungus Aspergillus foetidus coinfected by two dsRNA viruses, a victorivirus (AfSV1, family Pseudototiviridae) and an alternavirus (AfFV, family Alternaviridae). Here, we identified AfSV1 as the partner of AfSV2 in a Japanese A. foetidus strain after showing the infectiousness of AfSV2 in three forms: virus particles (heterocapsid), transforming full-length complementary DNA (cDNA), and purified replicated form (RF) dsRNA that is believed to be inactive as a translational template. Virion transfection of virus-free A. foetidus protoplasts resulted in the generation of two strains infected either by AfSV1 alone or by both AfSV1 and AfSV2. Transformants with AfSV2 full-length cDNA launched AfSV2 infection only in the presence of AfSV1, but not those with AfSV2 RNA-directed RNA polymerase mutant cDNA. The purified fractions containing AfSV2 RF dsRNA also launched infection when transfected into protoplasts infected by AfSV1. Treatment with dsRNA-specific RNase III, but not with proteinase K, S1 nuclease, or DNase I, abolished the infectivity of AfSV2 RF dsRNA. Furthermore, we confirmed the infectiousness of gel-purified AfSV2 RF dsRNA in the presence of AfSV1. Taken together, our results show the unique infectious entity of AfSV2 and the expansion of yadokarivirus partners in the family Pseudototiviridae and provide interesting evolutionary insights. en-copyright= kn-copyright= en-aut-name=FadliMuhammad en-aut-sei=Fadli en-aut-mei=Muhammad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NovoaGuy en-aut-sei=Novoa en-aut-mei=Guy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CastónJosé R. en-aut-sei=Castón en-aut-mei=José R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco kn-affil= affil-num=4 en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=yadokarivirus kn-keyword=yadokarivirus en-keyword=hetero-encapsidation kn-keyword=hetero-encapsidation en-keyword=partner dsRNA virus kn-keyword=partner dsRNA virus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=Aspergillus foetidus kn-keyword=Aspergillus foetidus en-keyword=neo-lifestyle kn-keyword=neo-lifestyle END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=3 article-no= start-page=1007 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LRP4 and Agrin Are Modulated by Cartilage Degeneration and Involved in β-Catenin Signaling in Human Articular Chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the roles of low-density lipoprotein receptor-related protein (LRP) 4 and its ligand Agrin in the pathophysiology of cartilage degeneration. Immunohistochemical analysis of human normal articular cartilage and cartilage tissues from patients with osteoarthritis (OA) obtained during surgery of the knee joint showed marked LRP4 expression in the early stages of OA, which then decreased with cartilage degeneration, whereas Agrin was consistently increased with cartilage degeneration. In normal human articular chondrocytes (NHACs), mild cyclic tensile strain (CTS) (0.5 Hz, 5% elongation, 2 h) increased the expression of LRP4 and aggrecan (ACAN), while intense CTS (0.5 Hz, 10% elongation, 6 h) increased the expression of Agrin without affecting LRP4 expression. Treatment with recombinant human (rh) Agrin downregulated the mRNA expression of LRP4 and ACAN, but upregulated the expression of LRP5/6, SRY-box transcription factor 9 (SOX9), Runt-related transcription factor 2 (RUNX2), and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4). Immunocytochemistry and Western blot analysis showed that rhAgrin treatment upregulated the expression of β-catenin and SOX9. Agrin knockdown by siAGRN transfection partially reduced the nuclear protein expression of β-catenin, which was increased with intense CTS. LRP4 knockdown by siLRP4 transfection increased the expression of LRP5/6, SOX9, RUNX2, ADAMTS-4, and Agrin. These results suggested that intense CTS increases the expression of Agrin, which might interfere with the role of LRP4 in the inhibition of LRP5/6 and their downstream β-catenin signaling, leading to cartilage degeneration. en-copyright= kn-copyright= en-aut-name=NaniwaShuichi en-aut-sei=Naniwa en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasuYoshihisa en-aut-sei=Nasu en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HottaYoshifumi en-aut-sei=Hotta en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuNoriyuki en-aut-sei=Shimizu en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchikawaChinatsu en-aut-sei=Ichikawa en-aut-mei=Chinatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LinDeting en-aut-sei=Lin en-aut-mei=Deting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaNoriaki en-aut-sei=Otsuka en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=2 en-affil=Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=4 en-affil=Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=5 en-affil=Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Sayo Central Hospital kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=11 en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University kn-affil= affil-num=12 en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=osteoarthritis kn-keyword=osteoarthritis en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=mechanical stress kn-keyword=mechanical stress en-keyword=LRP4 kn-keyword=LRP4 en-keyword=Agrin kn-keyword=Agrin en-keyword=β-catenin kn-keyword=β-catenin en-keyword=SOX9 kn-keyword=SOX9 END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=1 article-no= start-page=vvae044 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effects of soybeans and its derivatives on oral diseases: a narrative review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Soybean is a widely utilized protein source that originated in China and has been associated with preventing and treating various diseases. Soy protein has been found to inhibit fat accumulation effectively, and soybeans contain isoflavones, saponins, phytic acid, and other substances with preventive and therapeutic effects on heart disease, cancer, and diabetes. Furthermore, processed soybean products, such as Avocado-Soybean unsaponifiable, Tempeh, and Bowman-Birk inhibitor, have demonstrated health benefits. These products have been shown to have antibacterial, antioxidant, and anticancer effects in oral diseases. Numerous experiments have provided evidence of the antibacterial, antioxidant, and anticancer effects of polyunsaturated fatty acids, isoflavones, and soybean polypeptides. This comprehensive review assesses the relationship and mechanism of soybeans and their derivatives on oral diseases, providing valuable insights into their prevention and treatment. en-copyright= kn-copyright= en-aut-name=CanyanKuang en-aut-sei=Canyan en-aut-mei=Kuang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AriasZulema Rosalia en-aut-sei=Arias en-aut-mei=Zulema Rosalia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=soybean kn-keyword=soybean en-keyword=soy products kn-keyword=soy products en-keyword=oral diseases kn-keyword=oral diseases en-keyword=dental application kn-keyword=dental application en-keyword=antibacterial effect kn-keyword=antibacterial effect en-keyword=antioxidant kn-keyword=antioxidant en-keyword=anticancer kn-keyword=anticancer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of caffeine on the longevity and locomotion activity of the common green bottle fly, Lucilia sericata (Diptera: Calliphoridae) en-subtitle= kn-subtitle= en-abstract= kn-abstract=The common green bottle fly, Lucilia sericata (Meigen) (Diptera: Calliphoridae), is a promising and useful managed pollinator for greenhouse agricultural crops. The fly can pollinate at lower and higher temperatures than European honeybee. However, management of the longevity of pollinators is important for growers using greenhouses. Previous studies using other insects showed that caffeine affects insect longevity and behaviors. For instance, European honeybee live longer and have increased memory after caffeine consumption. How caffeine affects the longevity and behavior of pollinators is worth investigating because it can affect pollinator’s behavior, extend longevity, or be an insecticide against pollinators. In the present study, therefore, the longevity and locomotion of L. sericata were investigated when they were given different caffeine concentrations. First, the longevity of L. sericata with five different caffeine concentrations was compared to the control. The results showed that higher concentrations of caffeine (2%, 1%, and 0.5%) significantly decreased the life span compared to lower concentrations (0.05% and 0.01%). Second, the locomotion activities of L. sericata were examined at those two caffeine concentrations with treated and control male and female flies utilizing a Drosophila Activity Monitor (DAM). Treatment with 0.05% caffeine dramatically reduced locomotion, but treatment of 0.01% caffeine did not. We also compared lipid concentrations of flies: flies treated with 0.05% caffeine had a lower lipid concentration compared to flies treated with 0% and 0.01% caffeine. These results indicate that caffeine had negative effects on the longevity and locomotion activities of the pollinator L. sericata in laboratory conditions. en-copyright= kn-copyright= en-aut-name=NaingShine Shane en-aut-sei=Naing en-aut-mei=Shine Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiokaHaruna en-aut-sei=Fujioka en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Caffeine kn-keyword=Caffeine en-keyword=Life span kn-keyword=Life span en-keyword=Locomotor activity kn-keyword=Locomotor activity en-keyword=Pollinator kn-keyword=Pollinator END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue= article-no= start-page=103026 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients. The td N-89 or artemisinin (ART) formulation was transdermally administered to P. berghei-infected mice with 0.2–0.4 % parasitemia, twice daily for four days, at an effective dose of 90 % for malaria. Parasitemia was decreased in td N-89 and td ART groups during the drug treatment; then, three of the eight mice in td N-89 group were completely cured without relapse. Additionally, abnormal trophozoites in td N-89 group were observed 8 h after administration and increased up to 24 h. To study the change in endoplasmic reticulum-resident calcium-binding protein (ERC) gene expression with td N-89, we investigated the gene expression of P. berghei ERC (PbERC) after td N-89 treatment. PbERC gene expression was increased time-dependently in control group, and was statistically decreased at 4 and 8 h and then increased similar to that of control group at 12 h in td ART group. In contrast, the expression in td N-89 group was almost steady starting from 0 h. We also studied parasite egress-related genes expression after td N-89 treatment, plasmepsin X, subtilisin-like protease 1 and merozoite surface protein 1, were suppressed at 12 h compared to control group. These results suggest that N-89 affects function of endoplasmic reticulum via regulating gene suppression and subsequently parasite growth is inhibited. en-copyright= kn-copyright= en-aut-name=MatsumoriHiroaki en-aut-sei=Matsumori en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DinhThi Quyen en-aut-sei=Dinh en-aut-mei=Thi Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaMasayuki en-aut-sei=Morita en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Intestinal Health Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Anatomy, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Synthetic antimalarial endoperoxide kn-keyword=Synthetic antimalarial endoperoxide en-keyword=Transdermal N-89 kn-keyword=Transdermal N-89 en-keyword=Artemisinin kn-keyword=Artemisinin en-keyword=In vivo kn-keyword=In vivo en-keyword=Abnormal trophozoite kn-keyword=Abnormal trophozoite en-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC) kn-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC) en-keyword=Parasite egress-related gene kn-keyword=Parasite egress-related gene END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=24 article-no= start-page=4606 end-page=4620 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nano/microparticle-based tough and recyclable polymers toward a sustainable society en-subtitle= kn-subtitle= en-abstract= kn-abstract=By virtue of their unique properties, polymer nano/microparticles constitute important building blocks for the construction of functional nanomaterials. Although intense research efforts in this field have laid the foundation for the applications of polymer nano/microparticle-based latex films, cutting-edge innovations in the recycling of polymer materials are still required for the realization of a sustainable society. This feature article reviews our recent attempts to develop the applications of polymer nano/microparticles in the context of a circular society on the basis of the precise synthesis of single nano/microparticles and multiscale structural analysis. en-copyright= kn-copyright= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurehaTakuma en-aut-sei=Kureha en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=21 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prediction of Prostate Cancer Grades Using Radiomic Features en-subtitle= kn-subtitle= en-abstract= kn-abstract=We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients. en-copyright= kn-copyright= en-aut-name=YamamotoYasuhiro en-aut-sei=Yamamoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraguchiTakafumi en-aut-sei=Haraguchi en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsudaKaori en-aut-sei=Matsuda en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkazakiYoshio en-aut-sei=Okazaki en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimotoShin en-aut-sei=Kimoto en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanjiNozomu en-aut-sei=Tanji en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoAtsushi en-aut-sei=Matsumoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MimuraHidefumi en-aut-sei=Mimura en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=2 en-affil=Department of Advanced Biomedical Imaging and Informatics, St. Marianna University School of Medicine kn-affil= affil-num=3 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=6 en-affil=Department of Urology, Houshasen Daiichi Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Houshasen Daiichi Hospital kn-affil= affil-num=8 en-affil=Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine kn-affil= affil-num=9 en-affil=Department of Radiology, St. Marianna University School of Medicine kn-affil= affil-num=10 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=prostate cancer kn-keyword=prostate cancer en-keyword=machine learning kn-keyword=machine learning en-keyword=prostate Imaging-Reporting and Data System kn-keyword=prostate Imaging-Reporting and Data System en-keyword=radiomics kn-keyword=radiomics en-keyword=Gleason score kn-keyword=Gleason score END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=35 article-no= start-page=e2320189121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell–specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets. en-copyright= kn-copyright= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataKazuma en-aut-sei=Iwata en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaekiYuka en-aut-sei=Saeki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WatanabeHiroko en-aut-sei=Watanabe en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HondaHiroaki en-aut-sei=Honda en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=8 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=11 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=14 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=20 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa kn-affil= affil-num=21 en-affil=Department of Pathology, Tokyo Women's Medical University kn-affil= affil-num=22 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=23 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=24 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=25 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=somatic mutation kn-keyword=somatic mutation en-keyword=T cell kn-keyword=T cell en-keyword=tumor-infiltrating lymphocytes kn-keyword=tumor-infiltrating lymphocytes END start-ver=1.4 cd-journal=joma no-vol=170 cd-vols= no-issue= article-no= start-page=109242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250315 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of small fatigue crack deflection behavior on copper using electron backscatter diffraction and crystal plasticity finite element analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, it was conducted to observe the propagation behavior of small fatigue cracks generated on the surface of α-brass and pure copper, using an electrodynamic plane bending fatigue testing machine. The EBSD method was also used to analyze the crystal orientation near the bottom of the notch on the surface of the test piece. For each slip system of the grain, we calculated the slip factor, defined as the ratio of resolved shear stresses that considers the singular stress field at the crack tip, and investigated the relationship between the propagation behavior of small cracks and the slip factor. Furthermore, we performed a crystal plasticity finite element analysis (CP-FEM) using a crystal plasticity FEM model created from the grains obtained by the EBSD method to predict the deflection behavior of small fatigue cracks when propagating through the grain boundaries. The results indicated that when a crack propagates across a grain boundary, it is difficult to predict the deflection behavior using slip factors, however, the deflection behavior of a crack can be predicted from the resolved shear stress calculated using CP-FEM, which considers the mechanical interactions between crystal grains. en-copyright= kn-copyright= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YabukiRyo en-aut-sei=Yabuki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoMasato en-aut-sei=Ito en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YaguchiKenichi en-aut-sei=Yaguchi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= affil-num=5 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= en-keyword=Small fatigue crack kn-keyword=Small fatigue crack en-keyword=Crystal orientation kn-keyword=Crystal orientation en-keyword=CP-FEM kn-keyword=CP-FEM en-keyword=EBSD kn-keyword=EBSD END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=RP99858 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingJian en-aut-sei=Xing en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHaruya en-aut-sei=Ogawa en-aut-mei=Haruya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END