start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(−) Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(−) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses.
en-copyright=
kn-copyright=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BallingerMatthew J.
en-aut-sei=Ballinger
en-aut-mei=Matthew J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BaoYiming
en-aut-sei=Bao
en-aut-mei=Yiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BlasdellKim R.
en-aut-sei=Blasdell
en-aut-mei=Kim R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BrieseThomas
en-aut-sei=Briese
en-aut-mei=Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrignoneJulia
en-aut-sei=Brignone
en-aut-mei=Julia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CarreraJean Paul
en-aut-sei=Carrera
en-aut-mei=Jean Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=De ConinckLander
en-aut-sei=De Coninck
en-aut-mei=Lander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=de SouzaWilliam Marciel
en-aut-sei=de Souza
en-aut-mei=William Marciel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DürrwaldRalf
en-aut-sei=Dürrwald
en-aut-mei=Ralf
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ErdinMert
en-aut-sei=Erdin
en-aut-mei=Mert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FooksAnthony R.
en-aut-sei=Fooks
en-aut-mei=Anthony R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ForbesKristian M.
en-aut-sei=Forbes
en-aut-mei=Kristian M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Freitas-AstúaJuliana
en-aut-sei=Freitas-Astúa
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=GarciaJorge B.
en-aut-sei=Garcia
en-aut-mei=Jorge B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GeogheganJemma L.
en-aut-sei=Geoghegan
en-aut-mei=Jemma L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GrimwoodRebecca M.
en-aut-sei=Grimwood
en-aut-mei=Rebecca M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HorieMasayuki
en-aut-sei=Horie
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HyndmanTimothy H.
en-aut-sei=Hyndman
en-aut-mei=Timothy H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohneReimar
en-aut-sei=Johne
en-aut-mei=Reimar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KlenaJohn D.
en-aut-sei=Klena
en-aut-mei=John D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KooninEugene V.
en-aut-sei=Koonin
en-aut-mei=Eugene V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KostygovAlexei Y.
en-aut-sei=Kostygov
en-aut-mei=Alexei Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=LetkoMichael
en-aut-sei=Letko
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LiJun-Min
en-aut-sei=Li
en-aut-mei=Jun-Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=LiuYiyun
en-aut-sei=Liu
en-aut-mei=Yiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=MartinMaria Laura
en-aut-sei=Martin
en-aut-mei=Maria Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MullNathaniel
en-aut-sei=Mull
en-aut-mei=Nathaniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NazarYael
en-aut-sei=Nazar
en-aut-mei=Yael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=NowotnyNorbert
en-aut-sei=Nowotny
en-aut-mei=Norbert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NunesMárcio Roberto Teixeira
en-aut-sei=Nunes
en-aut-mei=Márcio Roberto Teixeira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=ØklandArnfinn Lodden
en-aut-sei=Økland
en-aut-mei=Arnfinn Lodden
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=RubbenstrothDennis
en-aut-sei=Rubbenstroth
en-aut-mei=Dennis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=RussellBrandy J.
en-aut-sei=Russell
en-aut-mei=Brandy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=SchottEric
en-aut-sei=Schott
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SeifertStephanie
en-aut-sei=Seifert
en-aut-mei=Stephanie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SenCarina
en-aut-sei=Sen
en-aut-mei=Carina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ShedroffElizabeth
en-aut-sei=Shedroff
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=SironenTarja
en-aut-sei=Sironen
en-aut-mei=Tarja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=SmuraTeemu
en-aut-sei=Smura
en-aut-mei=Teemu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=TavaresCamila Prestes Dos Santos
en-aut-sei=Tavares
en-aut-mei=Camila Prestes Dos Santos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=TeshRobert B.
en-aut-sei=Tesh
en-aut-mei=Robert B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=TilstonNatasha L.
en-aut-sei=Tilston
en-aut-mei=Natasha L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=TordoNoël
en-aut-sei=Tordo
en-aut-mei=Noël
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=VasilakisNikos
en-aut-sei=Vasilakis
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WangFei
en-aut-sei=Wang
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=WhitmerShannon L.M.
en-aut-sei=Whitmer
en-aut-mei=Shannon L.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=WolfYuri I.
en-aut-sei=Wolf
en-aut-mei=Yuri I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=XiaHan
en-aut-sei=Xia
en-aut-mei=Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=YeGong-Yin
en-aut-sei=Ye
en-aut-mei=Gong-Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=YeZhuangxin
en-aut-sei=Ye
en-aut-mei=Zhuangxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=YurchenkoVyacheslav
en-aut-sei=Yurchenko
en-aut-mei=Vyacheslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=ZhaoMingli
en-aut-sei=Zhao
en-aut-mei=Mingli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
affil-num=1
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=2
en-affil=Biological Sciences, Mississippi State University
kn-affil=
affil-num=3
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Nacional de Tecnología Agropecuaria (INTA)
kn-affil=
affil-num=5
en-affil=CSIRO Health and Biosecurity
kn-affil=
affil-num=6
en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University
kn-affil=
affil-num=7
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=8
en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud
kn-affil=
affil-num=9
en-affil=Division of Clinical and Epidemiological Virology, KU Leuven
kn-affil=
affil-num=10
en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
kn-affil=
affil-num=11
en-affil=Instituto Nacional de Tecnología Agropecuaria (INTA)
kn-affil=
affil-num=12
en-affil=QAAFI, The University of Queensland
kn-affil=
affil-num=13
en-affil=Robert Koch Institut
kn-affil=
affil-num=14
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=15
en-affil=Animal and Plant Health Agency (APHA)
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, University of Arkansas
kn-affil=
affil-num=17
en-affil=Embrapa Cassava and Fruits
kn-affil=
affil-num=18
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=19
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=20
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=21
en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University
kn-affil=
affil-num=22
en-affil=School of Veterinary Medicine, Murdoch University
kn-affil=
affil-num=23
en-affil=German Federal Institute for Risk Assessment
kn-affil=
affil-num=24
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=25
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=26
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=27
en-affil=University of Ostrava
kn-affil=
affil-num=28
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=29
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=30
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=31
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=32
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=33
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=34
en-affil=Department of Natural Sciences, Shawnee State University
kn-affil=
affil-num=35
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=36
en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health
kn-affil=
affil-num=37
en-affil=Universidade Federal do Pará
kn-affil=
affil-num=38
en-affil=Pharmaq Analytiq
kn-affil=
affil-num=39
en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut
kn-affil=
affil-num=40
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=41
en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science
kn-affil=
affil-num=42
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=43
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=44
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=45
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=46
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=47
en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná
kn-affil=
affil-num=48
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=49
en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine
kn-affil=
affil-num=50
en-affil=Institut Pasteur
kn-affil=
affil-num=51
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=52
en-affil=University of Queensland
kn-affil=
affil-num=53
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=54
en-affil=North Carolina State University
kn-affil=
affil-num=55
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=56
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=57
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=58
en-affil=Institute of Insect Sciences, Zhejiang University
kn-affil=
affil-num=59
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=60
en-affil=University of Ostrava
kn-affil=
affil-num=61
en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-IbañezJosé T.
en-aut-sei=Ascencio-Ibañez
en-aut-mei=José T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HafrénAnders
en-aut-sei=Hafrén
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasiów-JaroszewskaBeata
en-aut-sei=Hasiów-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HernándezCarmen
en-aut-sei=Hernández
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=López-LambertiniPaola M.
en-aut-sei=López-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=MäkinenKristiina
en-aut-sei=Mäkinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJesús
en-aut-sei=Navas-Castillo
en-aut-mei=Jesús
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=PallásVicente
en-aut-sei=Pallás
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-GonzálezPedro L.
en-aut-sei=Ramos-González
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-PöggelerKatja R.
en-aut-sei=Richert-Pöggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=ŠafářováDana
en-aut-sei=Šafářová
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=SanfaçonHélène
en-aut-sei=Sanfaçon
en-aut-mei=Hélène
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=SõmeraMerike
en-aut-sei=Sõmera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRené A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=René A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Français de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortaliças
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patología Vegetal (IPAVE), INTA, Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ciências Biológicas, Universidade de Brasília
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biológico de São Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Genéticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Université de la Réunion
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum Ländlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=9
article-no=
start-page=2604
end-page=2611
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA–PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
en-copyright=
kn-copyright=
en-aut-name=SchorrKathrin
en-aut-sei=Schorr
en-aut-mei=Kathrin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LangJohannes
en-aut-sei=Lang
en-aut-mei=Johannes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GoepferichAchim
en-aut-sei=Goepferich
en-aut-mei=Achim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=2
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
en-keyword=polymer nanoparticles
kn-keyword=polymer nanoparticles
en-keyword=direct 99mTc-labeling
kn-keyword=direct 99mTc-labeling
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
en-keyword=radio-thin layer chromatography
kn-keyword=radio-thin layer chromatography
en-keyword=radiocolloids
kn-keyword=radiocolloids
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=466
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification.
en-copyright=
kn-copyright=
en-aut-name=TanabeShihori
en-aut-sei=Tanabe
en-aut-mei=Shihori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuaderSabina
en-aut-sei=Quader
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoRyuichi
en-aut-sei=Ono
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoAkihisa
en-aut-sei=Yamamoto
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaMotohiro
en-aut-sei=Kojima
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PerkinsEdward J.
en-aut-sei=Perkins
en-aut-mei=Edward J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CabralHoracio
en-aut-sei=Cabral
en-aut-mei=Horacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion
kn-affil=
affil-num=3
en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine
kn-affil=
affil-num=7
en-affil=US Army Engineer Research and Development Center
kn-affil=
affil-num=8
en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=coronavirus
kn-keyword=coronavirus
en-keyword=coronaviral infection
kn-keyword=coronaviral infection
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=pathway analysis
kn-keyword=pathway analysis
en-keyword=predictionmodel
kn-keyword=predictionmodel
en-keyword=molecular network
kn-keyword=molecular network
en-keyword=molecular pathway image
kn-keyword=molecular pathway image
en-keyword=network analysis
kn-keyword=network analysis
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=3
article-no=
start-page=104810
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99°C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field.
en-copyright=
kn-copyright=
en-aut-name=TakanoAruto
en-aut-sei=Takano
en-aut-mei=Aruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmaliDennis V.
en-aut-sei=Umali
en-aut-mei=Dennis V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WardhanaApril H.
en-aut-sei=Wardhana
en-aut-mei=April H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SawitriDyah H.
en-aut-sei=Sawitri
en-aut-mei=Dyah H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TeramotoIsao
en-aut-sei=Teramoto
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HatabuToshimitsu
en-aut-sei=Hatabu
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KidoYasutoshi
en-aut-sei=Kido
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoAkira
en-aut-sei=Kaneko
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SasaiKazumi
en-aut-sei=Sasai
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatohHiromitsu
en-aut-sei=Katoh
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsubayashiMakoto
en-aut-sei=Matsubayashi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College
kn-affil=
affil-num=3
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=4
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=5
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=10
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=11
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
en-keyword=Coccidian parasite
kn-keyword=Coccidian parasite
en-keyword=Eimeria tenella
kn-keyword=Eimeria tenella
en-keyword=Extraction
kn-keyword=Extraction
en-keyword=Molecular identification
kn-keyword=Molecular identification
en-keyword=Oocyst
kn-keyword=Oocyst
END
start-ver=1.4
cd-journal=joma
no-vol=351
cd-vols=
no-issue=
article-no=
start-page=199522
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism.
en-copyright=
kn-copyright=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujitaMiki
en-aut-sei=Fujita
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TelengechPaul
en-aut-sei=Telengech
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamKazuyuki
en-aut-sei=Maruyam
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TassiAline Daniele
en-aut-sei=Tassi
en-aut-mei=Aline Daniele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchoaRonald
en-aut-sei=Ochoa
en-aut-mei=Ronald
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AndikaIda Bagus
en-aut-sei=Andika
en-aut-mei=Ida Bagus
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=6
en-affil=Tropical Research and Education Center, University of Florida
kn-affil=
affil-num=7
en-affil=Systematic Entomology Laboratory, USDA
kn-affil=
affil-num=8
en-affil=College of Plant Protection, Northwest A&F University
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhabdovirus
kn-keyword=Rhabdovirus
en-keyword=Plant
kn-keyword=Plant
en-keyword=Mite
kn-keyword=Mite
en-keyword=Vector
kn-keyword=Vector
en-keyword=Replication
kn-keyword=Replication
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Small RNA
kn-keyword=Small RNA
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=5
article-no=
start-page=e70046
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spider mite tetranins elicit different defense responses in different host habitats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant.
en-copyright=
kn-copyright=
en-aut-name=EndoYukiko
en-aut-sei=Endo
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMiku
en-aut-sei=Tanaka
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemuraTakuya
en-aut-sei=Uemura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimuraKaori
en-aut-sei=Tanimura
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DesakiYoshitake
en-aut-sei=Desaki
en-aut-mei=Yoshitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzawaRika
en-aut-sei=Ozawa
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonzanoSara
en-aut-sei=Bonzano
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaffeiMassimo E.
en-aut-sei=Maffei
en-aut-mei=Massimo E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArimuraGen‐ichiro
en-aut-sei=Arimura
en-aut-mei=Gen‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=6
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=8
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=11
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
en-keyword=Cucumis sativus
kn-keyword=Cucumis sativus
en-keyword=elicitor
kn-keyword=elicitor
en-keyword=Phaseolus vulgaris
kn-keyword=Phaseolus vulgaris
en-keyword=spider mite (Tetranychus urticae)
kn-keyword=spider mite (Tetranychus urticae)
en-keyword=tetranin
kn-keyword=tetranin
END
start-ver=1.4
cd-journal=joma
no-vol=637
cd-vols=
no-issue=8046
article-no=
start-page=744
end-page=748
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ‘centrophilic’ retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
en-copyright=
kn-copyright=
en-aut-name=TsukaharaSayuri
en-aut-sei=Tsukahara
en-aut-mei=Sayuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BousiosAlexandros
en-aut-sei=Bousios
en-aut-mei=Alexandros
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Perez-RomanEstela
en-aut-sei=Perez-Roman
en-aut-mei=Estela
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiSota
en-aut-sei=Yamaguchi
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LeduqueBasile
en-aut-sei=Leduque
en-aut-mei=Basile
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoAimi
en-aut-sei=Nakano
en-aut-mei=Aimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaishMatthew
en-aut-sei=Naish
en-aut-mei=Matthew
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OsakabeAkihisa
en-aut-sei=Osakabe
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyodaAtsushi
en-aut-sei=Toyoda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoHidetaka
en-aut-sei=Ito
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EderaAlejandro
en-aut-sei=Edera
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TominagaSayaka
en-aut-sei=Tominaga
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Juliarni
en-aut-sei=Juliarni
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatoKae
en-aut-sei=Kato
en-aut-mei=Kae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OdaShoko
en-aut-sei=Oda
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InagakiSoichi
en-aut-sei=Inagaki
en-aut-mei=Soichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=LorkovićZdravko
en-aut-sei=Lorković
en-aut-mei=Zdravko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=BergerFrédéric
en-aut-sei=Berger
en-aut-mei=Frédéric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KawabeAkira
en-aut-sei=Kawabe
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=QuadranaLeandro
en-aut-sei=Quadrana
en-aut-mei=Leandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HendersonIan
en-aut-sei=Henderson
en-aut-mei=Ian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakutaniTetsuji
en-aut-sei=Kakutani
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=3
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=4
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris
kn-affil=
affil-num=6
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Center for Genetic Resource Information, National Institute of Genetics
kn-affil=
affil-num=10
en-affil=Faculty of Science, Hokkaido University
kn-affil=
affil-num=11
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris
kn-affil=
affil-num=12
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Integrated Genetics, National Institute of Genetics
kn-affil=
affil-num=15
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=18
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=19
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=20
en-affil=Faculty of Life Sciences, Kyoto Sangyo University
kn-affil=
affil-num=21
en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris
kn-affil=
affil-num=22
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=23
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=262
cd-vols=
no-issue=2
article-no=
start-page=385
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm−1). We found that the relative value of the hydraulic resistance (rLpm−1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm−1 = ρmCs + 1, where ρm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp−1. We used their data to estimate Lpm−1 and rLpm−1. The values of rLpm−1 fit the above relation we found for alcohols. When we plotted the ρm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M−1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm−1) as a function of the external (π0) and internal (πi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ρm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M−1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ρm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449–461, 2004) is the decisive factor in a solute’s influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes.
en-copyright=
kn-copyright=
en-aut-name=TazawaMasashi
en-aut-sei=Tazawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WayneRandy
en-aut-sei=Wayne
en-aut-mei=Randy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Yoshida Biological Laboratory
kn-affil=
affil-num=2
en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Chara corallina
kn-keyword=Chara corallina
en-keyword=Effective osmotic pressure
kn-keyword=Effective osmotic pressure
en-keyword=Hydraulic resistance
kn-keyword=Hydraulic resistance
en-keyword=Plasma membrane
kn-keyword=Plasma membrane
en-keyword=Reflection coefficient
kn-keyword=Reflection coefficient
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter and Receptor Mapping in Drosophila Circadian Clock Neurons via T2A-GAL4 Screening
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The circadian neuronal network in the brain comprises central pacemaker neurons and associated input and output pathways. These components work together to generate coherent rhythmicity, synchronize with environmental time cues, and convey circadian information to downstream neurons that regulate behaviors such as the sleep/wake cycle. To mediate these functions, neurotransmitters and neuromodulators play essential roles in transmitting and modulating signals between neurons. In Drosophila melanogaster, approximately 240 brain neurons function as clock neurons. Previous studies have identified several neurotransmitters and neuromodulators, including the Pigment-dispersing factor (PDF) neuropeptide, along with their corresponding receptors in clock neurons. However, our understanding of the neurotransmitters and receptors involved in the circadian system remains incomplete. In this study, we conducted a T2A-GAL4-based screening for neurotransmitter and receptor genes expressed in clock neurons. We identified 2 neurotransmitter-related genes and 22 receptor genes. Notably, while previous studies had reported the expression of 6 neuropeptide receptor genes in large ventrolateral neurons (l-LNv), we also found that 14 receptor genes—including those for dopamine, serotonin, and γ-aminobutyric acid—are expressed in l-LNv neurons. These findings suggest that l-LNv neurons serve as key integrative hubs within the circadian network, receiving diverse external signals.
en-copyright=
kn-copyright=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoAika
en-aut-sei=Saito
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=clock neurons
kn-keyword=clock neurons
en-keyword=neurotransmitter
kn-keyword=neurotransmitter
en-keyword=T2A-GAL4
kn-keyword=T2A-GAL4
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=Drosophila
kn-keyword=Drosophila
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=4
article-no=
start-page=329
end-page=334
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels.
en-copyright=
kn-copyright=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Human BK channel
kn-keyword=Human BK channel
en-keyword=Artificial lipid bilayer recording
kn-keyword=Artificial lipid bilayer recording
en-keyword=Ion channel current
kn-keyword=Ion channel current
en-keyword=Single-channel recording
kn-keyword=Single-channel recording
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PEÑATIRSO
en-aut-sei=PEÑA
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=7
article-no=
start-page=110291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A repertoire of visible light–sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457–517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light–sensitive opsins, including the uniquely tuned Opn5.
en-copyright=
kn-copyright=
en-aut-name=NagataYuya
en-aut-sei=Nagata
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoNorio
en-aut-sei=Miyamoto
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYosuke
en-aut-sei=Nishimura
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniokaYuki
en-aut-sei=Tanioka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamanakaYuji
en-aut-sei=Yamanaka
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiKuto
en-aut-sei=Takahashi
en-aut-mei=Kuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ObayashiKohei
en-aut-sei=Obayashi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsukamotoHisao
en-aut-sei=Tsukamoto
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakaiKen
en-aut-sei=Takai
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=10
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=11
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=14
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=opsin
kn-keyword=opsin
en-keyword=G protein–coupled receptor
kn-keyword=G protein–coupled receptor
en-keyword=signal transduction
kn-keyword=signal transduction
en-keyword=photoreceptor
kn-keyword=photoreceptor
en-keyword=vision
kn-keyword=vision
en-keyword=photobiology
kn-keyword=photobiology
en-keyword=vent shrimp
kn-keyword=vent shrimp
en-keyword=deep sea
kn-keyword=deep sea
en-keyword=molecular evolution
kn-keyword=molecular evolution
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=1152
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240717
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
en-copyright=
kn-copyright=
en-aut-name=UrzoMichael Louie R.
en-aut-sei=Urzo
en-aut-mei=Michael Louie R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GuintoTimothy D.
en-aut-sei=Guinto
en-aut-mei=Timothy D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Eusebio-CopeAna
en-aut-sei=Eusebio-Cope
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BudotBernard O.
en-aut-sei=Budot
en-aut-mei=Bernard O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoriaMary Jeanie T.
en-aut-sei=Yanoria
en-aut-mei=Mary Jeanie T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JonsonGilda B.
en-aut-sei=Jonson
en-aut-mei=Gilda B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakawaMasao
en-aut-sei=Arakawa
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños
kn-affil=
affil-num=2
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños
kn-affil=
affil-num=3
en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños
kn-affil=
affil-num=4
en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños
kn-affil=
affil-num=5
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños
kn-affil=
affil-num=6
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Meijo University
kn-affil=
affil-num=8
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=9
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhizoctonia solani
kn-keyword=Rhizoctonia solani
en-keyword=dsRNA
kn-keyword=dsRNA
en-keyword=mycovirus
kn-keyword=mycovirus
en-keyword=RNA virus
kn-keyword=RNA virus
en-keyword=metatranscriptome
kn-keyword=metatranscriptome
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)–expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=生物学的製剤の使用は、関節リウマチに対する整形外科手術後の手術部位感染や創傷治癒遅延を増加させない
kn-title=The use of biologic disease-modifying antirheumatic drugs does not increase surgical site infection or delayed wound healing after orthopaedic surgeries for rheumatoid arthritis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KISOYohei
en-aut-sei=KISO
en-aut-mei=Yohei
kn-aut-name=木曽洋平
kn-aut-sei=木曽
kn-aut-mei=洋平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=214
cd-vols=
no-issue=
article-no=
start-page=32
end-page=41
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Medaka approach to evolutionary social neuroscience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
en-copyright=
kn-copyright=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hiraki-KajiyamaTowako
en-aut-sei=Hiraki-Kajiyama
en-aut-mei=Towako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaRyutaro
en-aut-sei=Ueda
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoiSaori
en-aut-sei=Yokoi
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsumuraTakafumi
en-aut-sei=Katsumura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Hokkaido University
kn-affil=
affil-num=6
en-affil=School of Medicine, Kitasato University
kn-affil=
affil-num=7
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Evolutionary neuroscience
kn-keyword=Evolutionary neuroscience
en-keyword=Comparative neuroscience
kn-keyword=Comparative neuroscience
en-keyword=Medaka bioresource
kn-keyword=Medaka bioresource
en-keyword=Visual mate preference
kn-keyword=Visual mate preference
en-keyword=Sexual selection
kn-keyword=Sexual selection
en-keyword=Genetic manipulation
kn-keyword=Genetic manipulation
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=2323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
en-copyright=
kn-copyright=
en-aut-name=AndoYushin
en-aut-sei=Ando
en-aut-mei=Yushin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakawaAyako
en-aut-sei=Yamakawa
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonomaSuzuna
en-aut-sei=Konoma
en-aut-mei=Suzuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiYuki
en-aut-sei=Kobayashi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItohYuzuru
en-aut-sei=Itoh
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=2
article-no=
start-page=43
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250317
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular Iodine-Catalyzed Synthesis of 3,3-Disubstituted Isatins: Total Synthesis of Indole Alkaloid, 3,3-Dimethoxy-2-oxindole
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=3,3-Dialkoxy-2-oxindoles are prevalent in natural products and exhibit unique biological activities. Among them, acyclic alkoxy analogues show instability in acidic conditions, making access to acyclic isatin ketals highly challenging. Conventional methods for the synthesis of 3,3-dialkoxy-2-oxindoles usually require strongly acidic and harsh reaction conditions, resulting in a low overall efficiency. Herein, we report on an acid- and metal-free protocol for the synthesis of 3,3-dialkoxy-2-oxindoles from isatins through an iodine-catalyzed ketalization. This photochemical protocol does not require the use of any specific reagents such as metal catalysts. Furthermore, the total synthesis of an unprecedented 2-oxindole alkaloid bearing 3,3-dimethoxy moiety is achieved.
en-copyright=
kn-copyright=
en-aut-name=TokushigeKeisuke
en-aut-sei=Tokushige
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsaiShota
en-aut-sei=Asai
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Shujitsu University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=3,3-dialkoxyisatins
kn-keyword=3,3-dialkoxyisatins
en-keyword=isatins
kn-keyword=isatins
en-keyword=ketalization
kn-keyword=ketalization
en-keyword=iodine
kn-keyword=iodine
en-keyword=indole alkaloid
kn-keyword=indole alkaloid
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=4
article-no=
start-page=e70139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induction Therapy With Oral Tacrolimus Provides Long-Term Benefit in Thiopurine-Naïve Refractory Ulcerative Colitis Patients Despite Low Serum Albumin Levels
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: Oral tacrolimus is an effective treatment for refractory ulcerative colitis (UC). However, tacrolimus is underutilized because of the difficulties in transitioning to subsequent maintenance therapy and concerns about adverse events.
Methods: We evaluated the clinical outcomes, adverse events, and accumulated medication costs in consecutive 72 UC patients treated with tacrolimus.
Results: Fifty-five (76%) patients with pancolitis and 43 (60%) patients with acute severe disease were entered. Fifty-four (75%) achieved clinical remission 8 weeks after starting tacrolimus. At the last visit, 62 (86%) patients had colectomy-free remission, and 55 (76%) patients had corticosteroid-free remission. Eighteen (25%) patients maintained remission without additional treatment after tacrolimus discontinuation. Patients with continuous remission had a significantly lower history of thiopurine use and lower serum albumin levels at the induction of tacrolimus than patients with failure to induce or maintain remission. No severe adverse events due to tacrolimus treatment were observed. The accumulated medication costs over 3 years in patients with continuous remission after the start of tacrolimus were lower than those in patients with induction and maintenance of infliximab (p < 0.001).
Conclusions: Tacrolimus could have an irreplaceable role in the era of biologic therapies, especially for refractory UC patients with thiopurine-na & iuml;ve and low serum albumin levels.
en-copyright=
kn-copyright=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ToyosawaJunki
en-aut-sei=Toyosawa
en-aut-mei=Junki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biologics therapy
kn-keyword=biologics therapy
en-keyword=tacrolimus
kn-keyword=tacrolimus
en-keyword=thiopurine
kn-keyword=thiopurine
en-keyword=ulcerative colitis
kn-keyword=ulcerative colitis
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10462
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250326
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion.
en-copyright=
kn-copyright=
en-aut-name=ZhengYilin
en-aut-sei=Zheng
en-aut-mei=Yilin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WengYao
en-aut-sei=Weng
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SitosariHeriati
en-aut-sei=Sitosari
en-aut-mei=Heriati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HeYuhan
en-aut-sei=He
en-aut-mei=Yuhan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhangXiu
en-aut-sei=Zhang
en-aut-mei=Xiu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShiotsuNoriko
en-aut-sei=Shiotsu
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Gingipain
kn-keyword=Gingipain
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Alternative splicing
kn-keyword=Alternative splicing
en-keyword=PD-L1
kn-keyword=PD-L1
en-keyword=Immune evasion
kn-keyword=Immune evasion
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=4
article-no=
start-page=108334
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-.
en-copyright=
kn-copyright=
en-aut-name=NakamaMasaki
en-aut-sei=Nakama
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojiTomoyasu
en-aut-sei=Noji
en-aut-mei=Tomoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=microbial rhodopsin
kn-keyword=microbial rhodopsin
en-keyword=anion transport
kn-keyword=anion transport
en-keyword=retinal
kn-keyword=retinal
en-keyword=membrane protein
kn-keyword=membrane protein
en-keyword=photobiology
kn-keyword=photobiology
END
start-ver=1.4
cd-journal=joma
no-vol=125
cd-vols=
no-issue=
article-no=
start-page=106672
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Resveratrol, a food-derived polyphenol, promotes Melanosomal degradation in skin fibroblasts through coordinated activation of autophagy, lysosomal, and antioxidant pathways
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Resveratrol, a polyphenol found in grapes and peanuts, is known for diverse biological activities, yet its effects on dermal hyperpigmentation (so-called dark spots) remain unexplored. We investigated resveratrol's ability to enhance melanosomal degradation in human dermal fibroblasts. At concentrations of 25-50 mu M, resveratrol increased autophagy as measured by microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I ratio and enhanced lysosomal activity as assessed by a lysosomal activity reporter system. RNA sequencing revealed upregulation of lysosomal and autophagy-related genes, including cathepsins. Furthermore, reporter assays showed resveratrol's activation of antioxidant response via nuclear factor erythroid 2-related factor 2 (NRF2)mediated, leading to upregulation of transcription factor EB/transcription factor E3 (TFEB/TFE3), master regulators of lysosomal function. In fibroblasts pre-loaded with melanosomes, resveratrol reduced melanosome content compared to control by day 3. The findings reveal the activation of interconnected autophagy, lysosomal, and antioxidant pathways by resveratrol, suggesting potential applications in functional foods targeting dermal hyperpigmentation.
en-copyright=
kn-copyright=
en-aut-name=OkamotoSaki
en-aut-sei=Okamoto
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KakimaruSaya
en-aut-sei=Kakimaru
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoreishiMayuko
en-aut-sei=Koreishi
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoMika
en-aut-sei=Sakamoto
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AndoHideya
en-aut-sei=Ando
en-aut-mei=Hideya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoYoshio
en-aut-sei=Tsujino
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=National Institute of Genetics, ROIS
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Applied Chemistry and Biotechnology, Okayama University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Science, Technology, and Innovation, Kobe University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Antioxidant
kn-keyword=Antioxidant
en-keyword=Lysosomes
kn-keyword=Lysosomes
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=Resveratrol
kn-keyword=Resveratrol
en-keyword=Skin fibroblasts
kn-keyword=Skin fibroblasts
en-keyword=Bioactive compounds
kn-keyword=Bioactive compounds
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=52
article-no=
start-page=35202
end-page=35213
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bright Quantum-Grade Fluorescent Nanodiamonds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6–1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2–3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28K/√Hz. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.
en-copyright=
kn-copyright=
en-aut-name=OshimiKeisuke
en-aut-sei=Oshimi
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshiwataHitoshi
en-aut-sei=Ishiwata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaHiromu
en-aut-sei=Nakashima
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MandićSara
en-aut-sei=Mandić
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHina
en-aut-sei=Kobayashi
en-aut-mei=Hina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TeramotoMinori
en-aut-sei=Teramoto
en-aut-mei=Minori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujiHirokazu
en-aut-sei=Tsuji
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishibayashiYoshiki
en-aut-sei=Nishibayashi
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShikanoYutaka
en-aut-sei=Shikano
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnToshu
en-aut-sei=An
en-aut-mei=Toshu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraMasazumi
en-aut-sei=Fujiwara
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=The National Institutes for Quantum Science and Technology (QST), Institute for Quantum Life Science (iQLS)
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=7
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=8
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=9
en-affil=Institute of Systems and Information Engineering, University of Tsukuba
kn-affil=
affil-num=10
en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=nanodiamonds
kn-keyword=nanodiamonds
en-keyword=nitrogen-vacancy centers
kn-keyword=nitrogen-vacancy centers
en-keyword=spins
kn-keyword=spins
en-keyword=spin-relaxation times
kn-keyword=spin-relaxation times
en-keyword=quantum biosensor
kn-keyword=quantum biosensor
en-keyword=cellular probes
kn-keyword=cellular probes
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=24
article-no=
start-page=2045
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=iPSC-Derived Biological Pacemaker-From Bench to Bedside
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AmiokaNaofumi
en-aut-sei=Amioka
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=sinoatrial node
kn-keyword=sinoatrial node
en-keyword=HCN channels
kn-keyword=HCN channels
en-keyword=induced pluripotent stem cell
kn-keyword=induced pluripotent stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=1
article-no=
start-page=e16291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions.
en-copyright=
kn-copyright=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=bioinformatics
kn-keyword=bioinformatics
en-keyword=Ccn3
kn-keyword=Ccn3
en-keyword=Type III taste cell
kn-keyword=Type III taste cell
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=3
article-no=
start-page=769
end-page=774
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Review: Nicotinic acetylcholine receptors to regulate important brain activity—what occurs at the molecular level?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Herein, we briefly review the role of nicotinic acetylcholine receptors in regulating important brain activity by controlled release of acetylcholine from subcortical neuron groups, focusing on a microscopic viewpoint and considering the nonlinear dynamics of biological macromolecules associated with neuron activity and how they give rise to advanced brain functions of brain.
en-copyright=
kn-copyright=
en-aut-name=NaraShigetoshi
en-aut-sei=Nara
en-aut-mei=Shigetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamagutiYutaka
en-aut-sei=Yamaguti
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaIchiro
en-aut-sei=Tsuda
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Information Engineering, Fukuoka Institute of Technology
kn-affil=
affil-num=3
en-affil=Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artificial Intelligence, Chubu University
kn-affil=
en-keyword=Neuromodulator
kn-keyword=Neuromodulator
en-keyword=Nichotinic
kn-keyword=Nichotinic
en-keyword=Acetylcholine
kn-keyword=Acetylcholine
en-keyword=Receptors
kn-keyword=Receptors
en-keyword=Brain activity
kn-keyword=Brain activity
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=1
end-page=8
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transepidermal Water Loss Estimation Model for Evaluating Skin Barrier Function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deterioration of skin barrier function causes symptoms such as allergies because it allows various chemical substances to enter the human body. Quantitative evaluation of the thickness and water content of the stratum corneum is useful as a measure of skin barrier function in fields such as dermatology, nursing science, and cosmetics development. The stratum corneum is responsible for most of the skin barrier function, and this function has conventionally been evaluated using transepidermal water loss (TEWL). In this paper, we propose a new model for estimation of TEWL from measurements of the thickness of the stratum corneum and water content of the surface of the stratum corneum, and discuss the results of the measurements. By measuring the thickness and water content of the stratum corneum using confocal laser microscopy and confocal Raman spectroscopy, respectively, and examining the relationship of these variables with TEWL, we established a new potential model for estimating TEWL from these two variables. The correlation coefficient of the validation data was 0.886 and the root mean squared error was 8.18 points. These findings indicate the feasibility of qualitative evaluation of TEWL by measuring the thickness and water content of the stratum corneum.
en-copyright=
kn-copyright=
en-aut-name=UeharaOsamu
en-aut-sei=Uehara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KusuharaToshimasa
en-aut-sei=Kusuhara
en-aut-mei=Toshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraTakao
en-aut-sei=Nakamura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Medical Engineering Laboratory, ALCARE Co., Ltd.
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=TEWL
kn-keyword=TEWL
en-keyword=stratum corneum thickness
kn-keyword=stratum corneum thickness
en-keyword=water content of stratum corneum
kn-keyword=water content of stratum corneum
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=213
end-page=218
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=β-catenin Binds to Gsk-3β in Liquid-Liquid Phase Separation Compartment in HEK293 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Liquid-liquid phase separation (LLPS) has emerged as a significant mechanism for cellular organization, impacting various biological processes, including Wnt/β-catenin signaling. This study investigates the role of LLPS in the regulation of β-catenin in HEK293 cells, particularly in response to Wnt3a signaling. Our findings demonstrate that β-catenin is regulated by LLPS, forming spherical droplets indicative of this phenomenon. Fluorescence recovery after photobleaching (FRAP) assays revealed that these droplets exhibit reversible dynamics, further confirming their phase-separated nature. Importantly, treatment with Wnt3a led to an increase in β-catenin levels, while simultaneously reducing the recovery of fluorescence intensity in FRAP experiments, suggesting that enhanced Wnt signaling may stimulate the release of β-catenin from LLPS. Immunoprecipitation studies indicated that β-catenin binds to glycogen synthase kinase 3β (Gsk-3β) within the LLPS state, highlighting a potential regulatory mechanism whereby LLPS facilitates the phosphorylation and subsequent degradation of β-catenin. The addition of 1,6-hexanediol disrupted the β-catenin/Gsk-3β interaction, reinforcing the idea that LLPS plays a critical role in modulating these biochemical interactions. The findings presented in this study suggest that LLPS is not only crucial for the spatial organization of β-catenin but also serves as a regulatory mechanism for its signaling functions in the Wnt pathway. Given the association of aberrant Wnt signaling with various diseases, including cancer and neurodegenerative disorders, understanding the role of LLPS in this context may provide new insights into therapeutic strategies targeting these pathological conditions.
en-copyright=
kn-copyright=
en-aut-name=KatoMari
en-aut-sei=Kato
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanaiAiri
en-aut-sei=Tanai
en-aut-mei=Airi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhengXinyu
en-aut-sei=Zheng
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SitosariHeriati
en-aut-sei=Sitosari
en-aut-mei=Heriati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=β-catenin
kn-keyword=β-catenin
en-keyword=Gsk-3β
kn-keyword=Gsk-3β
en-keyword=LLPS
kn-keyword=LLPS
en-keyword=Wnt
kn-keyword=Wnt
END
start-ver=1.4
cd-journal=joma
no-vol=161
cd-vols=
no-issue=21
article-no=
start-page=214501
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The nature of the hydrophobic interaction varies as the solute size increases from methane’s to C60’s
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The hydrophobic interaction, often combined with the hydrophilic or ionic interactions, makes the behavior of aqueous solutions very rich and plays an important role in biological systems. Theoretical and computer simulation studies have shown that the water-mediated force depends strongly on the size and other chemical properties of the solute, but how it changes with these factors remains unclear. We report here a computer simulation study that illustrates how the hydrophobic pair interaction and the entropic and enthalpic terms change with the solute size when the solute–solvent weak attractive interaction is unchanged with the solute size. The nature of the hydrophobic interaction changes qualitatively as the solute size increases from that of methane to that of fullerene. The potential of mean force between small solutes has several well-defined extrema, including the third minimum, whereas the potential of mean force between large solutes has the deep contact minimum and the large free-energy barrier between the contact and the water-bilayer separated configurations. The difference in the potential of mean force is related to the differences in the water density, energy, and hydrogen bond number distributions in the vicinity of the pairs of hydrophobic solutes.
en-copyright=
kn-copyright=
en-aut-name=NaitoHidefumi
en-aut-sei=Naito
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SumiTomonari
en-aut-sei=Sumi
en-aut-mei=Tomonari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KogaKenichiro
en-aut-sei=Koga
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=469
end-page=474
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Tenosynovial Giant Cell Tumor of the Cervical Spine with Postoperative Anti-RANKL Antibody (Denosumab) Administration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tenosynovial giant cell tumor (TGCT) is a fibrous histiocytic tumor originating in the synovial membrane. While cervical TGCT may not be considered a common diagnosis preoperatively because it is relatively rare, it has a high recurrence rate and should be considered. Total resection is preferable, but it can be challenging due to the risk of damaging the vertebral artery. Denosumab has shown effectiveness as a postoperative treatment for osteolytic bone lesion. Denosumab administration coupled with close follow-up might offer an effective postoperative treatment option for unresectable TGCT with bone invasion.
en-copyright=
kn-copyright=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AyadaYoshiyuki
en-aut-sei=Ayada
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OdaYoshinao
en-aut-sei=Oda
en-aut-mei=Yoshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=tenosynovial giant cell tumor
kn-keyword=tenosynovial giant cell tumor
en-keyword=bone tumor
kn-keyword=bone tumor
en-keyword=spine
kn-keyword=spine
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=11
article-no=
start-page=e70476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Introgression in the Hybrid zones at the Margins of the Species' Range Between Ecologically Distinct Rubus Species
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Populations in extreme environments at the margins of a species' range are often the most vulnerable to climate change, but they may also experience novel evolutionary processes, such as secondary contact and hybridization with their relatives. The range overlap resulting from secondary contact with related species that have adapted to different climatic zones may act as corridors for adaptive introgression. To test this hypothesis, we examined the hybrid zones along the altitude of two closely related Rubus species, one temperate and the other subtropical species, at their southern and northern limits on Yakushima Island, Japan. Genomic cline analysis revealed non-neutral introgression throughout the genome in both directions in the two species. Some of these genomic regions involve gene ontology terms related to the regulation of several biological processes. Our niche modeling suggests that, assuming niche conservatism, the temperate species are likely to lose their suitable habitat, and the backcrossed hybrids with the subtropical species are already expanding upslope on the island. Adaptive introgression through the hybrid zone may contribute to the persistence and expansion of the species in the southernmost and northernmost populations.
en-copyright=
kn-copyright=
en-aut-name=MimuraMakiko
en-aut-sei=Mimura
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TangZhenxing
en-aut-sei=Tang
en-aut-mei=Zhenxing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShigenobuShuji
en-aut-sei=Shigenobu
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiKatsushi
en-aut-sei=Yamaguchi
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YaharaTetsukazu
en-aut-sei=Yahara
en-aut-mei=Tetsukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Biology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biology, Okayama University
kn-affil=
affil-num=3
en-affil=Trans-Omics Facility, National Institute of Basic Biology
kn-affil=
affil-num=4
en-affil=Trans-Omics Facility, National Institute of Basic Biology
kn-affil=
affil-num=5
en-affil=Kyushu Open University
kn-affil=
en-keyword=adaptive introgression
kn-keyword=adaptive introgression
en-keyword=climate change
kn-keyword=climate change
en-keyword=hybrid zone
kn-keyword=hybrid zone
en-keyword=secondary contact
kn-keyword=secondary contact
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=2
article-no=
start-page=292
end-page=305
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The role of C1orf50 in breast cancer progression and prognosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although the prognosis of breast cancer has significantly improved compared to other types of cancer, there are still some patients who expire due to recurrence or metastasis. Therefore, it is necessary to develop a method to identify patients with poor prognosis at the early stages of cancer. In the process of discovering new prognostic markers from genes of unknown function, we found that the expression of C1orf50 determines the prognosis of breast cancer patients, especially for those with Luminal A breast cancer. This study aims to elucidate the molecular role of C1orf50 in breast cancer progression. Bioinformatic analyses of the breast cancer dataset of TCGA, and in vitro analyses, reveal the molecular pathways influenced by C1orf50 expression. C1orf50 knockdown suppressed the cell cycle of breast cancer cells and weakened their ability to maintain the undifferentiated state and self-renewal capacity. Interestingly, upregulation of C1orf50 increased sensitivity to CDK4/6 inhibition. In addition, C1orf50 was found to be more abundant in breast cancer cells than in normal breast epithelium, suggesting C1orf50’s involvement in breast cancer pathogenesis. Furthermore, the mRNA expression level of C1orf50 was positively correlated with the expression of PD-L1 and its related factors. These results suggest that C1orf50 promotes breast cancer progression through cell cycle upregulation, maintenance of cancer stemness, and immune evasion mechanisms. Our study uncovers the biological functions of C1orf50 in Luminal breast cancer progression, a finding not previously reported in any type of cancer.
en-copyright=
kn-copyright=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAtsushi
en-aut-sei=Tanaka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaekawaMasaki
en-aut-sei=Maekawa
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PeñaTirso
en-aut-sei=Peña
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RogachevskayaAnna
en-aut-sei=Rogachevskaya
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=RoehrlMichael H.
en-aut-sei=Roehrl
en-aut-mei=Michael H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Surgery, Kawasaki Medical School General Medical Center
kn-affil=
affil-num=13
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=14
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=Luminal A breast cancer
kn-keyword=Luminal A breast cancer
en-keyword=Cell cycle
kn-keyword=Cell cycle
en-keyword=Immune evasion
kn-keyword=Immune evasion
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=300
cd-vols=
no-issue=6
article-no=
start-page=107360
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nonspecific N-terminal tetrapeptide insertions disrupt the translation arrest induced by ribosome-arresting peptide sequences
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.
en-copyright=
kn-copyright=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=318
end-page=326
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Region-Specific Material Properties of Patellar Tendon on the Magnitude and Distribution of Local Stress and Strain
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The effects of the region-specific material properties of the patellar tendon (PT) on the magnitude and distribution of local stress and strain are poorly understood. Hence, this study investigated this issue using finite element analysis. A three-dimensional PT model was developed based on parameters obtained from previous studies, and was bisected in the frontal plane. Two models were created: one that considered region-specific material properties (two-material model) and one that did not (one-material model). An 8% strain was applied to the proximal surface, and the mean and peak first principal stress and strain were calculated. In the two-material model, the mean first principal stress observed in the anterior region was 28.5% higher than that in the posterior region. However, in the one-material model, the mean first principal stress in the anterior region was 19.5% lower than that in the posterior region. Focusing on the differences between the models, the mean and peak first principal stresses in the posterior region of the one-material model were 61.1% and 41.2% higher, respectively, compared with those in the two-material model. Furthermore, the mean and peak first principal stresses in the proximal and distal regions of the posterior region in the one-material model were 41.8-75.8% higher than those in the two-material model. These results suggest that the region-specific material properties of PT influence the stress distribution and underscore the importance of modeling that incorporates region-specific material properties in PT finite element models.
en-copyright=
kn-copyright=
en-aut-name=EnomotoShota
en-aut-sei=Enomoto
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OdaToshiaki
en-aut-sei=Oda
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
en-keyword=computational model
kn-keyword=computational model
en-keyword=Mooney-Rivlin model
kn-keyword=Mooney-Rivlin model
en-keyword=soft tissue.
kn-keyword=soft tissue.
END
start-ver=1.4
cd-journal=joma
no-vol=300
cd-vols=
no-issue=3
article-no=
start-page=105679
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K- Akt signaling by MVK reversed epidermal growth factor- induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
en-copyright=
kn-copyright=
en-aut-name=MorimotoAtsushi
en-aut-sei=Morimoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PanYuexuan
en-aut-sei=Pan
en-aut-mei=Yuexuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AbikoYumi
en-aut-sei=Abiko
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaKoji
en-aut-sei=Uchida
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumagaiYoshito
en-aut-sei=Kumagai
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Science, Nagasaki University
kn-affil=
affil-num=7
en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
kn-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
en-keyword=cell signaling
kn-keyword=cell signaling
en-keyword=chemical modification
kn-keyword=chemical modification
en-keyword=autophagy
kn-keyword=autophagy
en-keyword=glucose uptake
kn-keyword=glucose uptake
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=24968
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p < 0.001, p < 0.001, p = 0.029, p = 0.001). Knockdown of APOBEC3B increased apoptosis, which was 28.03% and 22.27% higher than in mock and control siRNA samples, respectively. APOBEC3B knockdown also decreased PIK3CA expression and increased Caspase 8 expression, suggesting a potential role in the regulation of apoptosis. Furthermore, knockdown of APOBEC3B significantly inhibited cell proliferation, invasion, and migration compared to mock and control siRNA. (Cell proliferation: mock: p < 0.001 and control siRNA: p = 0.049. Cell invasion: mock: p < 0.001 and control siRNA: p = 0.029. Cell migration: mock: p = 0.004, and control siRNA: p = 0.014). In conclusion, this study suggests that APOBEC3B may be a new potential therapeutic target for endometriosis.
en-copyright=
kn-copyright=
en-aut-name=VuThuy Ha
en-aut-sei=Vu
en-aut-mei=Thuy Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KashinoChiaki
en-aut-sei=Kashino
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoKazuhiro
en-aut-sei=Okamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuboKotaro
en-aut-sei=Kubo
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamadaYasuhiko
en-aut-sei=Kamada
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Apolipoprotein-B mRNA-editing complex 3B
kn-keyword=Apolipoprotein-B mRNA-editing complex 3B
en-keyword=Endometriosis
kn-keyword=Endometriosis
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Potential therapeutic target
kn-keyword=Potential therapeutic target
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=387
end-page=399
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Radon Inhalation on Murine Brain Proteins: Investigation Using Proteomic and Multivariate Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radon is a known risk factor for lung cancer; however, it can be used beneficially, such as in radon therapy. We have previously reported the enhancement of antioxidant effects associated with trace amounts of oxidative stress as one of the positive biological effects of radon inhalation. However, the biological effects of radon inhalation are incompletely understood, and more detailed and comprehensive studies are required. Although several studies have used proteomics to investigate the effects of radon inhalation on body proteins, none has focused on brain proteins. In this study, we evaluated the expression status of proteins in murine brains using proteomic and multivariate analyses to identify those whose expressions changed following two days of radon inhalation at a concentration of 1,500 Bq/m3. We found associations of radon inhalation with the expressions of seven proteins related to neurotransmission and heat shock. These proteins may be proposed as biomarkers indicative of radon inhalation. Although further studies are required to obtain the detailed biological significance of these protein alterations, this study contributes to the elucidation of the biological effects of radon
inhalation as a low-dose radiation.
en-copyright=
kn-copyright=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanzakiNorie
en-aut-sei=Kanzaki
en-aut-mei=Norie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakenakaReiju
en-aut-sei=Takenaka
en-aut-mei=Reiju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakodaAkihiro
en-aut-sei=Sakoda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=6
en-affil=Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=radon inhalation
kn-keyword=radon inhalation
en-keyword=proteomics
kn-keyword=proteomics
en-keyword=multivariate analysis
kn-keyword=multivariate analysis
en-keyword=brain
kn-keyword=brain
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=10
article-no=
start-page=1600
end-page=1609
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular Diversity of Photosensitive Protein Opsins and Their High Potential for Optogenetic Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Because G protein coupled receptors (GPCRs) represent the largest family of drug targets in clinical trials, GPCR signaling cascades are closely related to various physiological phenomena, attracting significant attention in pharmaceutical science. Opsins (also known as animal rhodopsins) are photoreceptive proteins containing retinal as a chromophore, which function as GPCRs and underlie the molecular basis of photoreception in animals. Recently, opsins have been progressively applied in an innovative technology called optogenetics to regulate biological activities using light. A wide variety of opsins have been identified in metazoans and characterized at the molecular and physiological levels, providing a foundation for their optogenetic applications. In this review, I briefly introduce the diversity of opsins in terms of their molecular functions, including G protein selectivity and photoreaction properties. This diversity provides a significant advantage for optically manipulating a wide variety of GPCR signaling cascades with high temporal resolution. Additionally, I discuss the rich array of opsin-based optogenetic tools used to control various physiological processes and their potential as therapeutic tools for vision restoration. Based on the introduction, I expect that the optogenetic approach will offer powerful tools to provide valuable insights into the molecular mechanisms of various physiological phenomena and next-generation treatment options for diseases beyond the capacity of traditional drugs.
en-copyright=
kn-copyright=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=1099
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histological differences related to autophagy in the minor salivary gland between primary and secondary types of Sjögren's syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Some forms of Sjögren’s syndrome (SS) follow a clinical course accompanied by systemic symptoms caused by lymphocyte infiltration and proliferation in the liver, kidneys, and other organs. To better understand the clinical outcomes of SS, here we used minor salivary gland tissues from patients and examine their molecular, biological, and pathological characteristics. A retrospective study was performed, combining clinical data and formalin-fixed paraffin-embedded (FFPE) samples from female patients over 60 years of age who underwent biopsies at Okayama University Hospital. We employed direct digital RNA counting with nCounter® and multiplex immunofluorescence analysis with a PhenoCycler™ on the labial gland biopsies. We compared FFPE samples from SS patients who presented with other connective tissue diseases (secondary SS) with those from stable SS patients with symptoms restricted to the exocrine glands (primary SS). Secondary SS tissues showed enhanced epithelial damage and lymphocytic infiltration accompanied by elevated expression of autophagy marker genes in the immune cells of the labial glands. The close intercellular distance between helper T cells and B cells positive for autophagy-associated molecules suggests accelerated autophagy in these lymphocytes and potential B cell activation by helper T cells. These findings indicate that examination of FFPE samples from labial gland biopsies can be an effective tool for evaluating molecular histological differences between secondary and primary SS through multiplexed analysis of gene expression and tissue imaging.
en-copyright=
kn-copyright=
en-aut-name=Ono-MinagiHitomi
en-aut-sei=Ono-Minagi
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NohnoTsutomu
en-aut-sei=Nohno
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyawakiKohta
en-aut-sei=Miyawaki
en-aut-mei=Kohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshinoTadashi
en-aut-sei=Yoshino
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SakaiTakayoshi
en-aut-sei=Sakai
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Precision Medicine, Kyushu University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=13
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Autoimmune disease
kn-keyword=Autoimmune disease
en-keyword=Xerostomia
kn-keyword=Xerostomia
en-keyword=Multiplex immunostaining
kn-keyword=Multiplex immunostaining
en-keyword=Spatial analysis
kn-keyword=Spatial analysis
en-keyword=Autophagy
kn-keyword=Autophagy
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=4
article-no=
start-page=556
end-page=580
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Azidoindolines—From Synthesis to Application: A Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Azide-containing compounds, organic azides, showcases a variety of reactivities, making them highly convenient and chameleonic intermediates. An indoline derivative has been proven to be of great significance in drug discovery due to its sp3-rich property. In this context, it is interesting to perform such vigorous azidation on medicinal-relevant indoles/indolines, resulting in the production of sp3-rich azidoindolines. The potential biological activity, in combination with the sp3-rich indoline bearing the azido moiety, makes azidoindolines an attractive synthetic target for medicinal and synthetic chemists. This review describes recent advances in the synthesis and application of azidoindolines: (1) iodine-mediated azidations, (2) metal-catalyzed azidations, (3) electrochemical azidations, (4) photochemical azidations, (5) azidation using a combination of an oxidant and an azide source, and (6) nucleophilic azidation.
en-copyright=
kn-copyright=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=azidoindolines
kn-keyword=azidoindolines
en-keyword=indole
kn-keyword=indole
en-keyword=azido
kn-keyword=azido
en-keyword=synthesis
kn-keyword=synthesis
en-keyword=application
kn-keyword=application
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=9
article-no=
start-page=212
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240831
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
en-copyright=
kn-copyright=
en-aut-name=MatsushimaRyo
en-aut-sei=Matsushima
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimJune-Sik
en-aut-sei=Kim
en-aut-mei=June-Sik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=McNellyRose
en-aut-sei=McNelly
en-aut-mei=Rose
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OitomeNaoko F.
en-aut-sei=Oitome
en-aut-mei=Naoko F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SeungDavid
en-aut-sei=Seung
en-aut-mei=David
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujitaNaoko
en-aut-sei=Fujita
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatoKazuhiro
en-aut-sei=Sato
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=John Innes Centre, Norwich Research Park
kn-affil=
affil-num=5
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=6
en-affil=John Innes Centre, Norwich Research Park
kn-affil=
affil-num=7
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=8
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=15
article-no=
start-page=2114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240730
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H-2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O-2 sensitive; consequently, the formation of H-2 occurs mainly under anoxic conditions. Yet, photo-H-2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b(6)f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H-2 photoproduction. Additionally, the CBB cycle competes with H-2 photoproduction. Consequently, an in-depth understanding of light-driven H-2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H-2 production. At the same time, the smart design of photo-H-2 production schemes and photo-H-2 bioreactors are challenges for efficient up-scaling of light-driven photo-H-2 production.
en-copyright=
kn-copyright=
en-aut-name=HipplerMichael
en-aut-sei=Hippler
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KhosravitabarFatemeh
en-aut-sei=Khosravitabar
en-aut-mei=Fatemeh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological and Environmental Sciences, University of Gothenburg
kn-affil=
en-keyword=H-2 production
kn-keyword=H-2 production
en-keyword=Chlamydomonas reinhardtii
kn-keyword=Chlamydomonas reinhardtii
en-keyword=electron transfer
kn-keyword=electron transfer
en-keyword=CBB cycle
kn-keyword=CBB cycle
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=11
article-no=
start-page=1596
end-page=1601
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation of the Expression of Serine Protease in Vibrio vulnificus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Vibrio vulnificus is a Gram-negative estuarine bacterium that causes infection in immuno-compromised patients, eels, and shrimp. V. vulnificus NCIMB2137, a metalloprotease-negative strain isolated from a diseased eel, produces a 45-kDa chymotrypsin-like alkaline serine protease known as VvsA. The gene encoding vvsA also includes another gene, vvsB with an unknown function; however, it is assumed to be an essential molecular chaperone for the maturation of VvsA. In the present study, we used an in vitro cell-free translation system to examine the maturation pathway of VvsA. We individually expressed the vvsA and vvsB genes and detected their mRNAs. However, the sample produced from vvsA did not exhibit protease activity. A sodium dodecyl sulfate (SDS) analysis detected the VvsB protein, but not the VvsA protein. A Western blotting analysis using a histidine (His)-tag at the amino terminus of proteins also showed no protein production by vvsA. These results suggested the translation, but not the transcription of vvsA. Factors derived from Escherichia coli were used in the in vitro cell-free translation system employed in the present study. The operon of the serine protease gene containing vvsA and vvsB was expressed in E. coli. Although serine proteases were produced, they were cleaved at different sites and no active mature forms were detected. These results indicate that the operon encoding vvsA and vvsB is a gene constructed to be specifically expressed in V. vulnificus.
en-copyright=
kn-copyright=
en-aut-name=KawaseTomoka
en-aut-sei=Kawase
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DebnathAnusuya
en-aut-sei=Debnath
en-aut-mei=Anusuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizunoTamaki
en-aut-sei=Mizuno
en-aut-mei=Tamaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeYui
en-aut-sei=Miyake
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Vibrio vulnificus serine protease
kn-keyword=Vibrio vulnificus serine protease
en-keyword=intermolecular chaperone
kn-keyword=intermolecular chaperone
en-keyword=cell-free translation system
kn-keyword=cell-free translation system
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=1119
end-page=1122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Epigenetic Regulation of Carbonic Anhydrase 9 Expression by Nitric Oxide in Human Small Airway Epithelial Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.
en-copyright=
kn-copyright=
en-aut-name=MoriyaYuto
en-aut-sei=Moriya
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IijimaYuta
en-aut-sei=Iijima
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=nitric oxide
kn-keyword=nitric oxide
en-keyword=human small airway epithelial cell
kn-keyword=human small airway epithelial cell
en-keyword=epigenetics
kn-keyword=epigenetics
en-keyword=DNA methylation
kn-keyword=DNA methylation
en-keyword=carbonic anhydrase 9
kn-keyword=carbonic anhydrase 9
en-keyword=hypoxia-inducible factor 1 alpha
kn-keyword=hypoxia-inducible factor 1 alpha
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=463
end-page=483
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240731
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN1p) of Drosophila melanogaster Can Control Morning and Evening Activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
en-copyright=
kn-copyright=
en-aut-name=SekiguchiManabu
en-aut-sei=Sekiguchi
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ReinhardNils
en-aut-sei=Reinhard
en-aut-mei=Nils
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatohShun
en-aut-sei=Katoh
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RiegerDirk
en-aut-sei=Rieger
en-aut-mei=Dirk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Helfrich-FörsterCharlotte
en-aut-sei=Helfrich-Förster
en-aut-mei=Charlotte
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg
kn-affil=
affil-num=6
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=period
kn-keyword=period
en-keyword=GAL4-UAS
kn-keyword=GAL4-UAS
en-keyword=clock neuron
kn-keyword=clock neuron
en-keyword=activity rhythm
kn-keyword=activity rhythm
en-keyword=two-oscillator model
kn-keyword=two-oscillator model
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=27
article-no=
start-page=6509
end-page=6517
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and −140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.
en-copyright=
kn-copyright=
en-aut-name=NakanishiKotaro
en-aut-sei=Nakanishi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SowaYoshiyuki
en-aut-sei=Sowa
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=4
article-no=
start-page=491
end-page=499
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240628
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of mutation spectra induced by gamma-rays and carbon ion beams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ionizing radiation with high linear energy transfer (LET), such as a heavy ion beam, induces more serious biological effects than low LET ones, such as gamma- and X-rays. This indicates a difference in the DNA damage produced by low and high LET radiations and their biological effects. We have been studying the differences in DNA damage produced by gamma-rays and carbon ion beams. Therefore, we analyze mutations induced by both ionizing radiations to discuss the differences in their biological effects in this study. pUC19 plasmid DNA was irradiated by carbon ion beams in the solution containing 1M dimethyl sulfoxide to mimic a cellular condition. The irradiated DNA was cloned in competent cells of Escherichia coli. The clones harboring some mutations in the region of lacZ alpha were selected, and the sequence alterations were analyzed. A one-deletion mutation is significant in the carbon-irradiated DNA, and the C:G <-> T:A transition is minor. On the other hand, the gamma-irradiated DNA shows mainly G:C <-> T:A transversion. These results suggest that carbon ion beams produce complex DNA damage, and gamma-rays are prone to single oxidative base damage, such as 8-oxoguanine. Carbon ion beams can also introduce oxidative base damage, and the damage species is 5-hydroxycytosine. This was consistent with our previous results of DNA damage caused by heavy ion beams. We confirmed the causal DNA damage by mass spectrometry for these mutations.
en-copyright=
kn-copyright=
en-aut-name=TokuyamaYuka
en-aut-sei=Tokuyama
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriKanae
en-aut-sei=Mori
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsobeMidori
en-aut-sei=Isobe
en-aut-mei=Midori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeratoHiroaki
en-aut-sei=Terato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Analytical Research Center for Experimental Science, Saga University
kn-affil=
affil-num=2
en-affil=Analytical Research Center for Experimental Science, Saga University
kn-affil=
affil-num=3
en-affil=Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Advanced Science Research Center, Okayama University
kn-affil=
en-keyword=base damage
kn-keyword=base damage
en-keyword=mutation
kn-keyword=mutation
en-keyword=gamma-rays
kn-keyword=gamma-rays
en-keyword=heavy ion beam
kn-keyword=heavy ion beam
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=4610
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.
en-copyright=
kn-copyright=
en-aut-name=LiYuying
en-aut-sei=Li
en-aut-mei=Yuying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangQiong
en-aut-sei=Wang
en-aut-mei=Qiong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JiaHuimin
en-aut-sei=Jia
en-aut-mei=Huimin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KosamiKen-Ichi
en-aut-sei=Kosami
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UebaTakahiro
en-aut-sei=Ueba
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujimotoAtsumi
en-aut-sei=Tsujimoto
en-aut-mei=Atsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamanakaMiki
en-aut-sei=Yamanaka
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YabumotoYasuyuki
en-aut-sei=Yabumoto
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MikiDaisuke
en-aut-sei=Miki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SasakiEriko
en-aut-sei=Sasaki
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FukaoYoichiro
en-aut-sei=Fukao
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraMasayuki
en-aut-sei=Fujiwara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Kaneko-KawanoTakako
en-aut-sei=Kaneko-Kawano
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanLi
en-aut-sei=Tan
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KojimaChojiro
en-aut-sei=Kojima
en-aut-mei=Chojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WingRod A.
en-aut-sei=Wing
en-aut-mei=Rod A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SebastianAlfino
en-aut-sei=Sebastian
en-aut-mei=Alfino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NishimuraHideki
en-aut-sei=Nishimura
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FukadaFumi
en-aut-sei=Fukada
en-aut-mei=Fumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NiuQingfeng
en-aut-sei=Niu
en-aut-mei=Qingfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShimizuMotoki
en-aut-sei=Shimizu
en-aut-mei=Motoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshidaKentaro
en-aut-sei=Yoshida
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TerauchiRyohei
en-aut-sei=Terauchi
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ShimamotoKo
en-aut-sei=Shimamoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences
kn-affil=
affil-num=2
en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=College of Agronomy, Jiangxi Agricultural University
kn-affil=
affil-num=4
en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=5
en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology
kn-affil=
affil-num=7
en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology
kn-affil=
affil-num=8
en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology
kn-affil=
affil-num=9
en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology
kn-affil=
affil-num=10
en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=11
en-affil=Faculty of Science, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Bioinformatics, Ritsumeikan University
kn-affil=
affil-num=13
en-affil=YANMAR HOLDINGS Co., Ltd.
kn-affil=
affil-num=14
en-affil=College of Pharmaceutical Sciences, Ritsumeikan University
kn-affil=
affil-num=15
en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=16
en-affil=Graduate School of Engineering Science, Yokohama National University
kn-affil=
affil-num=17
en-affil=Arizona Genomics Institute, School of Plant Sciences, University of Arizona
kn-affil=
affil-num=18
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=19
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=20
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=21
en-affil=Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology
kn-affil=
affil-num=22
en-affil=Iwate Biotechnology Research Center
kn-affil=
affil-num=23
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=24
en-affil=Iwate Biotechnology Research Center
kn-affil=
affil-num=25
en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology
kn-affil=
affil-num=26
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=28
article-no=
start-page=5739
end-page=5747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Total synthesis and structure–antifouling activity relationship of scabrolide F
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment–coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugitaniYuki
en-aut-sei=Sugitani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorishitaRyohei
en-aut-sei=Morishita
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YorisueTakefumi
en-aut-sei=Yorisue
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Natural and Environmental Sciences, University of Hyogo
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=10
article-no=
start-page=5825
end-page=5840
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240425
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences. Graphical Abstract
en-copyright=
kn-copyright=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamanouchiShun
en-aut-sei=Yamanouchi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemuraEri
en-aut-sei=Uemura
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiKohei
en-aut-sei=Yamasaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaToma
en-aut-sei=Ikeda
en-aut-mei=Toma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KuriharaMiku
en-aut-sei=Kurihara
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwasakiWataru
en-aut-sei=Iwasaki
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo
kn-affil=
affil-num=3
en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo
kn-affil=
affil-num=9
en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=4
article-no=
start-page=94
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=FLOURY ENDOSPERM 6 mutations enhance the sugary phenotype caused by the loss of ISOAMYLASE1 in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.
en-copyright=
kn-copyright=
en-aut-name=MatsushimaRyo
en-aut-sei=Matsushima
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiuraSatoko
en-aut-sei=Miura
en-aut-mei=Satoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CroftsNaoko
en-aut-sei=Crofts
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakenakaYuto
en-aut-sei=Takenaka
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OitomeNaoko F.
en-aut-sei=Oitome
en-aut-mei=Naoko F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshimizuTakeshi
en-aut-sei=Ishimizu
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujitaNaoko
en-aut-sei=Fujita
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoKazuhiro
en-aut-sei=Sato
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=5
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=6
en-affil=College of Life Sciences, Ritsumeikan University
kn-affil=
affil-num=7
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=8
en-affil=College of Life Sciences, Ritsumeikan University
kn-affil=
affil-num=9
en-affil=Department of Biological Production, Akita Prefectural University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=2
article-no=
start-page=185
end-page=191
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reduced Immunogenicity of COVID-19 Vaccine in Obese Patients with Type 2 Diabetes: A Cross-Sectional Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The global pandemic of coronavirus infection 2019 (COVID-19) was an unprecedented public health emergency. Several clinical studies reported that heart disease, lung disease, diabetes, hypertension, dyslipidemia, and obesity are critical risk factors for increased severity of and hospitalization for COVID-19. This is largely because patients with these underlying medical conditions can show poor immune responses to the COVID-19 vaccinations. Diabetes is one of the underlying conditions most highly associated with COVID-19 susceptibility and is considered a predictor of poor prognosis of COVID-19. We therefore investigated factors that influence the anti-SARS-CoV-2 spike IgG antibody titer after three doses of vaccination in patients with type 2 diabetes. We found that obesity was associated with low anti-SARS-CoV-2 spike IgG antibody titers following three-dose vaccination in type 2 diabetics. Obese patients with type 2 diabetes may have attenuated vaccine efficacy and require additional vaccination; continuous infection control should be considered in such patients.
en-copyright=
kn-copyright=
en-aut-name=TakahashiHiroko
en-aut-sei=Takahashi
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=obesity
kn-keyword=obesity
en-keyword=type 2 diabetes
kn-keyword=type 2 diabetes
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=vaccination
kn-keyword=vaccination
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=2
article-no=
start-page=151
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=p53-Armed Oncolytic Virotherapy Improves Radiosensitivity in Soft-Tissue Sarcoma by Suppressing BCL-xL Expression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors’ growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors.
en-copyright=
kn-copyright=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OmoriToshinori
en-aut-sei=Omori
en-aut-mei=Toshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugiuKazuhisa
en-aut-sei=Sugiu
en-aut-mei=Kazuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MochizukiYusuke
en-aut-sei=Mochizuki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Oncolys BioPharma, Inc.
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=soft-tissue sarcoma
kn-keyword=soft-tissue sarcoma
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=oncolytic adenovirus
kn-keyword=oncolytic adenovirus
en-keyword=p53
kn-keyword=p53
en-keyword=BCL-xL
kn-keyword=BCL-xL
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=2
article-no=
start-page=123
end-page=134
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sigle Agent of Posttransplant Cyclophosphamide Without Calcineurin Inhibitor Controls Severity of Experimental Chronic GVHD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chronic graft-versus-host disease (GVHD) is a major cause of late death and morbidity following allogeneic hematopoietic cell transplantation (HCT), but its pathogenesis remains unclear. Recently, haplo-identical HCT with post-transplant cyclophosphamide (Haplo-HCT with PTCY) was found to achieve a low incidence rate of acute GVHD and chronic GVHD. However, while the pathogenesis of acute GVHD following Haplo-HCT with PTCY has been well investigated, that of chronic GVHD remains to be elucidated, especially in HLA-matched HCT with PTCY. Based on its safety profile, PTCY is currently applied for the human leucocyte antigen (HLA)-matched HCT setting. Here, we investigated the mechanisms of chronic GVHD following HLA-matched HCT with PTCY using a well-defined mouse chronic GVHD model. PTCY attenuated clinical and pathological chronic GVHD by suppressing effector T-cells and preserving regulatory T-cells compared with a control group. Additionally, we demonstrated that cyclosporine A (CsA) did not show any additional positive effects on attenuation of GVHD in PTCY-treated recipients. These results suggest that monotherapy with PTCY without CsA could be a promising strategy for the prevention of chronic GVHD following HLA-matched HCT.
en-copyright=
kn-copyright=
en-aut-name=SaekiKyosuke
en-aut-sei=Saeki
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuroiTaiga
en-aut-sei=Kuroi
en-aut-mei=Taiga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Division of Transfusion, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=GVHD
kn-keyword=GVHD
en-keyword=posttransplant cyclophosphamide
kn-keyword=posttransplant cyclophosphamide
en-keyword=hematopoietic cell transplantation
kn-keyword=hematopoietic cell transplantation
en-keyword=HLA-identical
kn-keyword=HLA-identical
END
start-ver=1.4
cd-journal=joma
no-vol=290
cd-vols=
no-issue=2000
article-no=
start-page=20230549
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Diacamma ants adjust liquid foraging strategies in response to biophysical constraints
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ant foragers provide food to the rest of the colony, often requiring transport over long distances. Foraging for liquid is challenging because it is difficult to transport and share. Many social insects store liquids inside the crop to transport them to the nest, and then regurgitate to distribute to nest-mates through a behaviour called trophallaxis. Some ants instead transport fluids with a riskier behaviour called pseudotrophallaxis—holding a drop of liquid between the mandibles through surface tension. Ants share this droplet with nest-mates without ingestion or regurgitation. We hypothesised that ants optimize their liquid-collection approach depending on viscosity. Using an ant that employs both trophallaxis and pseudotrophallaxis, we investigated the conditions where each liquid-collection behaviour is favoured by measuring biophysical properties, collection time and reaction to food quality for typical and viscosity-altered sucrose solutions. We found that ants collected more liquid per unit time by mandibular grabbing than by drinking. At high viscosities ants switched liquid collection method to mandibular grabbing in response to viscosity and not to sweetness. Our results demonstrate that ants change transport and sharing methods according to viscosity–a natural proxy for sugar concentration–thus increasing the mass of sugar returned to the nest per trip.
en-copyright=
kn-copyright=
en-aut-name=FujiokaHaruna
en-aut-sei=Fujioka
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MarchandManon
en-aut-sei=Marchand
en-aut-mei=Manon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeBoeufAdria C.
en-aut-sei=LeBoeuf
en-aut-mei=Adria C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, University of Fribourg
kn-affil=
affil-num=3
en-affil=Department of Biology, University of Fribourg
kn-affil=
en-keyword=mandibular pseudotrophallaxis
kn-keyword=mandibular pseudotrophallaxis
en-keyword=social bucket
kn-keyword=social bucket
en-keyword=liquid transportation
kn-keyword=liquid transportation
en-keyword=liquid collection
kn-keyword=liquid collection
en-keyword=optimal foraging theory
kn-keyword=optimal foraging theory
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=rbac088
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.
en-copyright=
kn-copyright=
en-aut-name=KadoyaKoichi
en-aut-sei=Kadoya
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraEmilio Satoshi
en-aut-sei=Hara
en-aut-mei=Emilio Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=JiaoYu Yang
en-aut-sei=Jiao
en-aut-mei=Yu Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoTakayoshi
en-aut-sei=Nakano
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiAkira
en-aut-sei=Sasaki
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Division of Materials & Manufacturing Science, Osaka University
kn-affil=
affil-num=6
en-affil=Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=trabecular bone
kn-keyword=trabecular bone
en-keyword=calcospherites
kn-keyword=calcospherites
en-keyword=cell membrane nano fragments
kn-keyword=cell membrane nano fragments
en-keyword=three dimensionalization
kn-keyword=three dimensionalization
en-keyword=bone tissue synthesis
kn-keyword=bone tissue synthesis
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=8
article-no=
start-page=105020
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mammalian type opsin 5 preferentially activates G14 in Gq-type G proteins triggering intracellular calcium response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and G alpha-KO cell line. Beyond the commonly studied major G alpha classes, G alpha q, G alpha 11, G alpha 14, and G alpha 15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type G alpha deletion and rescued by cotransfection with mouse and medaka Gq-type G alpha proteins. Opn5m preferentially activated G alpha 14 and close relatives. Mutational analysis implicated specific regions, including alpha 3-beta 5 and alpha G-alpha 4 loops, alpha G and alpha 4 helices, and the extreme C terminus, in the preferential activation of G alpha 14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and G alpha 14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of G alpha 14 by Opn5m is relevant for UV sensing in specific cell types.
en-copyright=
kn-copyright=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=G protein
kn-keyword=G protein
en-keyword=G protein−coupled receptor (GPCR)
kn-keyword=G protein−coupled receptor (GPCR)
en-keyword=photoreceptor
kn-keyword=photoreceptor
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=calcium intracellular release
kn-keyword=calcium intracellular release
en-keyword=protein−protein interaction
kn-keyword=protein−protein interaction
en-keyword=signal transduction
kn-keyword=signal transduction
en-keyword=nonvisual photoreception
kn-keyword=nonvisual photoreception
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=7
article-no=
start-page=104839
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into the action mechanisms of artificial electron acceptors in photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 angstrom resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinonebinding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
en-copyright=
kn-copyright=
en-aut-name=KamadaShinji
en-aut-sei=Kamada
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Photosystem II
kn-keyword=Photosystem II
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=electron transfer
kn-keyword=electron transfer
en-keyword=structural biology
kn-keyword=structural biology
en-keyword=crystal structure
kn-keyword=crystal structure
en-keyword=electron acceptor
kn-keyword=electron acceptor
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=48
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Preliminary Study of Dental Caries Detection by Deep Neural Network Applying Domain-Specific Transfer Learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose The purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning.
Methods A simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance.
Results The diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film.
Conclusion Domain-specific transfer learning methods may be useful for saving datasets and training time (179/250).
en-copyright=
kn-copyright=
en-aut-name=KawazuToshiyuki
en-aut-sei=Kawazu
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaShunsuke
en-aut-sei=Okada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Deep neural networks
kn-keyword=Deep neural networks
en-keyword=Caries detection
kn-keyword=Caries detection
en-keyword=Domain-Specific transfer learning
kn-keyword=Domain-Specific transfer learning
en-keyword=Panoramic tomography
kn-keyword=Panoramic tomography
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=
article-no=
start-page=1338669
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tetrathionate hydrolase from the acidophilic microorganisms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S-4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review.
en-copyright=
kn-copyright=
en-aut-name=KanaoTadayoshi
en-aut-sei=Kanao
en-aut-mei=Tadayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Agricultural and Biological Chemistry, Graduate School of Environment, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=tetrathionate hydrolase
kn-keyword=tetrathionate hydrolase
en-keyword=reduced inorganic sulfur compounds
kn-keyword=reduced inorganic sulfur compounds
en-keyword=dissimilatory sulfur metabolism
kn-keyword=dissimilatory sulfur metabolism
en-keyword=S4-intermediate pathway
kn-keyword=S4-intermediate pathway
en-keyword=acidophiles
kn-keyword=acidophiles
en-keyword=chemoautotroph
kn-keyword=chemoautotroph
END
start-ver=1.4
cd-journal=joma
no-vol=113
cd-vols=
no-issue=
article-no=
start-page=41
end-page=48
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Instant estimation of rice yield using ground-based RGB images and its potential applicability to UAV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep learning-based approach for instantaneously estimating rice yield using RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downwards over the rice canopy from a distance of 0.8 to 0.9m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) applied to these data at harvest predicted 68% variation in yield with a relative root mean square error (rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2cm pixel-1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production.
en-copyright=
kn-copyright=
en-aut-name=TanakaYu
en-aut-sei=Tanaka
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeTomoya
en-aut-sei=Watanabe
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuraKeisuke
en-aut-sei=Katsura
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsujimotoYasuhiro
en-aut-sei=Tsujimoto
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakaiToshiyuki
en-aut-sei=Takai
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaTakashi Sonam Tashi
en-aut-sei=Tanaka
en-aut-mei=Takashi Sonam Tashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawamuraKensuke
en-aut-sei=Kawamura
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SaitoHiroki
en-aut-sei=Saito
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HommaKoki
en-aut-sei=Homma
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MairouaSalifou Goube
en-aut-sei=Mairoua
en-aut-mei=Salifou Goube
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AhouantonKokou
en-aut-sei=Ahouanton
en-aut-mei=Kokou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IbrahimAli
en-aut-sei=Ibrahim
en-aut-mei=Ali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SenthilkumarKalimuthu
en-aut-sei=Senthilkumar
en-aut-mei=Kalimuthu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SemwalVimal Kumar
en-aut-sei=Semwal
en-aut-mei=Vimal Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MatuteEduardo Jose Graterol
en-aut-sei=Matute
en-aut-mei=Eduardo Jose Graterol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=CorredorEdgar
en-aut-sei=Corredor
en-aut-mei=Edgar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=El-NamakyRaafat
en-aut-sei=El-Namaky
en-aut-mei=Raafat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ManigbasNorvie
en-aut-sei=Manigbas
en-aut-mei=Norvie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=QuilangEduardo Jimmy P.
en-aut-sei=Quilang
en-aut-mei=Eduardo Jimmy P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IwahashiYu
en-aut-sei=Iwahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NakajimaKota
en-aut-sei=Nakajima
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=TakeuchiEisuke
en-aut-sei=Takeuchi
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SaitoKazuki
en-aut-sei=Saito
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Mathematics, Kyushu University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Tokyo University of Agriculture and Technology
kn-affil=
affil-num=4
en-affil=Japan International Research Center for Agricultural Sciences
kn-affil=
affil-num=5
en-affil=Japan International Research Center for Agricultural Sciences
kn-affil=
affil-num=6
en-affil=Faculty of Biological Sciences, Gifu UniversityFaculty of Biological Sciences, Gifu University
kn-affil=
affil-num=7
en-affil=Japan International Research Center for Agricultural Sciences
kn-affil=
affil-num=8
en-affil=Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences
kn-affil=
affil-num=9
en-affil=Graduate School of Agricultural Science, Tohoku University
kn-affil=
affil-num=10
en-affil=Africa Rice Center (AfricaRice)
kn-affil=
affil-num=11
en-affil=Africa Rice Center (AfricaRice)
kn-affil=
affil-num=12
en-affil=Africa Rice Center (AfricaRice), Regional Station for the Sahel
kn-affil=
affil-num=13
en-affil=Africa Rice Center (AfricaRice)
kn-affil=
affil-num=14
en-affil=Africa Rice Center (AfricaRice), Nigeria Station
kn-affil=
affil-num=15
en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT
kn-affil=
affil-num=16
en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT
kn-affil=
affil-num=17
en-affil=Rice Research and Training Center, Field Crops Research Institute
kn-affil=
affil-num=18
en-affil=Philippine Rice Research Institute (PhilRice)
kn-affil=
affil-num=19
en-affil=Philippine Rice Research Institute (PhilRice)
kn-affil=
affil-num=20
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=21
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=22
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=23
en-affil=Japan International Research Center for Agricultural Sciences
kn-affil=
en-keyword=Rice (Oryza sativa L.)
kn-keyword=Rice (Oryza sativa L.)
en-keyword=rough grain yield
kn-keyword=rough grain yield
en-keyword=convolutional neural network
kn-keyword=convolutional neural network
en-keyword=RGB images
kn-keyword=RGB images
en-keyword=UAV
kn-keyword=UAV
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=2
article-no=
start-page=532
end-page=542
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231229
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=pSPICA Force Field Extended for Proteins and Peptides
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Many coarse-grained (CG) molecular dynamics (MD) studies have been performed to investigate biological processes involving proteins and lipids. CG force fields (FFs) in these MD studies often use implicit or nonpolar water models to reduce computational costs. CG-MD using water models cannot properly describe electrostatic screening effects owing to the hydration of ionic segments and thus cannot appropriately describe molecular events involving water channels and pores through lipid membranes. To overcome this issue, we developed a protein model in the pSPICA FF, in which a polar CG water model showing the proper dielectric response was adopted. The developed CG model greatly improved the transfer free energy profiles of charged side chain analogues across the lipid membrane. Application studies on melittin-induced membrane pores and mechanosensitive channels in lipid membranes demonstrated that CG-MDs using the pSPICA FF correctly reproduced the structure and stability of the pores and channels. Furthermore, the adsorption behavior of the highly charged nona-arginine peptides on lipid membranes changed with salt concentration, indicating the pSPICA FF is also useful for simulating protein adsorption on membrane surfaces.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiYusuke
en-aut-sei=Miyazaki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShinodaWataru
en-aut-sei=Shinoda
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=12
article-no=
start-page=113569
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231226
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic dissection of premature translation termination induced by acidic residues-enriched nascent peptide
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabi-lizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical pre-mature termination.
en-copyright=
kn-copyright=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanamoriTakashi
en-aut-sei=Kanamori
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaKazuya
en-aut-sei=Ichihara
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakayamaKeiichi I.
en-aut-sei=Nakayama
en-aut-mei=Keiichi I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoAkinobu
en-aut-sei=Matsumoto
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=GeneFrontier Corporation
kn-affil=
affil-num=3
en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=5
en-affil=Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University
kn-affil=
affil-num=6
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=7
en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=
article-no=
start-page=439
end-page=445
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Solid-state inorganic and metallic adhesives for soft biological tissues
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Currently, the soft-tissue adhesives used in clinical practice are glue-type organic adhesives. However, there is a demand for new types of adhesives, because the current organic adhesives present challenges in terms of their biocompatibility and adhesion strength. This review summarizes the discovery and development of inorganic and metallic adhesives designed for soft biological tissues while focusing on immobilization of medical divices on soft tissues. These new types of adhesives are in a solid state and adhere directly and immediately to soft tissues. Therefore, they are called "solid-state adhesives" to distinguish them from the currently used glue-type adhesives. In previous studies on inorganic solid-state adhesives, oxides and calcium phosphates were used as raw materials in the form of nanoparticles, nanoparticle-coated films, or nanoparticle-assembled porous plates. In previous studies on metallic solid-state adhesives, only Ti and its alloys were used as raw materials. This review also discusses the future perspectives in this active research area.
en-copyright=
kn-copyright=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Soft-tissue adhesive
kn-keyword=Soft-tissue adhesive
en-keyword=Solid-state adhesion
kn-keyword=Solid-state adhesion
en-keyword=Oxide
kn-keyword=Oxide
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Titanium
kn-keyword=Titanium
END
start-ver=1.4
cd-journal=joma
no-vol=180
cd-vols=
no-issue=
article-no=
start-page=112270
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202309
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Attenuation of pulmonary damage in aged lipopolysaccharide-induced inflammation mice through continuous 2 % hydrogen gas inhalation: A potential therapeutic strategy for geriatric inflammation and survival
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: With the global population aging, there is an increased prevalence of sepsis among the elderly, a demographic particularly susceptible to inflammation. This study aimed to evaluate the therapeutic potential of hydrogen gas, known for its anti-inflammatory and antioxidant properties, in attenuating inflammation specifically in the lungs and liver, and age-associated molecular markers in aged mice.
Methods: Male mice aged 21 to 23 months, representative of the human elderly population, were subjected to inflammation via intraperitoneal injection of lipopolysaccharide (LPS). The mice were allocated into eight groups to examine the effects of varying durations and concentrations of hydrogen gas inhalation: control, saline without hydrogen, saline with 24-hour 2 % hydrogen, LPS without hydrogen, LPS with 24-hour 2 % hydrogen, LPS with 6-hour 2 % hydrogen, LPS with 1-hour 2 % hydrogen, and LPS with 24-hour 1 % hydrogen. Parameters assessed included survival rate, activity level, inflammatory biomarkers, and organ injury.
Results: Extended administration of hydrogen gas specifically at a 2 % concentration for 24 h led to a favorable prognosis in the aged mice by reducing mRNA expression of inflammatory biomarkers in lung and liver tissue, mitigating lung injury, and diminishing the expression of the senescence-associated protein p21. Moreover, hydrogen gas inhalation selectively ameliorated senescence-related markers in lung tissue, including C-X-C motif chemokine 2, metalloproteinase-3, and arginase-1. Notably, hydrogen gas did not alleviate LPS-induced liver injury under the conditions tested.
Conclusion: The study highlights that continuous inhalation of hydrogen gas at a 2 % concentration for 24 h can be a potent intervention in the geriatric population for improving survival and physical activity by mitigating pulmonary inflammation and modulating senescence-related markers in aged mice with LPS-induced inflammation. This finding paves the way for future research into hydrogen gas as a therapeutic strategy to alleviate severe inflammation that can lead to organ damage in the elderly.
en-copyright=
kn-copyright=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IketaniMasumi
en-aut-sei=Iketani
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SeyaMizuki
en-aut-sei=Seya
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MengYing
en-aut-sei=Meng
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AgetaKohei
en-aut-sei=Ageta
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhsawaIkuroh
en-aut-sei=Ohsawa
en-aut-mei=Ikuroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
kn-affil=
en-keyword=LPS-induced inflammation
kn-keyword=LPS-induced inflammation
en-keyword=Elderly sepsis
kn-keyword=Elderly sepsis
en-keyword=Lipopolysaccharide
kn-keyword=Lipopolysaccharide
en-keyword=Aged mouse
kn-keyword=Aged mouse
en-keyword=Senescence-related markers
kn-keyword=Senescence-related markers
en-keyword=Molecular hydrogen
kn-keyword=Molecular hydrogen
en-keyword=Hydrogen gas inhalation
kn-keyword=Hydrogen gas inhalation
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=100873
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of liquefied sake lees on growth performance and faecal and blood characteristics in Japanese Black calves
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
en-copyright=
kn-copyright=
en-aut-name=KatsumataS.
en-aut-sei=Katsumata
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HayashiY.
en-aut-sei=Hayashi
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OishiK.
en-aut-sei=Oishi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaT.
en-aut-sei=Tsukahara
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueR.
en-aut-sei=Inoue
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ObataA.
en-aut-sei=Obata
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirookaH.
en-aut-sei=Hirooka
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumagaiH.
en-aut-sei=Kumagai
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Shiga Prefectural Livestock Production Technology Promotion Center
kn-affil=
affil-num=3
en-affil=Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Kyoto Institute of Nutrition and Pathology
kn-affil=
affil-num=5
en-affil=Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University
kn-affil=
affil-num=6
en-affil=Shiga Prefectural Livestock Production Technology Promotion Center
kn-affil=
affil-num=7
en-affil=Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University
kn-affil=
en-keyword=By-products
kn-keyword=By-products
en-keyword=Faecal microbiota
kn-keyword=Faecal microbiota
en-keyword=Japanese Black cattle
kn-keyword=Japanese Black cattle
en-keyword=Preweaning calves
kn-keyword=Preweaning calves
en-keyword=Saccharomyces cerevisiae
kn-keyword=Saccharomyces cerevisiae
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=1706
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
en-copyright=
kn-copyright=
en-aut-name=KatohHirokazu
en-aut-sei=Katoh
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HondaTomoyuki
en-aut-sei=Honda
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=HERVs
kn-keyword=HERVs
en-keyword=LINEs
kn-keyword=LINEs
en-keyword=cancer
kn-keyword=cancer
en-keyword=innate immunity
kn-keyword=innate immunity
en-keyword=promoter
kn-keyword=promoter
en-keyword=enhancer
kn-keyword=enhancer
en-keyword=interferon signaling
kn-keyword=interferon signaling
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=18
article-no=
start-page=2893
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MicroRNAs as Biomarkers and Therapeutic Targets for Acute Kidney Injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney function and/or urine output is observed, which may result in the imbalance of water, electrolytes and acid base. It is associated with poor prognosis and prolonged hospitalization. Therefore, an early diagnosis and treatment to avoid the severe AKI stage are important. While several biomarkers, such as urinary L-FABP and NGAL, can be clinically useful, there is still no gold standard for the early detection of AKI and there are limited therapeutic options against AKI. miRNAs are non-coding and single-stranded RNAs that silence their target genes in the post-transcriptional process and are involved in a wide range of biological processes. Recent accumulated evidence has revealed that miRNAs may be potential biomarkers and therapeutic targets for AKI. In this review article, we summarize the current knowledge about miRNAs as promising biomarkers and potential therapeutic targets for AKI, as well as the challenges in their clinical use.
en-copyright=
kn-copyright=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=microRNA
kn-keyword=microRNA
en-keyword=acute kidney injury
kn-keyword=acute kidney injury
en-keyword=biomarker
kn-keyword=biomarker
en-keyword=mesenchymal stem cell
kn-keyword=mesenchymal stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=6
article-no=
start-page=671
end-page=674
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dramatic Response to Tezepelumab as an Initial Biologic Agent for Refractory Asthma Associated with Type 2 and Non-type 2 Traits
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 74-year-old Japanese woman presented with a 45-year history of refractory asthma. She had been treated with inhaled corticosteroids, a long-acting β2-agonist, and a long-acting muscarinic antagonist for 6 months. She also had a repeated viral infection. Her condition had been characterized as a refractory asthma associated with type 2 and non-type 2 traits. We began treatment with tezepelumab. The control of the patient’s asthma symptoms and quality of life improved greatly within 1 month (changes in eosinophil count from 748 to 96 /μL, in FeNO from 32 to 17 ppb, in the Asthma Quality of Life Questionnaire score from 3.59 to 6.68, and in the Asthma Control Test score from 13 to 23). Tezepelumab was effective as an initial biologic agent for a patient with refractory asthma associated with type 2 and non-type 2 traits.
en-copyright=
kn-copyright=
en-aut-name=MinamiDaisuke
en-aut-sei=Minami
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HosoyaTakeshi
en-aut-sei=Hosoya
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HosoyaMasaharu
en-aut-sei=Hosoya
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaganoAkichika
en-aut-sei=Nagano
en-aut-mei=Akichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakajimaYasuhiro
en-aut-sei=Nakajima
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyaharaNobuaki
en-aut-sei=Miyahara
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanehiroArihiko
en-aut-sei=Kanehiro
en-aut-mei=Arihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Hosoya Hospital
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Hosoya Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Hosoya Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Himeji Saint Mary’s Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Himeji Saint Mary’s Hospital
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Himeji Saint Mary’s Hospital
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine, Himeji Saint Mary’s Hospital
kn-affil=
en-keyword=tezepelumab
kn-keyword=tezepelumab
en-keyword=biologic agent
kn-keyword=biologic agent
en-keyword=eosinophilic
kn-keyword=eosinophilic
en-keyword=non-type 2
kn-keyword=non-type 2
en-keyword=severe asthma
kn-keyword=severe asthma
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=6
article-no=
start-page=665
end-page=669
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Omental Abscess after Laparoscopic Proximal Gastrectomy Successfully Treated with Percutaneous Drainage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report the case details of a 65-year-old Japanese man with an omental abscess that was discovered 43 days after he underwent a laparoscopic proximal gastrectomy for gastric cancer. His chief complaint was mild abdominal pain that had persisted for several days. The abscess was diagnosed as a rare postoperative complication. We hesitated to perform a reoperation given the invasiveness of general anesthesia and surgery, plus the possibility of postoperative adhesions and because the patient’s general condition was stable and he had only mild abdominal pain. Percutaneous drainage using a 10.2-F catheter was performed with the patient under conscious sedation and computed tomography–fluoroscopy guidance, with no complications. After the procedure, the size of the abscess cavity was remarkably reduced, and 23 days later the catheter was withdrawn.
en-copyright=
kn-copyright=
en-aut-name=SakuraiAtsunobu
en-aut-sei=Sakurai
en-aut-mei=Atsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=drainage
kn-keyword=drainage
en-keyword=omental abscess
kn-keyword=omental abscess
en-keyword=omental infarction
kn-keyword=omental infarction
en-keyword=proximal gastrectomy
kn-keyword=proximal gastrectomy
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=2281159
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.
en-copyright=
kn-copyright=
en-aut-name=OkamotoTakashi
en-aut-sei=Okamoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=pollen germination
kn-keyword=pollen germination
en-keyword=pollen tube growth
kn-keyword=pollen tube growth
en-keyword=the WVD2/WDL family
kn-keyword=the WVD2/WDL family
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=20
article-no=
start-page=4190
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fabrication of a Fish-Bone-Inspired Inorganic-Organic Composite Membrane
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane.
en-copyright=
kn-copyright=
en-aut-name=JiaoYuyang
en-aut-sei=Jiao
en-aut-mei=Yuyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NutanBhingaradiya
en-aut-sei=Nutan
en-aut-mei=Bhingaradiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MusaRanda
en-aut-sei=Musa
en-aut-mei=Randa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=4
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=fish bone
kn-keyword=fish bone
en-keyword=lamellar structure
kn-keyword=lamellar structure
en-keyword=self-assembly
kn-keyword=self-assembly
en-keyword=guided bone regeneration
kn-keyword=guided bone regeneration
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=054107
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Diamond quantum sensors in microfluidics technology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions within diverse chemical and biological contexts. Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels. In this Perspective, we present recent advancements in the integration of diamond quantum sensors with microfluidic devices and explore their prospects with a focus on forthcoming technological developments.
en-copyright=
kn-copyright=
en-aut-name=FujiwaraMasazumi
en-aut-sei=Fujiwara
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=291
cd-vols=
no-issue=6
article-no=
start-page=1119
end-page=1130
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231020
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors – such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 – triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.
en-copyright=
kn-copyright=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaMasanori
en-aut-sei=Ikeda
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AriumiYasuo
en-aut-sei=Ariumi
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoNobuyuki
en-aut-sei=Kato
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University
kn-affil=
affil-num=3
en-affil=Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=double-stranded RNA
kn-keyword=double-stranded RNA
en-keyword=hepatitis C virus
kn-keyword=hepatitis C virus
en-keyword=innate immunity
kn-keyword=innate immunity
en-keyword=RIG-I-like receptor
kn-keyword=RIG-I-like receptor
en-keyword=RNA virus
kn-keyword=RNA virus
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1239598
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=“Input/output cytokines” in epidermal keratinocytes and the involvement in inflammatory skin diseases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Considering the role of epidermal keratinocytes, they occupy more than 90% of the epidermis, form a physical barrier, and also function as innate immune barrier. For example, epidermal keratinocytes are capable of recognizing various cytokines and pathogen-associated molecular pattern, and producing a wide variety of inflammatory cytokines, chemokines, and antimicrobial peptides. Previous basic studies have shown that the immune response of epidermal keratinocytes has a significant impact on inflammatory skin diseases. The purpose of this review is to provide foundation of knowledge on the cytokines which are recognized or produced by epidermal keratinocytes. Since a number of biologics for skin diseases have appeared, it is necessary to fully understand the relationship between epidermal keratinocytes and the cytokines. In this review, the cytokines recognized by epidermal keratinocytes are specifically introduced as "input cytokines", and the produced cytokines as "output cytokines". Furthermore, we also refer to the existence of biologics against those input and output cytokines, and the target skin diseases. These use results demonstrate how important targeted cytokines are in real skin diseases, and enhance our understanding of the cytokines.
en-copyright=
kn-copyright=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MukaiTomoyuki
en-aut-sei=Mukai
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SunagawaKo
en-aut-sei=Sunagawa
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawakamiYoshio
en-aut-sei=Kawakami
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Immunology and Molecular Genetics, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=epidermal keratinocytes
kn-keyword=epidermal keratinocytes
en-keyword=input cytokines
kn-keyword=input cytokines
en-keyword=output cytokines
kn-keyword=output cytokines
en-keyword=biologics
kn-keyword=biologics
en-keyword=inflammatory skin diseases
kn-keyword=inflammatory skin diseases
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=2
article-no=
start-page=154
end-page=164
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rhodopsins are transmembrane proteins with retinal chromophores that are involved in photo-energy conversion and photo-signal transduction in diverse organisms. In this study, we newly identified and characterized a rhodopsin from a thermophilic bacterium, Bellilinea sp. Recombinant Escherichia coli cells expressing the rhodopsin showed light-induced alkalization of the medium only in the presence of sodium ions (Na+), and the alkalization signal was enhanced by addition of a protonophore, indicating an outward Na+ pump function across the cellular membrane. Thus, we named the protein Bellilinea Na+-pumping rhodopsin, BeNaR. Of note, its Na+-pumping activity is significantly greater than that of the known Na+-pumping rhodopsin, KR2. We further characterized its photochemical properties as follows: (i) Visible spectroscopy and HPLC revealed that BeNaR has an absorption maximum at 524 nm with predominantly (>96%) the all-trans retinal conformer. (ii) Time-dependent thermal denaturation experiments revealed that BeNaR showed high thermal stability. (iii) The time-resolved flash-photolysis in the nanosecond to millisecond time domains revealed the presence of four kinetically distinctive photointermediates, K, L, M and O. (iv) Mutational analysis revealed that Asp101, which acts as a counterion, and Asp230 around the retinal were essential for the Na+-pumping activity. From the results, we propose a model for the outward Na+-pumping mechanism of BeNaR. The efficient Na+-pumping activity of BeNaR and its high stability make it a useful model both for ion transporters and optogenetics tools.
en-copyright=
kn-copyright=
en-aut-name=KuriharaMarie
en-aut-sei=Kurihara
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ThielVera
en-aut-sei=Thiel
en-aut-mei=Vera
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiHirona
en-aut-sei=Takahashi
en-aut-mei=Hirona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WardDavid M.
en-aut-sei=Ward
en-aut-mei=David M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BryantDonald A.
en-aut-sei=Bryant
en-aut-mei=Donald A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaiMakoto
en-aut-sei=Sakai
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science
kn-affil=
affil-num=4
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Land Resources and Environmental Sciences, Montana State University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry and Molecular Biology, The Pennsylvania State University
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science
kn-affil=
affil-num=8
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=ion transport
kn-keyword=ion transport
en-keyword=retinal
kn-keyword=retinal
en-keyword=isomerization
kn-keyword=isomerization
en-keyword=optogenetics
kn-keyword=optogenetics
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=12
article-no=
start-page=eabm2225
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin). The guanosine 5′-triphosphate (GTP)–bound structure resembles a microtubule protofilament, with GTP bound between subunits, coordinating the “+” end subunit through a network of water molecules and unexpectedly by two cations. A water molecule is located suitable for GTP hydrolysis. Time course crystallography and electron microscopy revealed conformational changes on GTP hydrolysis. OdinTubulin forms tubules at high temperatures, with short curved protofilaments coiling around the tubule circumference, more similar to FtsZ, rather than running parallel to its length, as in microtubules. Thus, OdinTubulin represents an evolutionary stage intermediate between prokaryotic FtsZ and eukaryotic microtubule-forming tubulins.
en-copyright=
kn-copyright=
en-aut-name=AkılCaner
en-aut-sei=Akıl
en-aut-mei=Caner
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AliSamson
en-aut-sei=Ali
en-aut-mei=Samson
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TranLinh T.
en-aut-sei=Tran
en-aut-mei=Linh T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GaillardJérémie
en-aut-sei=Gaillard
en-aut-mei=Jérémie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiWenfei
en-aut-sei=Li
en-aut-mei=Wenfei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HayashidaKenichi
en-aut-sei=Hayashida
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroseMika
en-aut-sei=Hirose
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OshimaAtsunori
en-aut-sei=Oshima
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujishimaKosuke
en-aut-sei=Fujishima
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BlanchoinLaurent
en-aut-sei=Blanchoin
en-aut-mei=Laurent
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NaritaAkihiro
en-aut-sei=Narita
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=RobinsonRobert C.
en-aut-sei=Robinson
en-aut-mei=Robert C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab
kn-affil=
affil-num=5
en-affil=National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University
kn-affil=
affil-num=6
en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University
kn-affil=
affil-num=7
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=8
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=9
en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University
kn-affil=
affil-num=10
en-affil=Tokyo Institute of Technology, Earth-Life Science Institute (ELSI)
kn-affil=
affil-num=11
en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab
kn-affil=
affil-num=12
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=13
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=
article-no=
start-page=98
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Skin Electrical Impedance Model for Evaluation of the Thickness and Water Content of the Stratum Corneum
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deterioration of the skin barrier function causes symptoms such as allergies because various chemical substances may enter the human body. Quantitative evaluation of the thickness and water content of the stratum corneum is useful as a measure of the skin barrier function in domains such as dermatology, nursing science, and cosmetics development. The stratum corneum is responsible for most of the skin barrier function, and two factors—the thickness and water content of the stratum corneum—are thus important. In this paper, the stratum corneum is regarded as a parallel model of resistance and capacitance. From measurements of the electrical impedance of the skin, we propose a new model for simultaneous estimation of the thickness and water content of the stratum corneum conventionally measured by a confocal laser scanning microscope and a confocal Raman spectrometer, respectively, and we discuss the results of the measurements. The electrical impedance of the skin was measured using a device that we developed. The measurement began 3 seconds after the electrodes on the measurement head of the device came into contact with the skin, and parameters including the impedance, which was obtained by applying an alternating current signal at two frequencies, were measured. We measured the thickness and water content of the stratum corneum using confocal laser microscopy and confocal Raman spectroscopy, respectively; investigated the relationship of the thickness and water content of the stratum corneum with the electrical impedance of the skin; and established a new potential model for estimating the thickness and water content of the stratum corneum from the parallel resistance and capacitance. The correlation coefficients of the verification data were 0.931 and 0.776, respectively; and the root-mean-squared error of the thickness of the stratum corneum was 2.3 µm, while the root-mean-squared error of the water content at the surface of the stratum corneum was 5.4 points. These findings indicate the feasibility of quantitative evaluation of the thickness and water content of the stratum corneum by measuring skin electrical impedance.
en-copyright=
kn-copyright=
en-aut-name=UeharaOsamu
en-aut-sei=Uehara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KusuharaToshimasa
en-aut-sei=Kusuhara
en-aut-mei=Toshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuzakiKenichi
en-aut-sei=Matsuzaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoYoshitake
en-aut-sei=Yamamoto
en-aut-mei=Yoshitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraTakao
en-aut-sei=Nakamura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Medical Engineering Laboratory, ALCARE CO., Ltd.
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Medical Engineering Laboratory, ALCARE CO., Ltd.
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=skin electrical impedance
kn-keyword=skin electrical impedance
en-keyword=thickness
kn-keyword=thickness
en-keyword=water content
kn-keyword=water content
en-keyword=stratum corneum
kn-keyword=stratum corneum
en-keyword=skin barrier
kn-keyword=skin barrier
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=
article-no=
start-page=151
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trial of Sportswear Type ECG Sensor Device for Cardiac Safety Management during Marathon Running
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiac arrest has been reported during participation in several sports. Of these sports, marathon running is a particularly popular sport but imposes high cardiac load. Indeed, its popularity has been growing worldwide. Risk of cardiac arrest during marathon races is also expected to increase. Several studies have recorded electrocardiographic (ECG) information during marathon races to protect athletes from cardiac arrest. Although evaluable ECG data have been obtained and analyzed, cost-effectiveness of the system, data quality, and clinical significance remain inadequate. This report is the first to describe an economical electrocardiograph built into a T-shirt for use during marathon race. Twenty healthy runners aged 20 to 59 years (mean 36 years) wore the ECG device while running. The ECG data were monitored and analyzed to assess the observed frequencies of specified arrhythmias and the sections of the marathon in which the arrhythmias occurred. Of the ECG data obtained from 14 runners who completed the full marathon, six ECG datasets were evaluable. In some runners, there was inadequate contact between the electrode and body surface or poor Bluetooth connection between the ECG wireless transmitter and smartphone. Regarding arrhythmia analysis, all evaluable data that were analyzed showed some rhythm fluctuations. In conclusion, this economical T-shirt type ECG sensor provided evaluable ECG data during marathon races, although the evaluable rate was not high. The data were used to analyze specified arrhythmias, but some difficulties were encountered. The ECG sensor did not function properly because of a system error. The ECG sensor was not adequately moistened to record ECGs accurately. Moreover, some runners chose an unsuitable shirt size, which impaired the stability and strength of the electrode–skin contact. These shortcomings produced noise in the ECG data, which made it difficult to analyze arrhythmias. The next step will be to solve these problems and acquire data from a large number of runners.
en-copyright=
kn-copyright=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranoKazuya
en-aut-sei=Hirano
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakanoNoriko
en-aut-sei=Sakano
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OozawaSusumu
en-aut-sei=Oozawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Clinical Safety, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=electrocardiogram
kn-keyword=electrocardiogram
en-keyword=distance running
kn-keyword=distance running
en-keyword=prevention
kn-keyword=prevention
en-keyword=sudden cardiac arrest
kn-keyword=sudden cardiac arrest
en-keyword=T-shirt type sensor
kn-keyword=T-shirt type sensor
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=16
article-no=
start-page=5174
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230809
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Switching to Dupilumab from Other Biologics without a Treatment Interval in Patients with Severe Asthma: A Multi-Center Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Dupilumab is a fully humanized monoclonal antibody that blocks interleukin4 and interleukin-13 signals. Several large clinical trials have demonstrated the efficacy of dupilumab in patients with severe asthma. However, few studies have examined a switch to dupilumab from other biologics. Methods: This retrospective, multi-center observational study was conducted by the Okayama Respiratory Disease Study Group. Consecutive patients with severe asthma who were switched to dupilumab from other biologics without a treatment interval between May 2019 and September 2021 were enrolled. Patients with a treatment interval of more than twice the standard dosing interval for the previous biologic prior to dupilumab administration were excluded. Results: The median patient age of the 27 patients enrolled in this study was 57 years (IQR, 45-68 years). Eosinophilic chronic rhinosinusitis (ECRS)/chronic rhinosinusitis with nasal polyp (CRSwNP) was confirmed in 23 patients. Previous biologics consisted of omalizumab (n = 3), mepolizumab (n = 3), and benralizumab (n = 21). Dupilumab significantly improved FEV1 (median improvement: +145 mL) and the asthma control test score (median improvement: +2). The overall response rate in patients receiving dupilumab for asthma as determined using the Global Evaluations of Treatment Effectiveness (GETE) was 77.8%. There were no significant differences in the baseline characteristics of the GETE-improved group vs. the non-GETE-improved group. ECRS/CRSwNP improved in 20 of the 23 patients (87.0%). Overall, 8 of the 27 patients (29.6%) developed transient hypereosinophilia (>1500/ mu L), but all were asymptomatic and able to continue dupilumab therapy. Conclusions: Dupilumab was highly effective for the treatment of severe asthma and ECRS/CRSwNP, even in patients switched from other biologics without a treatment interval.
en-copyright=
kn-copyright=
en-aut-name=HigoHisao
en-aut-sei=Higo
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchikawaHirohisa
en-aut-sei=Ichikawa
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArakawaYukako
en-aut-sei=Arakawa
en-aut-mei=Yukako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriYoshihiro
en-aut-sei=Mori
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoJunko
en-aut-sei=Itano
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SenooSatoru
en-aut-sei=Senoo
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KimuraGoro
en-aut-sei=Kimura
en-aut-mei=Goro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanimotoYasushi
en-aut-sei=Tanimoto
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyakeKohei
en-aut-sei=Miyake
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KatsutaTomoya
en-aut-sei=Katsuta
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KataokaMikio
en-aut-sei=Kataoka
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MiyaharaNobuaki
en-aut-sei=Miyahara
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=Okayama Respiratory Disease Study Group (ORDSG)
en-aut-sei=Okayama Respiratory Disease Study Group (ORDSG)
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital
kn-affil=
affil-num=5
en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Center
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Ehime Prefectural Central Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, Onomichi Municipal Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=
kn-affil=
en-keyword=dupilumab
kn-keyword=dupilumab
en-keyword=severe asthma
kn-keyword=severe asthma
en-keyword=treatment interval
kn-keyword=treatment interval
en-keyword=eosinophilic chronic rhinosinusitis
kn-keyword=eosinophilic chronic rhinosinusitis
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=7
article-no=
start-page=739
end-page=753
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mixed Response to Cancer Immunotherapy is Driven by Intratumor Heterogeneity and Differential Interlesion Immune Infiltration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
Significance: Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
en-copyright=
kn-copyright=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaxNicolas
en-aut-sei=Sax
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaKazuo
en-aut-sei=Yamashita
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UenoToshihide
en-aut-sei=Ueno
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OharaYuuki
en-aut-sei=Ohara
en-aut-mei=Yuuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KuwataTakeshi
en-aut-sei=Kuwata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YukamiHiroki
en-aut-sei=Yukami
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawazoeAkihito
en-aut-sei=Kawazoe
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShitaraKohei
en-aut-sei=Shitara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KawaharaYu
en-aut-sei=Kawahara
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MoritaAyako
en-aut-sei=Morita
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=EnokidaTomohiro
en-aut-sei=Enokida
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TaharaMakoto
en-aut-sei=Tahara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HasegawaYoshinori
en-aut-sei=Hasegawa
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SuzukiYutaka
en-aut-sei=Suzuki
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=NishikawaHiroyoshi
en-aut-sei=Nishikawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=2
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=3
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=KOTAI Biotechnologies Inc
kn-affil=
affil-num=6
en-affil=KOTAI Biotechnologies Inc
kn-affil=
affil-num=7
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=11
en-affil=Department of Pathology, National Cancer Center Hospital East
kn-affil=
affil-num=12
en-affil=Department of Genetic Medicineand Services, National Cancer Center Hospital East
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=16
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=17
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=18
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=19
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=20
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=21
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=26
en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=27
en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=28
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=29
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=30
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=31
en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center
kn-affil=
affil-num=32
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=1
article-no=
start-page=101046
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Expression of microbial rhodopsins in Escherichia coli and their extraction and purification using styrene-maleic acid copolymers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are photoreceptive membrane proteins showing various light-dependent biological activities. Styrene-maleic acid (SMA) copolymers spontaneously form nanoscale lipid particles containing membrane proteins and associated lipids without detergent, and can be used to characterize membrane molecules. Here, we provide a protocol to functionally express a thermally stable rhodopsin, Rubrobacter xylanophilus rhodopsin, and an unstable rhodopsin, Halobacterium salinarum sensory rhodopsin I, in Escherichia coli. We then describe the preparation of SMA and the extraction and purification of rhodopsin molecules using SMA.
For complete details on the use and execution of this protocol, please refer to Ueta et al. (2020).
en-copyright=
kn-copyright=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=20050930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=三環性融合ピリミジン類の合成と生物活性分子設計
kn-title=Synthesis and biological active molecular design of tricyclic fused pyrimidines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Shoeb Ahmed
en-aut-sei=Shoeb Ahmed
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=236
cd-vols=
no-issue=3
article-no=
start-page=864
end-page=877
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220817
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A tonoplast‐localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg2+ conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood.
Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene.
The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+. This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening.
Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.
en-copyright=
kn-copyright=
en-aut-name=InoueShin‐ichiro
en-aut-sei=Inoue
en-aut-mei=Shin‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HayashiMaki
en-aut-sei=Hayashi
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangSheng
en-aut-sei=Huang
en-aut-mei=Sheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoshoKengo
en-aut-sei=Yokosho
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotohEiji
en-aut-sei=Gotoh
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkematsuShuka
en-aut-sei=Ikematsu
en-aut-mei=Shuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkumuraMasaki
en-aut-sei=Okumura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamuraTakumi
en-aut-sei=Kamura
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinoshitaToshinori
en-aut-sei=Kinoshita
en-aut-mei=Toshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=2
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University
kn-affil=
affil-num=6
en-affil=Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
kn-affil=
affil-num=7
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=8
en-affil=Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=9
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=10
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=11
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=ACDP
kn-keyword=ACDP
en-keyword=CNNM
kn-keyword=CNNM
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=magnesium transport
kn-keyword=magnesium transport
en-keyword=plant growth
kn-keyword=plant growth
en-keyword=stomatal opening
kn-keyword=stomatal opening
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=4
article-no=
start-page=387
end-page=394
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between Radon Hot Spring Bathing and Health Conditions: A Cross-Sectional Study in Misasa, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=No epidemiological studies have examined the health effects of daily bathing in radon hot springs. In this cross-sectional study, we investigated the associations between radon hot spring bathing and health conditions. The target population was 5,250 adults ≥ 20 years old in the town of Misasa, Japan. We collected information about the participants’ bathing habits and alleviation of a variety of disease symptoms, and their self-rated health (SRH). Unadjusted and adjusted odds ratios (ORs) and 95% confidence intervals (CI) were calculated. In both the adjusted and unadjusted models of hypertension, significant associations between the > 1×/week hot spring bathing and the alleviation of hypertension symptoms were observed compared to the group whose hot spring bathing was <1×/week: adjusted model, OR 5.40 (95%CI: 1.98-14.74); unadjusted model, 3.67 (1.50-8.99) and for gastroenteritis: adjusted model, 9.18 (1.15-72.96); unadjusted model, 7.62 (1.59-36.49). Compared to the no-bathing group, higher SRH was significantly associated with both bathing < 1×/week: unadjusted model, 2.27 (1.53-3.37) and > 1×/week: adjusted model, 1.91 (1.15-3.19). These findings suggest that bathing in radon hot springs is associated with higher SRH and the alleviation of hypertension and gastroenteritis.
en-copyright=
kn-copyright=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HabuHiroshi
en-aut-sei=Habu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiKaito
en-aut-sei=Murakami
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoYuki
en-aut-sei=Fujimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YukimineRyohei
en-aut-sei=Yukimine
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MitsunobuFumihiro
en-aut-sei=Mitsunobu
en-aut-mei=Fumihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Longevity and Social Medicine (Geriatrics), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=radon hot spring
kn-keyword=radon hot spring
en-keyword=bathing habit
kn-keyword=bathing habit
en-keyword=self-rated health
kn-keyword=self-rated health
en-keyword=cross-section study
kn-keyword=cross-section study
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=4
article-no=
start-page=341
end-page=345
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biological Roles of Hepatitis B Viral X Protein in the Viral Replication and Hepatocarcinogenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hepatitis B virus is a pathogenic virus that infects 300 million people worldwide and causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Hepatitis B virus encodes four proteins. Among them, the HBx protein plays a central role in the HBV pathogenesis. Because the HBx protein is considered to play a central role in the induction of viral replication and hepatocarcinogenesis, the regulation of its function could be a key factor in the development of new interventions against hepatitis B. In this review, HBx protein-related viral replication and hepatocarcinogenesis mechanisms are described, with a focus on the recently reported viral replication mechanisms related to degradation of the Smc5/6 protein complex. We also discuss our recent discovery of a compound that inhibits HBx protein-induced degradation of the Smc5/6 protein complex, and that exerts inhibitory effects on both viral replication and hepatocarcinogenesis. Finally, prospects for future research on the HBx protein are described.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=HBx
kn-keyword=HBx
en-keyword=Smc5/6
kn-keyword=Smc5/6
en-keyword=DDB1
kn-keyword=DDB1
en-keyword=nitazoxianide
kn-keyword=nitazoxianide
en-keyword=DNA repair
kn-keyword=DNA repair
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=621
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=DNA methyltransferases (DNMTs) catalyze methylation at the C5 position of cytosine with S-adenosyl-l-methionine. Methylation regulates gene expression, serving a variety of physiological and pathophysiological roles. The chemical mechanisms regulating DNMT enzymatic activity, however, are not fully elucidated. Here, we show that protein S-nitrosylation of a cysteine residue in DNMT3B attenuates DNMT3B enzymatic activity and consequent aberrant upregulation of gene expression. These genes include Cyclin D2 (Ccnd2), which is required for neoplastic cell proliferation in some tumor types. In cell-based and in vivo cancer models, only DNMT3B enzymatic activity, and not DNMT1 or DNMT3A, affects Ccnd2 expression. Using structure-based virtual screening, we discovered chemical compounds that specifically inhibit S-nitrosylation without directly affecting DNMT3B enzymatic activity. The lead compound, designated DBIC, inhibits S-nitrosylation of DNMT3B at low concentrations (IC50 <= 100nM). Treatment with DBIC prevents nitric oxide (NO)-induced conversion of human colonic adenoma to adenocarcinoma in vitro. Additionally, in vivo treatment with DBIC strongly attenuates tumor development in a mouse model of carcinogenesis triggered by inflammation-induced generation of NO. Our results demonstrate that de novo DNA methylation mediated by DNMT3B is regulated by NO, and DBIC protects against tumor formation by preventing aberrant S-nitrosylation of DNMT3B.
en-copyright=
kn-copyright=
en-aut-name=OkudaKosaku
en-aut-sei=Okuda
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaKengo
en-aut-sei=Nakahara
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoAkihiro
en-aut-sei=Ito
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IijimaYuta
en-aut-sei=Iijima
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomuraRyosuke
en-aut-sei=Nomura
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujikawaKana
en-aut-sei=Fujikawa
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AdachiKazuya
en-aut-sei=Adachi
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimadaYuki
en-aut-sei=Shimada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujioSatoshi
en-aut-sei=Fujio
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoReina
en-aut-sei=Yamamoto
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OnumaKunishige
en-aut-sei=Onuma
en-aut-mei=Kunishige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OsakiMitsuhiko
en-aut-sei=Osaki
en-aut-mei=Mitsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OkadaFutoshi
en-aut-sei=Okada
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UkegawaTaichi
en-aut-sei=Ukegawa
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakeuchiYasuo
en-aut-sei=Takeuchi
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YasuiNorihisa
en-aut-sei=Yasui
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaAtsuko
en-aut-sei=Yamashita
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MarusawaHiroyuki
en-aut-sei=Marusawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MatsushitaYosuke
en-aut-sei=Matsushita
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KatagiriToyomasa
en-aut-sei=Katagiri
en-aut-mei=Toyomasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ShibataTakahiro
en-aut-sei=Shibata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UchidaKoji
en-aut-sei=Uchida
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NiuSheng-Yong
en-aut-sei=Niu
en-aut-mei=Sheng-Yong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=LangNhi B.
en-aut-sei=Lang
en-aut-mei=Nhi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamuraTomohiro
en-aut-sei=Nakamura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ZhangKam Y. J.
en-aut-sei=Zhang
en-aut-mei=Kam Y. J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=LiptonStuart A.
en-aut-sei=Lipton
en-aut-mei=Stuart A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=7
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=14
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=15
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=16
en-affil=Department of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Laboratory of Structural Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Laboratory of Structural Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=22
en-affil=Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=23
en-affil=Graduate School of Bioagricultural Sciences, Nagoya University
kn-affil=
affil-num=24
en-affil=Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=25
en-affil=Broad Institute of MIT and Harvard
kn-affil=
affil-num=26
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=27
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=28
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=29
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=30
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=1
article-no=
start-page=8954
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refining the evolutionary tree of the horse Y chromosome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.
en-copyright=
kn-copyright=
en-aut-name=BozlakElif
en-aut-sei=Bozlak
en-aut-mei=Elif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RadovicLara
en-aut-sei=Radovic
en-aut-mei=Lara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RemerViktoria
en-aut-sei=Remer
en-aut-mei=Viktoria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RiglerDoris
en-aut-sei=Rigler
en-aut-mei=Doris
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AllenLucy
en-aut-sei=Allen
en-aut-mei=Lucy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BremGottfried
en-aut-sei=Brem
en-aut-mei=Gottfried
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=StalderGabrielle
en-aut-sei=Stalder
en-aut-mei=Gabrielle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CastanedaCaitlin
en-aut-sei=Castaneda
en-aut-mei=Caitlin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CothranGus
en-aut-sei=Cothran
en-aut-mei=Gus
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RaudseppTerje
en-aut-sei=Raudsepp
en-aut-mei=Terje
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkudaYu
en-aut-sei=Okuda
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoeKyaw Kyaw
en-aut-sei=Moe
en-aut-mei=Kyaw Kyaw
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoeHla Hla
en-aut-sei=Moe
en-aut-mei=Hla Hla
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KounnavongsaBounthavone
en-aut-sei=Kounnavongsa
en-aut-mei=Bounthavone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KeonouchanhSoukanh
en-aut-sei=Keonouchanh
en-aut-mei=Soukanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=VanNguyen Huu
en-aut-sei=Van
en-aut-mei=Nguyen Huu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=VuVan Hai
en-aut-sei=Vu
en-aut-mei=Van Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShahManoj Kumar
en-aut-sei=Shah
en-aut-mei=Manoj Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NishiboriMasahide
en-aut-sei=Nishibori
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KazymbetPolat
en-aut-sei=Kazymbet
en-aut-mei=Polat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=BakhtinMeirat
en-aut-sei=Bakhtin
en-aut-mei=Meirat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ZhunushovAsankadyr
en-aut-sei=Zhunushov
en-aut-mei=Asankadyr
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=PaulRipon Chandra
en-aut-sei=Paul
en-aut-mei=Ripon Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=DashnyamBumbein
en-aut-sei=Dashnyam
en-aut-mei=Bumbein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NozawaKen
en-aut-sei=Nozawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=AlmarzookSaria
en-aut-sei=Almarzook
en-aut-mei=Saria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=BrockmannGudrun A.
en-aut-sei=Brockmann
en-aut-mei=Gudrun A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ReissmannMonika
en-aut-sei=Reissmann
en-aut-mei=Monika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AntczakDouglas F.
en-aut-sei=Antczak
en-aut-mei=Douglas F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=MillerDonald C.
en-aut-sei=Miller
en-aut-mei=Donald C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=SadeghiRaheleh
en-aut-sei=Sadeghi
en-aut-mei=Raheleh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Butler-WemkenInes von
en-aut-sei=Butler-Wemken
en-aut-mei=Ines von
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KostarasNikos
en-aut-sei=Kostaras
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HanHaige
en-aut-sei=Han
en-aut-mei=Haige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=ManglaiDugarjaviin
en-aut-sei=Manglai
en-aut-mei=Dugarjaviin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=AbdurasulovAbdugani
en-aut-sei=Abdurasulov
en-aut-mei=Abdugani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=SukhbaatarBoldbaatar
en-aut-sei=Sukhbaatar
en-aut-mei=Boldbaatar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Ropka-MolikKatarzyna
en-aut-sei=Ropka-Molik
en-aut-mei=Katarzyna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=Stefaniuk-SzmukierMonika
en-aut-sei=Stefaniuk-Szmukier
en-aut-mei=Monika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=LopesMaria Susana
en-aut-sei=Lopes
en-aut-mei=Maria Susana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=MachadoArtur da Câmara
en-aut-sei=Machado
en-aut-mei=Artur da Câmara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KalashnikovValery V.
en-aut-sei=Kalashnikov
en-aut-mei=Valery V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KalinkovaLiliya
en-aut-sei=Kalinkova
en-aut-mei=Liliya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ZaitevAlexander M.
en-aut-sei=Zaitev
en-aut-mei=Alexander M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=Novoa-BravoMiguel
en-aut-sei=Novoa-Bravo
en-aut-mei=Miguel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LindgrenGabriella
en-aut-sei=Lindgren
en-aut-mei=Gabriella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=BrooksSamantha
en-aut-sei=Brooks
en-aut-mei=Samantha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=RosaLaura Patterson
en-aut-sei=Rosa
en-aut-mei=Laura Patterson
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=OrlandoLudovic
en-aut-sei=Orlando
en-aut-mei=Ludovic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=JurasRytis
en-aut-sei=Juras
en-aut-mei=Rytis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=KuniedaTetsuo
en-aut-sei=Kunieda
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WallnerBarbara
en-aut-sei=Wallner
en-aut-mei=Barbara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
affil-num=1
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=2
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=3
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=4
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=5
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=6
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
affil-num=7
en-affil=Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna
kn-affil=
affil-num=8
en-affil=School of Veterinary Medicine and Biomedical Sciences, Texas A&M University
kn-affil=
affil-num=9
en-affil=School of Veterinary Medicine and Biomedical Sciences, Texas A&M University
kn-affil=
affil-num=10
en-affil=School of Veterinary Medicine and Biomedical Sciences, Texas A&M University
kn-affil=
affil-num=11
en-affil=Museum of Dinosaur Research, Okayama University of Science
kn-affil=
affil-num=12
en-affil=Department of Pathology and Microbiology, University of Veterinary Science
kn-affil=
affil-num=13
en-affil=Department of Genetics and Animal Breeding, University of Veterinary Science
kn-affil=
affil-num=14
en-affil=National Agriculture and Forestry Research Institute (Lao) Resources, Livestock Research Center
kn-affil=
affil-num=15
en-affil=Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=16
en-affil=Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=17
en-affil=Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=18
en-affil=Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University
kn-affil=
affil-num=19
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=20
en-affil=Radiobiological Research Institute, JSC Astana Medical University
kn-affil=
affil-num=21
en-affil=Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic
kn-affil=
affil-num=22
en-affil=Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic
kn-affil=
affil-num=23
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=24
en-affil=Institute of Biological Sciences, Mongolian Academy of Sciences
kn-affil=
affil-num=25
en-affil=Primate Research Institute, Kyoto University
kn-affil=
affil-num=26
en-affil=Albrecht Daniel Thaer‑Institut, Humboldt-Universität zu Berlin
kn-affil=
affil-num=27
en-affil=Albrecht Daniel Thaer‑Institut, Humboldt-Universität zu Berlin
kn-affil=
affil-num=28
en-affil=Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
kn-affil=
affil-num=29
en-affil=Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
kn-affil=
affil-num=30
en-affil=Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
kn-affil=
affil-num=31
en-affil=Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
kn-affil=
affil-num=32
en-affil=Barb Horse Breeding Organisation VFZB E. V., Verein der Freunde und Züchter Des Berberpferdes E.V.
kn-affil=
affil-num=33
en-affil=Amaltheia
kn-affil=
affil-num=34
en-affil=Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University
kn-affil=
affil-num=35
en-affil=Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University
kn-affil=
affil-num=36
en-affil=Department of Agriculture, Faculty of Natural Sciences and Geography, Osh State University
kn-affil=
affil-num=37
en-affil=Sector of Surveillance and Diagnosis of Infectious Diseases, State Central Veterinary Laboratory
kn-affil=
affil-num=38
en-affil=National Research Institute of Animal Production, Animal Molecular Biology
kn-affil=
affil-num=39
en-affil=National Research Institute of Animal Production, Animal Molecular Biology
kn-affil=
affil-num=40
en-affil=Biotechnology Centre of Azores, University of Azores
kn-affil=
affil-num=41
en-affil=Biotechnology Centre of Azores, University of Azores
kn-affil=
affil-num=42
en-affil=All-Russian Research Institute for Horse Breeding
kn-affil=
affil-num=43
en-affil=All-Russian Research Institute for Horse Breeding
kn-affil=
affil-num=44
en-affil=All-Russian Research Institute for Horse Breeding
kn-affil=
affil-num=45
en-affil=Genética Animal de Colombia SAS.
kn-affil=
affil-num=46
en-affil=Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences
kn-affil=
affil-num=47
en-affil=Department of Animal Science, UF Genetics Institute, University of Florida
kn-affil=
affil-num=48
en-affil=Department of Agriculture and Industry, Sul Ross State University
kn-affil=
affil-num=49
en-affil=Centre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier
kn-affil=
affil-num=50
en-affil=School of Veterinary Medicine and Biomedical Sciences, Texas A&M University
kn-affil=
affil-num=51
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=52
en-affil=Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=5
article-no=
start-page=104571
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Actin-rich lamellipodia-like protrusions contribute to the integrity of epithelial cell-cell junctions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to inter-cellular junctions in epithelial cells and contributes to their integrity and maintenance have remained elusive. By carrying out EM and live-cell imaging on cultured Madin-Darby canine kidney cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibi-tion of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integ-rity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.
en-copyright=
kn-copyright=
en-aut-name=SenjuYosuke
en-aut-sei=Senju
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MushtaqToiba
en-aut-sei=Mushtaq
en-aut-mei=Toiba
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=VihinenHelena
en-aut-sei=Vihinen
en-aut-mei=Helena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ManninenAki
en-aut-sei=Manninen
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaarikangasJuha
en-aut-sei=Saarikangas
en-aut-mei=Juha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=VenKatharina
en-aut-sei=Ven
en-aut-mei=Katharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EngelUlrike
en-aut-sei=Engel
en-aut-mei=Ulrike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=VarjosaloMarkku
en-aut-sei=Varjosalo
en-aut-mei=Markku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=JokitaloEija
en-aut-sei=Jokitalo
en-aut-mei=Eija
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LappalainenPekka
en-aut-sei=Lappalainen
en-aut-mei=Pekka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=2
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
affil-num=3
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
affil-num=4
en-affil=Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu
kn-affil=
affil-num=5
en-affil=Helsinki Institute of Life Science (HiLIFE), University of Helsinki
kn-affil=
affil-num=6
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
affil-num=7
en-affil=Nikon Imaging Center and Centre for Organismal Studies, Heidelberg University
kn-affil=
affil-num=8
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
affil-num=9
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
affil-num=10
en-affil=Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=920
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions. The cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, their binding property and functional roles in PSI are still missing. We analyzed a cryo-electron microscopy structure of a PSI-IsiA supercomplex isolated from Anabaena grown under an iron-deficient condition. The PSI-IsiA structure contains six IsiA subunits associated with the PsaA side of a PSI core monomer. Three of the six IsiA subunits were identified as IsiA1 and IsiA2. The PSI-IsiA structure lacks a PsaL subunit; instead, a C-terminal domain of IsiA2 occupies the position of PsaL, which inhibits the oligomerization of PSI, leading to the formation of a PSI monomer. Furthermore, excitation-energy transfer from IsiAs to PSI appeared with a time constant of 55 ps. These findings provide insights into both the molecular assembly of the Anabaena IsiA family and the functional roles of IsiAs.
en-copyright=
kn-copyright=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamaguchiTasuku
en-aut-sei=Hamaguchi
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UenoYoshifumi
en-aut-sei=Ueno
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuboshitaNaoki
en-aut-sei=Tsuboshita
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuShota
en-aut-sei=Shimizu
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurutaniMiyu
en-aut-sei=Furutani
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=EhiraShigeki
en-aut-sei=Ehira
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawakamiKeisuke
en-aut-sei=Kawakami
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AkimotoSeiji
en-aut-sei=Akimoto
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YonekuraKoji
en-aut-sei=Yonekura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
kn-affil=
affil-num=4
en-affil=Graduate School of Science, Kobe University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Science, Kobe University
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
kn-affil=
affil-num=11
en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=12
en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=13
en-affil=Graduate School of Science, Kobe University
kn-affil=
affil-num=14
en-affil= Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
kn-affil=
affil-num=15
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=4
article-no=
start-page=104587
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiHiroka
en-aut-sei=Onishi
en-aut-mei=Hiroka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IkadaYuki
en-aut-sei=Ikada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKento
en-aut-sei=Masaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaSatoshi
en-aut-sei=Tanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=5
article-no=
start-page=390
end-page=405
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RottapelRobert
en-aut-sei=Rottapel
en-aut-mei=Robert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=PARsylation
kn-keyword=PARsylation
en-keyword=ubiquitylation
kn-keyword=ubiquitylation
en-keyword=proteasomal degradation
kn-keyword=proteasomal degradation
en-keyword=Cherubism
kn-keyword=Cherubism
en-keyword=tankyrase
kn-keyword=tankyrase
en-keyword=PARPs
kn-keyword=PARPs
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=3
article-no=
start-page=319
end-page=321
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cerebral Hypoperfusion Detected by Arterial Spine-Labelled MR Imaging in a Patient Presenting with Migraine and Panic Attacks
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=I report a case of arterial spine-labelled MR imaging (ASL)-detected cerebral hypoperfusion during migraine and panic attacks. A 20-year-old woman with a history of headache for 6 years and independent panic attacks for 3 years was transferred to Okayama Kyokuto Hospital for panic attacks. On that day, she had had severe headache that was improved by taking non-steroidal anti-inflammatory drug, but panic attacks initiated. On arrival, she also complained of a mild headache. ASL revealed cerebral hypoperfusion in the right temporo-occipital region. The threshold to induce panic attacks in migraine patients could be lowered by the physiopathology underlying migraine attacks.
en-copyright=
kn-copyright=
en-aut-name=KashiharaKenichi
en-aut-sei=Kashihara
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama Kyokuto Hospital
kn-affil=
en-keyword=migraine
kn-keyword=migraine
en-keyword=panic attack
kn-keyword=panic attack
en-keyword=arterial spine-labelled magnetic resonance imaging
kn-keyword=arterial spine-labelled magnetic resonance imaging
en-keyword=aura
kn-keyword=aura
en-keyword=cortical spreading depression
kn-keyword=cortical spreading depression
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=3
article-no=
start-page=255
end-page=262
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Prevalence of Antimicrobial Resistance in Okayama from a National Database between 2018 and 2021
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial resistance is an emerging global threat that must be addressed using a multidisciplinary approach. This study aimed to raise awareness of high-level antimicrobial-resistant (AMR) pathogens in Japan by comparing their recent prevalences among prefectures, particularly Okayama. Data for the isolation proportions of meropenem-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae, and levofloxacin-resistant E. coli and K. pneumoniae were collected from the Japan Nosocomial Infections Surveillance, a national database sponsored by the Japanese Ministry of Health, Labour, and Welfare, between 2018 and 2021. The average isolated proportions of the seven AMR pathogens were higher in Okayama compared to other prefectures: the worst (19.9%) was meropenem-resistant P. aeruginosa, the sixth worst (57.2%) was methicillin-resistant S. aureus, the eighth worst (3.3%) was vancomycin-resistant E. faecium, the second (37.8%) and fifth worst (17.6%) were cefotaxime-resistant E. coli and K. pneumoniae, respectively, and the fourth (49.9%) and third worst (8.7%) were levofloxacin-resistant E. coli and K. pneumoniae, respectively. Our study highlights the notably high prevalences of representative AMR pathogens in Okayama, suggesting the need for fundamental infection prevention and control by healthcare professionals, promoting antimicrobial stewardship, and educating undergraduates and postgraduates in Okayama.
en-copyright=
kn-copyright=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UdaKazuhiro
en-aut-sei=Uda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=antimicrobial stewardship
kn-keyword=antimicrobial stewardship
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=infection prevention and control
kn-keyword=infection prevention and control
en-keyword=Japan Nosocomial Infections Surveillance
kn-keyword=Japan Nosocomial Infections Surveillance
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemo-preventive effects and antitumorigenic mechanisms of beer and nonalcoholic beer toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the chemopreventive effects of beer, nonalcoholic beers (NABs), and beer-components (glycine betaine (GB)) on NNK-induced lung tumorigenesis in A/J mice, and the possible mechanisms underlying the antitumorigenic effects of beer, NABs, and beer-components. Beer, NABs, and GB reduced NNK-induced lung tumorigenesis. We investigated the antimutagenicity of beer, NABs and beer-components (GB and pseudouridine (PU)) toward the mutagenicity of 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Beer, NABs, and beer components were antimutagenic toward MNNG and NNK in the Ames test using S. typhimurium TA1535. In contrast, MNNG and NNK mutagenicity detected in S. typhimurium YG7108, a strain lacking O-6-methylguanine DNA methyltransferases (ogt(ST) and ada(ST)) did not decrease in the presence of beer, NABs, or beer components, suggesting that they may mediate its antimutagenic effect by enhancing DNA damage repair. Phosphorylation of Akt and STAT3, with or without epidermal growth factor stimulation, in lung epithelial-like A549 cells were significantly decreased following beer, NABs, GB and PU. They targeted both the initiation and growth/progression steps of carcinogenesis, specifically via antimutagenesis, stimulation of alkyl DNA-adduct repair, and suppression of Akt- and STAT3- mediated growth signaling. GB and PU may contribute, in part, to the biological effects of beer and NABs via the suppression of Akt and STAT3 phosphorylation.
en-copyright=
kn-copyright=
en-aut-name=TakataJun
en-aut-sei=Takata
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakasukaTakamasa
en-aut-sei=Nakasuka
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirabaeAtsuko
en-aut-sei=Hirabae
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Arimoto-KobayashiSakae
en-aut-sei=Arimoto-Kobayashi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Anti-mutagenesis
kn-keyword=Anti-mutagenesis
en-keyword=Signal transduction
kn-keyword=Signal transduction
en-keyword=Lung tumorigenesis
kn-keyword=Lung tumorigenesis
en-keyword=DNA methylation
kn-keyword=DNA methylation
en-keyword=Tobacco-specific nitrosamine
kn-keyword=Tobacco-specific nitrosamine
en-keyword=Glycine betaine
kn-keyword=Glycine betaine
END
start-ver=1.4
cd-journal=joma
no-vol=175
cd-vols=
no-issue=
article-no=
start-page=105921
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thioredoxin, encoded by Txn1, acts as a critical antioxidant in the defense against oxidative stress by regulating the dithiol/disulfide balance of interacting proteins. The role of thioredoxin in the central nervous system (CNS) is largely unknown. A phenotype-driven study of N-ethyl-N-nitrosourea-mutated rats with wild-running seizures revealed the importance of Txn1 mutations in CNS degeneration. Genetic mapping identified Txn1-F54L in the epileptic rats. The insulin-reducing activity of Txn1-F54L was approximately one-third of that of the wild-type (WT). Bilateral symmetrical vacuolar degeneration in the midbrain, mainly in the thalamus and the inferior colliculus, was observed in the Txn1-F54L rats. The lesions displayed neuronal and oligodendrocytic cell death. Neurons in Txn1-F54L rats showed morphological changes in the mitochondria. Vacuolar degeneration peaked at five weeks of age, and spontaneous repair began at seven weeks. The TUNEL assay showed that fibroblasts derived from homozygotes were susceptible to cell death under oxidative stress. In five-week-old WT rats, energy metabolism in the thalamus was significantly higher than that in the cerebral cortex. In conclusion, in juvenile rats, Txn1 seems to play an essential role in reducing oxidative stress in the midbrains with high energy metabolism.
en-copyright=
kn-copyright=
en-aut-name=OhmoriIori
en-aut-sei=Ohmori
en-aut-mei=Iori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImaiHirohiko
en-aut-sei=Imai
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshidaSaeko
en-aut-sei=Ishida
en-aut-mei=Saeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokuniShinya
en-aut-sei=Toyokuni
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MashimoTomoji
en-aut-sei=Mashimo
en-aut-mei=Tomoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Systems Science, Kyoto University Graduate School of Informatics
kn-affil=
affil-num=4
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo
kn-affil=
en-keyword=Txn1
kn-keyword=Txn1
en-keyword=Thioredoxin
kn-keyword=Thioredoxin
en-keyword=Mitochondria
kn-keyword=Mitochondria
en-keyword=Vacuolar degeneration
kn-keyword=Vacuolar degeneration
en-keyword=Epilepsy
kn-keyword=Epilepsy
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=4
article-no=
start-page=488
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230419
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recent Advances in Apical Periodontitis Treatment: A Narrative Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches.
en-copyright=
kn-copyright=
en-aut-name=AriasZulema
en-aut-sei=Arias
en-aut-mei=Zulema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NizamiMohammed Zahedul Islam
en-aut-sei=Nizami
en-aut-mei=Mohammed Zahedul Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenXiaoting
en-aut-sei=Chen
en-aut-mei=Xiaoting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChaiXinyi
en-aut-sei=Chai
en-aut-mei=Xinyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=XuBin
en-aut-sei=Xu
en-aut-mei=Bin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuangCanyan
en-aut-sei=Kuang
en-aut-mei=Canyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=apical periodontitis
kn-keyword=apical periodontitis
en-keyword=contemporary approaches
kn-keyword=contemporary approaches
en-keyword=nonsurgical endodontic treatment
kn-keyword=nonsurgical endodontic treatment
en-keyword=immune inflammatory disease
kn-keyword=immune inflammatory disease
en-keyword=alternative treatments
kn-keyword=alternative treatments
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=5
article-no=
start-page=714
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.
en-copyright=
kn-copyright=
en-aut-name=FormicaMichele
en-aut-sei=Formica
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RogovaTatiana
en-aut-sei=Rogova
en-aut-mei=Tatiana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiHeyao
en-aut-sei=Shi
en-aut-mei=Heyao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaharaNaoto
en-aut-sei=Sahara
en-aut-mei=Naoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FerkoBranislav
en-aut-sei=Ferko
en-aut-mei=Branislav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FarleyAlistair J. M.
en-aut-sei=Farley
en-aut-mei=Alistair J. M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChristensenKirsten E.
en-aut-sei=Christensen
en-aut-mei=Kirsten E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DuarteFernanda
en-aut-sei=Duarte
en-aut-mei=Fernanda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamazakiKen
en-aut-sei=Yamazaki
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DixonDarren J.
en-aut-sei=Dixon
en-aut-mei=Darren J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=2
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=3
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=4
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=5
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=6
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=7
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=8
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Okayama University
kn-affil=
affil-num=10
en-affil=Chemistry Research Laboratory, Department of Chemistry, University of Oxford
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=522
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Genotypic and Phenotypic Characteristics Contributing to Flomoxef Sensitivity in Clinical Isolates of ESBL-Producing E. coli Strains from Urinary Tract Infections
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We carried out a molecular biological analysis of extended-spectrum beta-lactamase (ESBL)-producing E. coli strains and their sensitivity to flomoxef (FMOX). Sequence type (ST) analysis by multilocus sequence typing (MLST) and classification of ESBL genotypes by multiplex PCR were performed on ESBL-producing E. coli strains isolated from urine samples collected from patients treated at our institution between 2008 and 2018. These sequences were compared with results for antimicrobial drug susceptibility determined using a micro-liquid dilution method. We also analyzed cases treated with FMOX at our institution to examine its clinical efficacy. Of the 911 E. coli strains identified, 158 (17.3%) were ESBL-producing. Of these, 67.7% (107/158) were strain ST-131 in ST analysis. Nearly all (154/158; 97.5%) were CTX-M genotypes, with M-14 and M-27 predominating. The isolated strains were sensitive to FMOX in drug susceptibility tests. Among the patient samples, 33 cases received FMOX, and of these, 5 had ESBL-producing E. coli. Among these five cases, three received FMOX for surgical prophylaxis as urinary carriers of ESBL-producing E. coli, and postoperative infections were prevented in all three patients. The other two patients received FMOX treatment for urinary tract infections. FMOX treatment was successful for one, and the other was switched to carbapenem. Our results suggest that FMOX has efficacy for perioperative prophylactic administration in urologic surgery involving carriers of ESBL-producing bacteria and for therapeutic administration for urinary tract infections. Use of FMOX avoids over-reliance on carbapenems or beta-lactamase inhibitors and thus is an effective antimicrobial countermeasure.
en-copyright=
kn-copyright=
en-aut-name=SakaedaKazuma
en-aut-sei=Sakaeda
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Koichiro Wada Department of Urology, School of Medicine, Shimane University
kn-affil=
affil-num=7
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=urinary tract infections
kn-keyword=urinary tract infections
en-keyword=flomoxef
kn-keyword=flomoxef
en-keyword=ST131
kn-keyword=ST131
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=5
article-no=
start-page=4996
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SPRED2: A Novel Regulator of Epithelial-Mesenchymal Transition and Stemness in Hepatocellular Carcinoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44(+)CD90(+) and CD44(-)CD90(-) populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44(+)CD90(+) cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.
en-copyright=
kn-copyright=
en-aut-name=GaoTong
en-aut-sei=Gao
en-aut-mei=Tong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangTianyi
en-aut-sei=Wang
en-aut-mei=Tianyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=epithelial-mesenchymal transition
kn-keyword=epithelial-mesenchymal transition
en-keyword=ERK1/2-MAPK
kn-keyword=ERK1/2-MAPK
en-keyword=tumorigenesis
kn-keyword=tumorigenesis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=1
article-no=
start-page=90
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autophagy as a potential mechanism underlying the biological effect of 1,25-Dihydroxyvitamin D3 on periodontitis: a narrative review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future.
en-copyright=
kn-copyright=
en-aut-name=ChenXiaoting
en-aut-sei=Chen
en-aut-mei=Xiaoting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AriasZulema
en-aut-sei=Arias
en-aut-mei=Zulema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Vitamin D
kn-keyword=Vitamin D
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=Periodontitis
kn-keyword=Periodontitis
en-keyword=Epithelial barrier
kn-keyword=Epithelial barrier
en-keyword=Immunity
kn-keyword=Immunity
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Alveolar bone loss
kn-keyword=Alveolar bone loss
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=65
end-page=70
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of a Cyclooxygenase-2 Inhibitor in Combination with (−)-Epigallocatechin Gallate or Polyphenon E on Cisplatin-Induced Lung Tumorigenesis in A/J Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the effects of celecoxib combined with (−)-epigallocatechin-3-gallate (EGCG) or polyphenon E in a cisplatin-induced lung tumorigenesis model. Four-week-old female A/J mice were divided into seven groups: (i) Control, (ii) 150 mg/kg celecoxib (150Cel), (iii) 1,500 mg/kg celecoxib (1500Cel), (iv) EGCG+150 mg/kg celecoxib (EGCG+150Cel), (v) EGCG+1,500 mg/kg celecoxib (EGCG+1500Cel), (vi) polyphenon E+150 mg/kg celecoxib (PolyE+150Cel), and (vii) polyphenon E+1,500 mg/kg celecoxib (PolyE+1500Cel). All mice were administered cisplatin (1.62 mg/kg of body weight, i.p.) 1×/week for 10 weeks and sacrificed at week 30; the numbers of tumors on the lung surface were then determined. The tumor incidence and multiplicity (no. of tumors/mouse, mean±SD) were respectively 95% and 2.15±1.50 in Control, 95% and 2.10±1.29 in 150Cel, 86% and 1.67±1.20 in 1500Cel, 71% and 1.38±1.24 in EGCG+150Cel, 67% and 1.29±1.38 in EGCG+1500Cel, 80% and 1.95±1.36 in PolyE+150Cel, and 65% and 1.05±0.10 in PolyE+1500Cel. The combination of high-dose celecoxib with EGCG or polyphenon E significantly reduced multiplicity in cisplatin-induced lung tumors.
en-copyright=
kn-copyright=
en-aut-name=SatoKen
en-aut-sei=Sato
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakigawaNagio
en-aut-sei=Takigawa
en-aut-mei=Nagio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KuboToshio
en-aut-sei=Kubo
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaHideki
en-aut-sei=Katayama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KishinoDaizo
en-aut-sei=Kishino
en-aut-mei=Daizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkadaToshiaki
en-aut-sei=Okada
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisamotoAkiko
en-aut-sei=Hisamoto
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MimotoJunko
en-aut-sei=Mimoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OchiNobuaki
en-aut-sei=Ochi
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshinoTadashi
en-aut-sei=Yoshino
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UeokaHiroshi
en-aut-sei=Ueoka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanimotoMitsune
en-aut-sei=Tanimoto
en-aut-mei=Mitsune
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaedaYoshionobu
en-aut-sei=Maeda
en-aut-mei=Yoshionobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Internal Medicine 4, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medicine, Yamaguchi-Ube Medical Center
kn-affil=
affil-num=5
en-affil=Department of Medicine, Yamaguchi-Ube Medical Center
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Internal Medicine 4, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medicine, Yamaguchi-Ube Medical Center
kn-affil=
affil-num=12
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=celecoxib
kn-keyword=celecoxib
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=EGCG
kn-keyword=EGCG
en-keyword=lung tumor
kn-keyword=lung tumor
en-keyword=polyphenon E
kn-keyword=polyphenon E
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=110
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extracellular Vesicles: New Classification and Tumor Immunosuppression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules and deliver them to recipient cells. Classical EVs are exosomes, microvesicles, and apoptotic bodies. This review classifies classical and additional EV types, including autophagic EVs, matrix vesicles, and stressed EVs. Of note, matrix vesicles are key components interacting with extracellular matrices (ECM) in the tumor microenvironment. We also review how EVs are involved in the communication between cancer cells and tumor-associated cells (TAC), leading to establishing immunosuppressive and chemoresistant microenvironments. These include cancer-associated fibroblasts (CAF), mesenchymal stem cells (MSC), blood endothelial cells (BEC), lymph endothelial cells (LEC), and immune cells, such as tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), dendritic cells, natural killer cells, killer T cells, and immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells (MDSC). Exosomal long noncoding RNA (lncRNA), microRNA, circular RNA, piRNA, mRNA, and proteins are crucial in communication between cancer cells and TACs for establishing cold tumors. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
en-copyright=
kn-copyright=
en-aut-name=ShetaMona
en-aut-sei=Sheta
en-aut-mei=Mona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TahaEman A.
en-aut-sei=Taha
en-aut-mei=Eman A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LuYanyin
en-aut-sei=Lu
en-aut-mei=Yanyin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EguchiTakanori
en-aut-sei=Eguchi
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry, Faculty of Science, Ain Shams University
kn-affil=
affil-num=3
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=extracellular vesicle
kn-keyword=extracellular vesicle
en-keyword=exosome
kn-keyword=exosome
en-keyword=autophagy
kn-keyword=autophagy
en-keyword=amphisome
kn-keyword=amphisome
en-keyword=matrix vesicle
kn-keyword=matrix vesicle
en-keyword=cellular communication
kn-keyword=cellular communication
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=immunosuppression
kn-keyword=immunosuppression
en-keyword=immune evasion
kn-keyword=immune evasion
en-keyword=therapy resistance
kn-keyword=therapy resistance
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=822
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230103
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cycloartenyl Ferulate Is the Predominant Compound in Brown Rice Conferring Cytoprotective Potential against Oxidative Stress-Induced Cytotoxicity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 +/- 8.07 nmol/g) >> alpha-tocopherol (alpha T) (19.73 +/- 2.28 nmol/g) > gamma-tocotrienol (gamma T3) (18.24 +/- 1.41 nmol/g) > alpha-tocotrienol (alpha T3) (16.02 +/- 1.29 nmol/g) > gamma-tocopherol (gamma T) (3.81 +/- 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of alpha T, alpha T3, and gamma T3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 mu M, which is lower than the minimal concentrations of alpha T and gamma T required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity.
en-copyright=
kn-copyright=
en-aut-name=WuHongyan
en-aut-sei=Wu
en-aut-mei=Hongyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GuoYingnan
en-aut-sei=Guo
en-aut-mei=Yingnan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoRiho
en-aut-sei=Matsumoto
en-aut-mei=Riho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Food Science and Technology, Dalian Polytechnic University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=School of Food Science and Technology, Dalian Polytechnic University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=cycloartenyl ferulate
kn-keyword=cycloartenyl ferulate
en-keyword=antioxidative effect
kn-keyword=antioxidative effect
en-keyword=cytoprotective potential
kn-keyword=cytoprotective potential
en-keyword=heme oxygenase-1
kn-keyword=heme oxygenase-1
en-keyword=nuclear factor erythroid 2-related factor 2
kn-keyword=nuclear factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=50
article-no=
start-page=46573
end-page=46582
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oligoarginine-Conjugated Peptide Foldamers Inhibiting Vitamin D Receptor-Mediated Transcription
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The vitamin D receptor (VDR) is a nuclear receptor, which is involved in several physiological processes, including differentiation and bone homeostasis. The VDR is a promising target for the development of drugs against cancer and bone-related diseases. To date, several VDR antagonists, which bind to the ligand binding domain of the VDR and compete with the endogenous agonist 1 alpha,25(OH)D3, have been reported. However, these ligands contain a secosteroidal skeleton, which is chemically unstable and complicated to synthesize. A few VDR antagonists with a nonsecosteroidal skeleton have been reported. Alternative inhibitors against VDR transactivation that act via different mechanisms are desirable. Here, we developed peptide-based VDR inhibitors capable of disrupting the VDR-coactivator interaction. It was reported that helical SRC2-3 peptides strongly bound to the VDR and competed with the coactivator in vitro. Therefore, we designed and synthesized a series of SRC2-3 derivatives by the introduction of nonproteinogenic amino acids, such as beta-amino acids, and by side-chain stapling to stabilize helical structures and provide resistance against digestive enzymes. In addition, conjugation with a cell-penetrating peptide increased the cell membrane permeability and was a promising strategy for intracellular VDR inhibition. The nona-arginine-conjugated peptides 24 with side-chain stapling and 25 with cyclic beta-amino acids showed strong intracellular VDR inhibitory activity, resulting in suppression of the target gene expression and inhibition of the cell differentiation of HL-60 cells. Herein, the peptide design, structure-activity relationship (SAR) study, and biological evaluation of the peptides are described.
en-copyright=
kn-copyright=
en-aut-name=TakyoMami
en-aut-sei=Takyo
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoYumi
en-aut-sei=Sato
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataNaoya
en-aut-sei=Hirata
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuchiyaKeisuke
en-aut-sei=Tsuchiya
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaHiroaki
en-aut-sei=Ishida
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuroharaTakashi
en-aut-sei=Kurohara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YanaseYuta
en-aut-sei=Yanase
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoTakahito
en-aut-sei=Ito
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KandaYasunari
en-aut-sei=Kanda
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MisawaTakashi
en-aut-sei=Misawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DemizuYosuke
en-aut-sei=Demizu
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=3
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=5
en-affil=Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
kn-affil=
affil-num=6
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=7
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=8
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=9
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=10
en-affil=Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
kn-affil=
affil-num=11
en-affil=National Institute of Health Sciences
kn-affil=
affil-num=12
en-affil=National Institute of Health Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=298
cd-vols=
no-issue=12
article-no=
start-page=102668
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants.
en-copyright=
kn-copyright=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ugai-AmoNatsumi
en-aut-sei=Ugai-Amo
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToneNaoki
en-aut-sei=Tone
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaAkiko
en-aut-sei=Nakagawa
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwaiMasako
en-aut-sei=Iwai
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkeuchiMasahiko
en-aut-sei=Ikeuchi
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugiuraMiwa
en-aut-sei=Sugiura
en-aut-mei=Miwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Jian-RenShen
en-aut-sei=Jian-Ren
en-aut-mei=Shen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Proteo-Science Research Center, Ehime University
kn-affil=
affil-num=5
en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Proteo-Science Research Center, Ehime University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=1
article-no=
start-page=26
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemopreventive effects and anti-tumorigenic mechanisms of Actinidia arguta, known as sarunashi in Japan toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- induced lung tumorigenesis in a/J mouse
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Previously, we reported the inhibitory effect of Actinidia arguta juice, known as sarunashi juice (sar-j) in Japan, on mutagenesis, inflammation, and mouse skin tumorigenesis. The components of A. arguta responsible for the anti-mutagenic effects were identified to be water-soluble, heat-labile phenolic compounds. We proposed isoquercetin (isoQ) as a candidate anticarcinogenic component. In this study, we sought to investigate the chemopreventive effects of A. arguta juice and isoQ on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice, and identify the possible mechanisms underlying the anti-tumorigenic effects of A. arguta.
Results
The number of tumor nodules per mouse lung in the group injected with NNK and administered A. arguta juice orally was significantly lower than that in the group injected with NNK only. Oral administration of isoQ also reduced the number of nodules in the mouse lungs. As expected, the mutagenicity of NNK and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) detected using S. typhimurium TA1535 decreased in the presence of sar-j. However, NNK and MNNG mutagenicity detected using S. typhimurium YG7108, a strain lacking the O6-methylguanine DNA methyltransferases (ogtST and adaST) did not decrease in the presence of sar-j suggesting that sar-j may mediate its antimutagenic effect by enhancing the DNA damage repair by ogtST and adaST. Phosphorylation of Akt, with or without epidermal growth factor stimulation, in A549 cells was significantly decreased following sar-j and isoQ treatment, indicating that components in sar-j including isoQ suppressed the PI3K/AKT signaling pathways.
Conclusions
Sar-j and isoQ reduced NNK-induced lung tumorigenesis. Sar-j targets both the initiation and growth/progression steps during carcinogenesis, specifically via anti-mutagenesis, stimulation of alkyl DNA adduct repair, and suppression of Akt-mediated growth signaling. IsoQ might contribute in part to the biological effects of sar-j via suppression of Akt phosphorylation, but it may not be the main active ingredient.
en-copyright=
kn-copyright=
en-aut-name=TakataJun
en-aut-sei=Takata
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakeNaoko
en-aut-sei=Miyake
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaikiYusuke
en-aut-sei=Saiki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TadaMisako
en-aut-sei=Tada
en-aut-mei=Misako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SasakiKensuke
en-aut-sei=Sasaki
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuboToshio
en-aut-sei=Kubo
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Arimoto-KobayashiSakae
en-aut-sei=Arimoto-Kobayashi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Akt signal transduction
kn-keyword=Akt signal transduction
en-keyword=Lung tumorigenesis
kn-keyword=Lung tumorigenesis
en-keyword=Anti-mutagenesis
kn-keyword=Anti-mutagenesis
en-keyword=DNA methylation
kn-keyword=DNA methylation
en-keyword=Tobacco-specific nitrosamine
kn-keyword=Tobacco-specific nitrosamine
en-keyword=Isoquercetin
kn-keyword=Isoquercetin
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=19458
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Defect-free and crystallinity-preserving ductile deformation in semiconducting Ag2S
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (Ag2S), which is defect-free, omni-directional, and preserving perfect crystallinity. Our first-principles molecular dynamics simulations elucidate the ductile deformation mechanism in monoclinic-Ag2S under six types of shear systems. Planer mass movement of sulfur atoms plays an important role for the remarkable structural recovery of sulfur-sublattice. This in turn arises from a distinctively high symmetry of the anion-sublattice in Ag2S, which is not seen in other brittle silver chalcogenides. Such mechanistic and lattice-symmetric understanding provides a guideline for designing even higher-performance ductile inorganic semiconductors.
en-copyright=
kn-copyright=
en-aut-name=MisawaMasaaki
en-aut-sei=Misawa
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HokyoHinata
en-aut-sei=Hokyo
en-aut-mei=Hinata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaShogo
en-aut-sei=Fukushima
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimamuraKohei
en-aut-sei=Shimamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KouraAkihide
en-aut-sei=Koura
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimojoFuyuki
en-aut-sei=Shimojo
en-aut-mei=Fuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KaliaRajiv K.
en-aut-sei=Kalia
en-aut-mei=Rajiv K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoAiichiro
en-aut-sei=Nakano
en-aut-mei=Aiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=VashishtaPriya
en-aut-sei=Vashishta
en-aut-mei=Priya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Kumamoto University
kn-affil=
affil-num=3
en-affil=Department of Physics, Kumamoto University
kn-affil=
affil-num=4
en-affil=Department of Physics, Kumamoto University
kn-affil=
affil-num=5
en-affil=Department of Physics, Kumamoto University
kn-affil=
affil-num=6
en-affil=Department of Physics, Kumamoto University
kn-affil=
affil-num=7
en-affil=Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, and Department of Biological Science, University of Southern California
kn-affil=
affil-num=8
en-affil=Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, and Department of Biological Science, University of Southern California
kn-affil=
affil-num=9
en-affil=Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, and Department of Biological Science, University of Southern California
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=643
end-page=651
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optical collection of extracellular vesicles in a culture medium enhanced by interactions with gold nanoparticles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Extracellular vesicles (EVs) exist in biological fluids such as blood, urine, and cerebrospinal fluid and are promising cancer biomarkers. Attempts to isolate and analyze trace EVs, however, have been a challenge for researchers studying their functions and secretion mechanisms, which has stymied the options for diagnostic application. This study demonstrated a collection of EVs that was enhanced by gold nanoparticles (AuNPs) via the use of optical force. The collection system consists of an inverted microscope equipped with a CCD camera, a square capillary connected with a PTFE tube, and an Nd:YAG laser that generates optical force. The laser beam was focused on a capillary wall in which a cell culture medium containing EVs flowed continuously. Control of the surface charges on both the capillary wall and the AuNPs achieved the collection and retention of EVs on the capillary wall. The positively charged capillary wall retained EVs even after the laser irradiation was halted due to the negative charges inherent on the surface of EVs. Conversely, positively charged AuNPs had a strong electrostatic interaction with EVs and enhanced the optical force acting on them, which made collecting them a much more efficient process.
en-copyright=
kn-copyright=
en-aut-name=TaniYumeki
en-aut-sei=Tani
en-aut-mei=Yumeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OchiaiKenta
en-aut-sei=Ochiai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Optical force
kn-keyword=Optical force
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
en-keyword=exosome
kn-keyword=exosome
en-keyword=Gold nanoparticle
kn-keyword=Gold nanoparticle
en-keyword=Optical trapping
kn-keyword=Optical trapping
END
start-ver=1.4
cd-journal=joma
no-vol=289
cd-vols=
no-issue=1985
article-no=
start-page=20221126
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Footedness for scratching itchy eyes in rodents
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The neural bases of itchy eye transmission remain unclear compared with those involved in body itch. Here, we show in rodents that the gastrin-releasing peptide receptor (GRPR) of the trigeminal sensory system is involved in the transmission of itchy eyes. Interestingly, we further demonstrate a difference in scratching behaviour between the left and right hindfeet in rodents; histamine instillation into the conjunctival sac of both eyes revealed right-foot biased laterality in the scratching movements. Unilateral histamine instillation specifically induced neural activation in the ipsilateral sensory pathway, with no significant difference between the activations following left- and right-eye instillations. Thus, the behavioural laterality is presumably due to right-foot preference in rodents. Genetically modified rats with specific depletion of Grpr-expressing neurons in the trigeminal sensory nucleus caudalis of the medulla oblongata exhibited fewer and shorter histamine-induced scratching movements than controls and eliminated the footedness. These results taken together indicate that the Grp-expressing neurons are required for the transmission of itch sensation from the eyes, but that foot preference is generated centrally. These findings could open up a new field of research on the mechanisms of the laterality in vertebrates and also offer new potential therapeutic approaches to refractory pruritic eye disorders.
en-copyright=
kn-copyright=
en-aut-name=KatayamaYukitoshi
en-aut-sei=Katayama
en-aut-mei=Yukitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiuraAyane
en-aut-sei=Miura
en-aut-mei=Ayane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakamotoTatsuya
en-aut-sei=Sakamoto
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiKeiko
en-aut-sei=Takanami
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi
kn-affil=
affil-num=3
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi
kn-affil=
affil-num=4
en-affil=Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima
kn-affil=
affil-num=5
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi
kn-affil=
en-keyword=itchy eyes
kn-keyword=itchy eyes
en-keyword=histamine
kn-keyword=histamine
en-keyword=gastrin-releasing peptide receptor
kn-keyword=gastrin-releasing peptide receptor
en-keyword=footedness
kn-keyword=footedness
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=715
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Graphene Oxide-based Endodontic Sealer: An in Vitro Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The failure of endodontic treatment is directly associated with microbial infection in the root canal or periapical areas. An endodontic sealer that is both bactericidal and biocompatible is essential for the success of root canal treatments. This is one of the vital issues yet to be solved in clinical dental practice. This in vitro study assessed the effectiveness of graphene oxide (GO) composites GO-CaF2 and GO-Ag-CaF2 as endodontic sealer materials. Dentin slices were coated with either the GO-based composites or commonly used root canal sealers (non-eugenol zinc oxide sealer). The coated slices were treated in 0.9% NaCl, phosphate-buffered saline (PBS), and simulated body fluid (SBF) at 37˚C for 24 hours to compare their sealing effect on the dentin surface. In addition, the radiopacity of these composites was examined to assess whether they complied with the requirements of a sealer for good radiographic visualization. Scanning electron microscopy showed the significant sealing capability of the composites as coating materials. Radiographic images confirmed their radiopacity. Mineral deposition indicated their bioactivity, especially of GO-Ag-CaF2, and thus it is potential for regenerative application. They were both previously shown to be bactericidal to oral microbes and cytocompatible with host cells. With such a unique assemblage of critical properties, these GO-based composites show promise as endodontic sealers for protection against reinfection in root canal treatment and enhanced success in endodontic treatment overall.
en-copyright=
kn-copyright=
en-aut-name=Mohammed Zahedul Islam Nizami
en-aut-sei=Mohammed Zahedul Islam Nizami
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GorduysusMelahat
en-aut-sei=Gorduysus
en-aut-mei=Melahat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AriasZulema
en-aut-sei=Arias
en-aut-mei=Zulema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=bioactive sealer
kn-keyword=bioactive sealer
en-keyword=graphene oxide
kn-keyword=graphene oxide
en-keyword=mineral deposition
kn-keyword=mineral deposition
en-keyword=antimicrobial activity
kn-keyword=antimicrobial activity
en-keyword=radiopacity
kn-keyword=radiopacity
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=645
end-page=650
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fetal Cerebellar Growth Curves Based on Biomathematics in Normally Developing Japanese Fetuses and Fetuses with Trisomy 18
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We used biomathematics to describe and compare cerebellar growth in normally developing and trisomy 18 Japanese fetuses. This retrospective study included 407 singleton pregnancies with fetuses at 14-39 weeks of gestation and 33 fetuses with trisomy 18 at 17-35 weeks. We used ultrasonography to measure fetal transverse cerebellar diameter (TCD) and anteroposterior cerebellar diameter (APCD). We hypothesized that cerebellar growth is proportional to cerebellar length at any given time point. We determined the formula L(t) ≒Keat+r, where e is Napier’s number, t is time, L is cerebellar length, and a, K, and r are constants. We then obtained regression functions for each TCD and APCD in all fetuses. The regression equations for TCD and APCD values in normal fetuses, expressed as exponential functions, were TCD(t)=27.85e0.02788t−28.62 (mm) (adjusted R2=0.997), and APCD(t)=324.29e0.00286t−322.62 (mm) (adjusted R2=0.995). These functions indicated that TCD and APCD grew at constant rates of 2.788%/week and 0.286%/week, respectively, throughout gestation. TCD (0.0153%/week) and APCD (0.000430%/week) grew more slowly in trisomy 18 fetuses. This study demonstrates the potential of biomathematics in clinical research and may aid in biological understanding of fetal cerebellar growth.
en-copyright=
kn-copyright=
en-aut-name=TadaKatsuhiko
en-aut-sei=Tada
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyagiYasunari
en-aut-sei=Miyagi
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KomatsuReina
en-aut-sei=Komatsu
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkimotoNaoki
en-aut-sei=Okimoto
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukaharaSaya
en-aut-sei=Tsukahara
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TateishiYoko
en-aut-sei=Tateishi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OokaNaomi
en-aut-sei=Ooka
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaMizuho
en-aut-sei=Yoshida
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KumazawaKazumasa
en-aut-sei=Kumazawa
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=2
en-affil=Medical Data Labo
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Showa University Koto Toyosu Hospital
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
en-keyword=biomathematics
kn-keyword=biomathematics
en-keyword=cerebellum
kn-keyword=cerebellum
en-keyword=fetus
kn-keyword=fetus
en-keyword=trisomy 18 syndrome
kn-keyword=trisomy 18 syndrome
en-keyword=ultrasonography
kn-keyword=ultrasonography
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=635
end-page=643
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MiR-338-3p Is a Biomarker in Neonatal Acute Respiratory Distress Syndrome (ARDS) and Has Roles in the Inflammatory Response of ARDS Cell Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To investigate the association between serum miR-338-3p levels and neonatal acute respiratory distress syndrome (ARDS) and its mechanism. The relative miR-338-3p expression in serum was detected by quantitative real-time RT-PCR. Interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) levels were detected by ELISAs. A receiver operating characteristic (ROC) curve analysis of serum miR-338-3p evaluated the diagnosis of miR-338-3p in neonatal ARDS. Pearson’s correlation analysis evaluated the correlation between serum miR-338-3p and neonatal ARDS clinical factors. Flow cytometry evaluated apoptosis, and a CCK-8 assay assessed cell viability. A luciferase assay evaluated the miR-338-3p/AKT3 relationship. The miR- 338-3p expression was decreased in neonatal ARDS patients and in lipopolysaccharide (LPS)-treated cells. The ROC curve showed the accuracy of miR-338-3p for evaluating neonatal ARDS patients. The correlation analysis demonstrated that miR-338-3p was related to PRISM-III, PaO2/FiO2, oxygenation index, IL-1β, IL-6, and TNF-α in neonatal ARDS patients. MiR-338-3p overexpression inhibited the secretion of inflammatory components, stifled cell apoptosis, and LPS-induced advanced cell viability. The double-luciferase reporter gene experiment confirmed that miR-338-3p negatively regulates AKT3 mRNA expression. Serum miR-338-3p levels were related to the diagnosis and severity of neonatal ARDS, which may be attributed to its regulatory effect on inflammatory response in ARDS.
en-copyright=
kn-copyright=
en-aut-name=ZhangCuicui
en-aut-sei=Zhang
en-aut-mei=Cuicui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JiYanan
en-aut-sei=Ji
en-aut-mei=Yanan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangQin
en-aut-sei=Wang
en-aut-mei=Qin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RuanLianying
en-aut-sei=Ruan
en-aut-mei=Lianying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=2
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=3
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=4
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
en-keyword=miR-338-3p
kn-keyword=miR-338-3p
en-keyword=AKT3
kn-keyword=AKT3
en-keyword=neonatal ARDS
kn-keyword=neonatal ARDS
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=diagnosis
kn-keyword=diagnosis
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=502
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Insights into Mesenchymal Signatures in Glioblastoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults. Despite decades of research, the prognosis for GBM patients is still disappointing. One major reason for the intense therapeutic resistance of GBM is inter- and intra-tumor heterogeneity. GBM-intrinsic transcriptional profiling has suggested the presence of at least three subtypes of GBM: the proneural, classic, and mesenchymal subtypes. The mesenchymal subtype is the most aggressive, and patients with the mesenchymal subtype of primary and recurrent tumors tend to have a worse prognosis compared with patients with the other subtypes. Furthermore, GBM can shift from other subtypes to the mesenchymal subtype over the course of disease progression or recurrence. This phenotypic transition is driven by diverse tumor-intrinsic molecular mechanisms or microenvironmental factors. Thus, better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new therapeutic strategies. In this review, we provide a comprehensive overview of the current understanding of the elements involved in the mesenchymal transition of GBM and discuss future perspectives.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchikawaTomotsugu
en-aut-sei=Ichikawa
en-aut-mei=Tomotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Hamamatsu University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=glioma
kn-keyword=glioma
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=mesenchymal subtype
kn-keyword=mesenchymal subtype
en-keyword=mesenchymal transition
kn-keyword=mesenchymal transition
en-keyword=heterogeneity
kn-keyword=heterogeneity
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=20
article-no=
start-page=3307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Self-Forming Nanosized DDS Particles for BNCT: Utilizing A Hydrophobic Boron Cluster and Its Molecular Glue Effect
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BNCT is a non-invasive cancer therapy that allows for cancer cell death without harming adjacent cells. However, the application is limited, owing to the challenges of working with clinically approved boron (B) compounds and drug delivery systems (DDS). To address the issues, we developed self-forming nanoparticles consisting of a biodegradable polymer, namely, "AB-type Lactosome (AB-Lac)" loaded with B compounds. Three carborane isomers (o-, m-, and p-carborane) and three related alkylated derivatives, i.e., 1,2-dimethy-o-carborane (diC1-Carb), 1,2-dihexyl-o-carborane (diC6-Carb), and 1,2-didodecyl-o-carborane (diC12-Carb), were separately loaded. diC6-Carb was highly loaded with AB-Lac particles, and their stability indicated the "molecular glue" effect. The efficiency of in vitro B uptake of diC6-Carb for BNCT was confirmed at non-cytotoxic concentration in several cancer cell lines. In vivo/ex vivo biodistribution studies indicated that the AB-Lac particles were remarkably accumulated within 72 h post-injection in the tumor lesions of mice bearing syngeneic breast cancer (4T1) cells, but the maximum accumulation was reached at 12 h. In ex vivo B biodistribution, the ratios of tumor/normal tissue (T/N) and tumor/blood (T/Bl) of the diC6-Carb-loaded particles remained stably high up to 72 h. Therefore, we propose the diC6-Carb-loaded AB-Lac particles as a promising candidate medicine for BNCT.
en-copyright=
kn-copyright=
en-aut-name=FithroniAbdul Basith
en-aut-sei=Fithroni
en-aut-mei=Abdul Basith
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiKazuko
en-aut-sei=Kobayashi
en-aut-mei=Kazuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjiHirotaka
en-aut-sei=Uji
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshimotoManabu
en-aut-sei=Ishimoto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Collaborative Research Center for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Material Chemistry, Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=4
en-affil=Fukushima SiC Applied Engineering Inc.
kn-affil=
affil-num=5
en-affil=Collaborative Research Center for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=boron neutron capture therapy (BNCT)
kn-keyword=boron neutron capture therapy (BNCT)
en-keyword=biologically self-degradable amphipathic polymer (Lactosome)
kn-keyword=biologically self-degradable amphipathic polymer (Lactosome)
en-keyword=hydrophobic boron cluster
kn-keyword=hydrophobic boron cluster
en-keyword=carborane isomers or o-carborane alkylated derivatives
kn-keyword=carborane isomers or o-carborane alkylated derivatives
en-keyword=molecular glue effect
kn-keyword=molecular glue effect
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=1004184
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction.
en-copyright=
kn-copyright=
en-aut-name=OgasaharaTsubasa
en-aut-sei=Ogasahara
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KouzaiYusuke
en-aut-sei=Kouzai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiAkihiro
en-aut-sei=Takahashi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahagiKotaro
en-aut-sei=Takahagi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJune-Sik
en-aut-sei=Kim
en-aut-mei=June-Sik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Kihara Institute for Biological Research, Yokohama City University
kn-affil=
affil-num=6
en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Brachypodium distachyon
kn-keyword=Brachypodium distachyon
en-keyword=monocotyledonous plant
kn-keyword=monocotyledonous plant
en-keyword=microbe-associated molecular pattern
kn-keyword=microbe-associated molecular pattern
en-keyword=time-series transcriptome analysis
kn-keyword=time-series transcriptome analysis
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=pattern-triggered immunity
kn-keyword=pattern-triggered immunity
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=994014
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220913
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability.
en-copyright=
kn-copyright=
en-aut-name=NakaShuhei
en-aut-sei=Naka
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuokaDaiki
en-aut-sei=Matsuoka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GotoKana
en-aut-sei=Goto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MisakiTaro
en-aut-sei=Misaki
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasawaYasuyuki
en-aut-sei=Nagasawa
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoSeigo
en-aut-sei=Ito
en-aut-mei=Seigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Matsumoto-NakanoMichiyo
en-aut-sei=Matsumoto-Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Nephrology, Seirei Hamamatsu General Hospital
kn-affil=
affil-num=5
en-affil=Department of General Internal Medicine, Hyogo College of Medicine
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Japan Self-Defense Iruma Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=9
en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=collagen-binding protein
kn-keyword=collagen-binding protein
en-keyword=membrane permeability
kn-keyword=membrane permeability
en-keyword=cell structure
kn-keyword=cell structure
en-keyword=RNA-seq
kn-keyword=RNA-seq
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=10
article-no=
start-page=1
end-page=8
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202285
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Wnt-β-Catenin Signaling and Sclerostin on the Phenotypes of Rat Pheochromocytoma PC12 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pheochromocytomas and paragangliomas (PPGLs) are classified into 3 major categories with distinct driver genes: pseudohypoxia, kinase signaling, and Wnt-altered subtypes. PPGLs in the Wnt-altered subtype are sporadic and tend to be aggressive with metastasis, where somatic gene fusions affecting mastermind-like 3 (MAML3) and somatic mutations in cold shock domain containing E1 (CSDE1) cause overactivation of Wnt-β-catenin signaling. However, the relation between Wnt-β-catenin signaling and the biological behavior of PPGLs remains unexplored. In rat pheochromocytoma PC12 cells, Wnt3a treatment enhanced cell proliferation and suppressed mRNA expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis, and dopamine secretion. We identified the expression of sclerostin in PC12 cells, which is known as an osteocyte-derived negative regulator for Wnt signaling-driven bone formation. Inhibition of endogenous Wnt pathway by XAV939 or sclerostin resulted in attenuated cell proliferation and increased TH expression. Furthermore, Wnt3a pretreatment suppressed bone morphogenetic protein (BMP)-induced Smad1/5/9 phosphorylation whereas BMPs enhanced sclerostin expression in PC12 cells. In the Wnt-altered subtype, the increased Wnt-β-catenin pathway may contribute the aggressive clinical behavior with reduced catecholamine production. Furthermore, upregulated expression of sclerostin by BMPs may explain the osteolytic metastatic lesions observed in metastatic PPGLs.
en-copyright=
kn-copyright=
en-aut-name=MorimotoEisaku
en-aut-sei=Morimoto
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiKenichi
en-aut-sei=Inagaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KomatsubaraMotoshi
en-aut-sei=Komatsubara
en-aut-mei=Motoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerasakaTomohiro
en-aut-sei=Terasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItohYoshihiko
en-aut-sei=Itoh
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujisawaSatoshi
en-aut-sei=Fujisawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SasakiErika
en-aut-sei=Sasaki
en-aut-mei=Erika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishiyamaYuki
en-aut-sei=Nishiyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HaraTakayuki
en-aut-sei=Hara
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Wnt-β-catenin signaling
kn-keyword=Wnt-β-catenin signaling
en-keyword=sclerostin
kn-keyword=sclerostin
en-keyword=catecholamine
kn-keyword=catecholamine
en-keyword=PPGL
kn-keyword=PPGL
en-keyword=PC12
kn-keyword=PC12
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=8
article-no=
start-page=1253
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anti-inflammatory therapy, centered on inhaled steroids, suppresses airway inflammation in asthma, reduces asthma mortality and hospitalization rates, and achieves clinical remission in many pediatric patients. However, the spontaneous remission rate of childhood asthma in adulthood is not high, and airway inflammation and airway remodeling persist after remission of asthma symptoms. Childhood asthma impairs normal lung maturation, interferes with peak lung function in adolescence, reduces lung function in adulthood, and increases the risk of developing chronic obstructive pulmonary disease (COPD). Early suppression of airway inflammation in childhood and prevention of asthma exacerbations may improve lung maturation, leading to good lung function and prevention of adult COPD. Biological drugs that target T-helper 2 (Th2) cytokines are used in patients with severe pediatric asthma to reduce exacerbations and airway inflammation and improve respiratory function. They may also suppress airway remodeling in childhood and prevent respiratory deterioration in adulthood, reducing the risk of COPD and improving long-term prognosis. No studies have demonstrated a suppressive effect on airway remodeling in childhood severe asthma, and further clinical trials using airway imaging analysis are needed to ascertain the inhibitory effect of biological drugs on airway remodeling in severe childhood asthma. In this review, we describe the natural prognosis of lung function in childhood asthma and the risk of developing adult COPD, the pathophysiology of allergic airway inflammation and airway remodeling via Th2 cytokines, and the inhibitory effect of biological drugs on airway remodeling in childhood asthma.
en-copyright=
kn-copyright=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaMasanori
en-aut-sei=Ikeda
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Okayama University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=bronchial asthma
kn-keyword=bronchial asthma
en-keyword=chronic obstructive pulmonary disease
kn-keyword=chronic obstructive pulmonary disease
en-keyword=lung function trajectory
kn-keyword=lung function trajectory
en-keyword=type 2 inflammation
kn-keyword=type 2 inflammation
en-keyword=airway remodeling
kn-keyword=airway remodeling
en-keyword=omalizumab
kn-keyword=omalizumab
en-keyword=mepolizumab
kn-keyword=mepolizumab
en-keyword=benralizumab
kn-keyword=benralizumab
en-keyword=dupilumab
kn-keyword=dupilumab
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=13
article-no=
start-page=5207
end-page=5220
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220808
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway.
en-copyright=
kn-copyright=
en-aut-name=RenLiangliang
en-aut-sei=Ren
en-aut-mei=Liangliang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JiangMinxiao
en-aut-sei=Jiang
en-aut-mei=Minxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XueDingwei
en-aut-sei=Xue
en-aut-mei=Dingwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangHuan
en-aut-sei=Wang
en-aut-mei=Huan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LuZeyi
en-aut-sei=Lu
en-aut-mei=Zeyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DingLifeng
en-aut-sei=Ding
en-aut-mei=Lifeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=XieHaiyun
en-aut-sei=Xie
en-aut-mei=Haiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WangRuyue
en-aut-sei=Wang
en-aut-mei=Ruyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LuoWenqin
en-aut-sei=Luo
en-aut-mei=Wenqin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=XuLi
en-aut-sei=Xu
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WangMingchao
en-aut-sei=Wang
en-aut-mei=Mingchao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YuShicheng
en-aut-sei=Yu
en-aut-mei=Shicheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChengSheng
en-aut-sei=Cheng
en-aut-mei=Sheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=XiaLiqun
en-aut-sei=Xia
en-aut-mei=Liqun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YuHaifeng
en-aut-sei=Yu
en-aut-mei=Haifeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=XuNaijin
en-aut-sei=Xu
en-aut-mei=Naijin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=LiGonghui
en-aut-sei=Li
en-aut-mei=Gonghui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
en-keyword=Bladder cancer
kn-keyword=Bladder cancer
en-keyword=nitroxoline
kn-keyword=nitroxoline
en-keyword=metastasis circNDRG1
kn-keyword=metastasis circNDRG1
en-keyword=microRNA
kn-keyword=microRNA
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=8
article-no=
start-page=1722
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220804
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A novel dsRNA virus (Cryphonectria carpinicola fusagravirus 1, CcFGV1), isolated from a Japanese strain (JS13) of Cryphonectria carpinicola, was thoroughly characterized. The biological comparison of a set of isogenic CcFGV1-infected and -free (JS13VF) strains indicated asymptomatic infection by CcFGV1. The sequence analysis showed that the virus has a two open reading frame (ORF) genome of 9.6 kbp with the RNA-directed RNA polymerase domain encoded by ORF2. The N-terminal sequencing and peptide mass fingerprinting showed an N-terminally processed or degraded product (150 kDa) of the 5'-proximal ORF1-encoded protein (1462 amino acids) to make up the CcFGV1 spherical particles of similar to 40 nm in diameter. Interestingly, a portion of CcFGV1 dsRNA co-fractionated with a host protein of 70 kDa. The purified CcFGV1 particles were used to transfect protoplasts of JS13VF as well as the standard strain of an experimental model filamentous fungal host Cryphonectria parasitica. CcFGV1 was confirmed to be associated with asymptomatic infection of both fungi. RNA silencing was shown to target the virus in C. parasitica, resulting in reduced CcFGV1 accumulation by comparing the CcFGV1 content between RNA silencing-competent and -deficient strains. These results indicate the transfectability of spherical particles of a fusagravirus associated with asymptomatic infection.
en-copyright=
kn-copyright=
en-aut-name=DasSubha
en-aut-sei=Das
en-aut-mei=Subha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisanoSakae
en-aut-sei=Hisano
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Eusebio-CopeAna
en-aut-sei=Eusebio-Cope
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Cryphonectria carpinicola
kn-keyword=Cryphonectria carpinicola
en-keyword=Cryphonectria parasitica
kn-keyword=Cryphonectria parasitica
en-keyword=fusagravirus
kn-keyword=fusagravirus
en-keyword=fungal virus
kn-keyword=fungal virus
en-keyword=dsRNA
kn-keyword=dsRNA
en-keyword=spherical virion
kn-keyword=spherical virion
en-keyword=transfection
kn-keyword=transfection
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=891925
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=CD4(+)Foxp3(+) regulatory T cells (Tregs) play a central role in the maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs promptly respond to low concentrations of IL-2 through the constitutive expression of high-affinity IL-2 receptors. It has been reported that low-dose IL-2 therapy increased circulating Tregs and improved clinical symptoms of chronic GVHD. Clinical studies of IL-2 therapy so far have mainly targeted patients in the chronic phase of transplantation when acute immune responses has subsided. However, the biological and clinical effects of exogenous IL-2 in an acute immune environment have not been well investigated. In the current study, we investigated the impact of exogenous IL-2 therapy on the post-transplant homeostasis of T cell subsets which influence the balance between GVHD and GVL in the acute phase, by setting the various immune environments early after HSCT in murine model. We initially found that 5,000 IU of IL-2 was enough to induce the active proliferation of Treg without influencing other conventional T cells (Tcons) when administered to normal mice. However, activated Tcons showed the response to the same dose of IL-2 in recipients after allogeneic HSCT. In a mild inflammatory environment within a threshold, exogenous IL-2 could effectively modulate Treg homeostasis with just limited influence to activated T cells, which resulted in an efficient GVHD suppression. In contrast, in a severely inflammatory environment, exogenous IL-2 enhanced activated T cells rather than Tregs, which resulted in the exacerbation of GVHD. Of interest, in an immune-tolerant state after transplant, exogenous IL-2 triggered effector T-cells to exert an anti-tumor effect with maintaining GVHD suppression. These data suggested that the responses of Tregs and effector T cells to exogenous IL-2 differ depending on the immune environment in the host, and the mutual balance of the response to IL-2 between T-cell subsets modulates GVHD and GVL after HSCT. Our findings may provide useful information in the optimization of IL-2 therapy, which may be personalized for each patient having different immune status.
en-copyright=
kn-copyright=
en-aut-name=MeguriYusuke
en-aut-sei=Meguri
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsanoTakeru
en-aut-sei=Asano
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaTakanori
en-aut-sei=Yoshioka
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwamotoMiki
en-aut-sei=Iwamoto
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkegawaShuntaro
en-aut-sei=Ikegawa
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiuraHiroyuki
en-aut-sei=Sugiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KishiYuriko
en-aut-sei=Kishi
en-aut-mei=Yuriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMakoto
en-aut-sei=Nakamura
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SandoYasuhisa
en-aut-sei=Sando
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SumiiYuichi
en-aut-sei=Sumii
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-Ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
en-keyword=low-dose interleukin-2 therapy
kn-keyword=low-dose interleukin-2 therapy
en-keyword=graft-versus-host disease
kn-keyword=graft-versus-host disease
en-keyword=graft-versus-leukemia effect
kn-keyword=graft-versus-leukemia effect
en-keyword=transplantation tolerance
kn-keyword=transplantation tolerance
END
start-ver=1.4
cd-journal=joma
no-vol=2022
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Drug repositioning of tranilast to sensitize a cancer therapy by targeting cancer-associated fibroblast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment that mediate resistance of cancer cells to anticancer drugs. Tranilast is an antiallergic drug that suppresses the release of cytokines from various inflammatory cells. In this study, we investigated the inhibitory effect of tranilast on the interactions between non-small cell lung cancer (NSCLC) cells and the CAFs in the tumor microenvironment. Three EGFR-mutant NSCLC cell lines, two KRAS-mutant cell lines, and three CAFs derived from NSCLC patients were used. To mimic the tumor microenvironment, the NSCLC cells were cocultured with the CAFs in vitro, and the molecular profiles and sensitivity to molecular targeted therapy were assessed. Crosstalk between NSCLC cells and CAFs induced multiple biological effects on the NSCLC cells both in vivo and in vitro, including activation of the STAT3 signaling pathway, promotion of xenograft tumor growth, induction of epithelial-mesenchymal transition (EMT), and acquisition of resistance to molecular-targeted therapy, including EGFR-mutant NSCLC cells to osimertinib and of KRAS-mutant NSCLC cells to selumetinib. Treatment with tranilast led to inhibition of IL-6 secretion from the CAFs, which, in turn, resulted in inhibition of CAF-induced phospho-STAT3 upregulation. Tranilast also inhibited CAF-induced EMT in the NSCLC cells. Finally, combined administration of tranilast with molecular-targeted therapy reversed the CAF-mediated resistance of the NSCLC cells to the molecular-targeted drugs, both in vitro and in vivo. Our results showed that combined administration of tranilast with molecular-targeted therapy is a possible new treatment strategy to overcome drug resistance caused by cancer-CAF interaction.
en-copyright=
kn-copyright=
en-aut-name=OchiKosuke
en-aut-sei=Ochi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakatsuFumiaki
en-aut-sei=Takatsu
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsudakaShimpei
en-aut-sei=Tsudaka
en-aut-mei=Shimpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhuYidan
en-aut-sei=Zhu
en-aut-mei=Yidan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkamotoYoshiharu
en-aut-sei=Okamoto
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer-associated fibroblast
kn-keyword=cancer-associated fibroblast
en-keyword=drug resistance
kn-keyword=drug resistance
en-keyword=tranilast
kn-keyword=tranilast
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=15
article-no=
start-page=8592
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
en-copyright=
kn-copyright=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AoyamaEriko
en-aut-sei=Aoyama
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=fibroblast growth factor
kn-keyword=fibroblast growth factor
en-keyword=cellular communication network factor
kn-keyword=cellular communication network factor
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=skeletal development
kn-keyword=skeletal development
en-keyword=CCN2
kn-keyword=CCN2
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=7
article-no=
start-page=104524
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lattice-patterned collagen fibers and their dynamics in axolotl skin regeneration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The morphology of collagen-producing cells and the structure of produced collagen in the dermis have not been well-described. This lack of insights has been a serious obstacle in the evaluation of skin regeneration. We succeeded in visualizing collagen-producing cells and produced collagen using the axolotl skin, which is highly transparent. The visualized dermal collagen had a lattice-like structure. The collagen-producing fibroblasts consistently possessed the lattice-patterned filopodia along with the lattice-patterned collagen network. The dynamics of this lattice-like structure were also verified in the skin regeneration process of axolotls, and it was found that the correct lattice-like structure was not reorganized after simple skin wounding but was reorganized in the presence of nerves. These findings are not only fundamental insights in dermatology but also valuable insights into the mechanism of skin regeneration.
en-copyright=
kn-copyright=
en-aut-name=KashimotoRena
en-aut-sei=Kashimoto
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurukawaSaya
en-aut-sei=Furukawa
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoSakiya
en-aut-sei=Yamamoto
en-aut-mei=Sakiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KameiYasuhiro
en-aut-sei=Kamei
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoJoe
en-aut-sei=Sakamoto
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NonakaShigenori
en-aut-sei=Nonaka
en-aut-mei=Shigenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTomonobu M.
en-aut-sei=Watanabe
en-aut-mei=Tomonobu M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakamotoTatsuya
en-aut-sei=Sakamoto
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatohAkira
en-aut-sei=Satoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences, Faculty of Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biological Sciences, Faculty of Science, Okayama University
kn-affil=
affil-num=4
en-affil=National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences
kn-affil=
affil-num=5
en-affil=National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences
kn-affil=
affil-num=6
en-affil=National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences
kn-affil=
affil-num=7
en-affil=Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR)
kn-affil=
affil-num=8
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Research Core for Interdisciplinary Sciences (RCIS), Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=921636
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Periplasmic Lanthanide Mediator, Lanmodulin, in Methylobacterium aquaticum Strain 22A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methylobacterium and Methylorubrum species oxidize methanol via pyrroloquinoline quinone-methanol dehydrogenases (MDHs). MDHs can be classified into two major groups, Ca2+-dependent MDH (MxaF) and lanthanide (Ln(3+))-dependent MDH (XoxF), whose expression is regulated by the availability of Ln(3+). A set of a siderophore, TonB-dependent receptor, and an ABC transporter that resembles the machinery for iron uptake is involved in the solubilization and transport of Ln(3+). The transport of Ln(3+) into the cytosol enhances XoxF expression. A unique protein named lanmodulin from Methylorubrum extorquens strain AM1 was identified as a specific Ln(3+)-binding protein, and its biological function was implicated to be an Ln(3+) shuttle in the periplasm. In contrast, it remains unclear how Ln(3+) levels in the cells are maintained, because Ln(3+) is potentially deleterious to cellular systems due to its strong affinity to phosphate ions. In this study, we investigated the function of a lanmodulin homolog in Methylobacterium aquaticum strain 22A. The expression of a gene encoding lanmodulin (lanM) was induced in response to the presence of La3+. A recombinant LanM underwent conformational change upon La3+ binding. Phenotypic analyses on lanM deletion mutant and overexpressing strains showed that LanM is not necessary for the wild-type and XoxF-dependent mutant's methylotrophic growth. We found that lanM expression was regulated by MxcQE (a two-component regulator for MxaF) and TonB_Ln (a TonB-dependent receptor for Ln(3+)). The expression level of mxcQE was altered to be negatively dependent on Ln(3+) concentration in increment lanM, whereas it was constant in the wild type. Furthermore, when exposed to La3+, increment lanM showed an aggregating phenotype, cell membrane impairment, La deposition in the periplasm evidenced by electron microscopy, differential expression of proteins involved in membrane integrity and phosphate starvation, and possibly lower La content in the membrane vesicle (MV) fractions. Taken together, we concluded that lanmodulin is involved in the complex regulation mechanism of MDHs and homeostasis of cellular Ln levels by facilitating transport and MV-mediated excretion.
en-copyright=
kn-copyright=
en-aut-name=FujitaniYoshiko
en-aut-sei=Fujitani
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShibataTakeshi
en-aut-sei=Shibata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaniAkio
en-aut-sei=Tani
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=K.K. AB SCIEX
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=lanmodulin
kn-keyword=lanmodulin
en-keyword=lanthanide
kn-keyword=lanthanide
en-keyword=methanol dehydrogenase
kn-keyword=methanol dehydrogenase
en-keyword=Methylobacterium species
kn-keyword=Methylobacterium species
en-keyword=membrane vesicles
kn-keyword=membrane vesicles
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor size before image-guided brachytherapy is an important factor of local control after radiotherapy for cervical squamous cell carcinoma: analysis in cases using central shielding
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We analyzed the local control (LC) of cervical squamous cell carcinoma treated by computed tomography (CT)-based image-guided brachytherapy (IGBT) using central shielding (CS). We also examined the value of tumor diameter before brachytherapy (BT) as a factor of LC. In total, 97 patients were analyzed between April 2016 and March 2020. Whole-pelvic (WP) radiotherapy (RT) with CS was performed, and the total pelvic sidewall dose was 50 or 50.4 Gy; IGBT was delivered in 3-4 fractions. The total dose was calculated as the biologically equivalent dose in 2 Gy fractions, and distribution was modified manually by graphical optimization. The median follow-up period was 31.8 months (6.3-63.2 months). The 1- and 2-year LC rates were 89% and 87%, respectively. The hazard ratio was 10.11 (95% confidence interval: 1.48-68.99) for local recurrence in those with a horizontal tumor diameter >= 4 cm compared to those with < 4 cm before BT. In CT-based IGBT for squamous cell carcinoma, favorable LC can be obtained in patients with a tumor diameter < 4 cm before BT. However, if the tumor diameter is >= 4 cm, different treatment strategies such as employing interstitial-BT for dose escalation may be necessary.
en-copyright=
kn-copyright=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IharaHiroki
en-aut-sei=Ihara
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkamotoKazuhiro
en-aut-sei=Okamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgataTakeshi
en-aut-sei=Ogata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiyamaSoichi
en-aut-sei=Sugiyama
en-aut-mei=Soichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoShoji
en-aut-sei=Nagao
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Proton Beam Therapy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Radiology, Tsuyama Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Proton Beam Therapy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cervical cancer
kn-keyword=cervical cancer
en-keyword=tumor size
kn-keyword=tumor size
en-keyword=squamous cell carcinoma
kn-keyword=squamous cell carcinoma
en-keyword=image-guided brachytherapy (IGBT)
kn-keyword=image-guided brachytherapy (IGBT)
en-keyword=central shielding (CS)
kn-keyword=central shielding (CS)
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=3
article-no=
start-page=333
end-page=338
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Treatment of Atypical Femoral Fracture with Bowed Femur Using Contralateral Intramedullary Nail Combined with Early Daily Teriparatide
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a case of atypical femoral fracture achieving early fracture union with combination therapy comprising contralateral nail and immediate teriparatide injection. Fracture union of atypical fractures is often delayed due to bowing deformity and bone metabolic disorders. Combination treatment that takes both problems into consideration represents a useful treatment option for atypical femoral fracture.
en-copyright=
kn-copyright=
en-aut-name=AkagawaManabu
en-aut-sei=Akagawa
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakoshiNaohisa
en-aut-sei=Miyakoshi
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchieHiroyuki
en-aut-sei=Tsuchie
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KasukawaYuji
en-aut-sei=Kasukawa
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaragiTakashi
en-aut-sei=Kawaragi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagahataItsuki
en-aut-sei=Nagahata
en-aut-mei=Itsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiMasazumi
en-aut-sei=Suzuki
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshikawaTakayuki
en-aut-sei=Yoshikawa
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeToshiki
en-aut-sei=Abe
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShimadaYoichi
en-aut-sei=Shimada
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Omagari Kosei Medical Center
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
en-keyword=atypical femoral fracture
kn-keyword=atypical femoral fracture
en-keyword=bowing deformity
kn-keyword=bowing deformity
en-keyword=intramedullary nail
kn-keyword=intramedullary nail
en-keyword=teriparatide
kn-keyword=teriparatide
en-keyword=cephalomedullary screw
kn-keyword=cephalomedullary screw
END
start-ver=1.4
cd-journal=joma
no-vol=1866
cd-vols=
no-issue=8
article-no=
start-page=130171
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan.
en-copyright=
kn-copyright=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Mitochondrial ROS
kn-keyword=Mitochondrial ROS
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Nrf2
kn-keyword=Nrf2
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=37
article-no=
start-page=e202201253
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220523
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Design and Synthesis of Glycosylated Cholera Toxin B Subunit as a Tracer of Glycoprotein Trafficking in Organelles of Living Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glycosylation of proteins is known to be essential for changing biological activity and stability of glycoproteins on the cell surfaces and in body fluids. Delivering of homogeneous glycoproteins into the endoplasmic reticulum (ER) and the Golgi apparatus would enable us to investigate the function of asparagine-linked (N-) glycans in the organelles. In this work, we designed and synthesized an intentionally glycosylated cholera toxin B-subunit (CTB) to be transported to the organelles of mammalian cells. The heptasaccharide, the intermediate structure of various complex-type N-glycans, was introduced to the CTB. The synthesized monomeric glycosyl-CTB successfully entered mammalian cells and was transported to the Golgi and the ER, suggesting the potential use of synthetic CTB to deliver and investigate the functions of homogeneous N-glycans in specific organelles of living cells.
en-copyright=
kn-copyright=
en-aut-name=MakiYuta
en-aut-sei=Maki
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawataKazuki
en-aut-sei=Kawata
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiuYanbo
en-aut-sei=Liu
en-aut-mei=Yanbo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GooKang‐Ying
en-aut-sei=Goo
en-aut-mei=Kang‐Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoRyo
en-aut-sei=Okamoto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KajiharaYasuhiro
en-aut-sei=Kajihara
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=glycoprotein
kn-keyword=glycoprotein
en-keyword=N-glycan
kn-keyword=N-glycan
en-keyword=cholera toxin
kn-keyword=cholera toxin
en-keyword=native chemical ligation
kn-keyword=native chemical ligation
en-keyword=live imaging
kn-keyword=live imaging
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=3
article-no=
start-page=235
end-page=245
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of Transmembrane Protein 97 (TMEM97) in Adipose Tissue and Skeletal Muscle
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The combination of sarcopenia and obesity (sarcopenic obesity) is associated with the development of metabolic syndrome and cardiovascular events. The molecular pathways that develop sarcopenic obesity have studied intensively. Transmembrane protein 97 (TMEM97) is 176 amino acids conserved integral membrane protein with four transmembrane domains that is expressed in several types of cancer. Its physiological significance in adipose tissue and skeletal muscle has been unclear. We studied TMEM97-transgenic mice and mice lacking TMEM97, and our findings indicate that TMEM97 expression is regulated in adipose tissue and skeletal muscle from obesity. TMEM97 represses adipogenesis and promotes myogenesis in vitro. Fat-specific TMEM97 transgenic mice showed systemic insulin resistance. Mice overexpressing TMEM97 in skeletal muscle exhibited systemic insulin resistance. Mice lacking TMEM97 were protected against diet-induced obesity and insulin resistance. These phenotypes are associated with the effects of TMEM97 on inflammation genes in adipose tissue and skeletal muscle. Our findings indicates that there is a link between TMEM97 and chronic inflammation in obesity.
en-copyright=
kn-copyright=
en-aut-name=TentaMasafumi
en-aut-sei=Tenta
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=adipose tissue
kn-keyword=adipose tissue
en-keyword=skeletal muscle
kn-keyword=skeletal muscle
en-keyword=obesity
kn-keyword=obesity
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=884509
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with alpha-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.
en-copyright=
kn-copyright=
en-aut-name=HamasakiEriko
en-aut-sei=Hamasaki
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakitaNatsuki
en-aut-sei=Wakita
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagaokaHikaru
en-aut-sei=Nagaoka
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaMasayuki
en-aut-sei=Morita
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashimaEizo
en-aut-sei=Takashima
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchihashiTakayuki
en-aut-sei=Uchihashi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJi-Won
en-aut-sei=Lee
en-aut-mei=Ji-Won
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IimuraTadahiro
en-aut-sei=Iimura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SaleemMoin A.
en-aut-sei=Saleem
en-aut-mei=Moin A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgoNaohisa
en-aut-sei=Ogo
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AsaiAkira
en-aut-sei=Asai
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NaritaAkihiro
en-aut-sei=Narita
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=5
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=6
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=7
en-affil=Department of Physics, Nagoya University
kn-affil=
affil-num=8
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=11
en-affil=Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=12
en-affil=Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol
kn-affil=
affil-num=13
en-affil=Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=14
en-affil=Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=15
en-affil=Graduate School of Science, Nagoya University
kn-affil=
affil-num=16
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=dynamin
kn-keyword=dynamin
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=actin
kn-keyword=actin
en-keyword=bundle
kn-keyword=bundle
en-keyword=GTPase
kn-keyword=GTPase
en-keyword=CMT
kn-keyword=CMT
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=
article-no=
start-page=249
end-page=261
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Modulation of p53 expression in cancer-associated fibroblasts prevents peritoneal metastasis of cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are associated with the establishment and progression of peritoneal metastasis. This study investigated the efficacy of replicative oncolytic adenovirus-mediated p53 gene therapy (OBP-702) against CAFs and peritoneal metastasis of gastric cancer (GC). Higher CAF expression in the primary tumor was associated with poor prognosis of GC, and higher CAF expression was also observed with peritoneal metastasis in immunohistochemical analysis of clinical samples. And, we found transcriptional alteration of p53 in CAFs relative to normal gastric fibroblasts (NGFs). CAFs increased the secretion of cancer-promoting cytokines, including interleukin-6, and gained resistance to chemotherapy relative to NGFs. OBP-702 showed cytotoxicity to both GC cells and CAFs but not to NGFs. Overexpression of wild-type p53 by OBP-702 infection caused apoptosis and autophagy of CAFs and decreased the secretion of cancer-promoting cytokines by CAFs. Combination therapy using intraperitoneal administration of OBP-702 and paclitaxel synergistically inhibited the tumor growth of peritoneal metastases and decreased CAFs in peritoneal metastases. OBP-702, a replicative oncolytic adenovirus-mediated p53 gene therapy, offers a promising biological therapeutic strategy for peritoneal metastasis, modulating CAFs in addition to achieving tumor lysis.
en-copyright=
kn-copyright=
en-aut-name=OgawaToshihiro
en-aut-sei=Ogawa
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TabuchiMotoyasu
en-aut-sei=Tabuchi
en-aut-mei=Motoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuiEma
en-aut-sei=Mitsui
en-aut-mei=Ema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UneYuta
en-aut-sei=Une
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Oncolys BioPharma
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=149
cd-vols=
no-issue=8
article-no=
start-page=dev199916
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.
en-copyright=
kn-copyright=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkumuraMisa
en-aut-sei=Okumura
en-aut-mei=Misa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BandoYuki
en-aut-sei=Bando
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HagiwaraMarou
en-aut-sei=Hagiwara
en-aut-mei=Marou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaYoshimasa
en-aut-sei=Hamada
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimaruYoshiyasu
en-aut-sei=Ishimaru
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitoTaro
en-aut-sei=Mito
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaguchiEri
en-aut-sei=Kawaguchi
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AgataKiyokazu
en-aut-sei=Agata
en-aut-mei=Kiyokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NojiSumihare
en-aut-sei=Noji
en-aut-mei=Sumihare
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Faculty of Medicine, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=8
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=9
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=11
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=12
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Toll-related signalling
kn-keyword=Toll-related signalling
en-keyword=JAK/STAT signalling
kn-keyword=JAK/STAT signalling
en-keyword=Macrophages
kn-keyword=Macrophages
en-keyword=Blastema
kn-keyword=Blastema
en-keyword=Gryllus bimaculatus
kn-keyword=Gryllus bimaculatus
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=9
article-no=
start-page=eabk0331
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202234
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vasopressin-oxytocin–type signaling is ancient and has a conserved water homeostasis role in euryhaline marine planarians
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Vasopressin/oxytocin (VP/OT)–related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the “platytocin” system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an “antidiuretic hormone” and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.
en-copyright=
kn-copyright=
en-aut-name=KobayashiAoshi
en-aut-sei=Kobayashi
en-aut-mei=Aoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamadaMayuko
en-aut-sei=Hamada
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaMasa-aki
en-aut-sei=Yoshida
en-aut-mei=Masa-aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiYasuhisa
en-aut-sei=Kobayashi
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsutsuiNaoaki
en-aut-sei=Tsutsui
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekiguchiToshio
en-aut-sei=Sekiguchi
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaYuta
en-aut-sei=Matsukawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaejimaSho
en-aut-sei=Maejima
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GingellJoseph J.
en-aut-sei=Gingell
en-aut-mei=Joseph J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SekiguchiShoko
en-aut-sei=Sekiguchi
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HamamotoAyumu
en-aut-sei=Hamamoto
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HayDebbie L.
en-aut-sei=Hay
en-aut-mei=Debbie L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MorrisJohn F.
en-aut-sei=Morris
en-aut-mei=John F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakamotoTatsuya
en-aut-sei=Sakamoto
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Oki Marine Biological Station, Shimane University
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University
kn-affil=
affil-num=7
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Vertex Pharmaceuticals (Europe) Ltd.
kn-affil=
affil-num=10
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland
kn-affil=
affil-num=13
en-affil=Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford
kn-affil=
affil-num=14
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=13
article-no=
start-page=2519
end-page=2530
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 × 2.0 mm2) and gigahertz-broadband characteristics with low reflection (∼8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms.
en-copyright=
kn-copyright=
en-aut-name=OshimiKeisuke
en-aut-sei=Oshimi
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraYushi
en-aut-sei=Nishimura
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsubaraTsutomu
en-aut-sei=Matsubara
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasuaki
en-aut-sei=Tanaka
en-aut-mei=Masuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShikohEiji
en-aut-sei=Shikoh
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhaoLi
en-aut-sei=Zhao
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomatsuNaoki
en-aut-sei=Komatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkadoYuta
en-aut-sei=Ikado
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakezawaYuka
en-aut-sei=Takezawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Kage-NakadaiEriko
en-aut-sei=Kage-Nakadai
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IzutsuYumi
en-aut-sei=Izutsu
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshizatoKatsutoshi
en-aut-sei=Yoshizato
en-aut-mei=Katsutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MoritaSaho
en-aut-sei=Morita
en-aut-mei=Saho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TokunagaMasato
en-aut-sei=Tokunaga
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YukawaHiroshi
en-aut-sei=Yukawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BabaYoshinobu
en-aut-sei=Baba
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TekiYoshio
en-aut-sei=Teki
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FujiwaraMasazumi
en-aut-sei=Fujiwara
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Science, Osaka City University
kn-affil=
affil-num=3
en-affil=Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University
kn-affil=
affil-num=4
en-affil=Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University
kn-affil=
affil-num=5
en-affil=Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University
kn-affil=
affil-num=6
en-affil=State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Human and Environmental Studies, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University
kn-affil=
affil-num=11
en-affil=Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University,
kn-affil=
affil-num=12
en-affil=Department of Biology, Faculty of Science, Niigata University
kn-affil=
affil-num=13
en-affil=Synthetic biology laboratory, Graduate school of medicine, Osaka City University
kn-affil=
affil-num=14
en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
kn-affil=
affil-num=15
en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
kn-affil=
affil-num=16
en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
kn-affil=
affil-num=17
en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, Graduate School of Science, Osaka City University
kn-affil=
affil-num=19
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=6
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Urodele amphibians, Pleurodeles waltl and Ambystoma mexicanum, have organ-level regeneration capability, such as limb regeneration. Multipotent cells are induced by an endogenous mechanism in amphibian limb regeneration. It is well known that dermal fibroblasts receive regenerative signals and turn into multipotent cells, called blastema cells. However, the induction mechanism of the blastema cells from matured dermal cells was unknown. We previously found that BMP2, FGF2, and FGF8 (B2FF) could play sufficient roles in blastema induction in urodele amphibians. Here, we show that B2FF treatment can induce dermis-derived cells that can participate in multiple cell lineage in limb regeneration. We first established a newt dermis-derived cell line and confirmed that B2FF treatment on the newt cells provided plasticity in cellular differentiation in limb regeneration. To clarify the factors that can provide the plasticity in differentiation, we performed the interspecies comparative analysis between newt cells and mouse cells and found the Pde4b gene was upregulated by B2FF treatment only in the newt cells. Blocking PDE4B signaling by a chemical PDE4 inhibitor suppressed dermis-to-cartilage transformation and the mosaic knockout animals showed consistent results. Our results are a valuable insight into how dermal fibroblasts acquire multipotency during the early phase of limb regeneration via an endogenous program in amphibian limb regeneration.
en-copyright=
kn-copyright=
en-aut-name=SatohAkira
en-aut-sei=Satoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KashimotoRena
en-aut-sei=Kashimoto
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhashiAyaka
en-aut-sei=Ohashi
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FurukawaSaya
en-aut-sei=Furukawa
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoSakiya
en-aut-sei=Yamamoto
en-aut-mei=Sakiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HayashiToshinori
en-aut-sei=Hayashi
en-aut-mei=Toshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AgataKiyokazu
en-aut-sei=Agata
en-aut-mei=Kiyokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research Core for Interdisciplinary Sciences (RCIS), Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Envi�ronmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Envi�ronmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Science, Department of Biological Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Science, Department of Biological Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Adaptation Physiology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=7
en-affil=Amphibian Research Center, Hiroshima University
kn-affil=
affil-num=8
en-affil=Laboratory of Regeneration Biology, National Institute for Basic Biology
kn-affil=
en-keyword=Pde4b
kn-keyword=Pde4b
en-keyword=Limb regeneration
kn-keyword=Limb regeneration
en-keyword=Pleurodels waltl
kn-keyword=Pleurodels waltl
en-keyword=Ambystoma mexicanum
kn-keyword=Ambystoma mexicanum
en-keyword=Dedifferentiation
kn-keyword=Dedifferentiation
en-keyword=Reprogramming
kn-keyword=Reprogramming
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=
article-no=
start-page=453
end-page=460
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220329
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial selections for death-feigning behavior in beetles show correlated responses in amplitude of circadian rhythms, but the period of the rhythm does not
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=One of the most important survival strategies of organisms is to avoid predators. Studying one of such strategies, namely, death-feigning behavior, has recently become more common. The success or failure of this antipredator strategy will be affected by the circadian rhythms of both prey and predator because death feigning sometimes has a diurnal rhythm. However, few studies have analyzed the effects of differences in circadian rhythms on predator-avoidance behavior at the genetic level. Recently, the relationship between genes relating to circadian rhythm and death-feigning behavior, an antipredator behavior, has been established at the molecular level. Therefore, in this study, we compared three circadian rhythm-related traits, the free-running period of rhythms, amplitude of circadian rhythms, and total activity of strains of three Tribolium species that were artificially selected for the death-feigning duration: short (S-strains) and long (L-strains) durations. As a result, the amplitude of circadian rhythms and total activity were significantly different between S- and L-strains, but there was no difference in the free-running periods of the rhythm between the strains in T. castaneum, T. confusum, and T. freemani. Although the relationship between death-feigning behavior and activity has been reported for all three species, a genetic relationship between the duration of death feigning and the amplitude of circadian rhythms has been newly found in the present study. It is important to investigate the relationship between antipredator strategies and circadian rhythms at the molecular level in the future.
en-copyright=
kn-copyright=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=S. AbeMasato
en-aut-sei=S. Abe
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumuraKentarou
en-aut-sei=Matsumura
en-aut-mei=Kentarou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Advanced Intelligence Project, RIKEN
kn-affil=
affil-num=3
en-affil=Laboratory of entomology, Faculty of Agriculture
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=biological clock
kn-keyword=biological clock
en-keyword=coleoptera
kn-keyword=coleoptera
en-keyword=death feigning
kn-keyword=death feigning
en-keyword=thanatosis
kn-keyword=thanatosis
en-keyword=tonic immobility
kn-keyword=tonic immobility
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=2
article-no=
start-page=203
end-page=215
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overexpression of Adenovirus E1A Reverses Transforming Growth Factor-β-induced Epithelial-mesenchymal Transition in Human Esophageal Cancer Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The epithelial-mesenchymal transition (EMT), a normal biological process by which epithelial cells acquire a mesenchymal phenotype, is associated with migration, metastasis, and chemoresistance in cancer cells, and with poor prognosis in patients with esophageal cancer. However, therapeutic strategies to inhibit EMT in tumor environments remain elusive. Here, we show the therapeutic potential of telomerase-specific replication- competent oncolytic adenovirus OBP-301 in human esophageal cancer TE4 and TE6 cells with an EMT phenotype. Transforming growth factor-β (TGF-β) administration induced the EMT phenotype with spindleshaped morphology, upregulation of mesenchymal markers and EMT transcription factors, migration, and chemoresistance in TE4 and TE6 cells. OBP-301 significantly inhibited the EMT phenotype via E1 accumulation. EMT cancer cells were susceptible to OBP-301 via massive autophagy induction. OBP-301 suppressed tumor growth and lymph node metastasis of TE4 cells co-inoculated with TGF-β-secreting fibroblasts. Our results suggest that OBP-301 inhibits the TGF-β-induced EMT phenotype in human esophageal cancer cells. OBP-301-mediated E1A overexpression is a promising antitumor strategy to inhibit EMT-mediated esophageal cancer progression.
en-copyright=
kn-copyright=
en-aut-name=MasudaTomoya
en-aut-sei=Masuda
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HashimotoYuuri
en-aut-sei=Hashimoto
en-aut-mei=Yuuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IedaTakeshi
en-aut-sei=Ieda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Oncolys BioPharma Inc.
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=EMT
kn-keyword=EMT
en-keyword=TGF-β
kn-keyword=TGF-β
en-keyword=oncolytic adenovirus
kn-keyword=oncolytic adenovirus
en-keyword=E1A
kn-keyword=E1A
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=2
article-no=
start-page=87
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects.
en-copyright=
kn-copyright=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Health Sciences, Institute of Academic and Research, Okayama University
kn-affil=
affil-num=2
en-affil=Health Sciences, Institute of Academic and Research, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=307
cd-vols=
no-issue=2
article-no=
start-page=198606
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5′-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.
en-copyright=
kn-copyright=
en-aut-name=SatoYukiyo
en-aut-sei=Sato
en-aut-mei=Yukiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShahiSabitree
en-aut-sei=Shahi
en-aut-mei=Sabitree
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TelengechPaul
en-aut-sei=Telengech
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HisanoSakae
en-aut-sei=Hisano
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CornejoCarolina
en-aut-sei=Cornejo
en-aut-mei=Carolina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RiglingDaniel
en-aut-sei=Rigling
en-aut-mei=Daniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions
kn-affil=
affil-num=6
en-affil=Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=8
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Splipalmivirus
kn-keyword=Splipalmivirus
en-keyword=Capsidless
kn-keyword=Capsidless
en-keyword=RNA virus
kn-keyword=RNA virus
en-keyword=Cryphonectria naterciae
kn-keyword=Cryphonectria naterciae
en-keyword=Narnavirus
kn-keyword=Narnavirus
en-keyword=Fungal virus
kn-keyword=Fungal virus
en-keyword=Mycovirus
kn-keyword=Mycovirus
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=2
article-no=
start-page=377
end-page=392
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel Prognostic Predictor of Immune Micro-environment and Therapeutic Response in Kidney Renal Clear Cell Carcinoma based on Necroptosis-related Gene Signature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Necroptosis, a cell death of caspase-independence, plays a pivotal role in cancer biological regulation. Although necroptosis is closely associated with oncogenesis, cancer metastasis, and immunity, there remains a lack of studies determining the role of necroptosis-related genes (NRGs) in the highly immunogenic cancer type, kidney renal clear cell carcinoma (KIRC). Methods: The information of clinicopathology and transcriptome was extracted from TCGA database. Following the division into the train and test cohorts, a three-NRGs (TLR3, FASLG, ZBP1) risk model was identified in train cohort by LASSO regression. The overall survival (OS) comparison was conducted between different risk groups through Kaplan-Meier analysis, which was further validated in test cohort. The Cox proportional hazards regression model was introduced to assess its impact of clinicopathological factors and risk score on survival. ESTIMATE and CIBERSORT algorithms were introduced to evaluate immune microenvironment, while enrichment analysis was conducted to explore the biological significance. Correlation analysis was applied for the correlation assessment between checkpoint gene expression and risk score, between gene expression and therapeutic response. Gene expressions from TCGA were verified by GEO datasets and immunohistochemistry (IHC) analysis. Results: This NRGs-related signature predicted poorer OS in high-risk group, which was also verified in test cohort. Risk score could also independently predict survival outcome of KIRC. Significant changes were also found in immune microenvironment and checkpoint gene expressions between different risk groups, with immune functional enrichment in high-risk group. Interestingly, therapeutic response was correlated with the expressions of NRGs. The expressions of NRGs from TCGA were consistent with those from GEO datasets and IHC analysis. Conclusion: The NRGs-related signature functions as a novel prognostic predictor of immune microenvironment and therapeutic response in KIRC.
en-copyright=
kn-copyright=
en-aut-name=ChenWenwei
en-aut-sei=Chen
en-aut-mei=Wenwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WuLiang
en-aut-sei=Wu
en-aut-mei=Liang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University
kn-affil=
affil-num=4
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=5
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=prognosis
kn-keyword=prognosis
en-keyword=immune microenvironment
kn-keyword=immune microenvironment
en-keyword=therapeutic response
kn-keyword=therapeutic response
en-keyword=kidney renal clear cell carcinoma
kn-keyword=kidney renal clear cell carcinoma
en-keyword=necroptosis
kn-keyword=necroptosis
en-keyword=gene signature
kn-keyword=gene signature
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=1762
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.
en-copyright=
kn-copyright=
en-aut-name=LiuYujia
en-aut-sei=Liu
en-aut-mei=Yujia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MyojinTakumi
en-aut-sei=Myojin
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiKexin
en-aut-sei=Li
en-aut-mei=Kexin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuritaAyuki
en-aut-sei=Kurita
en-aut-mei=Ayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SetoMasayuki
en-aut-sei=Seto
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoyamaAyano
en-aut-sei=Motoyama
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiuXiaoyang
en-aut-sei=Liu
en-aut-mei=Xiaoyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=School of Biological Engineering, Dalian Polytechnic University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=3-hydroxyphenylacetic acid
kn-keyword=3-hydroxyphenylacetic acid
en-keyword=aldehyde dehydrogenase
kn-keyword=aldehyde dehydrogenase
en-keyword=quercetin metabolites
kn-keyword=quercetin metabolites
en-keyword=aryl hydrocarbon receptor
kn-keyword=aryl hydrocarbon receptor
en-keyword=acetaldehyde
kn-keyword=acetaldehyde
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=1
article-no=
start-page=157
end-page=165
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Observing Phylum-Level Metazoan Diversity by Environmental DNA Analysis at the Ushimado Area in the Seto Inland Sea
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The dynamics of microscopic marine plankton in coastal areas is a fundamental theme in marine biodiversity research, but studies have been limited because the only available methodology was collection of plankton using plankton-nets and microscopic observation. In recent years, environmental DNA (eDNA) analysis has exhibited potential for conducting comprehensive surveys of marine plankton diversity in water at fixed points and depths in the ocean. However, few studies have examined how eDNA analysis reflects the actual distribution and dynamics of organisms in the field, and further investigation is needed to determine whether it can detect distinct differences in plankton density in the field. To address this, we analyzed eDNA in seawater samples collected at 1 km intervals at three depths over a linear distance of approximately 3.0 km in the Seto Inland Sea. The survey area included a location with a high density of Acoela (Praesagittifera naikaiensis). However, the eDNA signal for this was little to none, and its presence would not have been noticed if we did not have this information beforehand. Meanwhile, eDNA analysis enabled us to confirm the presence of a species of Placozoa that was previously undiscovered in the area. In summary, our results suggest that the number of sequence reads generated from eDNA samples in our project was not sufficient to predict the density of a particular species. However, eDNA can be useful for detecting organisms that have been overlooked using other methods.
en-copyright=
kn-copyright=
en-aut-name=KawashimaTakeshi
en-aut-sei=Kawashima
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaMasa-aki
en-aut-sei=Yoshida
en-aut-mei=Masa-aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyazawaHideyuki
en-aut-sei=Miyazawa
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoHiroaki
en-aut-sei=Nakano
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoNatumi
en-aut-sei=Nakano
en-aut-mei=Natumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakamotoTatsuya
en-aut-sei=Sakamoto
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMayuko
en-aut-sei=Hamada
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Genetics
kn-affil=
affil-num=2
en-affil=Marine Biological Science Section, Education and Research Center Biological Resources, Faculty of Life and Environmental Science, Shimane University
kn-affil=
affil-num=3
en-affil=National Institute of Genetics
kn-affil=
affil-num=4
en-affil=Shimoda Marine Research Center, University of Tsukuba
kn-affil=
affil-num=5
en-affil=Department of Biology, Nara Medical University
kn-affil=
affil-num=6
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=7
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
en-keyword=eDNA
kn-keyword=eDNA
en-keyword=marine invertebrate
kn-keyword=marine invertebrate
en-keyword=Xenacoelomorpha
kn-keyword=Xenacoelomorpha
en-keyword=Acoela
kn-keyword=Acoela
en-keyword=Praesagittifera naikaiensis
kn-keyword=Praesagittifera naikaiensis
en-keyword=Placozoa
kn-keyword=Placozoa
en-keyword=Trichoplax adhaerens
kn-keyword=Trichoplax adhaerens
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=5
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mouse Model for Optogenetic Genome Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Optogenetics, a technology to manipulate biological phenomena thorough light, has attracted much attention in neuroscience. Recently, the Magnet System, a photo-inducible protein dimerization system which can control the intracellular behavior of various biomolecules with high accuracy using light was developed. Furthermore, photoactivation systems for controlling biological phenomena are being developed by combining this technique with genome-editing technology (CRISPR/Cas9 System) or DNA recombination technology (Cre-loxP system). Herein, we review the history of optogenetics and the latest Magnet System technology and introduce our recently developed photoactivatable Cre knock-in mice with temporal-, spatial-, and cell-specific accuracy.
en-copyright=
kn-copyright=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=optogenetics
kn-keyword=optogenetics
en-keyword=Cre recombinase
kn-keyword=Cre recombinase
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=1
article-no=
start-page=26
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220103
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Terahertz waves have gained increasingly more attention because of their unique characteristics and great potential in a variety of fields. In this study, we introduced the recent progress of our versatile terahertz chemical microscope (TCM) in the detection of small biomolecules, ions, cancer cells, and antibody-antigen immunoassaying. We highlight the advantages of our TCM for chemical sensing and biosensing, such as label-free, high-sensitivity, rapid response, non-pretreatment, and minute amount sample consumption, compared with conventional methods. Furthermore, we demonstrated its new application in detection of allergic-related histamine at low concentration in buffer solutions.
en-copyright=
kn-copyright=
en-aut-name=WangJin
en-aut-sei=Wang
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoKosuke
en-aut-sei=Sato
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaiKenji
en-aut-sei=Sakai
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KiwaToshihiko
en-aut-sei=Kiwa
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=terahertz chemical microscope
kn-keyword=terahertz chemical microscope
en-keyword=potential distribution
kn-keyword=potential distribution
en-keyword=label-free
kn-keyword=label-free
en-keyword=biological substances
kn-keyword=biological substances
en-keyword=cancer cells
kn-keyword=cancer cells
en-keyword=antibody-antigen
kn-keyword=antibody-antigen
en-keyword=histamine
kn-keyword=histamine
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=3
article-no=
start-page=1214
end-page=1228
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of MICALL2 as a Novel Prognostic Biomarker Correlating with Inflammation and T Cell Exhaustion of Kidney Renal Clear Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: The interplay of inflammation and immunity affects all stages from tumorigenesis to progression, and even tumor response to therapy. A growing interest has been attracted from the biological function of MICALL2 to its effects on tumor progression. This study was designed to verify whether MICALL2 could be a prognostic biomarker to predict kidney renal clear cell carcinoma (KIRC) progression, inflammation, and immune infiltration within tumor microenvironment (TME).
Methods: We firstly analyzed MICALL2 expressions across 33 cancer types from the UCSC Xena database and verified its expression in KIRC through GEPIA platform and GEO datasets. The clinicopathological characteristics were further analyzed based on the median expression. Kaplan-Meier method, univariate and multivariate analyses were applied to compare survival outcomes. ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration, and a co-expression analysis was conducted to evaluate the correlation between MICALL2 and immunoregulatory genes. Enrichment analysis was finally performed to explore the biological significance of MICALL2.
Results: MICALL2 was highly expressed in 16 types of cancers compared with normal tissues. MICALL2 expression increased with advanced clinicopathological parameters and was an independent predictor for poor prognosis in KIRC. Moreover, MICALL2 closely correlated with inflammation-promoting signatures and immune infiltration including T cell exhaustion markers. Consistently, MICALL2 involved in the regulation of signaling pathways associated with tumor immunity, tumor progression, and impaired metabolic activities.
Conclusion: MICALL2 can function as a prognostic biomarker mediating inflammation, immune infiltration, and T cell exhaustion within the microenvironment of KIRC.
en-copyright=
kn-copyright=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenWenwei
en-aut-sei=Chen
en-aut-mei=Wenwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ZhongJisheng
en-aut-sei=Zhong
en-aut-mei=Jisheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UekiHideo
en-aut-sei=Ueki
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=3
en-affil=School of Medicine, Xiamen University
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=MICALL2
kn-keyword=MICALL2
en-keyword=biomarker
kn-keyword=biomarker
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=T cell exhaustion
kn-keyword=T cell exhaustion
en-keyword=kidney renal clear cell carcinoma
kn-keyword=kidney renal clear cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=2
article-no=
start-page=105
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220117
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plant viruses and viroids in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japan’s plant virus/viroid studies have contributed to advance virus/viroid taxonomy.
en-copyright=
kn-copyright=
en-aut-name=FujiShin-ichi
en-aut-sei=Fuji
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MochizukiTomofumi
en-aut-sei=Mochizuki
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkudaMitsuru
en-aut-sei=Okuda
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsudaShinya
en-aut-sei=Tsuda
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KagiwadaSatoshi
en-aut-sei=Kagiwada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekineKen-Taro
en-aut-sei=Sekine
en-aut-mei=Ken-Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UgakiMasashi
en-aut-sei=Ugaki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NatsuakiKeiko T.
en-aut-sei=Natsuaki
en-aut-mei=Keiko T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IsogaiMasamichi
en-aut-sei=Isogai
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaokaTetsuo
en-aut-sei=Maoka
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakeshitaMinoru
en-aut-sei=Takeshita
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaNobuyuki
en-aut-sei=Yoshikawa
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MiseKazuyuki
en-aut-sei=Mise
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamajiYasuyuki
en-aut-sei=Yamaji
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IwanamiToru
en-aut-sei=Iwanami
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KobayashiKappei
en-aut-sei=Kobayashi
en-aut-mei=Kappei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HatayaTatsuji
en-aut-sei=Hataya
en-aut-mei=Tatsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SanoTeruo
en-aut-sei=Sano
en-aut-mei=Teruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Faculty of Bioresource Sciences, Akita Prefectural University
kn-affil=
affil-num=2
en-affil=Graduate School of Life and Environmental Sciences, Osaka Prefecture University
kn-affil=
affil-num=3
en-affil=Office of the President, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=4
en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry
kn-affil=
affil-num=5
en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University
kn-affil=
affil-num=6
en-affil=Faculty of Agriculture, University of the Ryukyus
kn-affil=
affil-num=7
en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Tokyo University of Agriculture
kn-affil=
affil-num=9
en-affil=Faculty of Agriculture, Iwate University
kn-affil=
affil-num=10
en-affil=Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO)
kn-affil=
affil-num=11
en-affil=Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazak
kn-affil=
affil-num=12
en-affil=Agri-Innovation Center, Iwate University
kn-affil=
affil-num=13
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=14
en-affil=3 Department of Research Promotion, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO)
kn-affil=
affil-num=15
en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Core Technology for Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO)
kn-affil=
affil-num=17
en-affil=Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Faculty of Agriculture, Tokyo University of Agriculture
kn-affil=
affil-num=19
en-affil=Department of Biological Resource Science, Faculty of Agriculture, Saga University
kn-affil=
affil-num=20
en-affil=Faculty of Agriculture, Ehime University
kn-affil=
affil-num=21
en-affil=Research Faculty of Agriculture, Hokkaido University
kn-affil=
affil-num=22
en-affil=Hirosaki University
kn-affil=
affil-num=23
en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=
article-no=
start-page=71
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spred2 controls the severity of Concanavalin A-induced liver damage by limiting interferon-gamma production by CD4(+) and CD8(+) T cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Mitogen-activated protein kinases (MAPKs) are involved in T cell-mediated liver damage. However, the inhibitory mechanism(s) that controls T cell-mediated liver damage remains unknown. Objectives: We investigated whether Spred2 (Sprouty-related, EVH1 domain-containing protein 2) that negatively regulates ERK-MAPK pathway has a biological impact on T cell-mediated liver damage by using a murine model. Methods: We induced hepatotoxicity in genetically engineered mice by intravenously injecting Concanavalin A (Con A) and analyzed the mechanisms using serum chemistry, histology, ELISA, qRT-PCR, Western blotting and flow cytometry. Results: Spred2-deficient mice (Spred2(-/-)) developed more sever liver damage than wild-type (WT) mice with increased interferon-gamma (IFNy) production. Hepatic ERK phosphorylation was enhanced in Spred2(-/-) mice, and pretreatment of Spred2(-/-) mice with the MAPK/ERK inhibitor U0126 markedly inhibited the liver damage and reduced IFN gamma production. Neutralization of IFNy abolished the damage with decreased hepatic Stat1 activation in Spred2(-/-) mice. IFN gamma was mainly produced from CD4(+) and CD8(+) T cells, and their depletion decreased liver damage and IFN gamma production. Transplantation of CD4(+) and/or CD8(+) T cells from Spred2(-/-) mice into RAG1(-/-) mice deficient in both T and B cells caused more severe liver damage than those from WT mice. Hepatic expression of T cell attractants, CXCL9 and CXCL10, was augmented in Spred2(-/-) mice as compared to WT mice. Conversely, liver damage, IFN gamma production and the recruitment of CD4(+) and CD8(+) T cells in livers after Con A challenge were lower in Spred2 transgenic mice, and Spred2-overexpressing CD4(+) and CD8(+) T cells produced lower levels of IFN gamma than WT cells upon stimulation with Con A in vitro. Conclusion: We demonstrated, for the first time, that Spred2 functions as an endogenous regulator of T cell IFNy production and Spred2-mediated inhibition of ERK-MAPK pathway may be an effective remedy for T cell-dependent liver damage.
en-copyright=
kn-copyright=
en-aut-name=SunCuiming
en-aut-sei=Sun
en-aut-mei=Cuiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiuQiuying
en-aut-sei=Liu
en-aut-mei=Qiuying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CaoChen
en-aut-sei=Cao
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunkelSteven L.
en-aut-sei=Kunkel
en-aut-mei=Steven L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology, University of Michigan Medical School
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Liver damage
kn-keyword=Liver damage
en-keyword=MAPK
kn-keyword=MAPK
en-keyword=Signal transduction and regulation
kn-keyword=Signal transduction and regulation
en-keyword=Gene-modified mice
kn-keyword=Gene-modified mice
en-keyword=Spred2
kn-keyword=Spred2
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=11
article-no=
start-page=1662
end-page=1675
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Small GTPase OsRac1 Forms Two Distinct Immune Receptor Complexes Containing the PRR OsCERK1 and the NLR Pit
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1.
en-copyright=
kn-copyright=
en-aut-name=AkamatsuAkira
en-aut-sei=Akamatsu
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasayuki
en-aut-sei=Fujiwara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaSatoshi
en-aut-sei=Hamada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakabayashiMegumi
en-aut-sei=Wakabayashi
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YaoAi
en-aut-sei=Yao
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WangQiong
en-aut-sei=Wang
en-aut-mei=Qiong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KosamiKen-ichi
en-aut-sei=Kosami
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DangThu Thi
en-aut-sei=Dang
en-aut-mei=Thu Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Kaneko-KawanoTakako
en-aut-sei=Kaneko-Kawano
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukadaFumi
en-aut-sei=Fukada
en-aut-mei=Fumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShimamotoKo
en-aut-sei=Shimamoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Biosciences, Kwansei Gakuin University
kn-affil=
affil-num=2
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=3
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=4
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=5
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=6
en-affil=Department of Horticulture and Plant Protection
kn-affil=
affil-num=7
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences
kn-affil=
affil-num=8
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=9
en-affil=College of Pharmaceutical Sciences, Ritsumeikan University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources
kn-affil=
affil-num=11
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=12
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=
article-no=
start-page=794948
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Retinal Binding Cavity of Archaerhodopsin-3 by Replacing the Retinal Chromophore With a Dimethyl Phenylated Derivative
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rhodopsins act as photoreceptors with their chromophore retinal (vitamin-A aldehyde) and they regulate light-dependent biological functions. Archaerhodopsin-3 (AR3) is an outward proton pump that has been widely utilized as a tool for optogenetics, a method for controlling cellular activity by light. To characterize the retinal binding cavity of AR3, we synthesized a dimethyl phenylated retinal derivative, (2E,4E,6E,8E)-9-(2,6-Dimethylphenyl)-3,7-dimethylnona-2,4,6,8-tetraenal (DMP-retinal). QM/MM calculations suggested that DMP-retinal can be incorporated into the opsin of AR3 (archaeopsin-3, AO3). Thus, we introduced DMP-retinal into AO3 to obtain the non-natural holoprotein (AO3-DMP) and compared some molecular properties with those of AO3 with the natural A1-retinal (AO3-A1) or AR3. Light-induced pH change measurements revealed that AO3-DMP maintained slow outward proton pumping. Noteworthy, AO3-DMP had several significant changes in its molecular properties compared with AO3-A1 as follows; 1) spectroscopic measurements revealed that the absorption maximum was shifted from 556 to 508 nm and QM/MM calculations showed that the blue-shift was due to the significant increase in the HOMO-LUMO energy gap of the chromophore with the contribution of some residues around the chromophore, 2) time-resolved spectroscopic measurements revealed the photocycling rate was significantly decreased, and 3) kinetical spectroscopic measurements revealed the sensitivity of the chromophore binding Schiff base to attack by hydroxylamine was significantly increased. The QM/MM calculations show that a cavity space is present at the aromatic ring moiety in the AO3-DMP structure whereas it is absent at the corresponding beta-ionone ring moiety in the AO3-A1 structure. We discuss these alterations of the difference in interaction between the natural A1-retinal and the DMP-retinal with binding cavity residues.
en-copyright=
kn-copyright=
en-aut-name=TsuneishiTaichi
en-aut-sei=Tsuneishi
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiMasataka
en-aut-sei=Takahashi
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujimuraMasaki
en-aut-sei=Tsujimura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakeuchiYasuo
en-aut-sei=Takeuchi
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Laboratory of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=retinal
kn-keyword=retinal
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=proton pump
kn-keyword=proton pump
en-keyword=derivative
kn-keyword=derivative
en-keyword=photoreceptor
kn-keyword=photoreceptor
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=6
article-no=
start-page=838
end-page=845
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Marginal Sufficient Component Cause Model - An Emerging Causal Model With Merits?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, the sufficient cause model and the counterfactual model have shaped our understanding of causation in biomedical science, and the link between these two models has enabled us to obtain a deeper understanding of causality. Recently, a new causal model—the marginal sufficient component cause model—was proposed and applied in the context of interaction or mediation. The proponents of this model have emphasized its utility in visualizing the presence of “agonism” (a subtype of mechanistic interaction) in the counterfactual framework, claiming that the concept of agonism has not been clearly defined in causal inference and that agonistic interaction cannot be visualized by the conventional sufficient cause model. In this article, we illustrate that careful scrutiny based on the conventional sufficient cause model yields further insights into the concept of agonism in a more
biologic sense. We primarily focus on the following three points: a) “agonism” defined in the
counterfactual model can be visualized as sets of sufficient causes in the conventional sufficient cause model; b) although the so-called independent competing assumption or no redundancy assumption may seem irrelevant in the marginal sufficient component cause model, researchers do need to assume that potential completion times of relevant marginal sufficient causes differ; c) possibly differing potential completion times of marginal sufficient causes cannot be discerned until their hidden mechanistic paths are considered in the conventional sufficient cause model. In this rapidly progressing field of research, decades after its introduction, the sufficient cause model retains its worth.
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoEiji
en-aut-sei=Yamamoto
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University of Science
kn-affil=
en-keyword=Agonism
kn-keyword=Agonism
en-keyword=Causality
kn-keyword=Causality
en-keyword=Counterfactual model
kn-keyword=Counterfactual model
en-keyword=Mediation
kn-keyword=Mediation
en-keyword=Potential outcomes
kn-keyword=Potential outcomes
en-keyword=Sufficient cause model
kn-keyword=Sufficient cause model
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=12
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Proton beam therapy followed by pembrolizumab for giant ocular surface conjunctival malignant melanoma: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present study describes proton beam therapy as a clinical option to achieve local control of giant conjunctival melanoma in an aged person, instead of orbital exenteration. An 80‑year‑old woman with one‑year history of left‑eye injection and hemorrhage experienced rapid growth of the ocular surface black mass. At the initial visit, a black, elastic hard, hemorrhage‑prone, thickened mass in the size of 30x40 mm with a presumed wide stalk covered the total area of the lid fissure on the left side. Biopsy of the mass demonstrated anomalous melanin‑containing cells in fibrin and hemorrhage, which were positive for cocktail‑mix antibodies against tyrosinase, melanoma antigen recognized by T cells‑1 and human melanoma black‑45, indicative of malignant melanoma. One month after the initial visit, the patient underwent proton beam therapy at the total dose of 70.4 Gy (relative biological effectiveness) in 32 fractions (~10 min each) in one and a half months. One month after the end of proton beam therapy, 3.5 months from the initial visit, the patient was found by computed tomographic scan to have multiple metastatic lesions in bilateral lung fields. With the evidence of absent BRAF mutation, the patient underwent intravenous administration of pembrolizumab 77.2 mg every three weeks five times in total. Then, three months after proton beam therapy, ocular surface melanoma almost subsided and the clear cornea allowed visualization of the intraocular lens inside the eye. In three weeks, spontaneous corneal perforation was plugged with iris incarceration. The patient died suddenly of unknown cause 7.5 months from the initial visit. The local control of giant conjunctival melanoma was achieved by proton beam therapy, leading to patient's satisfaction and better quality of life. Proton beam therapy, followed by immune checkpoint inhibitors, would become the future standard of care for unresectable giant conjunctival melanoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuiKuniaki
en-aut-sei=Katsui
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WakiTakahiro
en-aut-sei=Waki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Radiation Oncology, Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Radiology, Tsuyama Chuo Hospital
kn-affil=
en-keyword=ocular surface
kn-keyword=ocular surface
en-keyword=conjunctiva
kn-keyword=conjunctiva
en-keyword=malignant melanoma
kn-keyword=malignant melanoma
en-keyword=proton beam therapy
kn-keyword=proton beam therapy
en-keyword=pembrolizumab
kn-keyword=pembrolizumab
en-keyword=PD‑1 inhibitor
kn-keyword=PD‑1 inhibitor
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=corneal perforation
kn-keyword=corneal perforation
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=11
article-no=
start-page=e003134
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Patients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples.
Methods
We established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort.
Results
Two patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance.
Conclusions
The TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer.
en-copyright=
kn-copyright=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UenoToshihide
en-aut-sei=Ueno
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanjiEtsuko
en-aut-sei=Tanji
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonobeAkiko
en-aut-sei=Honobe
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawasakiTomonori
en-aut-sei=Kawasaki
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FukushimaSatoshi
en-aut-sei=Fukushima
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IkeharaYuzuru
en-aut-sei=Ikehara
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuzukiYutaka
en-aut-sei=Suzuki
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NishikawaHiroyoshi
en-aut-sei=Nishikawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MatsueHiroyuki
en-aut-sei=Matsue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Research Institute, Chiba Cancer Center
kn-affil=
affil-num=2
en-affil=Research Institute, Chiba Cancer Center
kn-affil=
affil-num=3
en-affil=Research Institute, Chiba Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=5
en-affil=Research Institute, Chiba Cancer Center
kn-affil=
affil-num=6
en-affil=Research Institute, Chiba Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=8
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=9
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=10
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=11
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=12
en-affil=Department of Pathology, Saitama Medical University International Medical Center
kn-affil=
affil-num=13
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University
kn-affil=
affil-num=16
en-affil=Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=19
en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=多様な菌類および植物パルティティウイルスの分子生物学的・生物学的性状
kn-title=Molecular and biological properties of diverse fungal and plant partitiviruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TELENGECH Paul Kipkemboi
en-aut-sei=TELENGECH Paul Kipkemboi
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=生物学的に活性な抗酸化物質の豊富な供給源としての米エタノール抽出物の評価
kn-title=Evaluation and classification of rice ethanol extracts as a rich source of biologically-active antioxidants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WuHongyan
en-aut-sei=Wu
en-aut-mei=Hongyan
kn-aut-name=呉虹燕
kn-aut-sei=呉
kn-aut-mei=虹燕
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=170
cd-vols=
no-issue=3
article-no=
start-page=435
end-page=443
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unusual aggregation property of recombinantly expressed cancer-testis antigens in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell. This aggregative property was not observed in recombinant housekeeping proteins. No significant correlation was found between the aggregative and biophysical properties, such as hydrophobicity, contents of intrinsically disordered regions and expression levels, of CTAs. These results can be explained in terms of structural instability of CTAs, which are specifically expressed in the testis and aberrantly expressed in cancer cells and function as a hub in the protein–protein network using intrinsically disordered regions. Hence, we speculate that recombinantly expressed CTAs failed to form this protein complex. Thus, unfolded CTAs formed aggregated particles in the cell.
en-copyright=
kn-copyright=
en-aut-name=AhmadiHannaneh
en-aut-sei=Ahmadi
en-aut-mei=Hannaneh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShogenKohei
en-aut-sei=Shogen
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujitaKana
en-aut-sei=Fujita
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakimiKazuhiro
en-aut-sei=Kakimi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=1
article-no=
start-page=339
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background : Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury.
Methods : To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined.
Results : Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH(2)O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH(2)O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH(2)O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH(2)O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008).
Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury.
en-copyright=
kn-copyright=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SeyaMizuki
en-aut-sei=Seya
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IketaniMasumi
en-aut-sei=Iketani
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshikawaMichiko
en-aut-sei=Ishikawa
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyaharaNobuaki
en-aut-sei=Miyahara
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhsawaIkuroh
en-aut-sei=Ohsawa
en-aut-mei=Ikuroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Disaster Medicine and Management, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology
kn-affil=
affil-num=6
en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine
kn-affil=
affil-num=7
en-affil=Department of Analytic Human Pathology, Nippon Medical School
kn-affil=
affil-num=8
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=10
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Acute respiratory distress syndrome
kn-keyword=Acute respiratory distress syndrome
en-keyword=Bleomycin-induced lung injury
kn-keyword=Bleomycin-induced lung injury
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Molecular hydrogen
kn-keyword=Molecular hydrogen
en-keyword=Lung fibrosis
kn-keyword=Lung fibrosis
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=10
article-no=
start-page=1357
end-page=1363
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In life science research, methods to control biological activities with stimuli such as light, heat, pressure and chemicals have been widely utilized to understand their molecular mechanisms. The knowledge obtained by those methods has built a basis for the development of medicinal products. Among those various stimuli, light has the advantage of a high spatiotemporal resolution that allows for the precise control of biological activities. Photoactive membrane protein rhodopsins from microorganisms (called microbial rhodopsins) absorb visible light and that light absorption triggers the trans–cis photoisomerization of the chromophore retinal, leading to various functions such as ion pumps, ion channels, transcriptional regulators and enzymes. In addition to their biological significance, microbial rhodopsins are widely utilized as fundamental molecular tools for optogenetics, a method to control biological activities by light. In this review, we briefly introduce the molecular basis of representative rhodopsin molecules and their applications for optogenetics. Based on those examples, we discuss the high potential of rhodopsin-based optogenetics tools for basic and clinical research in pharmaceutical sciences.
en-copyright=
kn-copyright=
en-aut-name=NakaoShin
en-aut-sei=Nakao
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Division of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=optogenetics
kn-keyword=optogenetics
en-keyword=retinal
kn-keyword=retinal
en-keyword=signal transduction
kn-keyword=signal transduction
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=
article-no=
start-page=101404
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Production of TRPM4 knockout cell line using rat cardiomyocyte H9c2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The method presented in this article are related to the research article entitled as "Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress" [1]. TRPM4, a non-selective monovalent cation channel, is not only involved in the generation of the action potential in cardiomyocytes, but also thought to be a key molecule in the development of the ischemia-reperfusion injury of the brain and the heart [2-5]. However, existing pharmacological inhibitors for the TRPM4 channel have problems of non-specificity [6]. This article describes methods used for targeted genomic deletion in the rat cardiomyocyte H9c2 using the CRISPR-Cas9 genome editing system in order to suppress TRPM4 protein expression. Confocal microscopy, flow cytometry, Sanger sequencing, and western blotting are performed to confirm vector transfection and the subsequent knockout of the TRPM4 protein. These data provide information on the comprehensive analyses for knocking out the rat TRPM4 channel using CRISPR/Cas9. The analyses include confocal microscopy, flow cytometry, Sanger sequencing, and western blotting. This dataset will benefit biological and medical researchers studying the function of TRPM4-expressing cells including neurons, cardiomyocytes, and vascular endothelial cells. It is also useful to study the involvement of the TRPM4 channel in pathological processes such as cardiac arrhythmia and ischemia-reperfusion injury. The dataset can be used to guide the experiment of knocking out the TRPM4 gene and its subsequent application to the study of disease process caused by the gene.
en-copyright=
kn-copyright=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMasakazu
en-aut-sei=Maeda
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenJian
en-aut-sei=Chen
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=TRPM4
kn-keyword=TRPM4
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=H9c2
kn-keyword=H9c2
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Confocal microscopy
kn-keyword=Confocal microscopy
en-keyword=DNA sequencing
kn-keyword=DNA sequencing
en-keyword=Flow cytometry
kn-keyword=Flow cytometry
en-keyword=Western blotting
kn-keyword=Western blotting
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=759
end-page=762
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Enteric Adenocarcinoma Harboring a BRAF G469V Mutation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary enteric adenocarcinoma (PEAC) is a rare subtype of lung cancer that should be differentiated from colorectal cancer metastasis. Little is known about its genetic background. An 84-year-old male with adenocarcinoma of the lung underwent left upper lobectomy. The histology of the surgical specimen was suggestive of PEAC. Gastrointestinal and colorectal fiberscopy revealed no evidence of colorectal cancer. Next-generation sequencing of the tumor identified a G469V substitution in serine/threonine-protein kinase B-raf (BRAF). Based on the higher prevalence of the G469 substitution in BRAF-mutant lung adenocarcinoma than in BRAFmutant colorectal cancer, the tumor likely originated from the lung. Identification of mutational genotype may be of some help in distinguishing PEAC from the lung metastasis of colorectal cancer.
en-copyright=
kn-copyright=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiKohei
en-aut-sei=Taniguchi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NambaKei
en-aut-sei=Namba
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MesakiKumi
en-aut-sei=Mesaki
en-aut-mei=Kumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Diagnostic Pathology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=somatic mutations
kn-keyword=somatic mutations
en-keyword=pulmonary adenocarcinoma with enteric differentiation
kn-keyword=pulmonary adenocarcinoma with enteric differentiation
en-keyword=non-V600E BRAF mutation
kn-keyword=non-V600E BRAF mutation
en-keyword=next-generation sequencing
kn-keyword=next-generation sequencing
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=713
end-page=718
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Correlations Among Consistency, Computed Tomography Values, and Histopathological Subtypes of Spinal Meningioma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The consistency of spinal meningiomas is important to consider when performing tumor removal surgery. This study evaluated the correlations between spinal meningioma consistency and both preoperative computed tomography (CT) values and histopathological subtypes. Fifteen consecutive patients who underwent surgical resection of spinal meningioma at our institution were identified, and preoperative CT values and the signal intensity of T2-weighted magnetic resonance images of the tumor were determined retrospectively. The consistency of the spinal meningioma was defined based on the ultrasonic surgical aspirator output during tumor debulking. Patients were assigned to 2 groups: a soft group (n=4) and a hard group (n=11). The T2 signal intensity was significantly higher in the soft group than in the hard group (p=0.001). While the CT values were considerably higher in the hard group, the difference was not significant (p=0.19). Regarding the histopathological subtypes, psammomatous meningioma exhibited significantly higher CT values than meningothelial meningioma (p=0.019); however, there was a higher frequency of hard tumors in meningothelial meningioma cases than in psammomatous meningioma cases. Although neither robust correlations between tumor consistency and CT values nor a relationship between tumor consistency and histopathological subtype has been established, these results might help with the perioperative manegement of spinal tumors.
en-copyright=
kn-copyright=
en-aut-name=AoyamaTatsuro
en-aut-sei=Aoyama
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgiwaraToshihiro
en-aut-sei=Ogiwara
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoKiyoshi
en-aut-sei=Ito
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyaokaYoshinari
en-aut-sei=Miyaoka
en-aut-mei=Yoshinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiYu
en-aut-sei=Fujii
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HanaokaYoshiki
en-aut-sei=Hanaoka
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HasegawaTakatoshi
en-aut-sei=Hasegawa
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeGen
en-aut-sei=Watanabe
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SeguchiTatsuya
en-aut-sei=Seguchi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HongoKazuhiro
en-aut-sei=Hongo
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Seguchi Neurosurgical Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurosurgery, Shinshu University School of Medicine
kn-affil=
en-keyword=calcification
kn-keyword=calcification
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=psammoma body
kn-keyword=psammoma body
en-keyword=spinal meningioma
kn-keyword=spinal meningioma
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=699
end-page=704
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Guideline-based Treatment of Glucocorticoid-induced Osteoporosis in Patients with Rheumatoid Arthritis: A Retrospective Study with the AORA Registry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glucocorticoid-induced osteoporosis (GIOP) is one of the side effects associated with glucocorticoid (GC) therapy. In 2014, the Japanese Society for Bone and Mineral Research (JSBMR) provided new guidelines for the management and treatment of GIOP. The aim of the present study was to clarify the prevalence of patients with rheumatoid arthritis (RA) requiring treatment according to the new guidelines and to identify risk factors associated with lack of treatment in these patients. Patients in the 2018 Akita Orthopedic group on Rheumatoid Arthritis (AORA) database were enrolled. Of 2,234 patients with RA in the database, 683 (30.6%) met the 2014 JSBMR guideline treatment criteria, and 480 (70.3%) had been treated. The untreated group included a larger number of males, younger patients, and patients treated in clinics rather than hospital (p<0.001, p=0.015, and p<0.001, respectively). Multivariate analyses found that male sex, younger age, and clinic-based RA care were significant risk factors associated with lack of treatment (p<0.001, p=0.013, and p<0.001, respectively). Thus, male sex, younger age, and clinic-based care were identified as risk factors
en-copyright=
kn-copyright=
en-aut-name=KawanoTetsuya
en-aut-sei=Kawano
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakoshiNaohisa
en-aut-sei=Miyakoshi
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchieHiroyuki
en-aut-sei=Tsuchie
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KashiwaguraTakeshi
en-aut-sei=Kashiwagura
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiMoto
en-aut-sei=Kobayashi
en-aut-mei=Moto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AonumaHiroshi
en-aut-sei=Aonuma
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugimuraYusuke
en-aut-sei=Sugimura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimadaYoichi
en-aut-sei=Shimada
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Akita City Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Hiraka General Hospital Yokote City
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Ogachi Central Hospital Yuzawa City
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Nakadori General Hospital Akita City
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
en-keyword=glucocorticoid
kn-keyword=glucocorticoid
en-keyword=glucocorticoid-induced osteoporosis
kn-keyword=glucocorticoid-induced osteoporosis
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
en-keyword=osteoporosis
kn-keyword=osteoporosis
en-keyword=osteopenia
kn-keyword=osteopenia
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=5
article-no=
start-page=549
end-page=556
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Glial Cells as Possible Targets of Neuroprotection through Neurotrophic and Antioxidative Molecules in the Central and Enteric Nervous Systems in Parkinson’s Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. The loss of nigrostriatal dopaminergic neurons produces its characteristic motor symptoms, but PD patients also have non-motor symptoms such as constipation and orthostatic hypotension. The pathological hallmark of PD is the presence of α-synuclein-containing Lewy bodies and neurites in the brain. However, the PD pathology is observed in not only the central nervous system (CNS) but also in parts of the peripheral nervous system such as the enteric nervous system (ENS). Since constipation is a typical prodromal non-motor symptom in PD, often preceding motor symptoms by 10-20 years, it has been hypothesized that PD pathology propagates from the ENS to the CNS via the vagal nerve. Discovery of pharmacological and other methods to halt this progression of neurodegeneration in PD has the potential to improve millions of lives. Astrocytes protect neurons in the CNS by secretion of neurotrophic and antioxidative factors. Similarly, astrocyte-like enteric glial cells (EGCs) are known to secrete neuroprotective factors in the ENS. In this article, we summarize the neuroprotective function of astrocytes and EGCs and discuss therapeutic strategies for the prevention of neurodegeneration in PD targeting neurotrophic and antioxidative molecules in glial cells.
en-copyright=
kn-copyright=
en-aut-name=IsookaNami
en-aut-sei=Isooka
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Parkinson’s disease
kn-keyword=Parkinson’s disease
en-keyword=astrocyte
kn-keyword=astrocyte
en-keyword=enteric glial cell
kn-keyword=enteric glial cell
en-keyword=neurotrophic factor
kn-keyword=neurotrophic factor
en-keyword=antioxidative molecule
kn-keyword=antioxidative molecule
END
start-ver=1.4
cd-journal=joma
no-vol=297
cd-vols=
no-issue=
article-no=
start-page=101071
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A structural model for (GlcNAc)2 translocation via a periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=VhCBP is a periplasmic chitooligosaccharide-binding protein mainly responsible for translocation of the chitooligosaccharide (GlcNAc)2 across the double membranes of marine bacteria. However, structural and thermodynamic understanding of the sugar-binding/-release processes of VhCBP is relatively less. VhCBP displayed the greatest affinity toward (GlcNAc)2, with lower affinity for longer-chain chitooligosaccharides [(GlcNAc)3–4]. (GlcNAc)4 partially occupied the closed sugar-binding groove, with two reducing-end GlcNAc units extending beyond the sugar-binding groove and barely characterized by weak electron density. Mutation of three conserved residues (Trp363, Asp365, and Trp513) to Ala resulted in drastic decreases in the binding affinity toward the preferred substrate (GlcNAc)2, indicating their significant contributions to sugar binding. The structure of the W513A–(GlcNAc)2 complex in a ‘half-open’ conformation unveiled the intermediary step of the (GlcNAc)2 translocation from the soluble CBP in the periplasm to the inner membrane–transporting components. Isothermal calorimetry data suggested that VhCBP adopts the high-affinity conformation to bind (GlcNAc)2, while its low-affinity conformation facilitated sugar release. Thus, chitooligosaccharide translocation, conferred by periplasmic VhCBP, is a crucial step in the chitin catabolic pathway, allowing Vibrio bacteria to thrive in oceans where chitin is their major source of nutrients.
en-copyright=
kn-copyright=
en-aut-name=KitaokuYoshihito
en-aut-sei=Kitaoku
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukamizoTamo
en-aut-sei=Fukamizo
en-aut-mei=Tamo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumsaoadSawitree
en-aut-sei=Kumsaoad
en-aut-mei=Sawitree
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UbonbalPrakayfun
en-aut-sei=Ubonbal
en-aut-mei=Prakayfun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RobinsonRobert C.
en-aut-sei=Robinson
en-aut-mei=Robert C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugintaWipa
en-aut-sei=Suginta
en-aut-mei=Wipa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC)
kn-affil=
affil-num=2
en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC)
kn-affil=
affil-num=3
en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC)
kn-affil=
affil-num=4
en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC)
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=6
en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=109
cd-vols=
no-issue=11
article-no=
start-page=3916
end-page=3928
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The eco‐evolutionary dynamics of prior selfing rates promote coexistence without niche partitioning under conditions of reproductive interference
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=1. Pollinator-mediated reproductive interference can occur when two or more plant species share the same pollinators. Recent studies have suggested that prior autonomous selfing mitigates reproductive interference, potentially facilitating coexistence even in the absence of pollination niche partitioning (i.e. the pre-emptive selfing hypothesis). However, whether the evolution of prior selfing promotes coexistence, in the context of the eco-evolutionary dynamics of population size, selfing rates and inbreeding depression, remains poorly understood.
2. We constructed an individual-based model to examine the conditions under which the evolution of prior selfing promotes coexistence in the context of mutual reproductive interference. In the model, two plant species compete by way of mutual reproductive interference, and both have the potential to evolve the capacity for prior autonomous selfing. We expected that purging of deleterious mutations might result in evolutionary rescue, assuming that the strength of inbreeding depression declines as the population selfing rate increases; this would enable inferior competitors to maintain population density through the evolution of prior selfing.
3. Our simulation demonstrated that evolution of prior selfing may promote coexistence, whereas reproductive interference in the absence of such evolution results in competitive exclusion. We found that lower pollinator availability is likely to favour rapid evolutionary shifts to higher prior selfing rates, thereby neutralising the negative effects of reproductive interference in both species. When the strength of inbreeding depression decreased with an increase in the population-level selfing rate, moderate pollinator availability resulted in long-term coexistence in which relative abundance-dependent selection on the prior selfing rate served to intermittently maintain the population density of the inferior competitor.
4. Synthesis. We demonstrate that the evolution of prior selfing may increase population growth rates of inferior competitors and may consequently promote long-term coexistence via an evolutionary rescue. This constitutes a novel mechanism explaining the co-evolutionary coexistence of closely related plant species without niche partitioning, and is consistent with recent studies reporting that closely related species with mixed mating systems can co-occur sympatrically, even under conditions of mutual reproductive interference.
en-copyright=
kn-copyright=
en-aut-name=KatsuharaKoki
en-aut-sei=Katsuhara
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TachikiYuuya
en-aut-sei=Tachiki
en-aut-mei=Yuuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IritaniRyosuke
en-aut-sei=Iritani
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UshimaruAtushi
en-aut-sei=Ushimaru
en-aut-mei=Atushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Human Development and Environment, Kobe University Kobe
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences Tokyo Metropolitan University Tokyo Japan
kn-affil=
affil-num=3
en-affil=Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) RIKEN Wako Saitama Japan
kn-affil=
affil-num=4
en-affil=Graduate School of Human Development and Environment Kobe University Kobe Japan
kn-affil=
en-keyword=Co-evolution
kn-keyword=Co-evolution
en-keyword=evolutionary rescue
kn-keyword=evolutionary rescue
en-keyword=inbreeding depression
kn-keyword=inbreeding depression
en-keyword=individual-based model
kn-keyword=individual-based model
en-keyword=mixed mating
kn-keyword=mixed mating
en-keyword=pollinator-mediated competition
kn-keyword=pollinator-mediated competition
en-keyword=reproductive ecology
kn-keyword=reproductive ecology
en-keyword=selfing syndrome
kn-keyword=selfing syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=7
article-no=
start-page=75224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The internal fluidic parameters of microfluidic channels must be analyzed to solve fundamental microfluidic problems, including microscale transport problems involving thermal analysis, chemical reactivity, velocity, pressure drop, etc., for developing good-quality chemical and biological products. Therefore, the characterization and optimization of the interaction of chemical and biological solutions through microfluidic channels are vital for fluid flow design and engineering for quality assurance in microfluidic platforms. As the internal structures and kinetics of microfluidic channels are becoming increasingly complex, experiments involving optimal fluidic and transport designs are challenging to perform with high accuracy. However, highly integrated simulation tools can guide researchers without specialized computational fluid backgrounds to design numerical prototypes of highly integrated devices. In this study, a microfluidic chip with two inlet wells and one outlet well was fabricated from polydimethylsiloxane following which simulations were performed using an ANSYS Fluent tool influenced by computational fluid dynamics at a nearly identical scale. The pressure drop and velocity profiles of the interaction of two pH buffer solutions (pH 4 and 10) through the designed microfluidic chip were qualitatively estimated from experimental data analysis and validated with the simulation results obtained from the CFD-influenced ANSYS Fluent tool.
en-copyright=
kn-copyright=
en-aut-name=AhmedFeroz
en-aut-sei=Ahmed
en-aut-mei=Feroz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangJin
en-aut-sei=Wang
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaiKenji
en-aut-sei=Sakai
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KiwaToshihiko
en-aut-sei=Kiwa
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Department of Medical Bioengineering, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=4
article-no=
start-page=455
end-page=460
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessment of the Concordance Rate between Intraoperative Pathological Diagnosis and the Final Pathological Diagnosis of Spinal Cord Tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The intraoperative pathological diagnosis (IPD) plays an important role in determining the optimal surgical treatment for spinal cord tumors. The final pathological diagnosis (FPD) is sometimes different from the IPD. Here, we sought to identify the accuracy of the IPD of spinal cord tumors compared to the FPD. We retrospec-tively analyzed the cases of 108 patients with spinal cord tumors treated surgically in our institute; the IPD, FPD, mismatched cases, and concordance rate between the IPD and FPD were investigated. Five cases involved a mismatch between the IPD and FPD. The overall concordance rate was 95.4%, with 90.9% for extra-dural lesions, 98.5% for intradural extramedullary lesions, 84.2% for intramedullary lesions, and 100% for dumbbell-type tumors. The concordance rate of intramedullary lesions tended to be lower than that of other lesions (p = 0.096). A lower concordance rate was revealed for intramedullary lesions compared to the other lesions. Despite the IPD clearly remaining a valuable tool during operative procedures, surgeons should recog-nize the limitations of IPDs and make comprehensive decisions about surgical treatments.
en-copyright=
kn-copyright=
en-aut-name=MuraokaSosuke
en-aut-sei=Muraoka
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaneKentaro
en-aut-sei=Yamane
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MisawaHaruo
en-aut-sei=Misawa
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakigawaTomoyuki
en-aut-sei=Takigawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Intelligent Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=spinal cord tumor
kn-keyword=spinal cord tumor
en-keyword=intraoperative pathological diagnosis
kn-keyword=intraoperative pathological diagnosis
en-keyword= final pathological diagnosis
kn-keyword= final pathological diagnosis
en-keyword=concordance rate
kn-keyword=concordance rate
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=16
article-no=
start-page=8992
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Macrophage Motility in Wound Healing Is Regulated by HIF-1 alpha via S1P Signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Accumulating evidence indicates that the molecular pathways mediating wound healing induce cell migration and localization of cytokines to sites of injury. Macrophages are immune cells that sense and actively respond to disturbances in tissue homeostasis by initiating, and subsequently resolving, inflammation. Hypoxic conditions generated at a wound site also strongly recruit macrophages and affect their function. Hypoxia inducible factor (HIF)-1 alpha is a transcription factor that contributes to both glycolysis and the induction of inflammatory genes, while also being critical for macrophage activation. For the latter, HIF-1 alpha regulates sphingosine 1-phosphate (S1P) to affect the migration, activation, differentiation, and polarization of macrophages. Recently, S1P and HIF-1 alpha have received much attention, and various studies have been performed to investigate their roles in initiating and resolving inflammation via macrophages. It is hypothesized that the HIF-1 alpha/S1P/S1P receptor axis is an important determinant of macrophage function under inflammatory conditions and during disease pathogenesis. Therefore, in this review, biological regulation of monocytes/macrophages in response to circulating HIF-1 alpha is summarized, including signaling by S1P/S1P receptors, which have essential roles in wound healing.
en-copyright=
kn-copyright=
en-aut-name=HutamiIslamy Rahma
en-aut-sei=Hutami
en-aut-mei=Islamy Rahma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IzawaTakashi
en-aut-sei=Izawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Khurel-OchirTsendsuren
en-aut-sei=Khurel-Ochir
en-aut-mei=Tsendsuren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamakiTakuma
en-aut-sei=Sakamaki
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwasaAkihiko
en-aut-sei=Iwasa
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaEiji
en-aut-sei=Tanaka
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=4
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=5
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=6
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
en-keyword=HIF1
kn-keyword=HIF1
en-keyword=M1/M2 macrophage
kn-keyword=M1/M2 macrophage
en-keyword=S1P
kn-keyword=S1P
en-keyword=wound healing
kn-keyword=wound healing
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=12
article-no=
start-page=3255
end-page=3267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery and Validation of Nitroxoline as a Novel STAT3 Inhibitor in Drug-resistant Urothelial Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Repeated cycles of first-line chemotherapy drugs such as doxorubicin (DOX) and cisplatin (CIS) trigger frequent chemoresistance in recurrent urothelial bladder cancer (UBC). Nitroxoline (NTX), an antibiotic to treat urinary tract infections, has been recently repurposed for cancer treatment. Here we aimed to investigate whether NTX suppresses drug-resistant UBC and its molecular mechanism. The drug-resistant cell lines T24/DOX and T24/CIS were established by continual exposure of parental cell line T24 to DOX and CIS, respectively. T24/DOX and T24/CIS cells were resistant to DOX and CIS, respectively, but they were sensitive to NTX time-and dose-dependently. Overexpressions of STAT3 and P-glycoprotein (P-gp) were identified in T24/DOX and T24/CIS, which could be reversed by NTX. Western blot revealed that NTX downregulated p-STAT3, c-Myc, Cyclin D1, CDK4, CDK6, Bcl-xL, Mcl-1, and Survivin, which were further confirmed by Stattic, a selective STAT3 inhibitor. In vivo, NTX exhibited the significant anti-tumor effect in T24/DOX and T24/CIS tumor-bearing mice. These results suggested that NTX-induced P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC were mediated by inhibition of STAT3 signaling. Our findings repurpose NTX as a novel STAT3 inhibitor to induce P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC.
en-copyright=
kn-copyright=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SunJingkai
en-aut-sei=Sun
en-aut-mei=Jingkai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=XuNaijin
en-aut-sei=Xu
en-aut-mei=Naijin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Urothelial bladder cancer
kn-keyword=Urothelial bladder cancer
en-keyword=doxorubicin
kn-keyword=doxorubicin
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=chemoresistance
kn-keyword=chemoresistance
en-keyword=nitroxoline
kn-keyword=nitroxoline
en-keyword=STAT3
kn-keyword=STAT3
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=
article-no=
start-page=2711
end-page=2722
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021727
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A second capsidless hadakavirus strain with 10 positive-sense single-stranded RNA genomic segments from Fusarium nygamai
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.
en-copyright=
kn-copyright=
en-aut-name=KhanHaris Ahmed
en-aut-sei=Khan
en-aut-mei=Haris Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoYukiyo
en-aut-sei=Sato
en-aut-mei=Yukiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=JamalAtif
en-aut-sei=Jamal
en-aut-mei=Atif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BhattiMuhammad Faraz
en-aut-sei=Bhatti
en-aut-mei=Muhammad Faraz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST)
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Crop Diseases Research Institute, National Agricultural Research Centre
kn-affil=
affil-num=5
en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST)
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=14
article-no=
start-page=3491
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210712
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Origin of Stroma Influences the Biological Characteristics of Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Normal stromal cells play a significant role in the progression of cancers but are poorly investigated in oral squamous cell carcinoma (OSCC). In this study, we found that stromal cells derived from the gingival and periodontal ligament tissues could inhibit differentiation and promote the proliferation, invasion, and migration of OSCC both in vitro and in vivo. Furthermore, microarray data suggested that genes, such as CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, probably play a role in influencing the different effects of gingival stromal tissue cells (G-SCs) and periodontal ligament stromal cells (P-SCs) on the progression of OSCC. Therefore, both G-SCs and P-SCs could promote the progression of OSCC, which could be a potential regulatory mechanism in the progression of OSCC. Normal stromal cells surrounding the tumor parenchyma, such as the extracellular matrix (ECM), normal fibroblasts, mesenchymal stromal cells, and osteoblasts, play a significant role in the progression of cancers. However, the role of gingival and periodontal ligament tissue-derived stromal cells in OSCC progression is unclear. In this study, the effect of G-SCs and P-SCs on the differentiation, proliferation, invasion, and migration of OSCC cells in vitro was examined by Giemsa staining, Immunofluorescence (IF), (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS), invasion, and migration assays. Furthermore, the effect of G-SCs and P-SCs on the differentiation, proliferation, and bone invasion by OSCC cells in vivo was examined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), and tartrate-resistant acid phosphatase (TRAP) staining, respectively. Finally, microarray data and bioinformatics analyses identified potential genes that caused the different effects of G-SCs and P-SCs on OSCC progression. The results showed that both G-SCs and P-SCs inhibited the differentiation and promoted the proliferation, invasion, and migration of OSCC in vitro and in vivo. In addition, genes, including CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, are probably involved in causing the different effects of G-SCs and P-SCs on OSCC progression. Therefore, as a potential regulatory mechanism, both G-SCs and P-SCs can promote OSCC progression.
en-copyright=
kn-copyright=
en-aut-name=OmoriHaruka
en-aut-sei=Omori
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShanQiusheng
en-aut-sei=Shan
en-aut-mei=Qiusheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SukegawaShintaro
en-aut-sei=Sukegawa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujigiwaHidetsugu
en-aut-sei=Tsujigiwa
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=gingival ligament tissue-derived stromal cells
kn-keyword=gingival ligament tissue-derived stromal cells
en-keyword=periodontal ligament tissue-derived stromal cells
kn-keyword=periodontal ligament tissue-derived stromal cells
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=biological character
kn-keyword=biological character
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=7
article-no=
start-page=910
end-page=919
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PC3-secreted microprotein is expressed in glioblastoma stem-like cells and human glioma tissues
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma multiforme (GBM) is the most prevalent malignant primary brain tumor with a high recurrence rate. Despite multimodal therapy including surgical resection, chemotherapy, and radiotherapy, the median survival time after the initial diagnosis of GBM is approximately 14 months. Since cancer stem cells (CSCs) are considered the leading cause of cancer recurrence, glioblastoma stem cell-targeted therapy is a promising strategy for the treatment of GBM. However, because CSC heterogeneity has been implicated in the difficulties of CSC-target therapy, more in-depth knowledge of CSC biology is still required to develop novel therapies. In this study, we established single cell-derived tumorspheres from human glioblastoma U87MG cells. One of these tumorspheres, P4E8 clone, showed CSC-like phenotypes, such as self-renewal capacity, expression of CSC markers, resistance to anti-cancer agents, and in vivo tumorigenicity. Therefore, we used P4E8 cells as a cell-based model of glioblastoma stem cells (GSCs). Gene expression analysis using microarray indicated that the most highly expressed genes in P4E8 cells compared to the parental U87MG were PC3-secreted microprotein (MSMP). Furthermore, MSMP was expressed in patient-derived GSCs and human glioma tissues at the protein level, implying that MSMP might contribute to glioma development and progression.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoYousuke
en-aut-sei=Nakano
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraTakuya
en-aut-sei=Nishimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataRyoichi
en-aut-sei=Iwata
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsudaSatoshi
en-aut-sei=Matsuda
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HayashiMikio
en-aut-sei=Hayashi
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaiYuki
en-aut-sei=Nakai
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NonakaMasahiro
en-aut-sei=Nonaka
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoTetsuo
en-aut-sei=Sugimoto
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Anatomy and Brain Science, Kansai Medical University
kn-affil=
affil-num=2
en-affil=Department of Anatomy and Brain Science, Kansai Medical University
kn-affil=
affil-num=3
en-affil=Department of Anatomy and Brain Science, Kansai Medical University
kn-affil=
affil-num=4
en-affil=Department of Neurosurgery, Kansai Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University
kn-affil=
affil-num=6
en-affil=Department of Physiology, Kansai Medical University
kn-affil=
affil-num=7
en-affil=Department of Anatomy and Brain Science, Kansai Medical University
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Kansai Medical University
kn-affil=
affil-num=9
en-affil=Department of Anatomy and Brain Science, Kansai Medical University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a method to rapidly assess resistance/susceptibility of Micro-Tom tomatoes to Tomato yellow leaf curl virus via agroinoculation of cotyledons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Tomato yellow leaf curl virus (TYLCV) is one of the pathogens severely damaging tomato crops. Therefore, methods to treat or prevent TYLCV infection need to be developed. For this purpose, a method to conveniently and quickly assess infection of tomatoes by TYLCV is desired. In the present study, we established a quick method to evaluate TYLCV infection using cotyledons of Micro-Tom, a miniature tomato cultivar.
Results: First, we constructed a binary plasmid harboring 1.5 copies of the TYLCV genome and transformed Agrobacterium with the plasmid. By injecting agroinoculum from the resulting transformant into the branches of Micro-Tom, we confirmed the susceptibility of Micro-Tom to TYLCV. To shorten the evaluation process of TYLCV infection further, we agroinoculated cotyledons of Micro-Tom 10 days after sowing seeds. We consistently observed typical symptoms of TYLCV infection on true leaves 10 days after agroinoculation. Molecular analysis detected TYLCV progeny DNA in all leaves demonstrating symptoms 6 days after agroinoculation. Therefore, our new protocol enabled assessment of TYLCV infection within 20 days after sowing seeds. Thus, agroinoculation of Micro-Tom cotyledons will accelerate the process of screening TYLCV-resistant Micro-Toms and enable screening of larger numbers of plants more quickly, contributing to the development of TYLCV-resistant tomatoes.
en-copyright=
kn-copyright=
en-aut-name=MoriTomoaki
en-aut-sei=Mori
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakenakaKosuke
en-aut-sei=Takenaka
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DomotoFumiya
en-aut-sei=Domoto
en-aut-mei=Fumiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AoyamaYasuhiro
en-aut-sei=Aoyama
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SeraTakashi
en-aut-sei=Sera
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Agrobacterium
kn-keyword=Agrobacterium
en-keyword=Agroinoculation
kn-keyword=Agroinoculation
en-keyword=Cotyledon
kn-keyword=Cotyledon
en-keyword=Micro-Tom
kn-keyword=Micro-Tom
en-keyword=Tomato yellow leaf curl virus
kn-keyword=Tomato yellow leaf curl virus
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=12
article-no=
start-page=3286
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biological Effects of Bioresorbable Materials in Alveolar Ridge Augmentation: Comparison of Early and Slow Resorbing Osteosynthesis Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of this study was to investigate the bone healing properties and histological environment of a u-HA/PLLA/PGA (u-HA-uncalcined and unsintered hydroxyapatite, PLLA-Poly L-lactic acid, PGA-polyglycolic acid) composite device in humans, and to understand the histological dynamics of using this device for maxillofacial treatments. Twenty-one subjects underwent pre-implant maxillary alveolar ridge augmentation with mandibular cortical bone blocks using u-HA/PLLA or u-HA/PLLA/PGA screws for fixation. Six months later, specimens of these screws and their adjacent tissue were retrieved. A histological and immunohistochemical evaluation of these samples was performed using collagen 1a, ALP (alkaline phosphatase), and osteocalcin. We observed that alveolar bone augmentation was successful for all of the subjects. Upon histological evaluation, the u-HA/PLLA screws had merged with the bone components, and the bone was directly connected to the biomaterial. In contrast, direct bone connection was not observed for the u-HA/PLLA/PGA screw. Immunohistological findings showed that in the u-HA/PLLA group, collagen 1a was positive for fibers that penetrated vertically into the bone. Alkaline phosphatase was positive only in the u-HA/PLLA stroma, and the stroma was negative for osteocalcin. In this study, u-HA/PLLA showed a greater bioactive bone conductivity than u-HA/PLLA/PGA and a higher biocompatibility for direct bone attachment. Furthermore, u-HA/PLLA was shown to have the potential for bone formation in the stroma.
en-copyright=
kn-copyright=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SukegawaShintaro
en-aut-sei=Sukegawa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoSawako
en-aut-sei=Ono
en-aut-mei=Sawako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurukiYoshihiko
en-aut-sei=Furuki
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital
kn-affil=
en-keyword=poly L-lactic acid
kn-keyword=poly L-lactic acid
en-keyword=uncalcined and unsintered hydroxyapatite
kn-keyword=uncalcined and unsintered hydroxyapatite
en-keyword=polyglycolic acid
kn-keyword=polyglycolic acid
en-keyword=alveolar ridge augmentation
kn-keyword=alveolar ridge augmentation
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=674366
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-kappa B Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C alpha/beta II Phosphorylation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKC alpha/beta II, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.
en-copyright=
kn-copyright=
en-aut-name=SakaidaKyosuke
en-aut-sei=Sakaida
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakagawaSaki
en-aut-sei=Nakagawa
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakoHidefumi
en-aut-sei=Sako
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KameiChiaki
en-aut-sei=Kamei
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoSatoshi
en-aut-sei=Yamamoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiHiroya
en-aut-sei=Kobayashi
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiiSatoki
en-aut-sei=Ishii
en-aut-mei=Satoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashiroKeisuke
en-aut-sei=Yamashiro
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=5
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan, 3Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=(+)-terrein
kn-keyword=(+)-terrein
en-keyword=ovariectomy
kn-keyword=ovariectomy
en-keyword=osteoporosis
kn-keyword=osteoporosis
en-keyword=RANKL
kn-keyword=RANKL
en-keyword=PKC
kn-keyword=PKC
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=3
article-no=
start-page=381
end-page=384
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Presence of Microplastics in Four Types of Shellfish Purchased at Fish Markets in Okayama City, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The worldwide microplastic pollution in our environment is a matter of great concern. Harmful effects of plastics have been reported in various types of organisms including murine animals. We examined the presence of microplastics in four types of shellfish purchased from fish markets in Okayama, Japan and served to the public: short-neck clam (Ruditapes philippinarum, asari in Japanese), hard-shell clam (Meretrix lusoria, hamaguri), brackishwater clam (Cyrenidae, shijimi), and oyster (Crassostrea gigas, kaki). Our analyses demonstrated that approx. 3 pieces of microplastics were present per single shellfish, based on the division of the total number of pieces of microplastic obtained from all 4 types of shellfish by the total number of shellfish examined. Since health problems in humans due to microplastics have not yet been confirmed, further examinations of the effects of ingested microplastics are needed.
en-copyright=
kn-copyright=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshikiToshiyuki
en-aut-sei=Oshiki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KagawaHiroko
en-aut-sei=Kagawa
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NambaMasayoshi
en-aut-sei=Namba
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=microplastics,
kn-keyword=microplastics,
en-keyword=shellfish
kn-keyword=shellfish
en-keyword=Japan
kn-keyword=Japan
en-keyword= health effect
kn-keyword= health effect
en-keyword=pollution
kn-keyword=pollution
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=591
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021621
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoelectric Dye, NK-5962, as a Potential Drug for Preventing Retinal Neurons from Apoptosis: Pharmacokinetic Studies Based on Review of the Evidence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NK-5962 is a key component of photoelectric dye-based retinal prosthesis (OUReP). In testing the safety and efficacy, NK-5962 was safe in all tests for the biological evaluation of medical devices (ISO 10993) and effective in preventing retinal cells from death even under dark conditions. The long-term implantation of the photoelectric dye-coupled polyethylene film in the subretinal space of hereditary retinal dystrophic (RCS) rats prevented neurons from apoptosis in the adjacent retinal tissue. The intravitreous injection of NK-5962 in the eyes of RCS rats, indeed, reduced the number of apoptotic cells in the retinal outer nuclear layer irrespective of light or dark conditions. In this study, we reviewed the in vitro and in vivo evidence of neuroprotective effect of NK-5962 and designed pharmacokinetic experiments. The in vitro IC50 of 1.7 μM, based on the protective effect on retinal cells in culture, could explain the in vivo EC50 of 3 μM that is calculated from concentrations of intravitreous injection to prevent retinal neurons from apoptosis. Pharmacokinetics of NK-5962 showed that intravenous administration, but not oral administration, led to the effective concentration in the eye of rats. NK-5962 would be a candidate drug for delaying the deterioration of retinal dystrophy, such as retinitis pigmentosa.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuShihui
en-aut-sei=Liu
en-aut-mei=Shihui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnoueSatomi
en-aut-sei=Onoue
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakagawaShinsaku
en-aut-sei=Nakagawa
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiiMayumi
en-aut-sei=Ishii
en-aut-mei=Mayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanamitsuKayoko
en-aut-sei=Kanamitsu
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=3
en-affil=Polymer Materials Science, Okayama University Graduate School of Natural Science and Technology
kn-affil=
affil-num=4
en-affil=Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=5
en-affil=Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=6
en-affil=Drug Discovery Initiative, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Drug Discovery Initiative, The University of Tokyo
kn-affil=
en-keyword=NK-5962
kn-keyword=NK-5962
en-keyword=photoelectric dye
kn-keyword=photoelectric dye
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=retinal neuron
kn-keyword=retinal neuron
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=pharmacokinetics
kn-keyword=pharmacokinetics
en-keyword=ADME
kn-keyword=ADME
en-keyword=phototoxic/photosensitive assay
kn-keyword=phototoxic/photosensitive assay
en-keyword=reactive oxygen species assay
kn-keyword=reactive oxygen species assay
en-keyword=photosafety
kn-keyword=photosafety
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. Results Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. Conclusions Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.
en-copyright=
kn-copyright=
en-aut-name=LoudyaNaresh
en-aut-sei=Loudya
en-aut-mei=Naresh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MishraPriyanka
en-aut-sei=Mishra
en-aut-mei=Priyanka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahagiKotaro
en-aut-sei=Takahagi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Uehara-YamaguchiYukiko
en-aut-sei=Uehara-Yamaguchi
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueKomaki
en-aut-sei=Inoue
en-aut-mei=Komaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BogreLaszlo
en-aut-sei=Bogre
en-aut-mei=Laszlo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Lopez-JuezEnrique
en-aut-sei=Lopez-Juez
en-aut-mei=Enrique
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Royal Holloway University of London
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences, Royal Holloway University of London
kn-affil=
affil-num=3
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=4
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=5
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Department of Biological Sciences, Royal Holloway University of London
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, Royal Holloway University of London
kn-affil=
en-keyword=Wheat
kn-keyword=Wheat
en-keyword=Plastid
kn-keyword=Plastid
en-keyword=Chloroplast
kn-keyword=Chloroplast
en-keyword=Leaf development
kn-keyword=Leaf development
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=菌類ウイルスの植物病原糸状菌への導入と生物学的性状解析
kn-title=Experimental introduction of mycoviruses into phytopathogenic filamentous fungi and their biologic characterization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SabitreeShahi
en-aut-sei=Sabitree
en-aut-mei=Shahi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=変異型BIN1-Dynamin2複合体による膜リモデリング異常による中心核ミオパチーの発症機序
kn-title=Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FujiseKenshiro
en-aut-sei=Fujise
en-aut-mei=Kenshiro
kn-aut-name=藤瀬賢志郎
kn-aut-sei=藤瀬
kn-aut-mei=賢志郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=キシリトールのグルタチオン調節を介したがん選択的細胞死誘導機序の解明
kn-title=Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=友信奈保子
kn-aut-sei=友信
kn-aut-mei=奈保子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=がん患者における便秘に対するルビプロストンの有効性と安全性を非がん患者と比較検討:後方視的コホート研究
kn-title=The Efficacy and Safety of Lubiprostone for Constipation in Cancer Patients Compared with Non-cancer Patients: A Retrospective Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SadaHikaru
en-aut-sei=Sada
en-aut-mei=Hikaru
kn-aut-name=佐田光
kn-aut-sei=佐田
kn-aut-mei=光
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=10
article-no=
start-page=2491
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210520
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-beta family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-beta cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-beta family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/beta-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
en-copyright=
kn-copyright=
en-aut-name=IshiiHiroko
en-aut-sei=Ishii
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AfifySaid M.
en-aut-sei=Afify
en-aut-mei=Said M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HassanGhmkin
en-aut-sei=Hassan
en-aut-mei=Ghmkin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SalomonDavid S.
en-aut-sei=Salomon
en-aut-mei=David S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SenoMasaharu
en-aut-sei=Seno
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=GSP Enterprise, Inc.
kn-affil=
affil-num=2
en-affil=Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute
kn-affil=
affil-num=5
en-affil=
kn-affil=Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
en-keyword=Cripto-1
kn-keyword=Cripto-1
en-keyword=TGF-beta
kn-keyword=TGF-beta
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=immunotherapy
kn-keyword=immunotherapy
en-keyword=antibody
kn-keyword=antibody
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=
article-no=
start-page=431
end-page=443
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.
en-copyright=
kn-copyright=
en-aut-name=LiHongjie
en-aut-sei=Li
en-aut-mei=Hongjie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NomuraTakashi
en-aut-sei=Nomura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaharaMichihiro
en-aut-sei=Sugahara
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YonekuraShinichiro
en-aut-sei=Yonekura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChanSiu Kit
en-aut-sei=Chan
en-aut-mei=Siu Kit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaneTakanori
en-aut-sei=Nakane
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UmenaYasufumi
en-aut-sei=Umena
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiMamoru
en-aut-sei=Suzuki
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaTetsuya
en-aut-sei=Masuda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MotomuraTaiki
en-aut-sei=Motomura
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NaitowHisashi
en-aut-sei=Naitow
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatsuuraYoshinori
en-aut-sei=Matsuura
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraTetsunari
en-aut-sei=Kimura
en-aut-mei=Tetsunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TonoKensuke
en-aut-sei=Tono
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OwadaShigeki
en-aut-sei=Owada
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=JotiYasumasa
en-aut-sei=Joti
en-aut-mei=Yasumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TanakaRie
en-aut-sei=Tanaka
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NangoEriko
en-aut-sei=Nango
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KuboMinoru
en-aut-sei=Kubo
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=4
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=11
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=13
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=14
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Kobe University
kn-affil=
affil-num=16
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=17
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=18
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=19
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=20
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=21
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=22
en-affil=Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=23
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=24
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=25
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=time-resolved serial crystallography
kn-keyword=time-resolved serial crystallography
en-keyword=X-ray free-electron lasers
kn-keyword=X-ray free-electron lasers
en-keyword=membrane proteins
kn-keyword=membrane proteins
en-keyword=photosystem II
kn-keyword=photosystem II
en-keyword=serial crystallography
kn-keyword=serial crystallography
en-keyword=molecular movies
kn-keyword=molecular movies
en-keyword=protein structures
kn-keyword=protein structures
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=153
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lactoferrin-like Immunoreactivity in Distinct Neuronal Populations in the Mouse Central Nervous System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lactoferrin (Lf) is an iron-binding glycoprotein mainly found in exocrine secretions and the secondary granules of neutrophils. In the central nervous system (CNS), expression of the Lf protein has been reported in the lesions of some neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as in the aged brain. Lf is primarily considered an iron chelator, protecting cells from potentially toxic iron or iron-requiring microorganisms. Other biological functions of Lf include immunomodulation and transcriptional regulation. However, the roles of Lf in the CNS have yet to be fully clarified. In this study, we raised an antiserum against mouse Lf and investigated the immunohistochemical localization of Lf-like immunoreactivity (Lf-LI) throughout the CNS of adult mice. Lf-LI was found in some neuronal populations throughout the CNS. Intense labeling was found in neurons in the olfactory systems, hypothalamic nuclei, entorhinal cortex, and a variety of brainstem nuclei. This study provides detailed information on the Lf-LI distribution in the CNS, and the findings should promote further understanding of both the physiological and pathological significance of Lf in the CNS.
en-copyright=
kn-copyright=
en-aut-name=ShimaokaShigeyoshi
en-aut-sei=Shimaoka
en-aut-mei=Shigeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamaokaHitomi
en-aut-sei=Hamaoka
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueJunji
en-aut-sei=Inoue
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TooyamaIkuo
en-aut-sei=Tooyama
en-aut-mei=Ikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoYoichi
en-aut-sei=Kondo
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=2
en-affil=Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=3
en-affil=Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
en-keyword=lactoferrin
kn-keyword=lactoferrin
en-keyword=immunohistochemistry
kn-keyword=immunohistochemistry
en-keyword=brain mapping
kn-keyword=brain mapping
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=115
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Awareness of Complications of Dental Treatment in Patients Treated with Drugs Affecting the Immune System : A Nationwide Questionnaire Survey of Dental Practitioners in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study was to investigate the awareness and experience, among dental practitioners, of adverse events resulting from dental treatment of patients undergoing therapy with drugs that affect the immune system [angiogenesis inhibitors, biological agents, immunosuppressants, and disease-modifying anti-rheumatic drugs (DMARDs)]. For this purpose, a nationwide questionnaire survey was conducted. Questionnaires were sent to 2,050 dentists, of which 206 (10.1%) were completed and returned. The results showed that most dentists were aware of complications associated with dental treatment of patients treated with drugs that affect the immune system, and about half had actually experienced such complications. Delayed wound healing, osteonecrosis of the jaw (ONJ), and postoperative infections were reported. Whereas approximately 50% of dentists did not discontinue the drugs during dental treatment, about 18% did. During temporary drug discontinuation, some patients experienced aggravation of the primary disease, such as worsening of rheumatism, growth of tumors, and rejection reactions of transplanted organs. As for medical cooperation, only less than half of the dentists were asked for oral hygiene management by a physician prior to starting the drug treatment. Prospective studies are needed because evidence for dental treatments in patients treated with these drugs remains limited.
en-copyright=
kn-copyright=
en-aut-name=HitomiNishizaki
en-aut-sei=Hitomi
en-aut-mei=Nishizaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshinariMorimoto
en-aut-sei=Yoshinari
en-aut-mei=Morimoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaShin-ichi
en-aut-sei=Yamada
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuritaHiroshi
en-aut-sei=Kurita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaAkira
en-aut-sei=Tanaka
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaguchiAkira
en-aut-sei=Yamaguchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyataMasaru
en-aut-sei=Miyata
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshikawaHiromasa
en-aut-sei=Yoshikawa
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YanamotoSouichi
en-aut-sei=Yanamoto
en-aut-mei=Souichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ImaiYutaka
en-aut-sei=Imai
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University
kn-affil=
affil-num=2
en-affil=Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University
kn-affil=
affil-num=3
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=4
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=5
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=6
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=7
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=8
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=9
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
affil-num=10
en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient
kn-affil=
en-keyword=angiogenesis inhibitor
kn-keyword=angiogenesis inhibitor
en-keyword=biological agent
kn-keyword=biological agent
en-keyword=disease-modifying antirheumatic drug (DMARD)
kn-keyword=disease-modifying antirheumatic drug (DMARD)
en-keyword=immunosuppressant
kn-keyword=immunosuppressant
en-keyword=medication-related osteonecrosis of the jaw (MRONJ)
kn-keyword=medication-related osteonecrosis of the jaw (MRONJ)
END
start-ver=1.4
cd-journal=joma
no-vol=296
cd-vols=
no-issue=
article-no=
start-page=100524
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Covalent N-arylation by the pollutant 1,2-naphthoquinone activates the EGF receptor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The epidermal growth factor receptor (EGFR) is the most intensively investigated receptor tyrosine kinase. Several EGFR mutations and modifications have been shown to lead to abnormal self-activation, which plays a critical role in carcinogenesis. Environmental air pollutants, which are associated with cancer and respiratory diseases, can also activate EGFR. Specifically, the environmental electrophile 1,2-naphthoquinone (1,2-NQ), a component of diesel exhaust particles and particulate matter more generally, has previously been shown to impact EGFR signaling. However, the detailed mechanism of 1,2-NQ function is unknown. Here, we demonstrate that 1,2-NQ is a novel chemical activator of EGFR but not other EGFR family proteins. We found that 1,2-NQ forms a covalent bond, in a reaction referred to as N-arylation, with Lys80, which is in the ligand-binding domain. This modification activates the EGFR–Akt signaling pathway, which inhibits serum deprivation–induced cell death in a human lung adenocarcinoma cell line. Our study reveals a novel mode of EGFR pathway activation and suggests a link between abnormal EGFR activation and environmental pollutant–associated diseases such as cancer.
en-copyright=
kn-copyright=
en-aut-name=NakaharaKengo
en-aut-sei=Nakahara
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamadaKyohei
en-aut-sei=Hamada
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchidaTomoki
en-aut-sei=Tsuchida
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbikoYumi
en-aut-sei=Abiko
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumagaiYoshito
en-aut-sei=Kumagai
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
kn-affil=
affil-num=6
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=epidermal growth factor receptor
kn-keyword=epidermal growth factor receptor
en-keyword=cell signaling
kn-keyword=cell signaling
en-keyword=chemical modification
kn-keyword=chemical modification
en-keyword=signal transduction
kn-keyword=signal transduction
en-keyword=apoptosis
kn-keyword=apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=1
article-no=
start-page=96
end-page=102
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acute Peripheral Inflammation Increases Plasma Concentration of Hypoglycemic Agent Nateglinide with Decreased Hepatic Drug-Metabolizing Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The effects of inflammation on hypoglycemic agents were evaluated in male rats with acute peripheral inflammation (API). Nateglinide (NTG) was utilized as a model compound, since it is a hepatically-metabolized compound and its metabolism is mainly mediated by CYP 2C11 enzyme. In the experiments, rats were subjected to carrageenan injection into their hind paws for API induction, and the plasma concentration profiles of NTG were then examined. In addition, pooled liver microsomes were prepared from control and API rats, and the hepatic drug-metabolizing activity toward NTG and the hepatic expression of CYP2C11 protein were evaluated. It was shown that the plasma concentration of NTG following its intravenous administration decreases at a slower rate in API rats than that in control rats. It was also indicated in the incubation study with the liver microsomes that the hepatic drug-metabolizing activity toward NTG decreases in API rats. Additionally, it was revealed in Western immunoblotting that the hepatic expression of CYP2C11 protein decreases in API rats. These findings suggest that inflammation occurring in peripheral tissues brings about a decrease in hepatic NTG metabolism by suppressing the hepatic expression of CYP2C11 protein, causing an alteration of the plasma concentration profile of NTG with its impaired elimination.
en-copyright=
kn-copyright=
en-aut-name=KojinaMoeko
en-aut-sei=Kojina
en-aut-mei=Moeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiKeiichiro
en-aut-sei=Suzuki
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiwakiAkane
en-aut-sei=Nishiwaki
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AibaTetsuya
en-aut-sei=Aiba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=acute inflammation
kn-keyword=acute inflammation
en-keyword=CYP2C11
kn-keyword=CYP2C11
en-keyword=hepatic drug metabolism, nateglinide
kn-keyword=hepatic drug metabolism, nateglinide
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=382
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210322
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiNaoyuki
en-aut-sei=Miyazaki
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamaguchiTasuku
en-aut-sei=Hamaguchi
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YonekuraKoji
en-aut-sei=Yonekura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
affil-num=3
en-affil=Biostructural Mechanism Laboratory, RIKEN Spring-8 Center
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells.
en-copyright=
kn-copyright=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiKentaro
en-aut-sei=Fujii
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimazuYosuke
en-aut-sei=Shimazu
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomitaYusuke
en-aut-sei=Tomita
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HattoriYasuhiko
en-aut-sei=Hattori
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TsuboiNobushige
en-aut-sei=Tsuboi
en-aut-mei=Nobushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MakinoKeigo
en-aut-sei=Makino
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HiranoShuichiro
en-aut-sei=Hirano
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KamiyaAtsunori
en-aut-sei=Kamiya
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Differentiated glioblastoma cell
kn-keyword=Differentiated glioblastoma cell
en-keyword=Glioblastoma stem cell
kn-keyword=Glioblastoma stem cell
en-keyword=CCN1
kn-keyword=CCN1
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
en-keyword=TEAD
kn-keyword=TEAD
en-keyword=Mesenchymal subtype
kn-keyword=Mesenchymal subtype
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Microenvironment
kn-keyword=Microenvironment
en-keyword=Glioma
kn-keyword=Glioma
en-keyword=Glioblastoma
kn-keyword=Glioblastoma
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=4
article-no=
start-page=143
end-page=149
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=2020
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Estimation of long-term external nutrient loading from watersheds to Lake Biwa by a combined rainfall-runoff model and loading-discharge curve approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=External nutrient loadings to Lake Biwa were estimated using a combined tank model and loading-discharge curve approach. The model was applied to collective drainage basins of the lake’s Imazu (northwest), Hikone (northeast), and Otsu (south) areas. The hourly model was conducted using particular discharges from Kita (Ado) river, Takatoki (Ane) river, and Yasu River to obtain loading curves for phosphate (PO4) and silica (SiO2) by assimilating measured concentrations (2002–2003). The tank model was updated by adding an evapotranspiration routine and direct paths of groundwater discharges to the lake floor. The daily model was calibrated through analysis of water budget among the basin, inflow, lake and outflow, and then validated. The model was established and combined into a loading-discharge curve to determine the long-term external nutrient loadings entering the lake (1980–2017). Seasonal variation in nutrient loadings increased during spring and summer and decreased during winter. Annual phosphate-phosphorus (PO4-P) loading ranged from 217 to 296 tons yr–1 in the North Basin and 45 to 76 tons yr–1 in the South Basin, while SiO2 loading fluctuated from 16,027 to 32,655 tons yr–1 and 2,518 to 5,490 tons yr–1 in the North and South Basins, respectively.
en-copyright=
kn-copyright=
en-aut-name=Le TienHuu
en-aut-sei=Le Tien
en-aut-mei=Huu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkuboKenji
en-aut-sei=Okubo
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ho ThiPhuong
en-aut-sei=Ho Thi
en-aut-mei=Phuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoMitsuyo
en-aut-sei=Saito
en-aut-mei=Mitsuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=School of Chemical, Biological and Environmental Technologies, Vinh University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=10
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI-LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 angstrom resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1-Lhca5-Lhca2-Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI-LHCI, but the same as those of land plants. Although Pp PSI-LHCI has a similar structure as PSI-LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI-LHCI. One chlorophyll, PsaF-Chl 305, which is found in the moss PSI-LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI-LHCI, as well as important clues on the changes of PSI-LHCI after landing.
en-copyright=
kn-copyright=
en-aut-name=YanQiujing
en-aut-sei=Yan
en-aut-mei=Qiujing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhaoLiang
en-aut-sei=Zhao
en-aut-mei=Liang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangWenda
en-aut-sei=Wang
en-aut-mei=Wenda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PiXiong
en-aut-sei=Pi
en-aut-mei=Xiong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HanGuangye
en-aut-sei=Han
en-aut-mei=Guangye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WangJie
en-aut-sei=Wang
en-aut-mei=Jie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChengLingpeng
en-aut-sei=Cheng
en-aut-mei=Lingpeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HeYi-Kun
en-aut-sei=He
en-aut-mei=Yi-Kun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuangTingyun
en-aut-sei=Kuang
en-aut-mei=Tingyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=QinXiaochun
en-aut-sei=Qin
en-aut-mei=Xiaochun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuiSen-Fang
en-aut-sei=Sui
en-aut-mei=Sen-Fang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University
kn-affil=
affil-num=3
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University
kn-affil=
affil-num=5
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University
kn-affil=
affil-num=8
en-affil=College of Life Sciences, Department of Chemistry, Capital Normal University,
kn-affil=
affil-num=9
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=School of Biological Science and Technology, University of Jinan
kn-affil=
affil-num=11
en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University,
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Local Control of Squamous Cell Carcinoma of the Cervix Treated with CT-based Three-dimensional Image-Guided Brachytherapy with or without Central Shielding
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purposes of this retrospective study were to analyze local control of squamous cell carcinoma of the cervix treated with computed tomography (CT)-based image-guided brachytherapy (IGBT), as well as the factors affecting local control. A total of 39 patients were analyzed. The prescribed dose to the pelvis was 45-50 Gy with or without central shielding (CS). IGBT was delivered in 1-5 fractions. The total dose for high-risk clinical target volume (HR-CTV) was calculated as the biologically equivalent dose in 2-Gy fractions. The median follow-up period was 29.3 months. The 2-year overall survival and local control rates were 97% and 91%, respectively. In univariate analysis, the dose covering 90% of the HR-CTV (D90) and tumor size were found to be significant factors for local control. The cutoff values of tumor size and D90 for local control were 4.3 cm (area under the curve [AUC] 0.75) and 67.7 Gy (AUC 0.84) in the CS group and 5.3 cm (AUC 0.75) and 73.7 Gy (AUC 0.78) in the group without CS, respectively. However, though the local control of CT-based IGBT was favorable, the results suggested that the dose required for tumor control may differ depending on the presence of CS.
en-copyright=
kn-copyright=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagasakaHisako
en-aut-sei=Nagasaka
en-aut-mei=Hisako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HisazumiKento
en-aut-sei=Hisazumi
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkawaHiro
en-aut-sei=Okawa
en-aut-mei=Hiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TajiriNobuhisa
en-aut-sei=Tajiri
en-aut-mei=Nobuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShiodeTsuyoki
en-aut-sei=Shiode
en-aut-mei=Tsuyoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkakiShiro
en-aut-sei=Akaki
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaSusumu
en-aut-sei=Kanazawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YanoYuri
en-aut-sei=Yano
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KobayashiEmiko
en-aut-sei=Kobayashi
en-aut-mei=Emiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HoriguchiIkuyo
en-aut-sei=Horiguchi
en-aut-mei=Ikuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakataMasayo
en-aut-sei=Takata
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HongoAtsushi
en-aut-sei=Hongo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YonezawaMasaru
en-aut-sei=Yonezawa
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakanishiYoshie
en-aut-sei=Nakanishi
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=12
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=13
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology 2, Kawasaki Medical School, General medical Center
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
en-keyword=cervical cancer
kn-keyword=cervical cancer
en-keyword=squamous cell cancer
kn-keyword=squamous cell cancer
en-keyword=brachytherapy
kn-keyword=brachytherapy
en-keyword=central shielding
kn-keyword=central shielding
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=1
article-no=
start-page=63
end-page=69
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Optimal Prepregnancy Body Mass Index for Lactation in Japanese Women with Neonatal Separation as Analyzed by a Differential Equation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We used a differential equation to identify the biological relationship between the maternal prepregnancy body mass index (BMI) and lactation on postpartum day 4 in Japanese women with neonatal separation. This retro-spective observational study included 252 mothers (135 primiparas, 117 multiparas) whose singleton neonates were admitted to a neonatal ICU. We formulated hypotheses based on breast anatomy to analyze the relation-ship between the expressed milk obtained on postpartum day 4 and the maternal prepregnancy BMI with the following differential equation: y’(x) = k y(x)/x, where k is the constant, x is the prepregnancy BMI, and y is the expressed milk volume. The formula was then obtained as y(x) = axk, where a is the constant. The Akaike information criterion (AIC) was used to estimate the regression equation with the maximum likelihood for primiparas and multiparas. The best criteria for BMI determined by the AIC were 20.89 kg/m2 in primiparas and 20.19 kg/m2 in multiparas. These were the optimal BMI values for lactation, coinciding with the median prepregnancy BMI in the study population (20.78 kg/m2 in primiparas and 20.06 kg/m2 in multiparas). The formula based on biomathematics might help establish the biological relationship between prepregnancy BMI and breastmilk volume.
en-copyright=
kn-copyright=
en-aut-name=TadaKatsuhiko
en-aut-sei=Tada
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyagiYasunari
en-aut-sei=Miyagi
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraKazue
en-aut-sei=Nakamura
en-aut-mei=Kazue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YorozuMoe
en-aut-sei=Yorozu
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukushimaEmi
en-aut-sei=Fukushima
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KumazawaKazumasa
en-aut-sei=Kumazawa
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraMakoto
en-aut-sei=Nakamura
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KageyamaMisao
en-aut-sei=Kageyama
en-aut-mei=Misao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=2
en-affil=Miyake Ofuku Clinic
kn-affil=
affil-num=3
en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Nursing, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center
kn-affil=
en-keyword=biomathematics
kn-keyword=biomathematics
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=expressed milk
kn-keyword=expressed milk
en-keyword=lactation
kn-keyword=lactation
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=10
article-no=
start-page=e0241120
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Local perspectives on Ebola during its tenth outbreak in DR Congo: A nationwide qualitative study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The Democratic Republic of Congo (DR Congo) struggled to end the tenth outbreak of Ebola virus disease (Ebola), which appeared in North Kivu in 2018. It was reported that rumors were hampering the response effort. We sought to identify any rumors that could have influenced outbreak containment and affected prevention in unaffected areas of DR Congo.
Methods
We conducted a qualitative study in DR Congo over a period of 2 months (from August 1 to September 30, 2019) using in-depth interviews (IDIs) and focus group discussions (FGDs). The participants were recruited from five regional blocks using purposeful sampling. Both areas currently undergoing outbreaks and presently unaffected areas were included. We collected participants’ opinions, views, and beliefs about the Ebola virus. The IDIs (n = 60) were performed with key influencers (schoolteachers, religious and political leaders/analysts, and Ebola-frontline workers), following a semi-structured interview guide. FGDs (n = 10) were conducted with community members. Interviews were recorded with a digital voice recorder and simultaneous note-taking. Participant responses were categorized in terms of their themes and subthemes.
Results
We identified 3 high-level themes and 15 subthemes (given here in parentheses): (1) inadequate knowledge of the origin or cause of Ebola (belief in a metaphysical origin, insufficient awareness of Ebola transmission via an infected corpse, interpretation of disease as God’s punishment, belief in nosocomial Ebola, poor hygiene, and bathing in the Congo River). Ebola was interpreted as (2) a plot by multinational corporations (fears of genocide, Ebola understood as a biological weapon, concerns over organ trafficking, and Ebola was taken to be the result of business actions). Finally Ebola was rumored to be subject to (3) politicization (political authorities seen as ambivalent, exclusion of some community leaders from response efforts, distrust of political authorities, and distrust in the healthcare system).
Conclusions
Due to the skepticism against Ebola countermeasures, it is critical to understand widespread beliefs about the disease to implement actions that will be effective, including integrating response with the unmet needs of the population.
en-copyright=
kn-copyright=
en-aut-name=MuzemboBasilua Andre
en-aut-sei=Muzembo
en-aut-mei=Basilua Andre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NtontoloNgangu Patrick
en-aut-sei=Ntontolo
en-aut-mei=Ngangu Patrick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NgatuNlandu Roger
en-aut-sei=Ngatu
en-aut-mei=Nlandu Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KhatiwadaJanuka
en-aut-sei=Khatiwada
en-aut-mei=Januka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NgombeKabamba Leon
en-aut-sei=Ngombe
en-aut-mei=Kabamba Leon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NumbiOscar Luboya
en-aut-sei=Numbi
en-aut-mei=Oscar Luboya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NzajiKabamba Michel
en-aut-sei=Nzaji
en-aut-mei=Kabamba Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaotelaKabinda Jeff
en-aut-sei=Maotela
en-aut-mei=Kabinda Jeff
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NgoyiMukonkole Jean
en-aut-sei=Ngoyi
en-aut-mei=Mukonkole Jean
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiTomoko
en-aut-sei=Suzuki
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WadaKoji
en-aut-sei=Wada
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IkedaShunya
en-aut-sei=Ikeda
en-aut-mei=Shunya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Family Medicine and Primary health, Protestant University of Congo
kn-affil=
affil-num=3
en-affil=Department of Public Health, Kagawa University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Department of Public Health, University of Kamina
kn-affil=
affil-num=6
en-affil=School of Public Health, University of Lubumbashi
kn-affil=
affil-num=7
en-affil=School of Public Health, University of Lubumbashi
kn-affil=
affil-num=8
en-affil=Centre National de Transfusion Sanguine
kn-affil=
affil-num=9
en-affil=Research Unit, ISTM-Lubumbashi
kn-affil=
affil-num=10
en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare
kn-affil=
affil-num=11
en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare
kn-affil=
affil-num=12
en-affil=Department of Public Health, School of Medicine, International University of Health and Welfare
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=280
cd-vols=
no-issue=5
article-no=
start-page=3166
end-page=3177
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=20050204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Regulation of Chicken ccn2 Gene by Interaction between RNA cis-Element and Putative trans-Factor during Differentiation of Chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=CCN2/CTGF is a multifunctional growth factor. Our previous studies have revealed that CCN2 plays important roles in both growth and differentiation of chondrocytes and that the 3′-untranslated region (3′-UTR) of ccn2 mRNA contains a cis-repressive element of gene expression. In the present study, we found that the stability of chicken ccn2 mRNA is regulated in a differentiation stage-dependent manner in chondrocytes. We also found that stimulation by bone morphogenetic protein 2, platelet-derived growth factor, and CCN2 stabilized ccn2 mRNA in proliferating chondrocytes but that it destabilized the mRNA in prehypertrophic-hypertrophic chondrocytes. The results of a reporter gene assay revealed that the minimal repressive cis-element of the 3′-UTR of chicken ccn2 mRNA was located within the area between 100 and 150 bases from the polyadenylation tail. Moreover, the stability of ccn2 mRNA was correlated with the interaction between this cis-element and a putative 40-kDa trans-factor in nuclei and cytoplasm. In fact, the binding between them was prominent in proliferating chondrocytes and attenuated in (pre)hypertrophic chondrocytes. Stimulation by the growth factors repressed the binding in proliferating chondrocytes; however, it enhanced it in (pre)hypertrophic chondrocytes. Therefore, gene expression of ccn2 mRNA during endochondral ossification is properly regulated, at least in part, by changing the stability of the mRNA, which arises from the interaction between the RNA cis-element and putative trans-factor.
en-copyright=
kn-copyright=
en-aut-name=MukudaiYoshiki
en-aut-sei=Mukudai
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Biodental Research Center, Okayama University Dental School
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoelectric dye-based retinal prosthesis (OUReP) as a novel type of artificial retina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have developed the world's first novel type of artificial retina, OUReP (Okayama University Retinal Prosthesis), in which a photoelectric dye that converts light energy into electric potential is covalently bonded to the surface of a polyethylene thin film as an insulator. The receptor that absorbs light and the output device that generates displacement current to stimulate nearby neurons are integrated in a sheet of thin film. It has become possible to measure the surface potential of the artificial retina OUReP using a Kelvin probe that measures the surface potential of semiconductors. When light is turned on and off to the artificial retina OUReP, the surface potential changes rapidly. As the light intensity is increased, the potential change on the surface of the artificial retina becomes larger. As for safety, the artificial retina OUReP was not toxic in all tests for biological evaluation of medical devices. As for efficacy, the artificial retina OUReP was implanted under the retina by vitreous surgery in monkey eyes which had chemically-induced macular degeneration with photoreceptor cell loss. Over the next 6 months, retinal detachment did not occur during the course, and the artificial retina was in contact with the retinal tissue. The amplitude of the visual evoked potential attenuated by macular degeneration recovered 1 month after implantation of the artificial retina, and the recovery of amplitude was maintained until 6 months after the implantation. By using multielectrode array-mounted dish recording system, it has been proved that action potential spikes are induced when the artificial retina is placed on degenerative retinal tissue of retinal dystrophic rats or mice and exposed to light, which is used as an index of the effectiveness of the artificial retina. We have established manufacturing and quality control of the device in a clean room facility, proved the safety and efficacy, and are preparing for first-in-human investigator-initiated clinical trials.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Ophthalmology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=olymer Materials Science, Okayama University Graduate School of Natural Science and Technology,
kn-affil=
en-keyword=artificial retina
kn-keyword=artificial retina
en-keyword=retinal prosthesis
kn-keyword=retinal prosthesis
en-keyword=photoelectric dye
kn-keyword=photoelectric dye
en-keyword=polyethylene film
kn-keyword=polyethylene film
en-keyword=monkey surgery
kn-keyword=monkey surgery
en-keyword=multielectrode array dish recording
kn-keyword=multielectrode array dish recording
en-keyword=vitrectomy
kn-keyword=vitrectomy
en-keyword=disposable injector
kn-keyword=disposable injector
en-keyword=sustainable development goals
kn-keyword=sustainable development goals
END