start-ver=1.4 cd-journal=joma no-vol=351 cd-vols= no-issue= article-no= start-page=199522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamKazuyuki en-aut-sei=Maruyam en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TassiAline Daniele en-aut-sei=Tassi en-aut-mei=Aline Daniele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchoaRonald en-aut-sei=Ochoa en-aut-mei=Ronald kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Tropical Research and Education Center, University of Florida kn-affil= affil-num=7 en-affil=Systematic Entomology Laboratory, USDA kn-affil= affil-num=8 en-affil=College of Plant Protection, Northwest A&F University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhabdovirus kn-keyword=Rhabdovirus en-keyword=Plant kn-keyword=Plant en-keyword=Mite kn-keyword=Mite en-keyword=Vector kn-keyword=Vector en-keyword=Replication kn-keyword=Replication en-keyword=mRNA kn-keyword=mRNA en-keyword=Small RNA kn-keyword=Small RNA END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=8 article-no= start-page=1653 end-page=1660 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chemical composition of essential oil of Acacia crassicarpa Benth. (Fabaceae) from Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=This research aimed to identify the volatile compounds found in the fresh leaves of Acacia crassicarpa Benth. This is the first phytochemical investigation of this species. Essential oils from the leaves of A. crassicarpa were obtained by hydro-distillation and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Sixty-one compounds accounting for 95.8% of the leaf oil were identified. The classes of compounds identified in the oil sample were aldehydes (30.7%), sesquiterpene hydrocarbons (25.2%), alkanes (19.1%), oxygenated monoterpenes (3.6%) oxygenated sesquiterpenes (2.3%), monoterpene hydrocarbons (0.8%) and others (14.2%). The major constituents in the leaf oil were tridecanal (24.5%), (E)-caryophyllene (11.7%), n-heneicosane (7.2%), squalene (6.5%), and 7-tetradecenal (5.9%). en-copyright= kn-copyright= en-aut-name=Quoc DoanTuan en-aut-sei=Quoc Doan en-aut-mei=Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tien DinhTai en-aut-sei=Tien Dinh en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=K. MatsumotoTetsuya en-aut-sei=K. Matsumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DinhDien en-aut-sei=Dinh en-aut-mei=Dien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiNaoko en-aut-sei=Miki en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirobeMuneto en-aut-sei=Hirobe en-aut-mei=Muneto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Thi NguyenHoai en-aut-sei=Thi Nguyen en-aut-mei=Hoai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Hue Union of Science and Technology Associations (HUSTA) kn-affil= affil-num=3 en-affil=Graduate School of Science and Engineering, Ibaraki University kn-affil= affil-num=4 en-affil=Phong Dien Nature Reserve, Phong Dien district, Thua Thien Hue province kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University kn-affil= en-keyword=Acacia crassicarpa kn-keyword=Acacia crassicarpa en-keyword=Essential oil kn-keyword=Essential oil en-keyword=Tridecanal kn-keyword=Tridecanal en-keyword=(E)-Caryophyllene kn-keyword=(E)-Caryophyllene END start-ver=1.4 cd-journal=joma no-vol=653 cd-vols= no-issue= article-no= start-page=119205 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Meteoritic and asteroidal amino acid heterogeneity: Implications for planetesimal alteration conditions and sample return missions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbonaceous chondrites (CC) and asteroid return samples contain amino acids (AA), which are essential for an origin of life on the early Earth and can provide important information concerning planetesimal alteration processes. While many studies have investigated AA from CC, separate studies have often found differing abundances for the same meteorite. Accordingly, analytical bias, differing terrestrial contamination levels and intrinsic sample heterogeneity have been proposed as potential reasons. However, current analytical techniques allow for the analysis of several mg-sized samples and can thus enable an investigation of AA heterogeneity within single meteorite specimens. Here, such an analytical technique is applied to characterise the AA in triplicate aliquots of three CCs. The results indicate that CCs are heterogenous in terms of their AA at the mm-scale. Furthermore, the results help to further constrain the effects of planetesimal alteration on organic matter and the requirements of future sample return missions that aim to obtain organic-bearing extraterrestrial materials. en-copyright= kn-copyright= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKatsura en-aut-sei=Kobayashi en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Carbonaceous chondrite kn-keyword=Carbonaceous chondrite en-keyword=Heterogeneity kn-keyword=Heterogeneity en-keyword=Planetesimal kn-keyword=Planetesimal en-keyword=Aqueous alteration kn-keyword=Aqueous alteration en-keyword=Amino acid and meteorite kn-keyword=Amino acid and meteorite END start-ver=1.4 cd-journal=joma no-vol=965 cd-vols= no-issue=1 article-no= start-page=52 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unraveling the Cr Isotopes of Ryugu: An Accurate Aqueous Alteration Age and the Least Thermally Processed Solar System Material en-subtitle= kn-subtitle= en-abstract= kn-abstract=The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn?Cr method using bulk samples, yielding an age of 4.13 + 0.62/?0.55 Myr after the formation of Ca?Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/?0.67 Myr ago. The higher 55Mn/52Cr, 54Cr, and initial 53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 } 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The 54Cr and initial 53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct '17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk. en-copyright= kn-copyright= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RatnayakeDilan M. en-aut-sei=Ratnayake en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiklusicakNoah en-aut-sei=Miklusicak en-aut-mei=Noah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunihiroTak en-aut-sei=Kunihiro en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaguchiChie en-aut-sei=Sakaguchi en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiKatsura en-aut-sei=Kobayashi en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AbeMasanao en-aut-sei=Abe en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiAkiko en-aut-sei=Miyazaki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakatoAiko en-aut-sei=Nakato en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakazawaSatoru en-aut-sei=Nakazawa en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishimuraMasahiro en-aut-sei=Nishimura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OkadaTatsuaki en-aut-sei=Okada en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SaikiTakanao en-aut-sei=Saiki en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeruiFuyuto en-aut-sei=Terui en-aut-mei=Fuyuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TsudaYuichi en-aut-sei=Tsuda en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UsuiTomohiro en-aut-sei=Usui en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeSei-ichiro en-aut-sei=Watanabe en-aut-mei=Sei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YadaToru en-aut-sei=Yada en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YogataKasumi en-aut-sei=Yogata en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshikawaMakoto en-aut-sei=Yoshikawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=7 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=8 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=9 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=10 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=11 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=12 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=13 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=14 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=15 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=16 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=17 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=18 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=19 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=20 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=21 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=22 en-affil=Department of Earth and Planetary Sciences, Nagoya University kn-affil= affil-num=23 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=24 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=25 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=26 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=297 cd-vols= no-issue= article-no= start-page=128540 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic paper-based analytical devices for antioxidant vitamins C and E in foods en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we developed microfluidic paper-based analytical devices (PADs) for the determination of antioxidant vitamins. The proposed PADs utilize the reduction of metal ions by hydrophilic and hydrophobic antioxidant vitamins, which is followed by colorimetric reactions with chelating reagents. Hydrophilic vitamin C reduces Fe(III) to Fe(II) and forms a stable Fe(II)-bathophenanthroline complex in an aqueous solution. By contrast, this complex is unstable in organic solvents, and hydrophobic vitamin E requires Fe(III) and bathophenanthroline to be replaced with Cu(II) and bathocuproine. In these results, the relationship between the logarithm of a vitamin's concentration and its color intensity was linear and ranged from 4.4 to 35 mg L?1 for ascorbic acid and 50?200 mg L?1 for -tocopherol. The limits of detection, estimated from the standard deviation of blank samples, were 3.1 mg L?1 for ascorbic acid and either 27 mg L?1 (in hexane) or 48 mg L?1 (in ethanol) for -tocopherol. The proposed method was used to quantify vitamin C in bell peppers, mandarin oranges, kiwifruit, and lemons, as well as vitamin E in almonds, almond milk, and dietary supplements. The results demonstrate the effectiveness of these PADs for the practical analysis of antioxidant vitamins in food samples. en-copyright= kn-copyright= en-aut-name=KawaharaMana en-aut-sei=Kawahara en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Vitamin C kn-keyword=Vitamin C en-keyword=Vitamin E kn-keyword=Vitamin E en-keyword=Antioxidant vitamin kn-keyword=Antioxidant vitamin en-keyword=Metal complex kn-keyword=Metal complex END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two types of analytical instruments and devices?one sophisticated high-performance instrument and another portable device?have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter?detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable. en-copyright= kn-copyright= en-aut-name=SeetasangSasikarn en-aut-sei=Seetasang en-aut-mei=Sasikarn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Point-of-care testing kn-keyword=Point-of-care testing en-keyword=Onsite analysis kn-keyword=Onsite analysis en-keyword=Paper-based analytical device kn-keyword=Paper-based analytical device en-keyword=Paired emitter?detector light-emitting diode kn-keyword=Paired emitter?detector light-emitting diode en-keyword=Photometer kn-keyword=Photometer en-keyword=Environmental analysis kn-keyword=Environmental analysis en-keyword=Food analysis kn-keyword=Food analysis END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=1152 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240717 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined. en-copyright= kn-copyright= en-aut-name=UrzoMichael Louie R. en-aut-sei=Urzo en-aut-mei=Michael Louie R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GuintoTimothy D. en-aut-sei=Guinto en-aut-mei=Timothy D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BudotBernard O. en-aut-sei=Budot en-aut-mei=Bernard O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoriaMary Jeanie T. en-aut-sei=Yanoria en-aut-mei=Mary Jeanie T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JonsonGilda B. en-aut-sei=Jonson en-aut-mei=Gilda B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakawaMasao en-aut-sei=Arakawa en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=2 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=3 en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=4 en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Ba?os kn-affil= affil-num=5 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=6 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=7 en-affil=Faculty of Agriculture, Meijo University kn-affil= affil-num=8 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=9 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=dsRNA kn-keyword=dsRNA en-keyword=mycovirus kn-keyword=mycovirus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=metatranscriptome kn-keyword=metatranscriptome END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=12 article-no= start-page=3780 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Sampling Frequency on Human Activity Recognition with Machine Learning Aiming at Clinical Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human activity recognition using wearable accelerometer data can be a useful digital biomarker for severity assessment and the diagnosis of diseases, where the relationship between onset and patient activity is crucial. For long-term monitoring in clinical settings, the volume of data collected over time should be minimized to reduce power consumption, computational load, and communication volume. This study aimed to determine the lowest sampling frequency that maintains recognition accuracy for each activity. Thirty healthy participants wore nine-axis accelerometer sensors at five body locations and performed nine activities. Machine-learning-based activity recognition was conducted using data sampled at 100, 50, 25, 20, 10, and 1 Hz. Data from the non-dominant wrist and chest, which have previously shown high recognition accuracy, were used. Reducing the sampling frequency to 10 Hz did not significantly affect the recognition accuracy for either location. However, lowering the frequency to 1 Hz decreases the accuracy of many activities, particularly brushing teeth. Using data with a 10 Hz sampling frequency can maintain recognition accuracy while decreasing data volume, enabling long-term patient monitoring and device miniaturization for clinical applications. en-copyright= kn-copyright= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraMoeka en-aut-sei=Kimura en-aut-mei=Moeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=wearable devices kn-keyword=wearable devices en-keyword=machine learning kn-keyword=machine learning en-keyword=human activity recognition kn-keyword=human activity recognition en-keyword=sampling frequency kn-keyword=sampling frequency en-keyword=digital health kn-keyword=digital health en-keyword=digital biomarkers kn-keyword=digital biomarkers END start-ver=1.4 cd-journal=joma no-vol=295 cd-vols= no-issue= article-no= start-page=128303 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (PAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This PAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the PAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L?1 with a detection limit of 0.089 mg L?1 and a quantification limit of 0.269 mg L?1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this PAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This PAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NambaHaruka en-aut-sei=Namba en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Phosphate kn-keyword=Phosphate en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Solid-phase extraction kn-keyword=Solid-phase extraction en-keyword=Anion exchanger kn-keyword=Anion exchanger en-keyword=Molybdenum blue method kn-keyword=Molybdenum blue method END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=1 article-no= start-page=241001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metamorphic pressure-temperature conditions of garnet granulite from the Eastern Iratsu body in the Sambagawa belt, SW Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several coarse-grained mafic bodies with evidence for eclogite-facies metamorphism are present in the Besshi area of the Sambagawa subduction-type metamorphic belt, SW Japan. Among them the granulite-bearing Eastern Iratsu metagabbro body involves an unresolved problem of whether it originated in the hanging-wall or footwall side of the subduction zone. The key to settle this problem is its relationship with the adjacent Western Iratsu metabasaltic body, which includes thick marble layer and certainly has the footwall ocean-floor origin. Several previous studies consider that the Western and Eastern Iratsu bodies were originally coherent in the footwall side and formed the shallower and deeper parts of a thick oceanic crust, respectively. The validity of this hypothesis may be assessed by deriving pressure-temperature history of the Eastern Iratsu body, or especially the pressure (depth) condition of the granulite-facies metamorphism before the eclogite-facies overprinting because, if the pressure was relatively high, the oceanic crust assumed in the above hypothesis might be too thick to tectonically achieve the present-day adjacence of the two bodies on the geological map. This study petrologically analyzes a garnet-bearing granulite from the Eastern Iratsu body and newly reports stable coexistence of garnet and orthopyroxene in the sample. By utilizing a garnet-orthopyroxene geothermobarometer, the minimum P-T conditions of the granulite-facies stage was estimated to be 0.8 GPa (? 27 km in depth) and 780 C. If the Western and Eastern Iratsu bodies were assumed to have formed a coherent oceanic crust before their subduction, the original thickness of it was >27 km and this demands unusually strong ductile shortening (<1/9) or unrealistically large vertical displacement on intraplate faulting, suggesting invalidity of the assumption. The Western and Eastern Iratsu bodies, therefore, are originally bounded by subduction-boundary fault and the obtained pressure of 0.8 GPa can be interpreted to represent that of the hanging-wall lower continental crust in the subduction zone, where the Eastern Iratsu body originated. After the granulite-facies metamorphism, the Western Iratsu body, which was located near the footwall surface, initiated subduction and was subsequently juxtaposed with the above-located Eastern Iratsu body at the corresponding depth (? 27 km or greater) along the subduction boundary. en-copyright= kn-copyright= en-aut-name=NAKAMURADaisuke en-aut-sei=NAKAMURA en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AOYAMutsuki en-aut-sei=AOYA en-aut-mei=Mutsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OKAMURATomoki en-aut-sei=OKAMURA en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Sambagawa belt kn-keyword=Sambagawa belt en-keyword=Iratsu body kn-keyword=Iratsu body en-keyword=Metagabbro kn-keyword=Metagabbro en-keyword=Granulite kn-keyword=Granulite en-keyword=Hanging wall kn-keyword=Hanging wall END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=192 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC. en-copyright= kn-copyright= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaYusuke en-aut-sei=Hamada en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangYuze en-aut-sei=Wang en-aut-mei=Yuze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TianMiao en-aut-sei=Tian en-aut-mei=Miao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Colorectal cancer kn-keyword=Colorectal cancer en-keyword=Microsatellite stable kn-keyword=Microsatellite stable en-keyword=Hypoxia-inducible factor kn-keyword=Hypoxia-inducible factor en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=116 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC. en-copyright= kn-copyright= en-aut-name=UmedaHibiki en-aut-sei=Umeda en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriwakeKazuya en-aut-sei=Moriwake en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakedaSho en-aut-sei=Takeda en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KayanoMasashi en-aut-sei=Kayano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=GoelAjay en-aut-sei=Goel en-aut-mei=Ajay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=17 en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu?ate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center kn-affil= affil-num=24 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=RNA-editing kn-keyword=RNA-editing en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Chemoresistance kn-keyword=Chemoresistance en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Colorectal cancer kn-keyword=Colorectal cancer END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=6 article-no= start-page=1108 end-page=1116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spray-drying of polymer solutions across a broad concentration range and the subsequent formation of a few micro- ?nano-meter sized fibers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spray drying is a widely utilized technique for the concentration and fine particulation of dried products. This study demonstrated that a versatile spray dryer, equipped with a two-fluid nozzle atomizer, can convert polymer solutions into nanoscale fibers by manipulating the conditions of the polymer solutions. The polymers employed in this research included polyvinylpyrrolidones (Mw 24.5 k to 60?kDa), dextrans (70 k to 450?650?kDa), pullulan, gum Arabic, Eudragit and agar, with methanol and water serving as solvents. Various combinations of polymers and solvents were subjected to spray drying at polymer concentrations ranging from 5 to 1000?g/L. Scanning electron microscopy analyses of the spray-dried samples indicated that the products transitioned from micrometer-sized particles to sub-micrometer fibers in several instances when the polymer concentrations exceeded specific threshold levels. The investigation also explored the relationship between these threshold concentrations and the surface tension and viscosity of the polymer solutions. en-copyright= kn-copyright= en-aut-name=AragaChika en-aut-sei=Araga en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukushimaKaito en-aut-sei=Fukushima en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoHaruna en-aut-sei=Sato en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HondaNao en-aut-sei=Honda en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaTakato en-aut-sei=Hasegawa en-aut-mei=Takato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakasoKoichi en-aut-sei=Nakaso en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Chemical Engineering and Material Sciences, Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=8 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Sub-micron fiber kn-keyword=Sub-micron fiber en-keyword=spray-drying kn-keyword=spray-drying en-keyword=two fluid nozzle atomizer kn-keyword=two fluid nozzle atomizer en-keyword=polyvinylpyrrolidone kn-keyword=polyvinylpyrrolidone en-keyword=polysaccharide kn-keyword=polysaccharide END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=109 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their childrenfs 4-month health examination. The relationships between postpartum depression and the mothersf background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score 9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the womanfs personality traits is needed. en-copyright= kn-copyright= en-aut-name=AwaiKyoko en-aut-sei=Awai en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=infertility treatment kn-keyword=infertility treatment en-keyword=assisted reproductive technology kn-keyword=assisted reproductive technology en-keyword=postpartum kn-keyword=postpartum en-keyword=postpartum depression kn-keyword=postpartum depression en-keyword=personality trait kn-keyword=personality trait END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=93 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacherfs roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession. en-copyright= kn-copyright= en-aut-name=TsuchieRina en-aut-sei=Tsuchie en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsumuraHideki en-aut-sei=Tsumura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=work engagement kn-keyword=work engagement en-keyword=school teachers kn-keyword=school teachers en-keyword=insomnia kn-keyword=insomnia en-keyword=psychological distress kn-keyword=psychological distress en-keyword=neck pain kn-keyword=neck pain END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=6 article-no= start-page=619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Halitosis is a condition characterized by an unpleasant malodor. Intra-oral halitosis is caused by volatile sulfur compounds (VSCs) and can be associated with oral dryness. Trehalose is one of the materials used to relieve oral dryness. The aim of the present study was to investigate the effect of trehalose on halitosis. Methods: This prospective, double-blinded, placebo-controlled, cross-over study enrolled volunteers from Okayama University Hospital. The participants were randomly divided into two groups, with one group receiving trehalose (a 10% trehalose solution) and the other receiving a placebo (distilled water) in a 1:1 allocation. The primary study outcome was the subjective organoleptic test. The secondary outcomes were the concentrations of the VSCs, which were measured using a portable gas chromatography device, and the oral moisture status, which was measured using an oral moisture meter. The planned sample size was 10 participants based on the previous study. Results: The final intention-to-treat analysis was performed using the data from 9 participants. After applying 10% trehalose as an oral spray, the organoleptic score decreased in a time-dependent manner. However, no significant differences were seen between the trehalose and placebo groups. In terms of secondary outcomes, the oral moisture levels increased immediately after the trehalose spray application, and significant differences in the amount of change from the baseline were seen between the trehalose and placebo groups (p = 0.047). No significant differences were seen in any of the other variables (p > 0.05). Conclusions: We could not identify any positive effects on halitosis from a one-time 10% trehalose application as an oral spray in this prospective, double-blinded, placebo-controlled, cross-over study. However, the trehalose application immediately improved the oral moisture levels and was useful for treating oral dryness. en-copyright= kn-copyright= en-aut-name=MiyaiHisataka en-aut-sei=Miyai en-aut-mei=Hisataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoHirofumi en-aut-sei=Mizuno en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaMomoko en-aut-sei=Nakahara en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumitaIchiro en-aut-sei=Sumita en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaYurika en-aut-sei=Uchida en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Yamanaka-KohnoReiko en-aut-sei=Yamanaka-Kohno en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakeuchiNoriko en-aut-sei=Takeuchi en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=halitosis kn-keyword=halitosis en-keyword=trehalose kn-keyword=trehalose en-keyword=oral dryness kn-keyword=oral dryness en-keyword=cross-over study kn-keyword=cross-over study en-keyword=randomized trial kn-keyword=randomized trial END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue= article-no= start-page=63 end-page=83 dt-received= dt-revised= dt-accepted= dt-pub-year=1991 dt-pub=19910715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Daily Social Support among Canberra Residents kn-title=퐶ɂ鉇󋁍s \Lx̎\ en-subtitle= kn-subtitle= en-abstract= kn-abstract=@This paper reports a study that investigated perceived sources of daily support. To gather empirical evidence, a sample survey of women in four study areas of Canberra was conducted in 1986-1987. Three hundred and ninety-four women who were under 55 years of age and who were married or in a de facto relationship were interviewed. They responded to six hypothetical difficult situations by identifying the first source from which they would seek support. Analysis of the data has revealed the following ;
@(1) When respondents had their relatives in Canberra, they regarded their relatives as the chief source of daily support. However, there were many residents without local relatives in Canberra. For such respondents, their relatives were not so helpful in daily support. Incidentally, workmates were thought of as much less important providers of support than relatives, neighbours or friends.
@(2) Social networks were differentiated in that respondents tended to depend on types of people appropriate to individual difficult situations.
@(3) Dependable friends and workmates tended to live closer than dependable relatives.
@(4) Dependable relatives were usually limited to immediate family, such as parents (-in-law), brothers (-in-law) or sisters (-in-law). en-copyright= kn-copyright= en-aut-name=NOBEMASAO en-aut-sei=NOBE en-aut-mei=MASAO kn-aut-name=粐Y kn-aut-sei= kn-aut-mei=Y aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2. en-copyright= kn-copyright= en-aut-name=LiYajun en-aut-sei=Li en-aut-mei=Yajun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunZexu en-aut-sei=Sun en-aut-mei=Zexu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraSota en-aut-sei=Kawamura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaHiroto en-aut-sei=Tomita en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagamiKohei en-aut-sei=Yamagami en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniYoshinori en-aut-sei=Kotani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NoguchiKanako en-aut-sei=Noguchi en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakataHideaki en-aut-sei=Sakata en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=9 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physics, College of Science and Technology(CST), Nihon University kn-affil= affil-num=13 en-affil=Tokyo University of Science kn-affil= affil-num=14 en-affil=Tokyo University of Science kn-affil= affil-num=15 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=16 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=210 cd-vols= no-issue= article-no= start-page=112952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A microfluidic paper-based analytical device that uses gelatin film to assay protease activity via time readout en-subtitle= kn-subtitle= en-abstract= kn-abstract=Food processing, detergents, and pharmaceuticals frequently employ proteases, which are enzymes that break the chemical bonds of both proteins and peptides. In this work, we developed a microfluidic paper-based analytical device (?PAD) for protease activity assays via time readout. To accomplish this, we folded the ?PAD to form layers, then inserted a water-insoluble gelatin film between the layers of paper to form the device. Lamination helps to maintain the gelatin film between the introduction zone, which is the upper layer, and the detection channel, which is the lower layer. Proteases decompose the gelatin film when it enters the introduction zone, which then allows it to flow into the detection channel. The protease activity in the sample solution determines the time required to dissolve the gelatin film, which leads to a linear relationship between the logarithm of the protease concentration and the time required to flow the solution a specific distance on the detection channel. The ?PAD was used to measure proteases in concentrations that ranged from 0.25 to 1 mg L?1 for bromelain, 2.5 to 10 mg L?1 for papain, and 1 to 8 mg L?1 for trypsin. The limits of quantification for bromelain, papain, and trypsin were 0.41, 2.7, and 9.2 mg mL?1, respectively. The relative standard deviations for bromelain were smaller than 2 % for concentrations ranging from 0.5 to 1.0 mg L?1. We compared the ?PAD to a commercially available protease activity assay kit, which relies on quenching fluorescein isothiocyanate-labeled casein. Both methods demonstrated the same order of activity: bromelain > papain > trypsin. The proposed device allowed the assay of bromelain in both pineapple pulp and juice, which were stored at room temperature. When first using the proposed device, the bromelain in the pulp gradually lost its activity, while the activity of the bromelain in the juice showed no significant change for five days. The ?PAD requires no analytical instruments for quality control and monitoring of the protease activity in food. en-copyright= kn-copyright= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Protease kn-keyword=Protease en-keyword=Enzyme assay kn-keyword=Enzyme assay en-keyword=Time readout kn-keyword=Time readout END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=36 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the temporal behavior of fulvic acid iron in Asahi River, Okayama, Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron is essential for biogeochemical processes in aquatic ecosystems, but its riverine concentration can be affected by environmental conditions. This study assessed weekly fulvic acid iron (FAFe) concentration at a single sampling site in Asahi River from 2022?2023 to explore the differences in the temporal scales. The objectives of this study were to evaluate the effects of physicochemical properties of the river on the concentration of FAFe, analyze the concentration of FAFe in spring, summer, autumn and winter, and assess the relationship between FAFe concentration and land use types of the watershed. The results indicated that physicochemical parameters, such as pH and surface water temperature (SWT) seemed to influence FAFe concentration (p < 0.05). Hydrological dynamics influenced FAFe concentration and transport, revealing an increasing trend during spring (p < 0.001) and summer (p = 0.05), with non-significant trends during autumn and winter (p > 0.05). FAFe exhibited a strong positive correlation with total organic carbon (TOC) (p < 0.001). Upland fields significantly influenced FAFe concentration (p < 0.01) through runoff with abundant NO3? and PO43? into the river. Thus, FAFe concentration in Asahi River was influenced by pH, SWT, TOC, hydrological regime, and agricultural runoff. en-copyright= kn-copyright= en-aut-name=YengehRohdof Lactem en-aut-sei=Yengeh en-aut-mei=Rohdof Lactem kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=dissolved iron kn-keyword=dissolved iron en-keyword=seasonal variation kn-keyword=seasonal variation en-keyword=dissolved organic matter kn-keyword=dissolved organic matter en-keyword=fulvic acid iron kn-keyword=fulvic acid iron END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Voice analysis and deep learning for detecting mental disorders in pregnant women: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Perinatal mental disorders are prevalent, affecting 10-20% of pregnant women, and can negatively impact both maternal and neonatal outcomes. Traditional screening tools, such as the Edinburgh Postnatal Depression Scale (EPDS), present limitations due to subjectivity and time constraints in clinical settings. Recent advances in voice analysis and machine learning have shown potential for providing more objective screening methods. This study aimed to develop a deep learning model that analyzes the voices of pregnant women to screen for mental disorders, thereby offering an alternative to the traditional tools.
Methods A cross-sectional study was conducted among 204 pregnant women, from whom voice samples were collected during their one-month postpartum checkup. The audio data were preprocessed into 5000 ms intervals, converted into mel-spectrograms, and augmented using TrivialAugment and context-rich minority oversampling. The EfficientFormer V2-L model, pretrained on ImageNet, was employed with transfer learning for classification. The hyperparameters were optimized using Optuna, and an ensemble learning approach was used for the final predictions. The model's performance was compared to that of the EPDS in terms of sensitivity, specificity, and other diagnostic metrics.
Results Of the 172 participants analyzed (149 without mental disorders and 23 with mental disorders), the voice-based model demonstrated a sensitivity of 1.00 and a recall of 0.82, outperforming the EPDS in these areas. However, the EPDS exhibited higher specificity (0.97) and precision (0.84). No significant difference was observed in the area under the receiver operating characteristic curve between the two methods (p = 0.759).
Discussion The voice-based model showed higher sensitivity and recall, suggesting that it may be more effective in identifying at-risk individuals than the EPDS. Machine learning and voice analysis are promising objective screening methods for mental disorders during pregnancy, potentially improving early detection.
Conclusion We developed a lightweight machine learning model to analyze pregnant women's voices for screening various mental disorders, achieving high sensitivity and demonstrating the potential of voice analysis as an effective and objective tool in perinatal mental health care. en-copyright= kn-copyright= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Perinatal mental disorders kn-keyword=Perinatal mental disorders en-keyword=Voice analysis kn-keyword=Voice analysis en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Screening kn-keyword=Screening en-keyword=Pregnant women kn-keyword=Pregnant women END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2485 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cesarean delivery on child health and development in Japanese nationwide birth cohort en-subtitle= kn-subtitle= en-abstract= kn-abstract=The long-term effects of cesarean delivery (CD) on child health and development remain controversial. This study aimed to investigate these effects using an outcome-wide approach in a Japanese context, where perinatal mortality rates are among the world's lowest. We analyzed data from 2,114 children in a nationwide Japanese birth cohort, linking the 21st Century Longitudinal Survey of Newborns with the Perinatal Research Network database. We examined associations between CD and various health and developmental outcomes up to 9 years of age, including hospitalizations, obesity, and developmental milestones. After adjusting for potential confounders, CD was not significantly associated with most outcomes, including all-cause hospitalization (adjusted risk ratio 1.25, 95% CI 0.997-1.56), obesity at 5.5 and 9 years, and various developmental milestones. Subgroup analyses for multiple births and preterm infants showed some differences in point estimates, but were limited by small sample sizes. CD was not significantly associated with adverse long-term child health or developmental outcomes in this Japanese cohort. These findings provide reassurance regarding CD safety when medically indicated in advanced perinatal care settings. Further research with larger samples and longer follow-up is needed, especially for specific subgroups. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamaiKei en-aut-sei=Tamai en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirotaTomoya en-aut-sei=Hirota en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Division of Neonatology, NHO Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cesarean delivery kn-keyword=Cesarean delivery en-keyword=Delivery methods kn-keyword=Delivery methods en-keyword=Long-term outcome kn-keyword=Long-term outcome en-keyword=Child development kn-keyword=Child development en-keyword=Outcome-wide approach kn-keyword=Outcome-wide approach END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=3267 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel treatment strategy targeting interleukin-6 induced by cancer associated fibroblasts for peritoneal metastasis of gastric cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and alpha-smooth muscle (alpha-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro. Anti-tumor effects of anti-IL-6R Ab on PM of GC were investigated in an orthotopic murine PM model. IL-6 expression was significantly correlated with alpha-SMA expression in clinical samples of GC, and higher IL-6 expression in the primary tumor was associated with poor prognosis of GC. Higher IL-6 and alpha-SMA expressions were also observed in PM of GC. In vitro, differentiation of fibroblasts into CAFs and chemoresistance were observed in GC cells cocultured with fibroblasts. Anti-IL-6R Ab inhibited the progression of PM in GC cells cocultured with fibroblasts in the orthotopic mouse model but could not inhibit the progression of PM consisting of GC cells alone. IL-6 expression in the TME was associated with poor prognosis of GC, and CAFs were associated with establishment and progression of PM via IL-6. Anti-IL-6R Ab could inhibit PM of GC by the blockade of IL-6 secreted by CAFs, which suggests its therapeutic potential for PM of GC. en-copyright= kn-copyright= en-aut-name=MitsuiEma en-aut-sei=Mitsui en-aut-mei=Ema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkuraTomohiro en-aut-sei=Okura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UneYuta en-aut-sei=Une en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiwakiNoriyuki en-aut-sei=Nishiwaki en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhtsukaJunko en-aut-sei=Ohtsuka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhkiRieko en-aut-sei=Ohki en-aut-mei=Rieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=12 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Peritoneal metastasis kn-keyword=Peritoneal metastasis en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=Interleukin-6 kn-keyword=Interleukin-6 en-keyword=Cancer-associated fibroblasts kn-keyword=Cancer-associated fibroblasts en-keyword=Interleukin-6 receptor antibody kn-keyword=Interleukin-6 receptor antibody END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=46 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mapping Surface Potential in DNA Aptamer-Neurochemical and Membrane-Ion Interactions on the SOS Substrate Using Terahertz Microscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements. Beyond neurochemicals, we also investigated calcium ions, measuring their concentrations in PDMS-fabricated micro-wells using minimal sample volumes. Our results highlight the capability of TCM as a powerful, label-free, and sensitive platform for the probing and mapping of surface potential arising from molecular interactions, with broad implications for biomedical diagnostics and research. en-copyright= kn-copyright= en-aut-name=MoritaKosei en-aut-sei=Morita en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsudaYuta en-aut-sei=Mitsuda en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaSota en-aut-sei=Yoshida en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=terahertz chemical microscope kn-keyword=terahertz chemical microscope en-keyword=surface potential kn-keyword=surface potential en-keyword=DNA aptamer-neurochemical complexes kn-keyword=DNA aptamer-neurochemical complexes en-keyword=membrane-ion interactions kn-keyword=membrane-ion interactions en-keyword=SOS substrate kn-keyword=SOS substrate en-keyword=artificial cerebrospinal fluid kn-keyword=artificial cerebrospinal fluid END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Investigation of Hand Gestures for Controlling Video Games in a Rehabilitation Exergame System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Musculoskeletal disorders (MSDs) can significantly impact individuals' quality of life (QoL), often requiring effective rehabilitation strategies to promote recovery. However, traditional rehabilitation methods can be expensive and may lack engagement, leading to poor adherence to therapy exercise routines. An exergame system can be a solution to this problem. In this paper, we investigate appropriate hand gestures for controlling video games in a rehabilitation exergame system. The Mediapipe Python library is adopted for the real-time recognition of gestures. We choose 10 easy gestures among 32 possible simple gestures. Then, we specify and compare the best and the second-best groups used to control the game. Comprehensive experiments are conducted with 16 students at Andalas University, Indonesia, to find appropriate gestures and evaluate user experiences of the system using the System Usability Scale (SUS) and User Experience Questionnaire (UEQ). The results show that the hand gestures in the best group are more accessible than in the second-best group. The results suggest appropriate hand gestures for game controls and confirm the proposal's validity. In future work, we plan to enhance the exergame system by integrating a diverse set of video games, while expanding its application to a broader and more diverse sample. We will also study other practical applications of the hand gesture control function. en-copyright= kn-copyright= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnggrainiIrin Tri en-aut-sei=Anggraini en-aut-mei=Irin Tri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanChih-Peng en-aut-sei=Fan en-aut-mei=Chih-Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= en-keyword=hand gesture kn-keyword=hand gesture en-keyword=application control kn-keyword=application control en-keyword=exergame kn-keyword=exergame en-keyword=SUS kn-keyword=SUS en-keyword=UEQ kn-keyword=UEQ en-keyword=python kn-keyword=python en-keyword=mediapipe kn-keyword=mediapipe END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=52 article-no= start-page=35202 end-page=35213 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bright Quantum-Grade Fluorescent Nanodiamonds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6?1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2?3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 s (1.6 ms and 5.4 s maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28K/Hz. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications. en-copyright= kn-copyright= en-aut-name=OshimiKeisuke en-aut-sei=Oshimi en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiwataHitoshi en-aut-sei=Ishiwata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaHiromu en-aut-sei=Nakashima en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mandi?Sara en-aut-sei=Mandi? en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHina en-aut-sei=Kobayashi en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeramotoMinori en-aut-sei=Teramoto en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujiHirokazu en-aut-sei=Tsuji en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishibayashiYoshiki en-aut-sei=Nishibayashi en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShikanoYutaka en-aut-sei=Shikano en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AnToshu en-aut-sei=An en-aut-mei=Toshu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraMasazumi en-aut-sei=Fujiwara en-aut-mei=Masazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=The National Institutes for Quantum Science and Technology (QST), Institute for Quantum Life Science (iQLS) kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=7 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=8 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=9 en-affil=Institute of Systems and Information Engineering, University of Tsukuba kn-affil= affil-num=10 en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= en-keyword=nanodiamonds kn-keyword=nanodiamonds en-keyword=nitrogen-vacancy centers kn-keyword=nitrogen-vacancy centers en-keyword=spins kn-keyword=spins en-keyword=spin-relaxation times kn-keyword=spin-relaxation times en-keyword=quantum biosensor kn-keyword=quantum biosensor en-keyword=cellular probes kn-keyword=cellular probes END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=3 article-no= start-page=620 end-page=626 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues en-subtitle= kn-subtitle= en-abstract= kn-abstract=Taste sensors, also known as electronic tongues or bioelectronic tongues, are designed to evaluate food and beverages, as well as for medical diagnostics. These devices mimic the ability of the human tongue to detect and identify different tastes in liquid samples, such as sweet, sour, salty, bitter, and umami. In this study, a novel all-in-one terahertz taste sensor was proposed, which differs from traditional electrochemical approaches. This sensor utilizes terahertz technology for imaging and sensing chemical reactions on the terahertz semiconductor emitter surface. The surface can be functionalized with ion-sensitive membranes, proteins, DNA aptamers, and organic receptors, enabling the detection of various substances, such as solution pH, physiological ions, sugars, toxic chemicals, drugs, and explosives. Terahertz taste sensors offer several advantages, including being label-free, high sensitivity and selectivity, rapid response, minimal sample consumption, and the ability to detect non-charged chemical substances. By integrating multiple receptors or sensing materials on a single chip, the all-in-one terahertz taste sensor has significant potential for future taste substance detection, nutrition evaluation, metabolite and drug monitoring, and biomarker sensing. en-copyright= kn-copyright= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiKenji en-aut-sei=Sakai en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=21 article-no= start-page=2875 end-page=2884 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic and Histological Gastritis in University Students with Helicobacter pylori Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective Although the characteristics of Helicobacter pylori infection have been extensively reported, there is a lack of consensus regarding its characteristics in young adults. The present study examined the endoscopic and histological characteristics of young adults who underwent eradication therapy for H. pylori infection.
Methods We examined the H. pylori infection status of first-year students at Okayama University School of Medicine and Dentistry between 2014 and 2020. A total of 152 (6.8%) students who were positive for H. pylori antibody or pepsinogen tests were enrolled in the study. Among them, 107 students underwent endoscopy, and their biopsy samples were investigated. Seventy-five students were diagnosed with H. pylori infections.
Results Of 75 H. pylori-positive patients, 57 (76.0%) had endoscopic atrophic gastritis, and 42 (56.0%) had histological atrophy. A few patients had severe atrophic gastritis. All 65 patients who underwent an eradication assessment were successfully treated. After successful eradication, 26 patients underwent endoscopic follow-up. The mean follow-up period was 32.9 months. A histological evaluation revealed that gastric antrum atrophy had subsided in 11 of 14 patients, and atrophy in the lesser curvature of the gastric body had subsided in 7 of 8 patients.
Conclusion More than half of young adults with H. pylori infection had atrophic gastritis. We found mild atrophy in young adults, which subsided shortly after eradication treatment. This study provides a foundation for future studies to evaluate the validity of eradication therapy in preventing gastric cancer in patients. en-copyright= kn-copyright= en-aut-name=OkanoueShotaro en-aut-sei=Okanoue en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaeHiroyuki en-aut-sei=Sakae en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokotaKenji en-aut-sei=Yokota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ObayashiYuka en-aut-sei=Obayashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AbeMakoto en-aut-sei=Abe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=atrophic gastritis kn-keyword=atrophic gastritis en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori en-keyword=young adults kn-keyword=young adults en-keyword=eradication kn-keyword=eradication END start-ver=1.4 cd-journal=joma no-vol=391 cd-vols= no-issue= article-no= start-page=158 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnesium isotope composition of volcanic rocks from cold and warm subduction zones: Implications for the recycling of subducted serpentinites and carbonates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Magnesium (Mg) isotopes are regarded as a sensitive tracer to the contribution from subducted serpentinites and carbonates. However, the source, distribution, and controlling factors of the Mg isotope composition of arc magmas remain unclear. In this study, we investigated the intra-arc and inter-arc variations in Mg isotope compositions of volcanic rocks from two typical cold subduction zones [NE Japan (NEJ) and Izu arcs] and a typical hot subduction zone [SW Japan (SWJ) arc] to address the question. The volcanic rocks from the frontal-arc regions of NEJ and Izu have isotopically heavy Mg (26Mg = ?0.20 to ?0.08 ) compared to the mantle-like 26Mg values of most of volcanic rocks from SWJ and the rear regions of NEJ and Izu arcs (?0.28 to ?0.17 ). It is also worth noting that NEJ arc includes samples with 26Mg values (?0.61 to ?0.39 ) significantly lower than the mantle, but similar to the < 110 Ma intra-continental basalts from eastern China, which is the first observation in modern arc rocks. No obvious effects of post-eruptive alteration, fractional crystallization, partial melting, or the addition of silicate-rich sediment and oceanic crust components could be identified in the Mg isotope compositions of these volcanic rocks. By contrast, the correlations between the 26Mg values and the proxy for serpentinite component (i.e., 11B/10B and Nb/B ratios) indicate that the component exerts a strong control on the Mg-isotopic signature of these arc rocks. Considering metamorphic reactions in subduction lithologies under P-T conditions postulated for these arcs, the variations in 26Mg values of these arc magmas are unlikely to have been controlled by dehydration of serpentinites in subducted oceanic lithosphere (slab serpentinite). Instead, the high-26Mg values of frontal-arc rocks are delivered by the fluids from serpentinite formed in the lowermost part of the sub-arc mantle (mantle wedge serpentinite) in channelized flow. Comparatively, such a high-26Mg signature is invisible in volcanic rocks from rear-arc regions of NEJ and Izu, and the entire SWJ, suggesting that the major Mg carriers in subducted serpentinites (e.g., talc, chlorite, and serpentine) were broken down completely before subducted slabs reached the depth beneath these volcanoes. Moreover, the volcanic rocks with low 26Mg values from the rear arc of NEJ are characterized by high La/Yb and U/Nb ratios as well as low Ti/Eu, Ti/Ti*, and Hf/Hf* ratios, suggesting the involvements of carbonates in their magma sources. The quantitative modeling suggests that < 20 % of sedimentary carbonate (dolomite) was recycled into their mantle source, revealing that Mg-rich carbonate could be incorporated into a deep mantle wedge at rear-arc depths of 150?400 km in subduction zones. en-copyright= kn-copyright= en-aut-name=ZhangWei en-aut-sei=Zhang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangFang en-aut-sei=Huang en-aut-mei=Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= en-keyword=Magnesium isotopes kn-keyword=Magnesium isotopes en-keyword=Arc magmas kn-keyword=Arc magmas en-keyword=Mantle wedge serpentinite kn-keyword=Mantle wedge serpentinite en-keyword=Slab serpentinite kn-keyword=Slab serpentinite en-keyword=Carbonate recycle kn-keyword=Carbonate recycle END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=19 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Mineralogy and geochemistry of magnetite-garnet bearing skarn deposits surrounding iron-smelting sites in the Kibi region of Japan kn-title=gSՎӒn̎Sz΃XJSz΂̍zwIEnwI en-subtitle= kn-subtitle= en-abstract= kn-abstract=We conducted mineralogical and geochemical analysis of ore samples taken from locations surrounding the Jinmu, Sanp?, and K?moto mines in order to determine the source of iron ore uncovered from archaeological sites. The mineral composition of the magnetite-garnet bearing skarn deposits varies from mine to mine: while clinopyroxene and amphibole are present in the Jinmu and Sanp? samples, only a small amount of clinopyroxene occurs in the K?moto samples. The chemical compositions of magnetite and garnet are distinctive for each mine. Among the trace elements contained in the magnetite, Mg and Mn tend to be higher in the K?moto samples, Ti in the Jinmu samples, and Ca and Si in the Sanp? samples. The garnet from all the mines is andradite, but while the K?moto samples contain almost no Al, it is present in the Jinmu and Sanp? samples. Although samples were taken from a limited number of mine areas (three), our analysis provides an index for comparison with iron ore uncovered from archaeological sites, which will aid in provenance determination. en-copyright= kn-copyright= en-aut-name=TAKECHIYasushi en-aut-sei=TAKECHI en-aut-mei=Yasushi kn-aut-name=q׎j kn-aut-sei=q kn-aut-mei=׎j aut-affil-num=1 ORCID= en-aut-name=NAKAMURADaisuke en-aut-sei=NAKAMURA en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SUZUKIShigeyuki en-aut-sei=SUZUKI en-aut-mei=Shigeyuki kn-aut-name=ؖΔV kn-aut-sei= kn-aut-mei=ΔV aut-affil-num=3 ORCID= en-aut-name=RYANJoseph en-aut-sei=RYAN en-aut-mei=Joseph kn-aut-name=CAWZt kn-aut-sei=CA kn-aut-mei=WZt aut-affil-num=4 ORCID= en-aut-name=UWAGAKITakeshi en-aut-sei=UWAGAKI en-aut-mei=Takeshi kn-aut-name=㞁 kn-aut-sei=㞁 kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NAGAHARAMasato en-aut-sei=NAGAHARA en-aut-mei=Masato kn-aut-name=l kn-aut-sei= kn-aut-mei=l aut-affil-num=6 ORCID= en-aut-name=YOSHIEYuta en-aut-sei=YOSHIE en-aut-mei=Yuta kn-aut-name=g]Y kn-aut-sei=g] kn-aut-mei=Y aut-affil-num=7 ORCID= en-aut-name=IKEHATAKei en-aut-sei=IKEHATA en-aut-mei=Kei kn-aut-name=r[c kn-aut-sei=r[ kn-aut-mei=c aut-affil-num=8 ORCID= en-aut-name=KIMURAOsamu en-aut-sei=KIMURA en-aut-mei=Osamu kn-aut-name=ؑ kn-aut-sei=ؑ kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HATTORIRyoichi en-aut-sei=HATTORI en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Kurashiki Museum of Natural History kn-affil= affil-num=2 en-affil=Okayama University, Department of Earth Sciences kn-affil= affil-num=3 en-affil=Okayama University, Department of Earth Sciences kn-affil= affil-num=4 en-affil=Okayama University, Research Institute for the Dynamics of Civilizations kn-affil= affil-num=5 en-affil=Okayama Prefectural Board of Education kn-affil= affil-num=6 en-affil=The Historical Study Group of Mining and Metallurgy of Japan kn-affil= affil-num=7 en-affil=Mitsui Mining & Smelting Co., Ltd. kn-affil= affil-num=8 en-affil=University of Tsukuba, Faculty of Life and Environmental Sciences kn-affil= affil-num=9 en-affil=Okayama University, Research Institute for the Dynamics of Civilizations kn-affil= affil-num=10 en-affil=Osaka University, Graduate School of Humanities kn-affil= en-keyword=Iron-smithing sites kn-keyword=Iron-smithing sites en-keyword=skarn deposits kn-keyword=skarn deposits en-keyword=mineral composition of ore kn-keyword=mineral composition of ore en-keyword=geochemical analysis kn-keyword=geochemical analysis END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue=11 article-no= start-page=uoae118 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Refined surface area determination of graphene oxide using methylene blue as a probe molecule: a comparative approach en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this research, we explored the effectiveness of the methylene blue adsorption method as an alternative approach for determining the specific surface area of graphene oxide. Initially, through a comparative analysis with reference activated carbon, we identified the limitations of utilizing N2 physisorption for specific surface area determination of graphene oxide. Our findings revealed that the standard pretreatment process (heating under vacuum) before N2 physisorption led to damage to the surface oxygen groups on graphene oxide, and the measured surface areas (43?m2/g) do not accurately represent the entire surface area. To optimize methylene blue coverage on graphene oxide, we conducted adsorption equilibrium experiments, focusing on controlling temperature and pH. The pH was significantly important in regulating the coverage of methylene blue. Under the optimized methylene blue adsorption conditions, the specific surface area of graphene oxide was 1,555?m2/g. Our assumptions regarding specific surface area calculations were supported by structural characterization of samples with varying methylene blue uptakes. The results confirmed a uniform coverage of methylene blue on graphene oxide by scanning electron microscopy and energy dispersive X-ray, X-ray diffraction, and atomic force microscopy. en-copyright= kn-copyright= en-aut-name=Ortiz-AnayaIsrael en-aut-sei=Ortiz-Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=graphene oxide kn-keyword=graphene oxide en-keyword=methylene blue kn-keyword=methylene blue en-keyword=specific surface area kn-keyword=specific surface area END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=29419 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAR1 could be a potential diagnostic target for intrauterine infection patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intrauterine infection (IUI) is mainly an ascending infection in which vaginal and cervical pathogens ascend to the uterus and can affect the fetus. Until now, there is still no effective diagnostic biomarker for IUI, such as chorioamnionitis (CAM) and funisitis (FUN). Deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) editing molecules such as apolipoprotein-B mRNA-editing complex (APOBEC) 3 families and Adenosine deaminase family acting on RNA (ADAR)1 were examined in chorioamniotic membranes and umbilical cord of 83 patient samples. Furthermore, Ureaplasma parvum induced ADAR1 was investigated in human HTR-8/SVneo EVT cell line. ADAR1 had a significantly higher area under the curve (AUC) (0.721 and 0.745) than other APOBEC3s or cytokines in CAM and FUN patients. In vitro, ureaplasma parvum was demonstrated to activate ADAR1 (p?=?0.025) and reduce RIG-I, IRF3, IFN-, and IFN- expression in EVT cell line (p?=?0.005, p?=?0.010, p? Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ?18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.
Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI ?0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI ?0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI ?0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.
Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyako en-aut-sei=Sasaki en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Antibody kn-keyword=Antibody en-keyword=Mixed-effects model kn-keyword=Mixed-effects model en-keyword=Omicron kn-keyword=Omicron END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=323 end-page=330 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Recipient Age on Perioperative Complications after Pediatric Liver Transplantation: A Single-Center Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=It has not been clear how recipient age affects the incidence of serious complications after pediatric living donor liver transplantation (LDLT). We investigated the records of 42 pediatric patients receiving LDLT, dividing our sample into two groups: the infant group (aged < 1 year) and the non-infant group (aged ? 1 year and ?15 years). The primary outcome was postoperative complications assessed using the Clavien-Dindo classification. Multivariate analysis using the Cox regression model was applied to adjust for confounding factors in assessing the incidence of Clavien-Dindo grade ? III (C-D ? III) complications. The incidence of C-D ? III complications was higher in the non-infant group (46.2%) than in the infant group (12.5%) (odds ratio 6.00, 95% confidence interval [CI] 1.13-31.88, p=0.03). In multivariate analysis using the Cox regression model, the Graft-to-Recipient Weight Ratio (GRWR) was independently associated with the incidence of C-D ? III complications (hazard ratio [HR] 0.62, 95%CI 0.40-0.95, p=0.03), but being an infant was not (HR 0.84, 95%CI 0.35-1.98, p=0.68). In conclusion, the incidence of C-D ? III complications was higher in the non-infant group than in the infant group, but this was largely a function of GRWR: multivariate analysis revealed that GRWR was independently associated with complications. en-copyright= kn-copyright= en-aut-name=KatayamaAkira en-aut-sei=Katayama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesia, Kyoto University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology, Mie University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=pediatric liver transplantation kn-keyword=pediatric liver transplantation en-keyword=postoperative severe complications kn-keyword=postoperative severe complications en-keyword=Graft-to-Recipient Weight Ratio kn-keyword=Graft-to-Recipient Weight Ratio END start-ver=1.4 cd-journal=joma no-vol=378 cd-vols= no-issue= article-no= start-page=113269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous carbon with extremely low micropore content synthesized from graphene oxide modified with alkali metal nitrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-temperature thermal exfoliation is a simple, rapid, and cost-efficient method for transforming graphene oxide (GO) materials into reduced graphene oxide (rGO) materials. In this study, GO materials were dispersed with alkali metal nitrates (MNO3), leading to the preparation of porous rGO materials characterized by high specific surface area (SSA) and pore volume via high-temperature thermal exfoliation. Experimental data indicate that the metal cations of MNO3 tend to react directly with the oxygen functional groups (OFG) of GO, modulating the OFG content. Simultaneously, nitrate anions have preferential interaction with alkali metal ions and adhere to the surface of the GO. The presence of MNO3 on the surface of GO facilitates the thermal exfoliation process and leads to the formation of structures with an extremely high proportion of mesoporous content. The isothermal gas adsorption results show that the exfoliation efficiency of the samples activated with different nitrate salts decreases in the order rGO-KNO3 > rGO-NaNO3 > rGO-LiNO3. Among these samples, rGO modified with KNO3 exhibited the greatest exfoliation efficiency, with a mesopore-to-micropore volume ratio of 22.4, more than 1.7 times that of rGO. Its SSA and pore volume were 359 m2 g?1 and 1.26 cm3 g?1, respectively. These values significantly surpass those of rGO. Our research findings demonstrate that activation with MNO3 significantly increases the SSA and pore volume of the GO material after high-temperature annealing. en-copyright= kn-copyright= en-aut-name=LiZhao en-aut-sei=Li en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyotaMoeto en-aut-sei=Toyota en-aut-mei=Moeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Mesoporous carbon kn-keyword=Mesoporous carbon en-keyword=Alkali metal nitrates kn-keyword=Alkali metal nitrates en-keyword=Oxygen functional groups kn-keyword=Oxygen functional groups en-keyword=Activation kn-keyword=Activation en-keyword=Thermal exfoliation kn-keyword=Thermal exfoliation END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=15 article-no= start-page=8370 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased Oxidative Stress and Decreased Citrulline in Blood Associated with Severe Novel Coronavirus Pneumonia in Adult Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the correlation between oxidative stress and blood amino acids associated with nitric oxide metabolism in adult patients with coronavirus disease (COVID-19) pneumonia. Clinical data and serum samples were prospectively collected from 100 adult patients hospitalized for COVID-19 between July 2020 and August 2021. Patients with COVID-19 were categorized into three groups for analysis based on lung infiltrates, oxygen inhalation upon admission, and the initiation of oxygen therapy after admission. Blood data, oxidative stress-related biomarkers, and serum amino acid levels upon admission were compared in these groups. Patients with lung infiltrations requiring oxygen therapy upon admission or starting oxygen post-admission exhibited higher serum levels of hydroperoxides and lower levels of citrulline compared to the control group. No remarkable differences were observed in nitrite/nitrate, asymmetric dimethylarginine, and arginine levels. Serum citrulline levels correlated significantly with serum lactate dehydrogenase and C-reactive protein levels. A significant negative correlation was found between serum levels of citrulline and hydroperoxides. Levels of hydroperoxides decreased, and citrulline levels increased during the recovery period compared to admission. Patients with COVID-19 with extensive pneumonia or poor oxygenation showed increased oxidative stress and reduced citrulline levels in the blood compared to those with fewer pulmonary complications. These findings suggest that combined oxidative stress and abnormal citrulline metabolism may play a role in the pathogenesis of COVID-19 pneumonia. en-copyright= kn-copyright= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KudoKenichiro en-aut-sei=Kudo en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoYasushi en-aut-sei=Tanimoto en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsumuneSho en-aut-sei=Mitsumune en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KimuraGoro en-aut-sei=Kimura en-aut-mei=Goro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaHaruto en-aut-sei=Yamada en-aut-mei=Haruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakataIchiro en-aut-sei=Takata en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=9 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=10 en-affil=Department of Infectious Disease, Okayama City Hospital kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of General Thoracic Surgery and Breast and Endocrine Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=novel coronavirus disease 2019 kn-keyword=novel coronavirus disease 2019 en-keyword=pneumonia kn-keyword=pneumonia en-keyword=hydroperoxide kn-keyword=hydroperoxide en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=citrulline kn-keyword=citrulline en-keyword=arginine kn-keyword=arginine en-keyword=asymmetric dimethylarginine kn-keyword=asymmetric dimethylarginine END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=11 article-no= start-page=1596 end-page=1601 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of the Expression of Serine Protease in Vibrio vulnificus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vibrio vulnificus is a Gram-negative estuarine bacterium that causes infection in immuno-compromised patients, eels, and shrimp. V. vulnificus NCIMB2137, a metalloprotease-negative strain isolated from a diseased eel, produces a 45-kDa chymotrypsin-like alkaline serine protease known as VvsA. The gene encoding vvsA also includes another gene, vvsB with an unknown function; however, it is assumed to be an essential molecular chaperone for the maturation of VvsA. In the present study, we used an in vitro cell-free translation system to examine the maturation pathway of VvsA. We individually expressed the vvsA and vvsB genes and detected their mRNAs. However, the sample produced from vvsA did not exhibit protease activity. A sodium dodecyl sulfate (SDS) analysis detected the VvsB protein, but not the VvsA protein. A Western blotting analysis using a histidine (His)-tag at the amino terminus of proteins also showed no protein production by vvsA. These results suggested the translation, but not the transcription of vvsA. Factors derived from Escherichia coli were used in the in vitro cell-free translation system employed in the present study. The operon of the serine protease gene containing vvsA and vvsB was expressed in E. coli. Although serine proteases were produced, they were cleaved at different sites and no active mature forms were detected. These results indicate that the operon encoding vvsA and vvsB is a gene constructed to be specifically expressed in V. vulnificus. en-copyright= kn-copyright= en-aut-name=KawaseTomoka en-aut-sei=Kawase en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DebnathAnusuya en-aut-sei=Debnath en-aut-mei=Anusuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoTamaki en-aut-sei=Mizuno en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakeYui en-aut-sei=Miyake en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio vulnificus serine protease kn-keyword=Vibrio vulnificus serine protease en-keyword=intermolecular chaperone kn-keyword=intermolecular chaperone en-keyword=cell-free translation system kn-keyword=cell-free translation system END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=1 article-no= start-page=219 end-page=228 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel Peptidome Technology for the Diagnosis of Mild Cognitive Impairment and Alzheimerfs Disease by Selected Reaction Monitoring en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background:With the aging of populations worldwide, Alzheimerfs disease (AD) has become a concern due to its high prevalence and the continued lack of established treatments. Early diagnosis is required as a preventive intervention to modify the diseasefs progression. In our previous study, we performed peptidomic analysis of serum samples obtained from AD patients and age-matched healthy subjects to seek peptide biomarker candidates for AD by using BLOTCHIP-MS analysis, and identified four peptides as AD biomarker candidates.
Objective:The objective was to validate the serum biomarker peptides to distinguish mild cognitive impairment (MCI) and AD in comparison to cognitively healthy controls using a new peptidome technology, the Dementia Risk Test.
Methods:We enrolled 195 subjects with normal cognitive function (NC; n?=?70), MCI (n?=?55), and AD (n?=?70), The concentrations of cognitive impairment marker peptides (Fibrinogen chain (FAC), Fibrinogen chain (FBC), Plasma protease C1 inhibitor (PPC1I), 2-HS-glycoprotein (AHSG)) were quantified by using a selected reaction monitoring assay based on liquid chromatography-MS/MS.
Results:The present study confirmed that three peptides, FAC, FBC, and PPC1I, were significantly upregulated during the onset of AD. This three-peptide set was both highly sensitive in determining AD (sensitivity: 85.7%, specificity: 95.7%, AUC: 0.900) and useful in distinguishing MCI (sensitivity: 61.8%, specificity: 98.6%, AUC: 0.824) from NC.
Conclusions:In this validation study, we confirmed the high diagnostic potential of the three peptides identified in our previous study as candidate serum biomarkers for AD. The Dementia Risk Test may be a powerful tool for detecting AD-related pathological changes. en-copyright= kn-copyright= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadokoroKoh en-aut-sei=Tadokoro en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaMinaki en-aut-sei=Hamada en-aut-mei=Minaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaKyoichi en-aut-sei=Asada en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeLyang-Ja en-aut-sei=Lee en-aut-mei=Lyang-Ja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TachikiHidehisa en-aut-sei=Tachiki en-aut-mei=Hidehisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Protosera, Inc. kn-affil= affil-num=4 en-affil=Protosera, Inc. kn-affil= affil-num=5 en-affil=Protosera, Inc. kn-affil= affil-num=6 en-affil=Protosera, Inc. kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimerfs disease kn-keyword=Alzheimerfs disease en-keyword=biochemical marker kn-keyword=biochemical marker en-keyword=dementia risk test kn-keyword=dementia risk test en-keyword=liquid chromatography-MS/MS kn-keyword=liquid chromatography-MS/MS en-keyword=mild cognitive impairment kn-keyword=mild cognitive impairment en-keyword=peptidome kn-keyword=peptidome en-keyword=selected reaction monitoring kn-keyword=selected reaction monitoring END start-ver=1.4 cd-journal=joma no-vol=208 cd-vols= no-issue= article-no= start-page=145- end-page=154 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of proportions and prognostic impact of pathological complete response between evaluations of representative specimen and total specimen in primary breast cancer after neoadjuvant chemoradiotherapy: an ancillary study of JCOG0306 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background In JCOG0306 trial, a phase II study to examine the efficacy of neoadjuvant chemotherapy followed by radiation therapy (NAC-RT) to primary breast cancer, pathological complete response (pCR) was evaluated from specimens of the representative cross-section including the tumor center that had been accurately marked [representative specimen (RS) method]. In this ancillary study, we examined if the RS method was comparable to the conventional total specimen (TS) method, which is widely employed in Japan, to identify the pCR group showing excellent prognosis.
Methods We obtained long-term follow-up data of 103 patients enrolled in JCOG0306 trial. As histological therapeutic effect, pCR (ypT0 and ypT0/is) and quasi-pCR [QpCR, ypT0/is plus Grade 2b (only a few remaining invasive cancer cells)] were evaluated with RS and TS methods. Concordance of pCR between these two methods and associations of the pCR with prognosis were examined.
Results ypT0, ypT0/is, and QpCR were observed in 28 (27.2%), 39 (37.9%), and 45 (43.7%) patients with RS method, whereas these were 20 (19.4%), 25 (24.3%) and 40 (38.9%) with TS method, respectively. Between RS and TS methods, concordance proportions of ypT0 and ypTis were 92.2% and 86.4%, respectively. Risk of recurrence of ypT0/is group was lower than that of non-ypT0/is group (HR 0.408, 95% CI [0.175?0.946], P?=?0.037) and risk of death of ypT0/is group was lower than that of non-ypT0/is group (HR 0.251, 95% CI [0.073?0.857], P?=?0.027). The ypT0 and ypT0/is groups with RS method showed excellent prognosis similarly with those with TS method, and RS method was able to differentiate the OS and RFS between pCR and non-pCR than TS method significantly even if pCR was classified ypT0 or ypT0/is. With TS method, QpCR criteria stratified patients into the better and worse prognosis groupsmore clearly than pCR criteria of ypT0 or ypT0/is.
Conclusions RS method was comparable to TS method for the evaluation of pCR in the patients who received NAC-RT to primary breast cancer provided the tumor center was accurately marked. As pCR criteria with RS method, ypT0/is appeared more appropriate than ypT0. en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsudaHitoshi en-aut-sei=Tsuda en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiKeita en-aut-sei=Sasaki en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizusawaJunki en-aut-sei=Mizusawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaFutoshi en-aut-sei=Akiyama en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurosumiMasafumi en-aut-sei=Kurosumi en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SawakiMasataka en-aut-sei=Sawaki en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamuraNobuko en-aut-sei=Tamura en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKiyo en-aut-sei=Tanaka en-aut-mei=Kiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KogawaTakahiro en-aut-sei=Kogawa en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakahashiMina en-aut-sei=Takahashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashiNaoki en-aut-sei=Hayashi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MukaiHirofumi en-aut-sei=Mukai en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MasudaNorikazu en-aut-sei=Masuda en-aut-mei=Norikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Basic Pathology, National Defense Medical College kn-affil= affil-num=3 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=4 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Pathology, Cancer Institute Hospital kn-affil= affil-num=6 en-affil=Department of Diagnostic Pathology, Kameda Kyobashi Clinic kn-affil= affil-num=7 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=10 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=11 en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Department of Breast Surgery Oncology, St Lukes International Hospital kn-affil= affil-num=13 en-affil=Department of Breast and Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital kn-affil= affil-num=15 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=16 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Neoadjuvant chemoradiotherapy kn-keyword=Neoadjuvant chemoradiotherapy en-keyword=Pathological therapeutic effect kn-keyword=Pathological therapeutic effect en-keyword=Specimen sampling method kn-keyword=Specimen sampling method END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=259 end-page=270 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol?disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patientsf sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol?disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol?disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol?disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol?disulfide homeostasis in multiple sclerosis patients. en-copyright= kn-copyright= en-aut-name=VuralGonul en-aut-sei=Vural en-aut-mei=Gonul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DemirEsra en-aut-sei=Demir en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GumusyaylaSadiye en-aut-sei=Gumusyayla en-aut-mei=Sadiye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ErenFunda en-aut-sei=Eren en-aut-mei=Funda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarakliSerdar en-aut-sei=Barakli en-aut-mei=Serdar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NeseliogluSalim en-aut-sei=Neselioglu en-aut-mei=Salim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ErelOzcan en-aut-sei=Erel en-aut-mei=Ozcan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=2 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=3 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=4 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=7 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= en-keyword=multiple sclerosis kn-keyword=multiple sclerosis en-keyword=dysfunctional HDL kn-keyword=dysfunctional HDL en-keyword=thiol?disulfide homeostasis kn-keyword=thiol?disulfide homeostasis en-keyword=cognitive decline kn-keyword=cognitive decline END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=215 end-page=225 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of a New Elbow Joint Positioning Method Using Area Detector Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=We propose a sitting position that achieves both high image quality and a reduced radiation dose in elbow joint imaging by area detector computed tomography (ADCT), and we compared it with the esupermanf and supine positions. The volumetric CT dose index (CTDIvol) for the sitting, superman, and supine positions were 2.7, 8.0, and 20.0 mGy and the dose length products (DLPs) were 43.4, 204.7, and 584.8 mGy ? cm, respectively. In the task-based transfer function (TTF), the highest value was obtained for the sitting position in both bone and soft tissue images. The noise power spectrum (NPS) of bone images showed that the superman position had the lowest value up to approx. 1.1 cycles/mm or lower, whereas the sitting position had the lowest value when the NPS was greater than approx. 1.1 cycles/mm. The overall image quality in an observer study resulted in the following median Likert scores for Readers 1 and 2: 5.0 and 5.0 for the sitting position, 4.0 and 3.5 for the superman position, and 4.0 and 2.0 for the supine position. These results indicate that our proposed sitting position with ADCT of the elbow joint can provide superior image quality and allow lower radiation doses compared to the superman and supine positions. en-copyright= kn-copyright= en-aut-name=AkagawaTakuya en-aut-sei=Akagawa en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiRyohei en-aut-sei=Fukui en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KidaKatsuhiro en-aut-sei=Kida en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraRyutaro en-aut-sei=Matsuura en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimadaMakoto en-aut-sei=Shimada en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinoshitaMitsuhiro en-aut-sei=Kinoshita en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagawaYoko en-aut-sei=Akagawa en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Tokushima Red Cross Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Radiology, Osaka International Cancer Institute kn-affil= affil-num=6 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= en-keyword=area detector computed tomography kn-keyword=area detector computed tomography en-keyword=elbow joint kn-keyword=elbow joint en-keyword=sitting position kn-keyword=sitting position en-keyword=dose reduction kn-keyword=dose reduction en-keyword=image quality assessment kn-keyword=image quality assessment END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue= article-no= start-page=103650 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of cellulose nanofibers on soil water retention and aggregate stability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Innovative solutions that address global challenges such as water scarcity and soil erosion are critical for maintaining sustainable agriculture. Due to their water-absorbing and soil-binding properties, cellulose nanofibers (CNF) can be applied to soil to enhance soil water retention and aggregate stability. In this study, we analyzed the effects of the drying temperature, dosage, irrigation water quality, and soil type on the efficacy of CNFs. Our results revealed that CNF dried at 5 degrees C is more effective at absorbing water than others, and adding 1% CNF enhanced soil water content up to 98%. The CNF samples absorbed water due to their hydrophilic molecular groups and morphological structure, as confirmed by Fourier-transform infrared spectroscopy and scanning electron microscopy. CNF addition increased the soil volumetric water content and prolonged water retention by 22 days in the paddy soil samples, highlighting its potential for drought-prone areas. Furthermore, irrigation water quality, such as pH and cation values, influenced the interactions between CNF and water molecules, suggesting adjustments to the water retention curve. In its hydrated state, CNF promotes colloid flocculation and binds to soil particles, thereby strengthening the bonds crucial for aggregate formation and stability. CNF enhanced macro-aggregate formation by up to 48% and 59% in the masa and paddy soil samples, respectively. Our study emphasizes the potential of CNF for water conservation, soil health, and overall agricultural sustainability. en-copyright= kn-copyright= en-aut-name=NgoAn Thuy en-aut-sei=Ngo en-aut-mei=An Thuy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BuiLong Thanh en-aut-sei=Bui en-aut-mei=Long Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Soil amendments kn-keyword=Soil amendments en-keyword=water -saving polymers kn-keyword=water -saving polymers en-keyword=soil moisture improvement kn-keyword=soil moisture improvement en-keyword=mean weight diameter kn-keyword=mean weight diameter en-keyword=irrigation water kn-keyword=irrigation water END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=877 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Isolation of Vibrio cholerae and Vibrio vulnificus from Estuarine Waters, and Genotyping of V. vulnificus Isolates Using Loop-Mediated Isothermal Amplification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bacteria in the genus Vibrio are ubiquitous in estuarine and coastal waters. Some species (including Vibrio cholerae and Vibrio vulnificus) are known human pathogens causing ailments like cholera, diarrhea, or septicemia. Notably, V. vulnificus can also cause a severe systemic infection (known as vibriosis) in eels raised in aquaculture facilities. Water samples were periodically collected from the estuary of the Asahi River, located in the southern part of Okayama City, Japan. These samples were directly plated onto CHROMagar Vibrio plates, and colonies displaying turquoise-blue coloration were selected. Thereafter, polymerase chain reaction was used to identify V. cholerae and V. vulnificus. A total of 30 V. cholerae strains and 194 V. vulnificus strains were isolated during the warm season when the water temperature (WT) was higher than 20 degrees C. Concurrently, an increase in coliforms was observed during this period. Notably, V. vulnificus has two genotypes, designated as genotype 1 and genotype 2. Genotype 1 is pathogenic to humans, while genotype 2 is pathogenic to both humans and eels. The loop-mediated isothermal amplification method was developed to rapidly determine genotypes at a low cost. Of the 194 strains isolated, 80 (41.2%) were identified as genotype 1 strains. Among the 41 strains isolated when the WTs were higher than 28 degrees C, 25 strains (61.0%) belonged to genotype 1. In contrast, of the 32 strains isolated when the WTs were lower than 24 degrees C, 27 strains (84.4%) belonged to genotype 2. These results suggest that the distribution of the two genotypes was influenced by WT. en-copyright= kn-copyright= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurataMegumi en-aut-sei=Kurata en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiroseRiho en-aut-sei=Hirose en-aut-mei=Riho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshikawaMasaya en-aut-sei=Yoshikawa en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiangYong en-aut-sei=Liang en-aut-mei=Yong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamagishiYosuke en-aut-sei=Yamagishi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizunoTamaki en-aut-sei=Mizuno en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio cholerae kn-keyword=Vibrio cholerae en-keyword=Vibrio vulnificus kn-keyword=Vibrio vulnificus en-keyword=genotype kn-keyword=genotype en-keyword=LAMP kn-keyword=LAMP en-keyword=water temperature kn-keyword=water temperature END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=e174618 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro -tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph -circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC. en-copyright= kn-copyright= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShanQuisheng en-aut-sei=Shan en-aut-mei=Quisheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MizukawaNobuyoshi en-aut-sei=Mizukawa en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Universit kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=4 article-no= start-page=430 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240421 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Swelling Stress of Bentonite: Thermodynamics of Interlayer Water in K-Montmorillonite in Consideration of Alteration en-subtitle= kn-subtitle= en-abstract= kn-abstract=The buffer material that makes up the geological disposal system of high-level waste swells by contact with groundwater and seals space with rock mass and fractures in rock mass. The buffer material has a function of mechanical buffer with rock pressure, and swelling stress is important in this case. The alteration of bentonite may occur due to the initial replacement of cations (Na+ ions) in the interlayer with K+ ions upon contact with groundwater, but there are no studies on the swelling stress of K-bentonite. In this study, the author prepared K-montmorillonite samples and obtained thermodynamic data on interlayer water as a function of water content using a relative humidity method. The swelling stress was analyzed based on a thermodynamic model developed in earlier studies and compared with measured data. The activity and the relative partial molar Gibbs free energy of porewater decreased with decreasing water content in the region, below approximately 15%. This behavior significantly differs from that of other ions, such as Na. The swelling stress calculated based on the thermodynamic model and date occurred in the region of high density of 1.9 Mg/m3 with montmorillonite partial density. It was indicated for the first time that K-bentonite scarcely swells under realistic design conditions. en-copyright= kn-copyright= en-aut-name=EndoMisato en-aut-sei=Endo en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoHaruo en-aut-sei=Sato en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute of Academic and Research, Okayama University kn-affil= en-keyword=swelling stress kn-keyword=swelling stress en-keyword=K-montmorillonite kn-keyword=K-montmorillonite en-keyword=thermodynamic data kn-keyword=thermodynamic data en-keyword=interlayer water kn-keyword=interlayer water en-keyword=relative humidity method kn-keyword=relative humidity method END start-ver=1.4 cd-journal=joma no-vol=55 cd-vols= no-issue=12 article-no= start-page=1393 end-page=1398 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230818 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of the blend ratio of cyclic and linear polyethylene blends on isothermal crystallization in the quiescent state en-subtitle= kn-subtitle= en-abstract= kn-abstract=The role of entanglements that form between cyclic and linear polymers in crystallization is of particular interest, but it is not fully understood. We investigated the crystallization behaviors of blends of cyclic polyethylene (C-PE) and linear polyethylene (L-PE) in a quiescent state to elucidate the role of this novel entanglement in crystallization. The samples were prepared by mixing the prepared C-PE and L-PE specimens at L-PE weight fraction (L-PE) values of 0?100?wt%, with the weight average molecular weights of C-PE and L-PE being 175?~?103 and 154?~?103, respectively. The isothermal crystallization behaviors were analyzed through polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The morphology observed through POM was similar to that of L-PE. From the time evolution of the heat flow measured via DSC, we obtained the half-crystallization time (t1/2) values as functions of L-PE at different degrees of supercooling (T). The 1/t1/2 values of the C-PE and L-PE homopolymers were approximately the same at T?=?25.5 and 26.5?K. At a larger T value, the 1/t1/2 value of C-PE was significantly larger than that of L-PE. In contrast, 1/t1/2 reached a minimum value at L-PE?=?30?40?wt%, irrespective of T. As the entanglement density increased with increasing L-PE, the crystallization rate was expected to decrease monotonically. By considering the experimental relationship between 1/t1/2 and L-PE, we speculated that the suppression of crystallization in the blended system was caused by a novel entanglement formed by the penetration of the L-PE chain into the C-PE chain. en-copyright= kn-copyright= en-aut-name=KobayashiKeiko en-aut-sei=Kobayashi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AtarashiHironori en-aut-sei=Atarashi en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamazakiShinichi en-aut-sei=Yamazaki en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraKunio en-aut-sei=Kimura en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=46 cd-vols= no-issue=4 article-no= start-page=180 end-page=186 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploration of urine metabolic biomarkers for new-onset, untreated pediatric epilepsy: A gas and liquid chromatography mass spectrometry-based metabolomics study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The discovery of objective indicators for recent epileptic seizures will help confirm the diagnosis of epilepsy and evaluate therapeutic effects. Past studies had shortcomings such as the inclusion of patients under treatment and those with various etiologies that could confound the analysis results significantly. We aimed to minimize such confounding effects and to explore the small molecule biomarkers associated with the recent occurrence of epileptic seizures using urine metabolomics.
Methods: This is a multicenter prospective study. Subjects included pediatric patients aged 2 to 12 years old with new-onset, untreated epilepsy, who had had the last seizure within 1 month before urine collection. Controls included healthy children aged 2 to 12 years old. Those with underlying or chronic diseases, acute illnesses, or recent administration of medications or supplements were excluded. Targeted metabolome analysis of spot urine samples was conducted using gas chromatography (GC)- and liquid chromatography (LC)-tandem mass spectrometry (MS/MS).
Results: We enrolled 17 patients and 21 controls. Among 172 metabolites measured by GC/MS/MS and 41 metabolites measured by LC/MS/MS, only taurine was consistently reduced in the epilepsy group. This finding was subsequently confirmed by the absolute quantification of amino acids. No other metabolites were consistently altered between the two groups.
Conclusions: Urine metabolome analysis, which covers a larger number of metabolites than conventional biochemistry analyses, found no consistently altered small molecule metabolites except for reduced taurine in epilepsy patients compared to healthy controls. Further studies with larger samples, subjects with different ages, expanded target metabolites, and the investigation of plasma samples are required. en-copyright= kn-copyright= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaigusaDaisuke en-aut-sei=Saigusa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueTakushi en-aut-sei=Inoue en-aut-mei=Takushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokorodaniChiho en-aut-sei=Tokorodani en-aut-mei=Chiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaMari en-aut-sei=Akiyama en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MichiueRie en-aut-sei=Michiue en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriAtsushi en-aut-sei=Mori en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HishinumaEiji en-aut-sei=Hishinuma en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaNaomi en-aut-sei=Matsukawa en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsuchiyaHiroki en-aut-sei=Tsuchiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Pediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University kn-affil= affil-num=3 en-affil=Department of Pediatric Neurology, NHO Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Pediatrics, Kochi Health Sciences Center kn-affil= affil-num=5 en-affil=Department of Pediatrics (Child Neurology), Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pediatrics (Child Neurology), Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Neurology, Shiga Medical Center for Children kn-affil= affil-num=8 en-affil=Tohoku Medical Megabank Organization, Tohoku University kn-affil= affil-num=9 en-affil=Tohoku Medical Megabank Organization, Tohoku University kn-affil= affil-num=10 en-affil=Department of Pediatrics (Child Neurology), Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Pediatrics (Child Neurology), Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Pediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Amino acids kn-keyword=Amino acids en-keyword=Gas chromatography kn-keyword=Gas chromatography en-keyword=Liquid chromatography kn-keyword=Liquid chromatography en-keyword=Mass spectrometry kn-keyword=Mass spectrometry en-keyword=New-onset epilepsy kn-keyword=New-onset epilepsy END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=140 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic manifestation of intestinal transplant-associated microangiopathy after stem cell transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Endoscopic features of intestinal transplant-associated microangiopathy (iTAM) have not been comprehensively investigated. This study aimed to examine the endoscopic characteristics of patients diagnosed with iTAM.
Methods This retrospective analysis included 14 patients pathologically diagnosed with iTAM after stem cell transplantation for hematolymphoid neoplasms (n = 13) or thalassemia (n = 1). The sex, age at diagnosis, endoscopic features, and prognosis of each patient were assessed. Serological markers for diagnosing transplant-associated thrombotic microangiopathy were also evaluated.
Results The mean age at the time of iTAM diagnosis was 40.2 years. Patients diagnosed based on the pathognomonic pathological changes of iTAM presented with diverse symptoms at the times of endoscopic examinations, including diarrhea (n = 10), abdominal pain (n = 5), nausea (n = 4), appetite loss (n = 2), bloody stools (n = 2), abdominal discomfort (n = 1), and vomiting (n = 1). At the final follow-up, six patients survived, while eight patients succumbed, with a median time of 100.5 days (range: 52-247) post-diagnosis. Endoscopic manifestations included erythematous mucosa (n = 14), erosions (n = 13), ulcers (n = 9), mucosal edema (n = 9), granular mucosa (n = 9), and villous atrophy (n = 4). Erosions and/or ulcers were primarily observed in the colon (10/14, 71%), followed by the ileum (9/13, 69%), stomach (4/10, 40%), cecum (5/14, 36%), duodenum (3/10, 30%), rectum (4/14, 29%), and esophagus (1/10, 10%). Cytomegalovirus infection (n = 4) and graft-versus-host disease (n = 2) coexisted within the gastrointestinal tract. Patients had de novo prolonged or progressive thrombocytopenia (6/14, 43%), decreased hemoglobin concentration (4/14, 29%), reduced serum haptoglobin level (3/14, 21%), and a sudden and persistent increase in lactate dehydrogenase level (2/14, 14%). Peripheral blood samples from 12 patients were evaluated for schistocytes, with none exceeding 4%.
Conclusions This study provides a comprehensive exploration of the endoscopic characteristics of iTAM. Notably, all patients exhibited erythematous mucosa throughout the gastrointestinal tract, accompanied by prevalent manifestations, such as erosions (93%), ulcers (64%), mucosal edema (64%), granular mucosa (64%), and villous atrophy (29%). Because of the low positivity for serological markers of transplant-associated thrombotic microangiopathy in patients with iTAM, endoscopic evaluation and biopsy of these lesions are crucial, even in the absence of these serological features. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Colonoscopy kn-keyword=Colonoscopy en-keyword=Esophagogastroduodenoscopy kn-keyword=Esophagogastroduodenoscopy en-keyword=Graft-versus-host disease kn-keyword=Graft-versus-host disease en-keyword=Hematopoietic stem cell transplantation kn-keyword=Hematopoietic stem cell transplantation en-keyword=Intestinal transplant-associated microangiopathy kn-keyword=Intestinal transplant-associated microangiopathy en-keyword=iTAM kn-keyword=iTAM END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=9 article-no= start-page=6736 end-page=6748 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diagnostic accuracy of frozen section biopsy for early gastric cancer extent during endoscopic submucosal dissection: a prospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Accurate diagnosis of the lateral extent of early gastric cancer during endoscopic submucosal dissection (ESD) is crucial to achieve negative resection margins. Similar to intraoperative consultation with a frozen section in surgery, rapid frozen section diagnosis with endoscopic forceps biopsy may be useful in assessing tumor margins during ESD. This study aimed to evaluate the diagnostic accuracy of frozen section biopsy.
Methods We prospectively enrolled 32 patients undergoing ESD for early gastric cancer. Biopsy samples for the frozen sections were randomly collected from fresh resected ESD specimens before formalin fixation. Two different pathologists independently diagnosed 130 frozen sections as gneoplasia,h gnegative for neoplasia,h or gindefinite for neoplasia,h and the frozen section diagnosis was compared with the final pathological results of the ESD specimens.
Results Among the 130 frozen sections, 35 were from cancerous areas, and 95 were from non-cancerous areas. The diagnostic accuracies of the frozen section biopsies by the two pathologists were 98.5 and 94.6%, respectively. Cohenfs kappa coefficient of diagnoses by the two pathologists was 0.851 (95% confidence interval: 0.837?0.864). Incorrect diagnoses resulted from freezing artifacts, a small volume of tissue, inflammation, the presence of well-differentiated adenocarcinoma with mild nuclear atypia, and/or tissue damage during ESD.
Conclusions Pathological diagnosis of frozen section biopsy is reliable and can be applied as a rapid frozen section diagnosis for evaluating the lateral margins of early gastric cancer during ESD. en-copyright= kn-copyright= en-aut-name=KobashiMayu en-aut-sei=Kobashi en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaShigenao en-aut-sei=Ishikawa en-aut-mei=Shigenao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InabaTomoki en-aut-sei=Inaba en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KagawaTomo en-aut-sei=Kagawa en-aut-mei=Tomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndoMidori en-aut-sei=Ando en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraSatoko en-aut-sei=Nakamura en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=9 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Frozen section kn-keyword=Frozen section en-keyword=Pathological diagnosis kn-keyword=Pathological diagnosis en-keyword=Diagnostic accuracy kn-keyword=Diagnostic accuracy en-keyword=Early gastric cancer kn-keyword=Early gastric cancer en-keyword=Endoscopic submucosal dissection kn-keyword=Endoscopic submucosal dissection en-keyword=Lateral margin kn-keyword=Lateral margin END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=12 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Complete genomic sequence of Vibrio fluvialis strain IDH5335 isolated from a patient with diarrhea in Kolkata, India en-subtitle= kn-subtitle= en-abstract= kn-abstract=We isolated a Vibrio fluvialis strain (IDH5335) from a stool sample collected from a patient with diarrhea. In this announcement, we report the complete genomic sequence of this organism, which was obtained by combining Illumina and Oxford Nanopore sequencing data. en-copyright= kn-copyright= en-aut-name=ChowdhuryGoutam en-aut-sei=Chowdhury en-aut-mei=Goutam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniguchiMakoto en-aut-sei=Taniguchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UesakaKazuma en-aut-sei=Uesaka en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitraDebmalya en-aut-sei=Mitra en-aut-mei=Debmalya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RamamurthyThandavarayan en-aut-sei=Ramamurthy en-aut-mei=Thandavarayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DuttaShanta en-aut-sei=Dutta en-aut-mei=Shanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MukhopadhyayAsish Kumar en-aut-sei=Mukhopadhyay en-aut-mei=Asish Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India at ICMR-NICED kn-affil= affil-num=2 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India at ICMR-NICED kn-affil= affil-num=3 en-affil=Oral Microbiome Center, Taniguchi Dental Clinic kn-affil= affil-num=4 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India at ICMR-NICED kn-affil= affil-num=7 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India at ICMR-NICED kn-affil= affil-num=8 en-affil=ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=9 en-affil=ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=10 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=ICMR-National Institute of Cholera and Enteric Diseases kn-affil= en-keyword=Vibrio fluvialis kn-keyword=Vibrio fluvialis en-keyword=diarrhea kn-keyword=diarrhea en-keyword=bacteria kn-keyword=bacteria en-keyword=genome kn-keyword=genome END start-ver=1.4 cd-journal=joma no-vol=205 cd-vols= no-issue=10 article-no= start-page=346 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230929 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flavobacterium okayamense sp. nov. isolated from surface seawater en-subtitle= kn-subtitle= en-abstract= kn-abstract=Strain KK2020170T, a Gram-stain negative, yellow colony-forming bacterium, was isolated from surface seawater sampled in Kojima Bay, Okayama, Japan. Phylogenetic analysis based on the 16S rRNA gene revealed that strain KK2020170T belongs to the genus Flavobacterium, with Flavobacterium haoranii LQY-7T (98.1% similarity) being its closest relative, followed by Flavobacterium sediminis MEBiC07310T (96.9%) and Flavobacterium urocaniciphilum YIT 12746T (96.0%). Whole-genome shotgun sequencing showed that strain KK2020170T, when paralleled with F. haoranii LQY-7 T, had 81.3% average nucleotide identity, and 24.6% in silico DNA?DNA hybridization values, respectively. The DNA G?+?C content of strain KK2020170T was 31.1 mol%. The most abundant fatty acids (>?10%) of strain KK2020170T were iso-C15:?0, iso-C17:?0 3-OH and iso-C15:?1 G. The dominant respiratory quinone of the strain was menaquinone MK-6. Based on the phylogenetic and phenotypic analysis results, we propose that strain KK2020170T represents a novel species, for which the name Flavobacterium okayamense sp. nov. has been proposed. The type strain is KK2020170T (=?ATCC TSD-280 T?=?NBRC 115344 T). en-copyright= kn-copyright= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorohoshiSho en-aut-sei=Morohoshi en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KunihiroTadao en-aut-sei=Kunihiro en-aut-mei=Tadao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TazatoNozomi en-aut-sei=Tazato en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UesakaKazuma en-aut-sei=Uesaka en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaniguchiMakoto en-aut-sei=Taniguchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=TechnoSuruga Laboratory Co., Ltd kn-affil= affil-num=4 en-affil=TechnoSuruga Laboratory Co., Ltd kn-affil= affil-num=5 en-affil=TechnoSuruga Laboratory Co., Ltd kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil= affil-num=8 en-affil=Oral Microbiome Center, Taniguchi Dental Clinic kn-affil= affil-num=9 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Bacteroidota kn-keyword=Bacteroidota en-keyword=Flavobacterium kn-keyword=Flavobacterium en-keyword=New taxa kn-keyword=New taxa en-keyword=Sea water kn-keyword=Sea water END start-ver=1.4 cd-journal=joma no-vol=130 cd-vols= no-issue=9 article-no= start-page=1493 end-page=1504 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PRRX1-TOP2A interaction is a malignancy-promoting factor in human malignant peripheral nerve sheath tumours en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated.
Methods: PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1.
Results: High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2?A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1?TOP2A interaction.
Conclusion: Targeting the PRRX1?TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy. en-copyright= kn-copyright= en-aut-name=TakihiraShota en-aut-sei=Takihira en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaDaisuke en-aut-sei=Yamada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsoneTatsunori en-aut-sei=Osone en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaoTomoka en-aut-sei=Takao en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HakozakiMichiyuki en-aut-sei=Hakozaki en-aut-mei=Michiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakaradaTakeshi en-aut-sei=Takarada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Fukushima Medical University School of Medicine kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=3 article-no= start-page=374 end-page=382 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A multi-center, prospective, clinical study to evaluate the anti-reflux efficacy of laparoscopic double-flap technique (lD-FLAP Study) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Double-flap technique (DFT) is a reconstruction procedure after proximal gastrectomy (PG). We previously reported a multi-center, retrospective study in which the incidence of reflux esophagitis (RE) (Los Angeles Classification ?Grade B [LA-B]) 1 year after surgery was 6.0%. There have been many reports, but all of them were retrospective. Thus, a multi-center, prospective study was conducted.
Methods: Laparoscopic PG?+?DFT was performed for cT1N0 upper gastric cancer patients. The primary endpoint was the incidence of RE (?LA-B) 1 year after surgery. The planned sample size was 40, based on an estimated incidence of 6.0% and an upper threshold of 20%.
Results: Forty patients were recruited, and 39, excluding one with conversion to total gastrectomy, received protocol treatment. Anastomotic leakage (Clavien?Dindo ?Grade III) was observed in one patient (2.6%). In 38 patients, excluding one case of postoperative mortality, RE (?LA-B) was observed in two patients (5.3%) 1 year after surgery, and the upper limit of the 95% confidence interval was 17.3%, lower than the 20% threshold. Anastomotic stricture requiring dilatation was observed in two patients (5.3%). One year after surgery, body weight change was 88.9?}?7.0%, and PNI <40 and CONUT ?5, indicating malnutrition, were observed in only one patient (2.6%) each. In the quality of life survey using the PGSAS-45 questionnaire, the esophageal reflux subscale score was 1.4?}?0.6, significantly better than the public data (2.0?}?1.0; p?=?0.001).
Conclusion: Laparoscopic DFT showed anti-reflux efficacy. Taken together with the acceptable incidence of anastomotic stricture, DFT can be an option for reconstruction procedure after PG. en-copyright= kn-copyright= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaMichihiro en-aut-sei=Ishida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChodaYasuhiro en-aut-sei=Choda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MuraokaAtsushi en-aut-sei=Muraoka en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HatoShinji en-aut-sei=Hato en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KagawaTetsuya en-aut-sei=Kagawa en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaNorimitsu en-aut-sei=Tanaka en-aut-mei=Norimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima kn-affil= affil-num=3 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima kn-affil= affil-num=4 en-affil=Department of Surgery, Kagawa Rosai Hospital kn-affil= affil-num=5 en-affil=Department of Surgery, Shikoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Surgery, Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Surgery, Tsuyama Chuo Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anti-reflux surgery kn-keyword=anti-reflux surgery en-keyword=double-flap technique kn-keyword=double-flap technique en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=Kamikawa procedure kn-keyword=Kamikawa procedure en-keyword=proximal gastrectomy kn-keyword=proximal gastrectomy END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=37 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Is Proximal Triangular Fixation Better than the Conventional Method in Adult Spinal Deformity Surgery? en-subtitle= kn-subtitle= en-abstract= kn-abstract=In adult spinal deformity (ASD) surgery, one of the key factors working to prevent proximal junctional kyphosis is the proximal anchor. The aim of this study was to compare clinical and radiographic outcomes of triangular fixation with conventional fixation as proximal anchoring techniques in ASD surgery. We retrospectively evaluated 54 patients who underwent corrective spinal fusion for ASD. Fourteen patients underwent proximal triangular fixation (Group T; average 74.6 years), and 40 patients underwent the conventional method (Group C; average 70.5 years). Clinical and radiographic outcomes were assessed using visual analogue scale (VAS) values for back pain and the Oswestry disability index (ODI). Radiographic evaluation was also collected preoperatively and postoperatively. Surgical times and intraoperative blood loss of the two groups were not significantly different (493 vs 490 min, 1,260 vs 1,173 mL). Clinical outcomes such as VAS and ODI were comparable in the two groups. Proximal junctional kyphosis in group T was slightly lower than that of group C (28.5% vs 47.5%, p=0.491). However, based on radiology, proximal screw pullout occurred significantly less frequently in the triangular fixation group than the conventional group (0.0% vs 22.5%, p=0.049). Clinical outcomes in the two groups were not significantly different. en-copyright= kn-copyright= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MeenaUmesh en-aut-sei=Meena en-aut-mei=Umesh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaokaTakuya en-aut-sei=Taoka en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraYoshihiro en-aut-sei=Fujiwara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokomizoDaiichiro en-aut-sei=Yokomizo en-aut-mei=Daiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BashyalSantosh Kumar en-aut-sei=Bashyal en-aut-mei=Santosh Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakeNaveen en-aut-sei=Sake en-aut-mei=Naveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AratakiShinya en-aut-sei=Arataki en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= en-keyword=adult spinal deformity kn-keyword=adult spinal deformity en-keyword=proximal junctional kyphosis kn-keyword=proximal junctional kyphosis en-keyword=triangular fixation kn-keyword=triangular fixation en-keyword=minimally invasive surgery kn-keyword=minimally invasive surgery en-keyword=C arm free kn-keyword=C arm free END start-ver=1.4 cd-journal=joma no-vol=113 cd-vols= no-issue= article-no= start-page=41 end-page=48 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Instant estimation of rice yield using ground-based RGB images and its potential applicability to UAV en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the worldfs food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep learning-based approach for instantaneously estimating rice yield using RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downwards over the rice canopy from a distance of 0.8 to 0.9m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) applied to these data at harvest predicted 68% variation in yield with a relative root mean square error (rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2cm pixel-1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production. en-copyright= kn-copyright= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTomoya en-aut-sei=Watanabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimotoYasuhiro en-aut-sei=Tsujimoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaiToshiyuki en-aut-sei=Takai en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakashi Sonam Tashi en-aut-sei=Tanaka en-aut-mei=Takashi Sonam Tashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawamuraKensuke en-aut-sei=Kawamura en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoHiroki en-aut-sei=Saito en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HommaKoki en-aut-sei=Homma en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MairouaSalifou Goube en-aut-sei=Mairoua en-aut-mei=Salifou Goube kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AhouantonKokou en-aut-sei=Ahouanton en-aut-mei=Kokou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IbrahimAli en-aut-sei=Ibrahim en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SenthilkumarKalimuthu en-aut-sei=Senthilkumar en-aut-mei=Kalimuthu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SemwalVimal Kumar en-aut-sei=Semwal en-aut-mei=Vimal Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatuteEduardo Jose Graterol en-aut-sei=Matute en-aut-mei=Eduardo Jose Graterol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CorredorEdgar en-aut-sei=Corredor en-aut-mei=Edgar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=El-NamakyRaafat en-aut-sei=El-Namaky en-aut-mei=Raafat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ManigbasNorvie en-aut-sei=Manigbas en-aut-mei=Norvie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=QuilangEduardo Jimmy P. en-aut-sei=Quilang en-aut-mei=Eduardo Jimmy P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwahashiYu en-aut-sei=Iwahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=TakeuchiEisuke en-aut-sei=Takeuchi en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SaitoKazuki en-aut-sei=Saito en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Mathematics, Kyushu University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Tokyo University of Agriculture and Technology kn-affil= affil-num=4 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=5 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=6 en-affil=Faculty of Biological Sciences, Gifu UniversityFaculty of Biological Sciences, Gifu University kn-affil= affil-num=7 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=8 en-affil=Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences kn-affil= affil-num=9 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=10 en-affil=Africa Rice Center iAfricaRicej kn-affil= affil-num=11 en-affil=Africa Rice Center iAfricaRicej kn-affil= affil-num=12 en-affil=Africa Rice Center iAfricaRicej, Regional Station for the Sahel kn-affil= affil-num=13 en-affil=Africa Rice Center iAfricaRicej kn-affil= affil-num=14 en-affil=Africa Rice Center iAfricaRicej, Nigeria Station kn-affil= affil-num=15 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=16 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=17 en-affil=Rice Research and Training Center, Field Crops Research Institute kn-affil= affil-num=18 en-affil=Philippine Rice Research Institute iPhilRicej kn-affil= affil-num=19 en-affil=Philippine Rice Research Institute iPhilRicej kn-affil= affil-num=20 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=21 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=22 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=23 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= en-keyword=Rice (Oryza sativa L.) kn-keyword=Rice (Oryza sativa L.) en-keyword=rough grain yield kn-keyword=rough grain yield en-keyword=convolutional neural network kn-keyword=convolutional neural network en-keyword=RGB images kn-keyword=RGB images en-keyword=UAV kn-keyword=UAV END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue= article-no= start-page=104348 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multi-isotopic analysis of domestic burials from sin Cabezas, Escuintla, Guatemala en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the results from the stable isotope measurements of strontium (87Sr/86Sr) and oxygen ( 18O) in tooth enamel from 36 individuals from the site of Sin Cabezas, Escuintla, Guatemala. This is the first contribution of isotopic proveniencing from the Pacific Coast of Guatemala and offers new solid baseline reference data from a large archaeological sample. Although some outlier cases are identified, the high homogeneity is the most evident feature in the sample. Based on this homogeneity, we discuss a critical issue of baseline data between Teotihuacan and the Pacific Coast, where the material culture has indicated intimate cultural interactions. A critical overlap for both strontium and oxygen reference between the Mexican metropolis and the coastal region is pointed out. This is why detecting human movement between both regions is still elusive. A case study of a possible Mexican individual is introduced. We also assess the outlier cases in terms of proveniencing and add several osteobiographic notes for the most relevant cases whose origin could be seen among the Northern - Eastern part of the Guatemalan Highlands, the Soconusco border region, or Central Honduras. en-copyright= kn-copyright= en-aut-name=SuzukiShintaro en-aut-sei=Suzuki en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BarrientosTom?s en-aut-sei=Barrientos en-aut-mei=Tom?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Mej?aH?ctor en-aut-sei=Mej?a en-aut-mei=H?ctor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PriceT. Douglas en-aut-sei=Price en-aut-mei=T. Douglas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for the Dynamics of Civilizations, Okayama University kn-affil= affil-num=2 en-affil=Centro de Investigaciones Arqueol?gicas y Antropol?gicas, Universidad del Valle de Guatemala kn-affil= affil-num=3 en-affil=Transportadora de Energ?a de Centroam?rica, Universidad de San Carlos de Guatemala kn-affil= affil-num=4 en-affil=University of Wisconsin kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=e12636 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231229 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Trends in childhood obesity in Japan: A nationwide observational study from 2012 to 2021 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The persistent ascension of childhood obesity on a global scale constitutes a significant quandary. The prevalence of childhood obesity in Japan peaked in the early 2000s and has been reported to have declined since then, but recent data and its trend including the novel coronavirus disease 2019 (COVID-19) pandemic era are not available. Moreover, there is a dearth of studies examining the correlation between the trend in childhood obesity and exercise habits over the past decade. This study aims to examine the changes in the prevalence of obesity, physical fitness, and exercise habits over the past 10?years in Japanese children. We investigated the prevalence of childhood obesity in Japan, using the School Health Statistics Survey data from 2012 to 2021. The dataset has a sample size representative of children nationwide and includes variables for obesity, such as height, weight, and age. Data were classified into groups by sex and age (6?8, 9?11, and 12?14?years age). Children weighing 20% or more of the standard body weight are classified as obese. The annual percentage changes and average annual percentage changes were estimated using the joinpoint regression model. We also examined the trends in the physical fitness test score and exercise time. Average annual percentage changes of boys increased, especially in the 6- to 8-year age group (3.4%?4.6%). For girls, average annual percentage changes had increased in 6- to 8-year (2.5%?4.0%) and 9- to 11-year (0.9%?2.2%) age groups. Since the late 2010s, significantly increasing annual percentage changes were observed in 12- to 14-year age boys (6.7%?8.9%) and girls of many age groups (2.6%?8.6%). The physical fitness test score and exercise time showed decreasing trends since the late 2010s. Childhood obesity may have generally risen in Japan, in the last decade. Encouraging healthy eating and physical activity through school policies and curricula is necessary. en-copyright= kn-copyright= en-aut-name=FujiwaraShintaro en-aut-sei=Fujiwara en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKo en-aut-sei=Harada en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pediatrics, NHO Okayama Medical Center kn-affil= affil-num=2 en-affil=Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=childhood obesity kn-keyword=childhood obesity en-keyword=epidemiology kn-keyword=epidemiology en-keyword=joinpoint regression analysis kn-keyword=joinpoint regression analysis en-keyword=paediatrics kn-keyword=paediatrics en-keyword=trend analysis kn-keyword=trend analysis END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=24 article-no= start-page=7459 end-page=7470 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The distribution and clinical impact of cell-of-origin (COO) subtypes of diffuse large B-cell lymphoma (DLBCL) outside Western countries remain unknown. Recent literature also suggests that there is an additional COO subtype associated with the germinal center dark zone (DZ) that warrants wider validation to generalize clinical relevance. Here, we assembled a cohort of Japanese patients with untreated DLBCL and determined the refined COO subtypes, which include the DZ signature (DZsig), using the NanoString DLBCL90 assay. To compare the distribution and clinical characteristics of the molecular subtypes, we used a data set from the cohort of British Columbia Cancer (BCC) (n = 804). Through the 1050 patient samples on which DLBCL90 assay was successfully performed in our cohort, 35%, 45%, and 6% of patients were identified to have germinal center B-cell?like (GCB) DLBCL, activated B-cell?like (ABC) DLBCL, and DZsig-positive (DZsigpos) DLBCL, respectively, with the highest prevalence of ABC-DLBCL, differing significantly from the BCC result (P < .001). GCB-DLBCL, ABC-DLBCL, and DZsigpos-DLBCL were associated with 2-year overall survival rates of 88%, 75%, and 66%, respectively (P < .0001), with patients with DZsigpos-DLBCL having the poorest prognosis. In contrast, GCB-DLBCL without DZsig showed excellent outcomes after rituximab-containing immunochemotherapy. DZsigpos-DLBCL was associated with the significant enrichment of tumors with CD10 expression, concurrent MYC/BCL2 expression, and depletion of microenvironmental components (all, P < .05). These results provide evidence of the distinct distribution of clinically relevant molecular subtypes in Japanese DLBCL and that refined COO, as measured by the DLBCL90 assay, is a robust prognostic biomarker that is consistent across geographical areas. en-copyright= kn-copyright= en-aut-name=UrataTomohiro en-aut-sei=Urata en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaoiYusuke en-aut-sei=Naoi en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiangAixiang en-aut-sei=Jiang en-aut-mei=Aixiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BoyleMerrill en-aut-sei=Boyle en-aut-mei=Merrill kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunamiKazutaka en-aut-sei=Sunami en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiToshi en-aut-sei=Imai en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NawaYuichiro en-aut-sei=Nawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiramatsuYasushi en-aut-sei=Hiramatsu en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoKazuhiko en-aut-sei=Yamamoto en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiSoichiro en-aut-sei=Fujii en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaIsao en-aut-sei=Yoshida en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanoTomofumi en-aut-sei=Yano en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChijimatsuRyota en-aut-sei=Chijimatsu en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MurakamiHiroyuki en-aut-sei=Murakami en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IkeuchiKazuhiro en-aut-sei=Ikeuchi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TaniKatsuma en-aut-sei=Tani en-aut-mei=Katsuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=UjiieHideki en-aut-sei=Ujiie en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SawadaKeisuke en-aut-sei=Sawada en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=TamaruJun-ichi en-aut-sei=Tamaru en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=ScottDavid W. en-aut-sei=Scott en-aut-mei=David W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=4 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=5 en-affil=Department of Hematology, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=7 en-affil=Division of Hematology, Ehime Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama City Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=11 en-affil=Department of Hematologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=19 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=20 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=23 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=24 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=26 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=28 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=29 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=30 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=31 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=32 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=33 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=34 en-affil=Department of Pathology, Okayama University kn-affil= affil-num=35 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=36 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=37 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=12 article-no= start-page=100733 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Kidney Veno-Muscular Characteristics and Kidney Disease Progression: A Native Kidney-Biopsy Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rationale & Objective: Assessment of kidney biopsies provides crucial information for diagnosis and disease activity, as well as prognostic value. Kidney-biopsy specimens occasionally contain veno-muscular complex (VMC), which consists of muscle tissues around the kidney venous system in the corticomedullary region. However, the role of VMC and the clinical significance of VMC variants are poorly understood. In the present study, we investigated kidney prognostic values of VMC variants.
Study Design: Retrospective cohort study.
Setting & Participants: Among 808 patients who underwent a kidney biopsy from 2011 to 2019, 246 patients whose kidney biopsy specimens contained VMC were enrolled.
Predictors: VMC variants; inflammatory-VMC (an infiltration of ?80 inflammatory cells/mm2-VMC area) and VMC hypertrophy (hyper-VMC, a VMC average width ?850 m), and the interstitial fibrosis/tubular atrophy (IFTA) score.
Outcomes: A decline in estimated glomerular filtration rate (eGFR) ?40% from the baseline or commencement of kidney replacement therapy.
Analytical Approach: Cox proportional hazards model.
Results: Among 246 patients with data on VMC, mean baseline eGFR was 56.0}25.6 ml/min per 1.73 m2; 80 had high inflammatory-VMC, and 62 had VMC hypertrophy. There were 51 kidney events over median follow-up of 2.5 years. We analyzed 2 VMC variants. Multivariable logistic regression analysis revealed that eGFR negatively correlated with the presence of both inflammatory-VMC and hyper-VMC. A Cox proportional hazards analysis revealed that inflammatory-VMC (but not hyper-VMC) was independently associated with the primary outcome after adjustments for known risk factors of progression, including proteinuria, eGFR, and the interstitial fibrosis/tubular atrophy (IFTA) score (hazard ratio, 1.97; 95% confidence interval, 1.00-3.91).
Limitations: Single-center study and small sample size.
Conclusions: Assessment of inflammatory-VMC provides additional kidney prognostic information to known indicators of kidney disease progression in patients who undergo kidney biopsy. en-copyright= kn-copyright= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiKensaku en-aut-sei=Takahashi en-aut-mei=Kensaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaTakafumi en-aut-sei=Morita en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SangYizhen en-aut-sei=Sang en-aut-mei=Yizhen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Matsuoka-UchiyamaNatsumi en-aut-sei=Matsuoka-Uchiyama en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=1278 cd-vols= no-issue= article-no= start-page=341723 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Determination of mass-dependent chromium isotopic compositions in geological samples by double spike-total evaporation-thermal ionization mass spectrometry (DS-TE-TIMS) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Chromium isotopes have been used to trace geochemical and cosmochemical processes in the past. However, the presence of multivalent Cr species has made it difficult to isolate Cr from geological samples, particularly for samples with a low Cr mass fraction.
Results: Here, a simple three-step ion exchange chromatography procedure is presented to separate Cr from various sample matrices, ranging from ultramafic to felsic rocks. Throughout each of the column chromatography step, 1 mL of cation exchange resin AG50W-X8 (200?400 mesh) was used as the stationary phase and oxalic acid as a chelating agent, was used in addition to the inorganic acids. This method yielded high recoveries of Cr [93 } 8% (2SD, N = 7)] regardless of the lithology. The total procedural blank of Cr was <0.5 ng. We also developed a double spike-total evaporation-thermal ionization mass spectrometry (DS-TE-TIMS) technique that significantly reduced sample consumption to ?20 ng of Cr per each measurement of mass-dependent 53Cr/52Cr.
Significance: This study achieved a 2SD external precision of 0.02 for the analysis of NIST NBS3112a and of 0.01?0.07 for the geological samples. This study enabled high-precision Cr isotope analysis in geological samples with various matrix and Cr compositions using relatively small sample volumes. en-copyright= kn-copyright= en-aut-name=RatnayakeDilan M. en-aut-sei=Ratnayake en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Cr isotopes kn-keyword=Cr isotopes en-keyword=DS-TE-TIMS kn-keyword=DS-TE-TIMS en-keyword=Cation exchange resin kn-keyword=Cation exchange resin en-keyword=Low blank kn-keyword=Low blank en-keyword=High precision kn-keyword=High precision END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=10 article-no= start-page=100573 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs).
Methods: We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II?expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo.
Results: We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti?programmed cell death protein 1 monoclonal antibody.
Conclusions: Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuDaiki en-aut-sei=Shimizu en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaYuki en-aut-sei=Katsuya en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomiYukio en-aut-sei=Hosomi en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataTakekazu en-aut-sei=Iwata en-aut-mei=Takekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OheYuichiro en-aut-sei=Ohe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Department of Experimental Therapeutics, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=9 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Thymic epithelial tumor kn-keyword=Thymic epithelial tumor en-keyword=Cancer immunotherapy kn-keyword=Cancer immunotherapy en-keyword=CD80/CD86 kn-keyword=CD80/CD86 en-keyword=MHC kn-keyword=MHC en-keyword=Memory precursor effector T cell kn-keyword=Memory precursor effector T cell END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue= article-no= start-page=0073 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the worldfs food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t?ha?1 across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30 from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm?pixel?1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting. en-copyright= kn-copyright= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTomoya en-aut-sei=Watanabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimotoYasuhiro en-aut-sei=Tsujimoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaiToshiyuki en-aut-sei=Takai en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakashi Sonam Tashi en-aut-sei=Tanaka en-aut-mei=Takashi Sonam Tashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawamuraKensuke en-aut-sei=Kawamura en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoHiroki en-aut-sei=Saito en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HommaKoki en-aut-sei=Homma en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MairouaSalifou Goube en-aut-sei=Mairoua en-aut-mei=Salifou Goube kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AhouantonKokou en-aut-sei=Ahouanton en-aut-mei=Kokou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IbrahimAli en-aut-sei=Ibrahim en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SenthilkumarKalimuthu en-aut-sei=Senthilkumar en-aut-mei=Kalimuthu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SemwalVimal Kumar en-aut-sei=Semwal en-aut-mei=Vimal Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatuteEduardo Jose Graterol en-aut-sei=Matute en-aut-mei=Eduardo Jose Graterol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CorredorEdgar en-aut-sei=Corredor en-aut-mei=Edgar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=El-NamakyRaafat en-aut-sei=El-Namaky en-aut-mei=Raafat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ManigbasNorvie en-aut-sei=Manigbas en-aut-mei=Norvie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=QuilangEduardo Jimmy P. en-aut-sei=Quilang en-aut-mei=Eduardo Jimmy P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwahashiYu en-aut-sei=Iwahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=TakeuchiEisuke en-aut-sei=Takeuchi en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SaitoKazuki en-aut-sei=Saito en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Mathematics, Kyushu University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Tokyo University of Agriculture and Technology kn-affil= affil-num=4 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=5 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=8 en-affil=Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences kn-affil= affil-num=9 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=10 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=11 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=12 en-affil=Africa Rice Center (AfricaRice), Regional Station for the Sahel kn-affil= affil-num=13 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=14 en-affil=Africa Rice Center (AfricaRice), Nigeria Station kn-affil= affil-num=15 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=16 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=17 en-affil=Rice Research and Training Center, Field Crops Research Institute, ARC kn-affil= affil-num=18 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=19 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=20 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=21 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=22 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=23 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=2 article-no= start-page=227 end-page=237 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flavor retention characteristics of amorphous solid dispersion of flavors, prepared by vacuum-foam- and spray-drying under different conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the powderization of flavoring substances, using an amorphous solid dispersion (ASD) technique, in which hydrophobic molecules are separately embedded in a water-soluble carrier matrix. Six flavors, five carrier forming materials (polyvinylpyrrolidone/disaccharides), two solvents (methanol/ethanol) and two drying methods (vacuum-foam-/spray-drying) were employed. The drying conditions for the two drying processes were first examined, and under the optimal drying conditions, various flavor-carrier combinations and compositions of ASD samples were prepared and their flavor retention after drying and during storage under a vacuum were compared. Results demonstrated that flavor loss during drying and storage was minimized when the material was vacuum-foam-dried with polyvinylpyrrolidone. Vacuum-foam-drying in the presence of -maltose or palatinose also resulted in a greater retention of flavor during drying and storage than a typical O/W emulsification-based powderization. These findings suggest that the ASD-based powderization of flavoring materials is a feasible alternative to the currently used produces. en-copyright= kn-copyright= en-aut-name=NittaYuna en-aut-sei=Nitta en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoHaruna en-aut-sei=Sato en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoRina en-aut-sei=Yamamoto en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImanakaHiroyuki en-aut-sei=Imanaka en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemical Engineering and Material Sciences, Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=6 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Flavor kn-keyword=Flavor en-keyword=amorphous solid dispersion kn-keyword=amorphous solid dispersion en-keyword=vacuum foam drying kn-keyword=vacuum foam drying en-keyword=spray drying kn-keyword=spray drying en-keyword=polyvinylpyrrolidone kn-keyword=polyvinylpyrrolidone en-keyword=disaccharide kn-keyword=disaccharide END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=6 article-no= start-page=635 end-page=645 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Nutritional Support Combined with Neuromuscular Electrical Stimulation on Muscle Strength and Thickness: A Randomized Controlled Trial in Healthy Young Adult Males en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the management of post-injury patients with activity limitations, methods to prevent musculoskeletal disorders and hasten recovery are important. This randomized controlled, single-blinded study was a preliminary investigation of the combined effect of nutritional support with neuromuscular electrical stimulation (NMES) on muscle strength and thickness. Healthy young adult males (median age, 21 years) were enrolled; each of their hands was randomly assigned to one of the following four groups: Placebo, Nutrition, NMES, and Nutrition + NMES. All participants received whey protein or placebo (3x/week for 6 weeks) and NMES training (3x/week for 6 weeks) on the abductor digiti minimi (ADM) muscle of either the left or right hand. ADM muscle strength and thickness were analyzed at baseline and at week 7. We analyzed 38 hands (9 Placebo, 10 Nutrition, 9 NMES, 10 Nutrition + NMES). There was significantly greater muscle strengthening in the Nutrition + NMES group compared to the Placebo group or the NMES group, but no significant difference in gain of muscle thickness. The combined intervention may be effective in improving muscle strength. Future clinical trials targeting various muscles after sports-related injuries are warranted. en-copyright= kn-copyright= en-aut-name=IkedaTomohiro en-aut-sei=Ikeda en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamuraKazunori en-aut-sei=Okamura en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaMasaki en-aut-sei=Hasegawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanaiShusaku en-aut-sei=Kanai en-aut-mei=Shusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=3 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=4 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=5 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= en-keyword=whey protein kn-keyword=whey protein en-keyword=electrical stimulation kn-keyword=electrical stimulation en-keyword=muscle strength kn-keyword=muscle strength en-keyword=healthy volunteers kn-keyword=healthy volunteers END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=3 article-no= start-page=e2021JB023586 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deformation of Post]Spinel Under the Lower Mantle Conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=To study the viscosity of bridgmanite and ferropericlase aggregate, uniaxial compression deformation experiments on pre-synthesized post-spinel phase and bridgmanite two-layered samples were conducted under top lower mantle pressure and 1773 K utilizing DT-Cup apparatus. Up to the strain of 0.25 } 0.05, the observed comparable strain of the bridgmanite and post-spinel samples suggests the bridgmanite dominates the bulk viscosity of the post-spinel without strain localization in periclase. The microstructures of the deformed post-spinel samples show evidence of a similar strain of periclase with the bulk strain without strain partitioning. Texture analyses of bridgmanite indicate a dominant slip plane (100), with a steady state fabric strength achieved within the strain of 0.12 } 0.01. The current experiment has provided no evidence about an onset of strain localization of ?30 vol.% periclase at 0.25 strain. Our observations provide direct experimental verification of bridgmanite controlled rheology under low strain magnitude, which should be considered in geodynamical models which include mantle compositional and rheological evolution in the lower mantle. en-copyright= kn-copyright= en-aut-name=XuF. en-aut-sei=Xu en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamazakiD. en-aut-sei=Yamazaki en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuntS. A. en-aut-sei=Hunt en-aut-mei=S. A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujinoN. en-aut-sei=Tsujino en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigoY. en-aut-sei=Higo en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangeY. en-aut-sei=Tange en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OharaK. en-aut-sei=Ohara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DobsonD. P. en-aut-sei=Dobson en-aut-mei=D. P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Department of Earth Sciences, University College London kn-affil= affil-num=4 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=6 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=8 en-affil=Department of Earth Sciences, University College London kn-affil= en-keyword=lower mantle kn-keyword=lower mantle en-keyword=rheology kn-keyword=rheology en-keyword=deformation kn-keyword=deformation en-keyword=post-spinel kn-keyword=post-spinel en-keyword=strain localization kn-keyword=strain localization END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=054107 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diamond quantum sensors in microfluidics technology en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions within diverse chemical and biological contexts. Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels. In this Perspective, we present recent advancements in the integration of diamond quantum sensors with microfluidic devices and explore their prospects with a focus on forthcoming technological developments. en-copyright= kn-copyright= en-aut-name=FujiwaraMasazumi en-aut-sei=Fujiwara en-aut-mei=Masazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=5 article-no= start-page=545 end-page=552 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic Manifestations and Clinical Characteristics of Localized Gastric Light-Chain Amyloidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=To determine the endoscopic and clinical features of localized gastric amyloid light-chain (AL) amyloidosis, we retrospectively examined the characteristics of nine patients (eight men and one woman) encountered by the hospitals in our network. Lesions were predominantly flat and depressed with surface vascular dilatation (n=5); others were characterized by subepithelial lesions (n=2), mucosal color change (n=1), and a mass-like morphology with swollen mucosal folds (n=1). Colonoscopy (n=7), video capsule enteroscopy (n=2), serum (n=5) and urine immunoelectrophoresis (n=4), and bone marrow examination (n=3) were performed to exclude involvement of organs other than the stomach. As treatment for gastric lesions of AL amyloidosis, one patient each underwent endoscopic submucosal dissection (n=1) and argon plasma coagulation (n=1), while the remaining seven patients underwent no specific treatment. During a mean follow-up of 4.2 years, one patient died 3.2 years after diagnosis, but the cause of death, which occurred in another hospital, was unknown. The remaining eight patients were alive at the last visit. In conclusion, although localized gastric AL amyloidosis can show various macroscopic features on esophagogastroduodenoscopy, flat, depressed lesions with vascular dilatation on the surface are predominant. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaShouichi en-aut-sei=Tanaka en-aut-mei=Shouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraMamoru en-aut-sei=Nishimura en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuzukiTakao en-aut-sei=Tsuzuki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyaharaKoji en-aut-sei=Miyahara en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NegishiShin en-aut-sei=Negishi en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhyaShogen en-aut-sei=Ohya en-aut-mei=Shogen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Okayama City Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Kawaguchi Medical Clinic kn-affil= affil-num=9 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=esophagogastroduodenoscopy kn-keyword=esophagogastroduodenoscopy en-keyword=gastric lesion kn-keyword=gastric lesion en-keyword=amyloidosis kn-keyword=amyloidosis en-keyword=light chain kn-keyword=light chain END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=6 article-no= start-page=3300 end-page=3308 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flame retardance-donated lignocellulose nanofibers (LCNFs) by the Mannich reaction with (amino-1,3,5-triazinyl)phosphoramidates and their properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nitrogen/phosphorus-containing melamines (NPCM), a durable flame-retardant, were prepared by the successive treatment of ArOH (Ar = BrnC6H5?n, n = 0, 1, 2, and 3) with POCl3 and melamine monomer. The prepared flame-retardants were grafted through the CH2 unit to lignocellulose nanofibers (LCNFs) by the Mannich reaction. The resulting three-component products were characterized using FT-IR (ATR) and EA. The thermal behavior of the NPCM-treated LCNF fabric samples was determined using TGA and DSC analyses, and their flammability resistances were evaluated by measuring their Limited Oxygen Index (LOI) and the UL-94V test. A multitude of flame retardant elements in the fabric samples increased the LOI values as much as 45 from 20 of the untreated LCNFs. Moreover, the morphology of both the NPCM-treated LCNFs and their burnt fabrics was studied with a scanning electron microscope (SEM). The heat release lowering effect of the LCNF fabric against the water-based paint was observed with a cone calorimeter. Furthermore, the mechanical properties represented as the tensile strength of the NPCM-treated LCNF fabrics revealed that the increase of the NPCM content in the PP-composites led to an increased bending strength with enhancing the flame-retardance. en-copyright= kn-copyright= en-aut-name=OnoFumiaki en-aut-sei=Ono en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsakaNoboru en-aut-sei=Osaka en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameokaYuji en-aut-sei=Kameoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaAkira en-aut-sei=Ishikawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OokiHironari en-aut-sei=Ooki en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoTakumi en-aut-sei=Ito en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TodomeDaisuke en-aut-sei=Todome en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UemotoShinya en-aut-sei=Uemoto en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FurutaniMitsuaki en-aut-sei=Furutani en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InokuchiTsutomu en-aut-sei=Inokuchi en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaKenji en-aut-sei=Okada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Science, Okayama University of Science kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School kn-affil= affil-num=5 en-affil=Marubishi Oil Chemical Co., Ltd kn-affil= affil-num=6 en-affil=Marubishi Oil Chemical Co., Ltd kn-affil= affil-num=7 en-affil=Gen Gen Corporation kn-affil= affil-num=8 en-affil=Gen Gen Corporation kn-affil= affil-num=9 en-affil=Faculty of Science, Okayama University of Science kn-affil= affil-num=10 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=11 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=12 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=Department of Life Science, Kurashiki University of Science & the Arts kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=4 article-no= start-page=345 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of bacterium in the malignant wounds of soft tissue sarcoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Malignant wounds (MWs) are rare skin lesions, which accompany ulceration, necrosis and infection caused by infiltration or damage by malignant tumor. The present study aimed to investigate the bacterial etiology implicated in MW in soft tissue sarcoma (STS), and the effectiveness of culture?guided perioperative antibacterial administration. A retrospective evaluation was conducted on medical records of patients who presented with MW between 2006 and 2020. A total of seven patients were included in the present study, in whom all tumors were relatively large (>5 cm) and high?grade. Subsequently, five patients underwent limb?sparing surgery, and three patients had distant metastases with a 5?year overall survival of 71%. Preoperative microbiological sampling from the wound identified 11 different bacterial strains in five patients. The infections were polymicrobial with an average of 2.6 strains isolated per patient (1 aerobic, 1.6 anaerobic bacteria). They were predominantly methicillin?sensitive Staphylococcus aureus. Patients with MWs from STS reported symptoms, including bleeding (71%), exudation (71%) and malodorous wound (43%) at the initial presentation; these completely resolved after surgery. All but one patient reported pain at the MW site with an average numeric rating scale of 4.4 at presentation that decreased to 1.4 (P=0.14) and 0.6 (P=0.04) one and two weeks after surgery, respectively. The patients had elevated C?reactive protein (71%), anemia (57%), low albumin (86%) and renal/liver dysfunction (14?29%). One patient was diagnosed with sepsis. Surgical resection afforded symptomatic relief and resolution of abnormal laboratory values. Although selected antibiotics were administered in four patients based on the preoperative antibiotic sensitivity test, surgical site infection (SSI) occurred in three patients. Therefore, the effectiveness of the selected antibiotics based on the results of the preoperative culture in preventing SSI needs to be investigated in the future. In conclusion, physicians should keep in mind that although surgical resection can improve the symptoms and abnormal values in laboratory examination form MW, it is accompanied with a high rate of SSI and poor prognosis. en-copyright= kn-copyright= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= en-keyword=malignant wounds kn-keyword=malignant wounds en-keyword=soft tissue sarcoma kn-keyword=soft tissue sarcoma en-keyword=microbiological analysis kn-keyword=microbiological analysis en-keyword=surgical site infection kn-keyword=surgical site infection en-keyword=prognosis kn-keyword=prognosis END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=1213 end-page=1223 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diagnostic Utility of the PD-L1 Immunostaining in Biopsy Specimens of Patients with Biliary Tract Neoplasms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background@Anti-programmed death 1/programmed death ligand 1 (PD1/PD-L1) antibodies have been successfully used as treatment agents for several solid tumors; however, it is difficult to predict their effectiveness. We evaluated whether biopsy specimens could predict the positive status of PD-L1 in surgically resected tissue.
Methods@Among 91 patients who underwent tissue sampling with endoscopic or liver biopsy before surgery for biliary tract neoplasms in an academic center, 45 (49%) patients were selected for retrospective analysis because the quality and quantity of their biopsy specimens were adequate for histologic evaluation. We performed immunohistochemical staining to investigate the PD-L1 expression in both resected and biopsy specimens. The percentage of the positively stained cells was calculated for subsequent use in the correlation investigation.
Results@The biopsy methods were endoscopic retrograde cholangiopancreatography (ERCP) in 28 cases, percutaneous liver biopsy in 10 cases, and endoscopic ultrasound fine-needle aspiration in 7 cases. Among the 45 patients, when patients with?>?10% positive tumor cells in surgically resected tissues were regarded as truly positive PD-L1, the positive and negative concordance rates between surgically resected tissues and biopsy samples were 56% (5/9) and 100% (36/36), respectively. With regard to the use of preoperative biopsy as a diagnostic tool, all (5/5) PD-L1-positive patients had a positive resected specimen. The accuracy of each biopsy method was as follows: ERCP, 89% (25/28); fine-needle aspiration, 86% (6/7); and liver biopsy, 100% (10/10).
Conclusions@Biopsy samples could be a surrogate material for the assessment of the PD-L1 expression with substantial positive and high negative concordance rates. en-copyright= kn-copyright= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Programmed death ligand 1 kn-keyword=Programmed death ligand 1 en-keyword=Bile tract neoplasm kn-keyword=Bile tract neoplasm en-keyword=Biopsy specimen kn-keyword=Biopsy specimen en-keyword=Immunohistochemistry kn-keyword=Immunohistochemistry END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=7 article-no= start-page=739 end-page=753 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mixed Response to Cancer Immunotherapy is Driven by Intratumor Heterogeneity and Differential Interlesion Immune Infiltration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
Significance: Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome. en-copyright= kn-copyright= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaxNicolas en-aut-sei=Sax en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OharaYuuki en-aut-sei=Ohara en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuwataTakeshi en-aut-sei=Kuwata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YukamiHiroki en-aut-sei=Yukami en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawazoeAkihito en-aut-sei=Kawazoe en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShitaraKohei en-aut-sei=Shitara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MoritaAyako en-aut-sei=Morita en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=EnokidaTomohiro en-aut-sei=Enokida en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TaharaMakoto en-aut-sei=Tahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HasegawaYoshinori en-aut-sei=Hasegawa en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Pathology, National Cancer Center Hospital East kn-affil= affil-num=12 en-affil=Department of Genetic Medicineand Services, National Cancer Center Hospital East kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=18 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=19 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=20 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=21 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=22 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=23 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=24 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=26 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=27 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=28 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=29 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=30 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=31 en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center kn-affil= affil-num=32 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=1706 cd-vols= no-issue= article-no= start-page=464247 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Separation and fractionation of glutamic acid and histidine via origami isoelectric focusing en-subtitle= kn-subtitle= en-abstract= kn-abstract=We demonstrated the fractionation of two amino acids, glutamic acid and histidine, separated via isoelectric focusing (IEF) on filter paper folded and stacked in an origami fashion. Channels for electrophoresis were fabricated as circular zones acquired via wax printing onto the filter paper. An ampholyte solution with amphiphilic samples was deposited on all the circle zones, which was followed by folding to form the electrophoresis channels. IEF was achieved by applying an electrical potential between the anodic and cathodic chambers filled with phosphoric acid and sodium hydroxide solutions, respectively. A pH gradient was formed using either a wide-range ampholyte with a pH of 3 to 10 or a narrow-range version with a pH of 5 to 8, which was confirmed by adding pH indicators to each layer. The origami IEF was used to separate the amino acids, glutamic acid and histidine, by mixing with the ampholytes, which were deposited on the layers. The components in each layer were extracted with water and measured by high-performance liquid chromatography using pre-column derivatization with dansyl chloride. The results indicated that the focus for glutamic acid and that for histidine were at different layers, according to their isoelectric points. The origami isoelectric focusing achieved the fractionation of amino acids in less than 3 min using voltage as low as 30 V. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamashitaNayu en-aut-sei=Yamashita en-aut-mei=Nayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Paper-based analytical device kn-keyword=Paper-based analytical device en-keyword=Isoelectric focusing kn-keyword=Isoelectric focusing en-keyword=Origami electrophoresis kn-keyword=Origami electrophoresis en-keyword=Amino acids kn-keyword=Amino acids END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=16 article-no= start-page=2433 end-page=2435 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cryptococcal Meningitis Developing in a Patient with Neurosarcoidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryptococcal meningitis is a critical disease that occasionally involves immunosuppressed patients. We herein report a 79-year-old Japanese man who received low-dose prednisolone therapy for neurosarcoidosis and panhypopituitarism. He presented a 10-day history of a fever and altered mental status. The FilmArray & REG; Meningitis/Encephalitis Panel and serum cryptococcal antigen tests were both negative, but the cerebrospinal fluid sample became positive for Cryptococcus neoformans after seven-day incubation. After the diagnosis of cryptococcal meningitis, we successfully treated the patient with a recommended treatment regimen. When an immunocompromised patient presents with a subacute fever accompanying any central nervous symptoms, cryptococcal meningitis should be screened for. en-copyright= kn-copyright= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoYukichika en-aut-sei=Yamamoto en-aut-mei=Yukichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OguniKohei en-aut-sei=Oguni en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cryptococcal meningitis kn-keyword=cryptococcal meningitis en-keyword=Cryptococcus neoformans kn-keyword=Cryptococcus neoformans en-keyword=neurosarcoidosis kn-keyword=neurosarcoidosis en-keyword=interleukin-6 kn-keyword=interleukin-6 END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=11676 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of deep learning classifiers in histopathological diagnosis of oral squamous cell carcinoma by pathologists en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study aims to identify histological classifiers from histopathological images of oral squamous cell carcinoma using convolutional neural network (CNN) deep learning models and shows how the results can improve diagnosis. Histopathological samples of oral squamous cell carcinoma were prepared by oral pathologists. Images were divided into tiles on a virtual slide, and labels (squamous cell carcinoma, normal, and others) were applied. VGG16 and ResNet50 with the optimizers stochastic gradient descent with momentum and spectral angle mapper (SAM) were used, with and without a learning rate scheduler. The conditions for achieving good CNN performances were identified by examining performance metrics. We used ROCAUC to statistically evaluate diagnostic performance improvement of six oral pathologists using the results from the selected CNN model for assisted diagnosis. VGG16 with SAM showed the best performance, with accuracy = 0.8622 and AUC = 0.9602. The diagnostic performances of the oral pathologists statistically significantly improved when the diagnostic results of the deep learning model were used as supplementary diagnoses (p-value = 0.031). By considering the learning results of deep learning model classifiers, the diagnostic accuracy of pathologists can be improved. This study contributes to the application of highly reliable deep learning models for oral pathological diagnosis. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaFuta en-aut-sei=Tanaka en-aut-mei=Futa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueYuta en-aut-sei=Inoue en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraTakeshi en-aut-sei=Hara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshiiKazumasa en-aut-sei=Yoshii en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatsumitsuShimada en-aut-sei=Katsumitsu en-aut-mei=Shimada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakaiFumi en-aut-sei=Nakai en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakaiYasuhiro en-aut-sei=Nakai en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiyazakiRyo en-aut-sei=Miyazaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MurakamiSatoshi en-aut-sei=Murakami en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiyakeMinoru en-aut-sei=Miyake en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=4 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=5 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=6 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=11 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=14 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=15 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=347 end-page=357 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Feasibility of Flow Cytometry Analysis of Gastrointestinal Tract-Residing Lymphocytes in Hematopoietic Stem Cell Transplant Recipients en-subtitle= kn-subtitle= en-abstract= kn-abstract=The feasibility of lymphocyte isolation and flow cytometry using a single endoscopic biopsy specimen from the gastrointestinal tract of patients who have undergone hematopoietic stem cell transplantation has not been investigated. We acquired 51 endoscopic biopsy specimens from the gastrointestinal tract of 35 patients. We divided the flow cytometry samples into two groups: group A, successful lymphocyte isolation (n=24), and group B, incomplete isolation (n=27). We compared the backgrounds of the samples between the groups to reveal crucial elements in the successful isolation of lymphocytes residing in the gastrointestinal tract. Comparison between the groups revealed lymphocyte isolation success rates differed between biopsy sites. Isolation was most successful in samples from the duodenum (8/9, 88.9%), followed by the ileum (4/8, 50.0%), large intestine (4/11, 36.4%), and stomach (8/23, 34.8%). Tacrolimus was used more frequently in group B (92.6%) than in group A (62.5%) (p=0.015). Logistic regression analysis revealed that isolation from the duodenum or ileum was a significant factor for successful isolation, while tacrolimus use was not statistically significant. In conclusion, the duodenum and ileum are more suitable sites than the stomach and colorectum for acquiring samples for flow cytometry. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirabataAraki en-aut-sei=Hirabata en-aut-mei=Araki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=flow cytometry kn-keyword=flow cytometry en-keyword=stem cell transplantation kn-keyword=stem cell transplantation en-keyword=transplantation-associated microangiopathy kn-keyword=transplantation-associated microangiopathy END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=918273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sea Surface Temperature and Salinity in Lombok Strait Reconstructed From Coral Sr/Ca and 18O, 1962?2012 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Coral geochemical tracers have been used in studies of the paleoclimatology and paleoceanography of the tropics and subtropics. We measured Sr/Ca and oxygen isotope ratios (18O) in a coral sample collected from the southern part of Lombok Strait, a significant outlet of the Indonesian Throughflow (ITF) to the Indian Ocean, to reconstruct the historical record of sea surface temperature (SST) and seawater 18O. Seawater 18O can be used to approximate sea surface salinity (SSS) because it reflects the balance of evaporation and precipitation. The resulting time series reconstructed SST and SSS, covering the period 1962?2012, shows no clear trend of global warming, although the record includes a large cooling event (~4C) during 1996?1997. Although neither SST nor SSS shows a systematic relationship with El Ni?o?Southern Oscillation and Indian Ocean Dipole (IOD), weak but significant correlations are found partly. In addition, the coral data show signals of major IOD and El Ni?o events in 1994 and 1997, respectively, although climatic trends recorded in the coral are not consistent with those found along the Java-Sumatra coast. To evaluate other influences on the ITF in Lombok Strait, we compared our coral record with coral records from sites in the Java Sea, the southern part of Makassar Strait, and Ombai Strait. During the northwest monsoon (December?January?February), variations in SST and SSS at Lombok Strait site are similar to those at the Java Sea and southern Makassar sites for the period 1962?1995, which suggests that low-salinity water from the Java Sea is carried at least to the southern part of Makassar Strait where it suppresses the ITF upstream from Lombok Strait. However, the SST and SSS records differ at the three sites during the southeast monsoon (June?July?August), indicating that surface conditions in Lombok Strait vary separately from those in the Java Sea. In the longer term, although global warming has been widely identified in the Indonesian Seas, the coral record shows no clear warming trend in the southern part of Lombok Strait, where fluctuations in the ITF may be modulating the distribution of heat in the surface waters of the western Pacific and eastern Indian Ocean. en-copyright= kn-copyright= en-aut-name=GendaAi en-aut-sei=Genda en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkeharaMinoru en-aut-sei=Ikehara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiAtsushi en-aut-sei=Suzuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArmanAli en-aut-sei=Arman en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueMayuri en-aut-sei=Inoue en-aut-mei=Mayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Center for Advanced Marine Core Research, Kochi University kn-affil= affil-num=3 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=4 en-affil=Research and Technology Center for Application of Isotope and Radiation, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=coral kn-keyword=coral en-keyword=geochemical tracers kn-keyword=geochemical tracers en-keyword=Sr/Ca kn-keyword=Sr/Ca en-keyword= 18O kn-keyword= 18O en-keyword=sea surface temperature kn-keyword=sea surface temperature en-keyword=salinity kn-keyword=salinity en-keyword=Lombok Strait kn-keyword=Lombok Strait END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=12 article-no= start-page=11213 end-page=11219 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230317 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of Pipetteless Paper-Based Analytical Devices with a Volume Gauge en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this work, we propose a new design for paper based analytical devices (PADs) that eliminate the need to use a micropipette for sample introduction. With this design, a PAD is equipped with a distance-based detection channel that is connected to a storage channel that indicates the volume of a sample introduced into the PAD. The analyte in the sample solution reacts with a colorimetric reagent deposited into the distance-based detection channel as the sample solution flows into the storage channel where the volume is measured. The ratio of the lengths of the detection channel and that of the storage channel (D/S ratio) are constant for a sample containing a certain concentration, which is independent of the introduced volume. Therefore, the PADs permit volume-independent quantification using a dropper instead of a micropipette because the length of the storage channel plays the role of a volume gauge to estimate the introduced sample volume. In this study, the D/S ratios obtained with a dropper were comparable to those obtained with a micropipette, which confirmed that precise volume control is unnecessary for this PAD system. The proposed PADs were applied to the determinations of iron and bovine serum albumin using bathophenanthroline and tetrabromophenol blue as colorimetric reagents, respectively. The calibration curves showed good linear relationships with coefficients of 0.989 for iron and 0.994 for bovine serum albumin, respectively. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwasakiHiroshi en-aut-sei=Iwasaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ThayawutthikunYada en-aut-sei=Thayawutthikun en-aut-mei=Yada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaetearPhoonthawee en-aut-sei=Saetear en-aut-mei=Phoonthawee kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Mahidol University kn-affil= affil-num=4 en-affil=Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Mahidol University kn-affil= affil-num=5 en-affil=Department of Chemistry, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=2078 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAR1 is a promising risk stratification biomarker of remnant liver recurrence after hepatic metastasectomy for colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adenosine-to-inosine RNA editing is a process mediated by adenosine deaminases that act on the RNA (ADAR) gene family. It has been discovered recently as an epigenetic modification dysregulated in human cancers. However, the clinical significance of RNA editing in patients with liver metastasis from colorectal cancer (CRC) remains unclear. The current study aimed to systematically and comprehensively investigate the significance of adenosine deaminase acting on RNA 1 (ADAR1) expression status in 83 liver metastatic tissue samples collected from 36 patients with CRC. The ADAR1 expression level was significantly elevated in liver metastatic tissue samples obtained from patients with right-sided, synchronous, or RAS mutant-type CRC. ADAR1-high liver metastasis was significantly correlated with remnant liver recurrence after hepatic metastasectomy. A high ADAR1 expression was a predictive factor of remnant liver recurrence (area under the curve = 0.72). Results showed that the ADAR1 expression level could be a clinically relevant predictive indicator of remnant liver recurrence. Patients with liver metastases who have a high ADAR1 expression requires adjuvant chemotherapy after hepatic metastasectomy. en-copyright= kn-copyright= en-aut-name=HataNanako en-aut-sei=Hata en-aut-mei=Nanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakedaSho en-aut-sei=Takeda en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaHibiki en-aut-sei=Umeda en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=18 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=7 article-no= start-page=1344 end-page=1353 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230609 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient granulocyte collection method using high concentrations of medium molecular weight hydroxyethyl starch en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Granulocyte transfusion therapy is a rational therapeutic option for patients with prolonged, severe neutropenia. Although high molecular weight hydroxyethyl starch (hHES) facilitates the separation of red blood cells during granulocyte collection, renal dysfunction has been noted as a potential side effect. HES130/0.4 (Voluven?) is a medium molecular weight HES (mHES) with superior safety profiles compared to hHES. Although HES130/0.4 is reportedly effective in the collection of granulocytes, we lack studies comparing the efficiency of granulocyte collection using HES130/0.4 and hHES.
Study Design and Methods: We retrospectively collected the data from 60 consecutive apheresis procedures performed on 40 healthy donors at the Okayama University Hospital between July 2013 and December 2021. All procedures were performed using the Spectra Optia system. Based on the HES130/0.4 concentration in the separation chamber, granulocyte collection methods using HES130/0.4 were classified into m0.46, m0.44, m0.37, and m0.8 groups. We used HES130/0.4 and hHES groups to compare the various sample collection methods.
Results: The median granulocyte collection efficiency (CE) was approximately 24.0% and 28.1% in the m0.8 and hHES groups, respectively, which were significantly higher than those in the m0.46, m0.44, and m0.37 groups. One month following granulocyte collection with HES130/0.4, no significant changes were observed in serum creatinine levels compared to those before the donation.
Conclusion: Therefore, we propose a granulocyte collection approach employing HES130/0.4, which is comparable to the use of hHES in terms of the granulocyte CE. A high concentration of HES130/0.4 in the separation chamber was considered crucial for granulocyte collection. en-copyright= kn-copyright= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SumiiYuichi en-aut-sei=Sumii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UrataTomohiro en-aut-sei=Urata en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimuraMaiko en-aut-sei=Kimura en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsudaMasayuki en-aut-sei=Matsuda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkegawaShuntaro en-aut-sei=Ikegawa en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WashioKana en-aut-sei=Washio en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuokaKen]ichi en-aut-sei=Matsuoka en-aut-mei=Ken]ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=8 en-affil=Division of Transfusion, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics/Pediatric Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Division of Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=blood center operations kn-keyword=blood center operations en-keyword=cellular therapy kn-keyword=cellular therapy en-keyword=therapeutic apheresis kn-keyword=therapeutic apheresis END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=9 article-no= start-page=919 end-page=921 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202309 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Super acute-onset disseminated BCG infection: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intravesical Bacillus Calmette-Gu?rin (BCG) instillation is an established immunotherapy for superficial bladder cancer. Herein, we describe a case of disseminated BCG infection that developed immediately after the first BCG injection. A 76-year-old man diagnosed with non-invasive bladder cancer underwent intravesical BCG instillation; he developed high fever and systemic arthralgia later that night. General examination did not reveal any infectious sources, and a combination therapy of isoniazid, rifabutin, and ethambutol was initiated after collecting his blood, urine, bone marrow, and liver biopsy samples for mycobacterial cultures. Three weeks later, Mycobacterium bovis was detected in the urine and bone marrow samples, and pathological investigation of liver biopsy revealed multiple small epithelial granulomas with focal multinucleated giant cells, leading to a diagnosis of disseminated BCG infection. The patient recovered after long-term antimycobacterial therapy without remarkable sequelae. Most cases of disseminated BCG infection occur after several doses of BCG injections, and its onset reportedly varies among cases, ranging from a few days to several months. The present case was notable as disease onset was observed only a few hours after the first BCG injection. Although rare, development of disseminated BCG infection should be considered as a differential diagnosis in patients at any time after intravesical BCG instillation therapy. en-copyright= kn-copyright= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujimoriTakumi en-aut-sei=Fujimori en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaYukika en-aut-sei=Yokoyama en-aut-mei=Yukika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=4 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=5 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue= article-no= start-page=102554 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Shigellosis in Southeast Asia: A systematic review and meta-analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Southeast Asia is attractive for tourism. Unfortunately, travelers to this region are at risk of becoming infected with Shigella. We conducted a meta-analysis to provide updates on Shigella prevalence in Southeast Asia, along with their serogroups and serotypes.
Methods: We conducted a systematic search using PubMed, EMBASE, and Web of Science for peer-reviewed studies from 2000 to November 2022. We selected studies that detected Shigella in stools by culture or polymerase chain reaction (PCR). Two reviewers extracted the data using a standardized form and performed quality assessments using the Joanna Briggs Institute checklist. The random effects model was used to estimate the pooled prevalence of Shigella.
Results: During our search, we identified 4376 studies. 29 studies (from six Southeast Asian countries) were included in the systematic review, 21 each in the meta-analysis of the prevalence of Shigella (Sample size: 109545) and the prevalence of Shigella serogroups.
The pooled prevalence of Shigella was 4% (95% CI: 4?5%) among diarrhea cases. Shigella sonnei was the most abundant serogroup in Thailand (74%) and Vietnam (57%), whereas Shigella flexneri was dominant in Indonesia (72%) and Cambodia (71%). Shigella dysenteriae and Shigella boydii were uncommon (pooled prevalence of 1% each). The pooled prevalence of Shigella was 5% (95% CI: 4?6%) in children aged <5 years. The pooled prevalence showed a decreasing trend comparing data collected between 2000?2013 (5%; 95% CI: 4?6%) and between 2014?2022 (3%; 95% CI: 2?4%). Shigella prevalence was 6% in studies that included participants with mixed pathogens versus 3% in those without. Shigella flexneri serotype 2a was the most frequently isolated (33%), followed by 3a (21%), 1b (10%), 2b (3%), and 6 (3%).
Conclusions: This study provides compelling evidence for the development of effective Shigella vaccines for residents of endemic regions and travellers to these areas. en-copyright= kn-copyright= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitraDebmalya en-aut-sei=Mitra en-aut-mei=Debmalya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KhatiwadaJanuka en-aut-sei=Khatiwada en-aut-mei=Januka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DuttaShanta en-aut-sei=Dutta en-aut-mei=Shanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Social Work Institute kn-affil= affil-num=6 en-affil=Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Shigella vaccine kn-keyword=Shigella vaccine en-keyword=Shigella sonnei kn-keyword=Shigella sonnei en-keyword=Shigella flexneri kn-keyword=Shigella flexneri en-keyword=Diarrhea kn-keyword=Diarrhea en-keyword=Dysentery kn-keyword=Dysentery en-keyword=Shiga toxin kn-keyword=Shiga toxin en-keyword=Travel kn-keyword=Travel END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=20628 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Early-stage antibody kinetics after the third dose of BNT162b2 mRNA COVID-19 vaccination measured by a point-of-care fingertip whole blood testing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amid the Coronavirus Disease 2019 pandemic, we aimed to demonstrate the accuracy of the fingertip whole blood sampling test (FWT) in measuring the antibody titer and uncovering its dynamics shortly after booster vaccination. Mokobio SARS-CoV-2 IgM & IgG Quantum Dot immunoassay (Mokobio Biotechnology R&D Center Inc., MD, USA) was used as a point-of-care FWT in 226 health care workers (HCWs) who had received two doses of the BNT162b2 mRNA vaccine (Pfizer-BioNTech) at least 8 months prior. Each participant tested their antibody titers before and after the third-dose booster up to 14-days. The effect of the booster was observed as early as the fourth day after vaccination, which exceeded the detection limit (>30,000 U/mL) by 2.3% on the fifth day, 12.2% on the sixth day, and 22.5% after the seventh day. Significant positive correlations were observed between the pre- and post-vaccination (the seventh and eighth days) antibody titers (correlation coefficient, 0.405; p<0.001). FWT is useful for examining antibody titers as a point-of-care test. Rapid response of antibody titer started as early as the fourth day post-vaccination, while the presence of weak responders to BNT162b2 vaccine was indicated. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurukawaMasanori en-aut-sei=Furukawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OgawaHiroko en-aut-sei=Ogawa en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AgetaKouhei en-aut-sei=Ageta en-aut-mei=Kouhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuoRumi en-aut-sei=Matsuo en-aut-mei=Rumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HigashikageAkihito en-aut-sei=Higashikage en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YokokuraYoshinori en-aut-sei=Yokokura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=16 en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=17 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Yokokura Hospital kn-affil= affil-num=21 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=8912 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of genetic loci associated with renal dysfunction after lung transplantation using an ethnic-specific single-nucleotide polymorphism array en-subtitle= kn-subtitle= en-abstract= kn-abstract=Renal dysfunction is a long-term complication associated with an increased mortality after lung transplantation (LT). We investigated the association of single-nucleotide polymorphisms (SNPs) with the development of renal dysfunction after LT using a Japanese-specific SNP array. First, eligible samples of 34 LT recipients were genotyped using the SNP array and divided into two groups, according to the presence of homozygous and heterozygous combinations of mutant alleles of the 162 renal-related SNPs. To identify candidate SNPs, the renal function tests were compared between the two groups for each SNP. Next, we investigated the association between the candidate SNPs and the time course of changes of the estimated glomerular filtration rate (eGFR) in the 99 recipients until 10 years after the LT. Delta eGFR was defined as the difference between the postoperative and preoperative eGFR values. Eight SNPs were identified as the candidate SNPs in the 34 recipients. Validation analysis of these 8 candidate SNPs in all the 99 recipients showed that three SNPs, namely, rs10277115, rs4690095, and rs792064, were associated with significant changes of the Delta eGFR. Pre-transplant identification of high-risk patients for the development of renal dysfunction after LT based on the presence of these SNPs might contribute to providing personalized medicine. en-copyright= kn-copyright= en-aut-name=TomiokaYasuaki en-aut-sei=Tomioka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoHaruchika en-aut-sei=Yamamoto en-aut-mei=Haruchika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiotaniToshio en-aut-sei=Shiotani en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtaniShinji en-aut-sei=Otani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue= article-no= start-page=52 end-page=59 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive study of metabolic changes induced by a ketogenic diet therapy using GC/MS- and LC/MS-based metabolomics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The ketogenic diet (KD), a high-fat and low-carbohydrate diet, is effective for a subset of patients with drug-resistant epilepsy, although the mechanisms of the KD have not been fully elucidated. The aims of this observational study were to investigate comprehensive short-term metabolic changes induced by the KD and to explore candidate metabolites or pathways for potential new therapeutic targets.
Methods: Subjects included patients with intractable epilepsy who had undergone the KD therapy (the medium-chain triglyceride [MCT] KD or the modified Atkins diet using MCT oil). Plasma and urine samples were obtained before and at 2?4 weeks after initiation of the KD. Targeted metabolome analyses of these samples were performed using gas chromatography-tandem mass spectrometry (GC/MS/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS).
Results: Samples from 10 and 11 patients were analysed using GC/MS/MS and LC/MS/MS, respectively. The KD increased ketone bodies, various fatty acids, lipids, and their conjugates. In addition, levels of metabolites located upstream of acetyl-CoA and propionyl-CoA, including catabolites of branched-chain amino acids and structural analogues of -aminobutyric acid and lactic acid, were elevated.
Conclusions: The metabolites that were significantly changed after the initiation of the KD and related metabolites may be candidates for further studies for neuronal actions to develop new anti-seizure medications. en-copyright= kn-copyright= en-aut-name=AkiyamaMari en-aut-sei=Akiyama en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaigusaDaisuke en-aut-sei=Saigusa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HishinumaEiji en-aut-sei=Hishinuma en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsukawaNaomi en-aut-sei=Matsukawa en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsuchiyaHiroki en-aut-sei=Tsuchiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriAtsushi en-aut-sei=Mori en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiiYuji en-aut-sei=Fujii en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MogamiYukiko en-aut-sei=Mogami en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TokorodaniChiho en-aut-sei=Tokorodani en-aut-mei=Chiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuwaharaKozue en-aut-sei=Kuwahara en-aut-mei=Kozue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Numata-UematsuYurika en-aut-sei=Numata-Uematsu en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=InoueKenji en-aut-sei=Inoue en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Child Neurology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Tohoku Medical Megabank Organization, Tohoku University kn-affil= affil-num=4 en-affil=Tohoku Medical Megabank Organization, Tohoku University kn-affil= affil-num=5 en-affil=Tohoku Medical Megabank Organization, Tohoku University kn-affil= affil-num=6 en-affil=Department of Child Neurology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Child Neurology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Neurology, Shiga Medical Centre for Children kn-affil= affil-num=9 en-affil=Department of Paediatrics, Hiroshima City Funairi Citizens Hospital kn-affil= affil-num=10 en-affil=Department of Paediatric Neurology, Osaka Women's and Children's Hospital kn-affil= affil-num=11 en-affil=Department of Paediatrics, Kochi Health Sciences Centre kn-affil= affil-num=12 en-affil=Department of Paediatrics, Ehime Prefectural Central Hospital, kn-affil= affil-num=13 en-affil=Department of Paediatrics, Tohoku University School of Medicine kn-affil= affil-num=14 en-affil=Department of Neurology, Shiga Medical Centre for Children kn-affil= affil-num=15 en-affil=Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Amino acids kn-keyword=Amino acids en-keyword=Biomarkers kn-keyword=Biomarkers en-keyword=Intractable epilepsy kn-keyword=Intractable epilepsy en-keyword=Ketone bodies kn-keyword=Ketone bodies en-keyword=Organic acids kn-keyword=Organic acids END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=3 article-no= start-page=235 end-page=241 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endocrinological Changes after Anamorelin Administration in Patients with Gastrointestinal Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Changes in hormone levels in patients with cancer cachexia after anamorelin administration have not been fully investigated. This study aimed to determine how anamorelin affects the endocrine system in patients with gastrointestinal cancer and cachexia. We prospectively enrolled 13 patients and comprehensively investigated their body weight and levels of serum albumin, hemoglobin A1c (HbA1c), and hormones before (week 0) and 3 and 12 weeks after anamorelin administration. The variables were evaluated at week 3 in 9 patients and at week 12 in 5 patients. At week 3, anamorelin administration resulted in body weight gain and increased the levels of growth hormone and HbA1c, as well as insulin-like growth factor-1 standard deviation scores (IGF-1 SD scores). At the same time, negative correlations were observed between IGF-1 SD score and thyroidstimulating hormone (TSH) and between IGF-1 SD score and free testosterone. Body weight and IGF-1 SD score correlated positively at week 12. These results suggest that TSH and free testosterone levels can be affected 3 weeks after anamorelin administration; however, those variables tend to return to a state of equilibrium, and anabolic effects of anamorelin appear in long-term (? 12 weeks) users. en-copyright= kn-copyright= en-aut-name=KuraokaSakiko en-aut-sei=Kuraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatomiTakuya en-aut-sei=Satomi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamazakiTatsuhiro en-aut-sei=Yamazaki en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anamorelin kn-keyword=anamorelin en-keyword=body weight kn-keyword=body weight en-keyword=cancer cachexia kn-keyword=cancer cachexia en-keyword=endocrine system kn-keyword=endocrine system END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1187479 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Etiology of recurrent cystitis in postmenopausal women based on vaginal microbiota and the role of Lactobacillus vaginal suppository en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The vaginal microbiota can be altered by uropathogenic bacteria associated with recurrent cystitis (RC), and the vaginal administration of Lactobacillus have suggested certain effects to prevent RC. The relationship between vaginal microbiota and the development of RC has not been elucidated. We aimed to clarify the etiology of RC from vaginal microbiota and importance of vaginal Lactobacillus.
Methods: Vaginal samples obtained from 39 postmenopausal women were classified into four groups: healthy controls; uncomplicated cystitis; RC; and prevention (prevented RC by Lactobacillus crispatus-containing vaginal suppositories). Principal coordinate analysis and beta-diversity analysis was used to assess 16S rRNA gene sequencing data from the vaginal microbiome.
Results: Cluster analysis divided the vaginal bacterial communities among 129 vaginal samples into three clusters (A, B, and C). Fourteen of 14 (100%) samples from the RC group and 51 of 53 (96%) samples from the prevention group were in clusters B and C, while 29 of 38 (76%) samples from the healthy group and 14 of 24 (58%) samples from the uncomplicated cystitis group were in cluster A. The principal coordinate analysis showed that plots in the uncomplicated cystitis group were similar to the healthy group, indicating a large separation between the RC group and the uncomplicated cystitis group. On beta-diversity analysis, there were significant differences between the healthy group and the uncomplicated cystitis group (p = 0.045), and between the RC group and the uncomplicated cystitis group or the healthy group (p = 0.001, p = 0.001, respectively). There were no significant differences between the RC group and the prevention group (p = 0.446). The top six taxa were as follows: Prevotella, Lactobacillus, Streptococcus, Enterobacteriaceae, Anaerococcus, and Bifidobacterium. Among patients with RC, Lactobacillus was undetectable before administration of suppositories, while the median relative abundance of Lactobacillus was 19% during administration of suppositories (p = 0.0211), reducing the average cystitis episodes per year (6.3 vs. 2.4, p = 0.0015).
Conclusion: The vaginal microbiota of postmenopausal women with RC is differed from healthy controls and uncomplicated cystitis in terms of lack of Lactobacillus and relatively dominant of Enterobacteriaceae. Vaginal administration of Lactobacillus-containing suppositories can prevent RC by stabilizing vaginal dysbiosis and causing a loss of pathogenic bacteria virulence. en-copyright= kn-copyright= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiiAyano en-aut-sei=Ishii en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=6 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=cystitis kn-keyword=cystitis en-keyword=vagina kn-keyword=vagina en-keyword=microbiota kn-keyword=microbiota en-keyword=Lactobacillus kn-keyword=Lactobacillus en-keyword=urinary tract infection kn-keyword=urinary tract infection END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=e0283426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Consistently low levels of histidine-rich glycoprotein as a new prognostic biomarker for sepsis: A multicenter prospective observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Few sepsis biomarkers accurately predict severity and mortality. Previously, we had reported that first-day histidine-rich glycoprotein (HRG) levels were significantly lower in patients with sepsis and were associated with mortality. Since the time trends of HRG are unknown, this study focused on the time course of HRG in patients with sepsis and evaluated the differences between survivors and non-survivors.
Methods
A multicenter prospective observational study was conducted involving 200 patients with sepsis in 16 Japanese hospitals. Blood samples were collected on days 1, 3, 5, and 7, and 28-day mortality was used for survival analysis. Plasma HRG levels were determined using a modified quantitative sandwich enzyme-linked immunosorbent assay.
Results
First-day HRG levels in non-survivors were significantly lower than those in survivors (mean, 15.7 [95% confidence interval (CI), 13.4-18.1] vs 20.7 [19.5-21.9] mu g/mL; P = 0.006). Although there was no time x survivors/non-survivors interaction in the time courses of HRG (P = 0.34), the main effect of generalized linear mixed models was significant (P < 0.001). In a univariate Cox proportional hazards model with each variable as a time-dependent covariate, higher HRG levels were significantly associated with a lower risk of mortality (hazard ratio, 0.85 [95% CI, 0.78-0.92]; P < 0.001). Furthermore, presepsin levels (P = 0.02) and Sequential Organ Function Assessment scores (P < 0.001) were significantly associated with mortality. Harrell's C-index values for the 28-day mortality effect of HRG, presepsin, procalcitonin, and C-reactive protein were 0.72, 0.70, 0.63, and 0.59, respectively.
Conclusions
HRG levels in non-survivors were consistently lower than those in survivors during the first seven days of sepsis. Repeatedly measured HRG levels were significantly associated with mortality. Furthermore, the predictive power of HRG for mortality may be superior to that of other singular biomarkers, including presepsin, procalcitonin, and C-reactive protein. en-copyright= kn-copyright= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasudaHiroko en-aut-sei=Yasuda en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OiwaMasahiko en-aut-sei=Oiwa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiSatoshi en-aut-sei=Suzuki en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HosoiHiroki en-aut-sei=Hosoi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Absence of Cretaceous hairpin in the apparent polar wander path of southwest Japan: consistency in paleomagnetic pole positions en-subtitle= kn-subtitle= en-abstract= kn-abstract=To test the hypothesis that a Cretaceous hairpin turn is absent in the apparent polar wander path (APWP) of the inner arc of southwestern Japanese island (southwest Japan), we refined a mid-Cretaceous (100 Ma) paleomagnetic pole from southwest Japan. Red mudstone samples from the 100 Ma Hayama Formation were collected for paleomagnetic analysis from eight sites in the Hayama area in the central part of southwest Japan. A high-temperature remanent magnetization component carried by hematite was isolated from these sites and was found to be of primary mid-Cretaceous origin. The primary nature of the magnetization is supported by the detrital character of the magnetic carrier. The primary directions provided a paleomagnetic pole (35.0 degrees N, 209.6 degrees E, A(95) = 6.1 degrees, N = 8), which represented southwest Japan at 100 Ma. This pole falls into a cluster of Cretaceous poles in southwest Japan. An APWP for southwest Japan between 110 and 70 Ma was updated to ascertain the stationarity of the pole positions for this region. Therefore, it is unlikely that the APWP for southwest Japan experienced a hairpin turn during the Cretaceous. en-copyright= kn-copyright= en-aut-name=UnoKoji en-aut-sei=Uno en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaHonoka en-aut-sei=Ohara en-aut-mei=Honoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurukawaKuniyuki en-aut-sei=Furukawa en-aut-mei=Kuniyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanamaruTatsuo en-aut-sei=Kanamaru en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Business Administration, Aichi University kn-affil= affil-num=4 en-affil=Department of Earth and Environmental Sciences, Nihon University kn-affil= en-keyword=Apparent polar wander path kn-keyword=Apparent polar wander path en-keyword=Hairpin turn kn-keyword=Hairpin turn en-keyword=Cretaceous kn-keyword=Cretaceous en-keyword=Southwest Japan kn-keyword=Southwest Japan END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1052216 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230426 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Home literacy environment and early reading skills in Japanese Hiragana and Kanji during the transition from kindergarten to primary school en-subtitle= kn-subtitle= en-abstract= kn-abstract=We examined the reciprocal associations between home literacy environment (HLE) and children's early reading skills in syllabic Hiragana and morphographic Kanji in a sample of Japanese parent-child dyads. Eighty-three children were followed from kindergarten to Grade 3 and tested on Hiragana reading accuracy in kindergarten, Hiragana word reading fluency in kindergarten and Grade 1, and Kanji reading accuracy in Grade 1 to Grade 3. Their parents answered a questionnaire about HLE [parent teaching (PT) in Hiragana and Kanji, shared book reading (SBR), and access to literacy resources (ALR)], parents' needs for early literacy support by teachers, parents' expectations for children's reading skills, parents' worry about children's homework, and mother's education level. Results showed first that ALR, but not PT and SBR, was associated with reading skills in Hiragana and Kanji. Second, whereas Hiragana reading in kindergarten was not associated with PT in Hiragana in kindergarten, it negatively predicted PT in Hiragana in Grade 1. However, Kanji reading accuracy was not associated with PT in Kanji across Grades 1 to 3. Third, parents' worry was negatively associated with children's reading performance across Grades 1 to 3 but positively associated with PT in Hiragana and Kanji. Finally, while parents' expectations were positively associated with children's reading performance across Grades 1 to 3, they were negatively associated with PT in Hiragana and Kanji in Grades 1 and 2. These results suggest that Japanese parents may be sensitive to both their children's reading performance and social expectations for school achievement and adjust their involvement accordingly during the transition period from kindergarten to early primary grades. ALR may be associated with early reading development in both Hiragana and Kanji. en-copyright= kn-copyright= en-aut-name=TanjiTakayuki en-aut-sei=Tanji en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueTomohiro en-aut-sei=Inoue en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=The Chinese University of Hong Kong kn-affil= en-keyword=home literacy environment kn-keyword=home literacy environment en-keyword=early literacy skills kn-keyword=early literacy skills en-keyword=Japanese Hiragana and Kanji kn-keyword=Japanese Hiragana and Kanji en-keyword=parent expectation kn-keyword=parent expectation en-keyword=parent affect kn-keyword=parent affect END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=2 article-no= start-page=119 end-page=122 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Biobank and residual sample use for medical research kn-title=oCIoNƎc]̎gp̍l en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name=R{p kn-aut-sei=R{ kn-aut-mei=p aut-affil-num=1 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name=W kn-aut-sei= kn-aut-mei=W aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Clinical Genomic Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=Rwwp@㎕w@Տ`qÊw affil-num=2 en-affil=Department of Clinical Genomic Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=Rwwp@㎕w@Տ`qÊw END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=3 article-no= start-page=226 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Monitoring the Milk Composition, Milk Microbiota, and Blood Metabolites of Jersey Cows throughout a Lactation Period en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to determine how milk composition, milk microbiota, and blood metabolites may change during the lactation period in Jersey cows. Milk and jugular blood samples were collected from eight healthy cows every other month from the beginning to the end of their lactation period. Samples of airborne dust were also collected to determine whether the cowshed microbiota could affect milk microbiota. Milk yield peaked in the first two months and gradually decreased as the lactation period progressed. Milk fat, protein, and solids-not-fat contents were low in the first month, and then increased during the middle and late lactation periods. In the first month, plasma non-esterified fatty acids (NEFA), haptoglobin (Hp), and aspartate transaminase (AST) levels were elevated, and high abundances of Burkholderiaceae and Oxalobacteraceae were observed in milk and airborne dust microbiota. The finding that contamination of the environmental microbiota in milk was coupled with elevated plasma NEFA, Hp, and AST levels indicated that impaired metabolic function during the early lactation period may increase the invasion of opportunistic bacteria. This study can affirm the importance of feeding and cowshed management and should provide a helpful addition to improving Jersey cow farming. en-copyright= kn-copyright= en-aut-name=GathinjiPeter Kiiru en-aut-sei=Gathinji en-aut-mei=Peter Kiiru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YousofiZabiallah en-aut-sei=Yousofi en-aut-mei=Zabiallah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkadaKarin en-aut-sei=Akada en-aut-mei=Karin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WaliAjmal en-aut-sei=Wali en-aut-mei=Ajmal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinoNaoki en-aut-sei=Nishino en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Animal Products Research Group, Institute of Livestock and Grassland Science, National Agriculture and Research Organization kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=airborne dust kn-keyword=airborne dust en-keyword=blood metabolites kn-keyword=blood metabolites en-keyword=Jersey cows kn-keyword=Jersey cows en-keyword=microbiota kn-keyword=microbiota en-keyword=milk kn-keyword=milk END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=185 end-page=192 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating the Coping Behavior of Children with Psychosomatic Disorders under Frustrating Situations Simulated Using the Rosenzweig Picture-Frustration Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Psychosomatic disorders are influenced by psychosocial factors such as interpersonal relationships. Coping behaviors, especially in frustrating situations, reflect a patientfs ability to cope with stress, and it is important to assess these behaviors for the treatment of psychosomatic diseases. This study aimed to clarify the interpersonal relationships and coping behaviors of pediatric patients with psychosomatic diseases during frustrating situations simulated using the Rosenzweig Picture-Frustration study. This retrospective study included 126 patients (41 male, 85 female) with an average age of 12.9 (6-16) years who were consulted at the Department of Pediatric Psychosomatic Medicine at Okayama University Hospital from 2013 to 2018 and underwent the P-F study. Each score was compared with a standardization sample. The mean group conformity rating did not differ significantly between the participants and healthy children. Compared with healthy children, those with psychosomatic diseases were less likely to explain their perspective. The children with psychosomatic disorders responded to frustrating situations in a sensible and age-appropriate manner. However, they were less likely to respond by explaining their perspective to protect themselves. en-copyright= kn-copyright= en-aut-name=SugiharaAkiko en-aut-sei=Sugihara en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaAyumi en-aut-sei=Okada en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoriuchiMakiko en-aut-sei=Horiuchi en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YabeMayumi en-aut-sei=Yabe en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShigeyasuYoshie en-aut-sei=Shigeyasu en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaChie en-aut-sei=Tanaka en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Clinical Psychology section, Department of Medical Support, Okayama University Hospital Department of Medical Support kn-affil= affil-num=4 en-affil=Clinical Psychology section, Department of Medical Support, Okayama University Hospital Department of Medical Support kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=psychosomatic disorder kn-keyword=psychosomatic disorder en-keyword=picture-frustration study kn-keyword=picture-frustration study en-keyword=children kn-keyword=children en-keyword=projective technique kn-keyword=projective technique en-keyword=group conformity rating kn-keyword=group conformity rating END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=6 article-no= start-page=5168 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stress-Inducible SCAND Factors Suppress the Stress Response and Are Biomarkers for Enhanced Prognosis in Cancers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cell stress response is an essential system present in every cell for responding and adapting to environmental stimulations. A major program for stress response is the heat shock factor (HSF)-heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer progression. However, less is known about how the cell stress response is regulated by alternative transcription factors. Here, we show that the SCAN domain (SCAND)-containing transcription factors (SCAN-TFs) are involved in repressing the stress response in cancer. SCAND1 and SCAND2 are SCAND-only proteins that can hetero-oligomerize with SCAN-zinc finger transcription factors, such as MZF1(ZSCAN6), for accessing DNA and transcriptionally co-repressing target genes. We found that heat stress induced the expression of SCAND1, SCAND2, and MZF1 bound to HSP90 gene promoter regions in prostate cancer cells. Moreover, heat stress switched the transcript variants' expression from long noncoding RNA (lncRNA-SCAND2P) to protein-coding mRNA of SCAND2, potentially by regulating alternative splicing. High expression of HSP90AA1 correlated with poorer prognoses in several cancer types, although SCAND1 and MZF1 blocked the heat shock responsiveness of HSP90AA1 in prostate cancer cells. Consistent with this, gene expression of SCAND2, SCAND1, and MZF1 was negatively correlated with HSP90 gene expression in prostate adenocarcinoma. By searching databases of patient-derived tumor samples, we found that MZF1 and SCAND2 RNA were more highly expressed in normal tissues than in tumor tissues in several cancer types. Of note, high RNA expression of SCAND2, SCAND1, and MZF1 correlated with enhanced prognoses of pancreatic cancer and head and neck cancers. Additionally, high expression of SCAND2 RNA was correlated with better prognoses of lung adenocarcinoma and sarcoma. These data suggest that the stress-inducible SCAN-TFs can function as a feedback system, suppressing excessive stress response and inhibiting cancers. en-copyright= kn-copyright= en-aut-name=ShetaMona en-aut-sei=Sheta en-aut-mei=Mona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKunihiro en-aut-sei=Yoshida en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanemotoHideka en-aut-sei=Kanemoto en-aut-mei=Hideka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CalderwoodStuart K. en-aut-sei=Calderwood en-aut-mei=Stuart K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School kn-affil= affil-num=5 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cell stress response kn-keyword=cell stress response en-keyword=heat shock protein 90 (HSP90) kn-keyword=heat shock protein 90 (HSP90) en-keyword=SCAN domain (SCAND)-containing proteins kn-keyword=SCAN domain (SCAND)-containing proteins en-keyword=MZF1 kn-keyword=MZF1 en-keyword=ZSCAN6 kn-keyword=ZSCAN6 en-keyword=heat shock factor (HSF) kn-keyword=heat shock factor (HSF) en-keyword=long noncoding RNA (lncRNA) kn-keyword=long noncoding RNA (lncRNA) en-keyword=co-expression correlation kn-keyword=co-expression correlation en-keyword=Kaplan-Meier plot kn-keyword=Kaplan-Meier plot en-keyword=cancer patient prognosis kn-keyword=cancer patient prognosis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Genotypic and Phenotypic Characteristics Contributing to Flomoxef Sensitivity in Clinical Isolates of ESBL-Producing E. coli Strains from Urinary Tract Infections en-subtitle= kn-subtitle= en-abstract= kn-abstract=We carried out a molecular biological analysis of extended-spectrum beta-lactamase (ESBL)-producing E. coli strains and their sensitivity to flomoxef (FMOX). Sequence type (ST) analysis by multilocus sequence typing (MLST) and classification of ESBL genotypes by multiplex PCR were performed on ESBL-producing E. coli strains isolated from urine samples collected from patients treated at our institution between 2008 and 2018. These sequences were compared with results for antimicrobial drug susceptibility determined using a micro-liquid dilution method. We also analyzed cases treated with FMOX at our institution to examine its clinical efficacy. Of the 911 E. coli strains identified, 158 (17.3%) were ESBL-producing. Of these, 67.7% (107/158) were strain ST-131 in ST analysis. Nearly all (154/158; 97.5%) were CTX-M genotypes, with M-14 and M-27 predominating. The isolated strains were sensitive to FMOX in drug susceptibility tests. Among the patient samples, 33 cases received FMOX, and of these, 5 had ESBL-producing E. coli. Among these five cases, three received FMOX for surgical prophylaxis as urinary carriers of ESBL-producing E. coli, and postoperative infections were prevented in all three patients. The other two patients received FMOX treatment for urinary tract infections. FMOX treatment was successful for one, and the other was switched to carbapenem. Our results suggest that FMOX has efficacy for perioperative prophylactic administration in urologic surgery involving carriers of ESBL-producing bacteria and for therapeutic administration for urinary tract infections. Use of FMOX avoids over-reliance on carbapenems or beta-lactamase inhibitors and thus is an effective antimicrobial countermeasure. en-copyright= kn-copyright= en-aut-name=SakaedaKazuma en-aut-sei=Sakaeda en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Koichiro Wada Department of Urology, School of Medicine, Shimane University kn-affil= affil-num=7 en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=Escherichia coli kn-keyword=Escherichia coli en-keyword=urinary tract infections kn-keyword=urinary tract infections en-keyword=flomoxef kn-keyword=flomoxef en-keyword=ST131 kn-keyword=ST131 END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=5 article-no= start-page=2223 end-page=2230 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Uniform Formation of a Characteristic Nanocomposite Structure of Biogenous Iron Oxide for High Rate Performance as the Anode of Lithium-Ion Batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, Fe2O3 has been considered as an alternative anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity (approximately 1000 mA h g-1), low cost, and nontoxicity. However, its rate performance remains poor relative to that of the conventional graphite anode. In this study, Fe2O3-based anodes were prepared through the annealing of biogenous Fe2O3 (L-BIOX) samples produced by an aquatic Fe-oxidizing bacterium. The effect of the annealing temperature on the performance of the synthesized Fe2O3-based material as the anode of an LIB was investigated. Electrochemical measurements revealed that the annealed L-BIOX samples at 300-700 degrees C exhibited higher rate performances than the unannealed material. Particularly, the sample annealed at 700 degrees C exhibited the highest capacity among the synthesized materials and showed a higher performance than the previously reported Fe2O3-based anodes. It exhibited a capacity of 923 mA h g-1 even at a high current density of 2 A g-1. After annealing at 700 degrees C and discharging, the synthesized biogenous material had a uniform nanocomposite structure composed of alpha-Fe2O3 nanoparticles dispersed in an amorphous matrix of Li-Si-P oxide. To form this uniform nanostructure, the solid-state diffusion resistance of the Li+ ions in the active material was reduced, which consequently improved the rate performance of the electrode. Therefore, this study provides substantial insights into the development and improvement of the performance of novel Fe2O3-based nanomaterials as the anode of LIBs. en-copyright= kn-copyright= en-aut-name=TakahashiMasakuni en-aut-sei=Takahashi en-aut-mei=Masakuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakumaRyo en-aut-sei=Sakuma en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoHideki en-aut-sei=Hashimoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakadaJun en-aut-sei=Takada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=2 article-no= start-page=7 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bladder tuberculosis with ureteral strictures after bacillus Calmette?Gu?rin therapy for urinary bladder cancer: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intravesical immunotherapy using bacillus Calmette?Gu?rin (BCG) is recommended for patients with intermediate? to high?risk non?muscle invasive bladder cancer. Bladder tuberculosis (TB) is a rare complication of BCG therapy. The present study describes the case of a 73?year?old man who underwent intravesical BCG therapy for urothelial carcinoma in situ of the bladder. Red patches around the resection scar were first detected 1 year and 5 months after BCG treatment; these findings gradually spread to encompass more of the bladder wall. Transurethral biopsy revealed a benign lesion, but the patient developed bilateral hydronephrosis and mild voiding dysfunction. The patient was eventually diagnosed with bladder TB by mycobacterial urine culture and TB?specific polymerase chain reaction (PCR). The patient was given multidrug therapy (isoniazid, rifampicin and ethambutol) and their bladder TB was completely cured; however, their voiding dysfunction and bilateral hydronephrosis did not fully improve. Bladder TB can occur long after intravesical BCG administration and cystoscopy findings consistent with inflammation can be the key to suspecting this condition. Acid?fast examination and PCR testing of a urine sample are necessary for early diagnosis. en-copyright= kn-copyright= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bladder tuberculosis kn-keyword=bladder tuberculosis en-keyword=bacillus Calmette-Guerin kn-keyword=bacillus Calmette-Guerin en-keyword=bladder cancer kn-keyword=bladder cancer en-keyword=ureteral stricture kn-keyword=ureteral stricture en-keyword=voiding dysfunction kn-keyword=voiding dysfunction END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=1 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Trial of CLIL in a Japanese University Classroom:Using The Intersection of Arts, Humanities, and Science kn-title=pʂewK̎݁FThe Intersection of Arts, Humanities, and Science pƏЉ en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper we review our class activities using The Intersection of Arts, Humanities, and Science (2020), which was coauthored by the members of The Japan Association of International Liberal Arts with the aim of integrating content and language learning according to the concept of CLIL (Content and Language Integrated Learning). The book includes not only topics to stimulate university students'intellectual curiosity but also various activities through which students can read, think, and express themselves in English. Based on our reflective review of class activities and student samples, we discuss possible pedagogical effects and further improvements of CLIL. en-copyright= kn-copyright= en-aut-name=YoshidaAzumi en-aut-sei=Yoshida en-aut-mei=Azumi kn-aut-name=gc kn-aut-sei=gc kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeranishiMasayuki en-aut-sei=Teranishi en-aut-mei=Masayuki kn-aut-name=V kn-aut-sei= kn-aut-mei=V aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= en-keyword=CLIL kn-keyword=CLIL en-keyword=ۋ{ kn-keyword=ۋ{ en-keyword=Z kn-keyword=Z en-keyword=Ɗ kn-keyword=Ɗ END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=61 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thrombocytopenia, anasarca, and renal insufficiency as severe and rare complications of Hodgkin lymphoma: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=BackgroundPatients with Hodgkin lymphoma exhibit various clinical presentations. Needle biopsy of the lymph nodes is a minimally invasive procedure and a useful diagnostic method for malignant lymphomas. However, at times it is difficult to differentiate malignant lymphomas from reactive lymph node changes using a small amount of biopsy material.Case presentationA 77-year-old Japanese man was referred to the emergency department of our hospital owing to high fever and disturbance of consciousness. We diagnosed sepsis due to an acute biliary tract infection because he presented with Charcot's triad-fever, jaundice, and right-sided abdominal pain. However, he did not respond well to antimicrobial therapy and his high fever persisted. Considering the swelling of the right cervical, mediastinal, and intraperitoneal lymph nodes and splenomegaly detected on computed tomography, a differential diagnosis of malignant lymphoma was needed. Hence, we performed a needle biopsy of the right cervical lymph node; however, the amount of sample obtained was insufficient in establishing a definitive diagnosis of malignant lymphoma. Furthermore, during hospitalization, the patient developed thrombocytopenia, anasarca, and renal insufficiency. These symptoms seemed to be the typical signs of the thrombocytopenia, anasarca, fever, reticulin fibrosis or renal insufficiency, and organomegaly syndrome. Next, an external incisional mass biopsy of the right cervical lymph node was performed, which helped identify Hodgkin and Reed-Sternberg cells. Collectively, we established a definitive diagnosis of Hodgkin lymphoma with lymphoma-associated hemophagocytic syndrome.ConclusionsThis case highlights the importance of performing an external incisional mass biopsy of the lymph nodes for the early diagnosis and treatment, if malignant lymphoma is strongly suspected. en-copyright= kn-copyright= en-aut-name=KikuchiTatsuya en-aut-sei=Kikuchi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaYoshinori en-aut-sei=Tanaka en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IchimuraKouichi en-aut-sei=Ichimura en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoRyoichi en-aut-sei=Okamoto en-aut-mei=Ryoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Hematology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Pathology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=Hodgkin lymphoma kn-keyword=Hodgkin lymphoma en-keyword=Hemophagocytic syndrome kn-keyword=Hemophagocytic syndrome en-keyword=TAFRO syndrome kn-keyword=TAFRO syndrome END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=3 article-no= start-page=1921 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microcalcification and Tc-99m-Pyrophosphate Uptake without Increased Bone Metabolism in Cardiac Tissue from Patients with Transthyretin Cardiac Amyloidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transthyretin cardiac amyloidosis (ATTR-CA) is characterized by high Tc-99m-labeled bone tracer uptake in the heart. However, the mechanism of bone tracer uptake into the heart remains controversial. Since bone tracer uptake into metastatic bone tumors is thought to be associated with increased bone metabolism, we examined Tc-99m-pyrophosphate (PYP) scintigraphy findings, endomyocardial biopsy (EMB) tissue findings, and the expression of bone metabolism-related genes in the EMB tissues in patients with ATTR-CA, amyloid light-chain cardiac amyloidosis (AL-CA), and noncardiac amyloidosis (non-CA) in this study. The uptake of Tc-99m-PYP in the heart was significantly higher in the ATTR-CA patients than in the AL-CA and non-CA patients. A higher percentage of ATTR-CA EMB tissue showed von Kossa-positive microparticles: ATTR-CA, 62%; AL-CA, 33%; and non-CA, 0%. Calcified microparticles were identified using transmission electron microscopy. However, none of the osteogenic marker genes, osteoclastic marker genes, or phosphate/pyrophosphate-related genes were upregulated in the EMB samples from ATTR-CA patients compared to those from AL-CA and non-CA patients. These results suggest that active calcification-promoting mechanisms are not involved in the microcalcification observed in the heart in ATTR-CA. The mechanisms explaining bone tracer uptake in the heart, which is stronger than that in the ribs, require further investigation. en-copyright= kn-copyright= en-aut-name=MoriAtsushi en-aut-sei=Mori en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaniyamaMakiko en-aut-sei=Taniyama en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Medicine, Tamano Division, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=ATTR kn-keyword=ATTR en-keyword=Tc-99m-labeled bone scintigraphy kn-keyword=Tc-99m-labeled bone scintigraphy en-keyword=calcified microparticle kn-keyword=calcified microparticle END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=81 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Eleven years of data on the Jefferson Scale of Empathy - medical student version: Japanese norm data and tentative cutoff scores en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
More and more studies investigate medical students' empathy using the Jefferson Scale of Empathy (JSE). However, no norm data or cutoff scores of the JSE for Japanese medical students are available. This study therefore explored Japanese norm data and tentative cutoff scores for the Japanese translation of the JSE-medical student version (JSE-S) using 11 years of data obtained from matriculants from a medical school in Japan.

Methods
Participants were 1,216 students (836 men and 380 women) who matriculated at a medical school in Japan from 2011 to 2021. The JSE-S questionnaire was administered to participants prior to the start of the program. Data were summarized using descriptive statistics and statistical tests were performed to show the norm data and tentative cutoff scores for male and female students separately.

Results
The score distributions of the JSE-S were moderately skewed and leptokurtic for the entire sample, with indices -0.75 and 4.78, respectively. The mean score (standard deviation) for all participants was 110.8 (11.8). Women had a significantly higher mean score (112.6) than men (110.0; p < 0.01). The effect size estimate of gender difference was 0.22, indicating a small effect size. The low and high cutoff scores for men were <= 91 and >= 126, respectively, and the corresponding scores for women were <= 97 and >= 128, respectively.

Conclusions
This study provides JSE-S norm data and tentative cutoff scores for Japanese medical school matriculants, which would be helpful in identifying those who may need further training to enhance their empathy. en-copyright= kn-copyright= en-aut-name=KataokaHitomi U. en-aut-sei=Kataoka en-aut-mei=Hitomi U. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokinobuAkiko en-aut-sei=Tokinobu en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ObikaMikako en-aut-sei=Obika en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= Center for Diversity and Inclusion, Okayama University Hospital kn-affil= affil-num=2 en-affil= Center for Diversity and Inclusion, Okayama University Hospital kn-affil= affil-num=3 en-affil= Center for Diversity and Inclusion, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Jefferson Scale of Empathy kn-keyword=Jefferson Scale of Empathy en-keyword=Norm data kn-keyword=Norm data en-keyword=Cutoff scores kn-keyword=Cutoff scores en-keyword=Medical students kn-keyword=Medical students en-keyword=Empathy kn-keyword=Empathy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=57 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development, Disappearance, and Clinical Course of Melanosis Coli: Sex Differences in the Progression of Severity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Melanosis coli (MC) is an acquired colorectal disorder visualized as colonic mucosa pigmentation. Disease severity is confirmed based on MC depth, shape, and coloration, although the clinical course is not fully understood. This study sought to clarify characteristics of MC development and disappearance and to investigate its clinical course and severity. Contributors to MC grade progression were explored. This study reviewed MC cases discovered via colonoscopy at a single institution over a 10-year period. Of all 216 MC cases, 17 developing and 10 disappearing cases were detected. Anthranoid laxative use was a key factor: 29.4% of the developing cases had used such agents before the initial MC diagnosis, whereas 40% of disappearing cases had discontinued anthranoids prior to detection of MC disappearance. Among 70 grade I cases, progression to grade II occurred in 16 cases during a mean follow-up of 3.67}2.1 years (rate of progression=22.8%). Males more commonly showed progressive than stable grade I cases, and the probability of progression was higher for male than for female cases. An association between anthranoid administration and MC presence was presumed, and grade I MC was found to progress in severity over 5 years. en-copyright= kn-copyright= en-aut-name=KatsumataRyo en-aut-sei=Katsumata en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ManabeNoriaki en-aut-sei=Manabe en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MonobeYasumasa en-aut-sei=Monobe en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AyakiMaki en-aut-sei=Ayaki en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuehiroMitsuhiko en-aut-sei=Suehiro en-aut-mei=Mitsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaMinoru en-aut-sei=Fujita en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamadaTomoari en-aut-sei=Kamada en-aut-mei=Tomoari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawamotoHirofumi en-aut-sei=Kawamoto en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HarumaKen en-aut-sei=Haruma en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=2 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=3 en-affil=Pathology, Kawasaki Medical School General Medical Center kn-affil= affil-num=4 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=5 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=6 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=7 en-affil=Health Care Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=8 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=9 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= en-keyword=melanosis kn-keyword=melanosis en-keyword=sex characteristics kn-keyword=sex characteristics en-keyword=laxatives kn-keyword=laxatives en-keyword=colorectal neoplasms kn-keyword=colorectal neoplasms en-keyword=colonoscopy kn-keyword=colonoscopy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=1 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence of Inducible Macrolide, Lincosamide, and Streptogramin B (inducible MLSB) Resistance in Clindamycin-Susceptible Staphylococcus aureus at Okayama University Hospital en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inducible resistance to the macrolide, lincosamide, and streptogramin B (iMLSB) antibiotic family is a latent mechanism for antimicrobial resistance in Staphylococcus aureus. We here investigated the frequency and genotypic profiles of iMLSB resistance in clindamycin (CLDM)-susceptible S. aureus isolated in Okayama University Hospital from June 2020 to June 2021. We phenotypically screened the iMLSB resistance via D-zone test and performed PCR testing for the erythromycin ribosomal methylase (erm) genes: ermA and ermC. Among 432 CLDM-susceptible S. aureus isolates, 138 (31.9%) exhibited an iMLSB-resistance phenotype, with methicillinresistant S. aureus isolates (MRSA; 61 isolates: 58.6%) exhibiting higher positivity than methicillin-sensitive S. aureus isolates (MSSA; 77 isolates: 23.5%) (p<0.001). Male patients had a higher frequency of iMLSB resistance than females (OR [95%CI]: 1.8 [1.2-2.8]; p=0.007). Genotypically, ermA predominated in both MSSA (70.1%) and MRSA (86.9%) compared to ermC (14.3% in MSSA and 11.5% in MRSA). A single strain of MRSA possessed both ermA and ermC, while 12 (15.6%) MSSA isolates were negative for both ermA and ermC, suggesting the presence of other genetic mechanisms. Collectively, these results show that approximately 33% of CLDM-susceptible S. aureus isolates at our university hospital exhibited iMLSB resistance, predominantly caused by ermA in both MSSA and MRSA. en-copyright= kn-copyright= en-aut-name=NaharLutfun en-aut-sei=Nahar en-aut-mei=Lutfun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NadaTakahiro en-aut-sei=Nada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=clindamycin kn-keyword=clindamycin en-keyword= erm kn-keyword= erm en-keyword=D-zone test kn-keyword=D-zone test en-keyword=inducible MLSB kn-keyword=inducible MLSB END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=212 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230114 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Histidine-rich glycoprotein (HRG) has been reported to inhibit signaling leading to the release of high mobility group box 1 protein, a damage-associated molecular pattern. The present study aimed to determine the longitudinal change in HRG levels in extremely preterm infants and assess whether complications such as bronchopulmonary dysplasia (BPD) were associated with differences in HRG levels. In this multicenter, prospective, observational study, we measured serum HRG levels every 2 weeks from birth to 8 weeks of age. Serum HRG was measured using an enzyme-linked immunosorbent assay. We included 19 extremely preterm infants in the study and 74 samples were analyzed. The median gestational age was 26.0 weeks, and the median birth weight was 858 g. Serum HRG levels showed a significant upward trend after birth (p < 0.001); median HRG concentrations at birth and at 2, 4, 6, and 8 weeks of age were 1.07, 1.11, 2.86, 6.05, and 7.49 mu g/mL, respectively. Onset of BPD was not associated with differences in serum HRG levels. Further, the serum HRG levels increased significantly after birth in extremely preterm infants. en-copyright= kn-copyright= en-aut-name=MorimotoDaisaku en-aut-sei=Morimoto en-aut-mei=Daisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WashioYosuke en-aut-sei=Washio en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamaiKei en-aut-sei=Tamai en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoTakeshi en-aut-sei=Sato en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamuraTomoka en-aut-sei=Okamura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeHirokazu en-aut-sei=Watanabe en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukushimaYu en-aut-sei=Fukushima en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshimotoJunko en-aut-sei=Yoshimoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KageyamaMisao en-aut-sei=Kageyama en-aut-mei=Misao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BabaKenji en-aut-sei=Baba en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Neonatology, Okayama Medical Center, National Hospital Organization kn-affil= affil-num=4 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Division of Neonatology, Okayama Medical Center, National Hospital Organization kn-affil= affil-num=8 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Division of Neonatology, Okayama Medical Center, National Hospital Organization kn-affil= affil-num=10 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=extremely preterm infants kn-keyword=extremely preterm infants en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=high mobility group box 1 kn-keyword=high mobility group box 1 en-keyword=bronchopulmonary dysplasia kn-keyword=bronchopulmonary dysplasia en-keyword=longitudinal measurement kn-keyword=longitudinal measurement en-keyword=mixed-effects model kn-keyword=mixed-effects model END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=2 article-no= start-page=137 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Greenhouse gas emissions from agricultural soil amended with kitchen compost of varying ages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although the use of kitchen waste compost is very common, GHG emissions from soil amended with kitchen waste compost have not been studied. This study aimed to determine the effects of kitchen compost age and application rates on GHG emissions to identify optimal compost management. Soil samples mixed with kitchen waste compost at three different ages: 1 month (1M), 2 months (2M), and 3 months (3M) at two application rates (1% and 2% w/w) were incubated at 25 degrees C for 28 days under aerobic conditions. Emissions of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) were determined on days 3, 7, 14, 21, and 28. Results showed that N2O and CO2 emissions decreased with compost age (p < 0.05). Increased application rates of compost led to increased CO2 emissions and suppression of N2O emissions. Furthermore, CH4 was emitted from soil amended with kitchen compost even under aerobic conditions. This study suggests that 3M kitchen waste compost is optimal in terms of GHG emissions upon application to soil under aerobic conditions. en-copyright= kn-copyright= en-aut-name=ChauTran Thi Minh en-aut-sei=Chau en-aut-mei=Tran Thi Minh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomeyaTakashi en-aut-sei=Someya en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkaoSatoshi en-aut-sei=Akao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraMasato en-aut-sei=Nakamura en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OritateFumiko en-aut-sei=Oritate en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaneShinzo en-aut-sei=Yamane en-aut-mei=Shinzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Saga University kn-affil= affil-num=3 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=4 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=5 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Agriculture and Marine Science, Kochi University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Aerobic conditions kn-keyword=Aerobic conditions en-keyword=greenhouse gas emissions kn-keyword=greenhouse gas emissions en-keyword=kitchen waste compost kn-keyword=kitchen waste compost END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=1 article-no= start-page=39 end-page=42 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Examining the association between vaccine reactogenicity and antibody titer dynamics after the third dose of BNT162b2 vaccine using a mixed-effects model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: To mitigate the COVID-19 pandemic, many countries have recommended the use of booster vac-cinations. The relationship between the degree of adverse vaccine reactions and elevated antibody titers is of interest; however, no studies have investigated the temporal changes in antibody titers based on repeated measurements after a third dose of the BNT162b2 vaccine.
Methods: This prospective longitudinal cohort study was conducted with 62 healthcare workers who received a third dose of the BNT162b2 at Okayama University Hospital, Japan. Venous blood draw and fingertip whole blood test sample collection were conducted at the early (3-13 days) and 1-month time points; only FWT sample collection was conducted at the 2-month time point. Information on adverse reactions within 1 week after vaccination was also obtained. The association between fever of 37.5 degrees C or higher and antibody titers after the third dose of BNT162b2 was examined using a mixed-effects model and Poisson regression with robust variance.
Results: A trend toward higher antibody titers in the early period after vaccination was observed in the febrile individuals, but the differences were not significant at 1 and 2 months post-vaccination (the partial regression coefficient for fever was 8094.3 [-1910.2, 18,098.8] at 1 month after vaccination, and 1764.1 [-4133.9, 7662.1] at 2 months after vaccination in the adjusted models).
Conclusion: The findings suggest that the presence of fever after the third vaccine does not predict a sustained elevation in serum antibody titers. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurukawaMasanori en-aut-sei=Furukawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=4 en-affil=Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=5 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Antibody kn-keyword=Antibody en-keyword=Reactogenicity kn-keyword=Reactogenicity en-keyword=Adverse reaction kn-keyword=Adverse reaction en-keyword=Mixed-effects model kn-keyword=Mixed-effects model END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=161 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-resolution spectroscopy of buffer-gas-cooled phthalocyanine en-subtitle= kn-subtitle= en-abstract= kn-abstract=For over five decades, studies in the field of chemical physics and physical chemistry have primarily aimed to understand the quantum properties of molecules. However, high-resolution rovibronic spectroscopy has been limited to relatively small and simple systems because translationally and rotationally cold samples have not been prepared in sufficiently large quantities for large and complex systems. In this study, we present high-resolution rovibronic spectroscopy results for large gas-phase molecules, namely, free-base phthalocya-nine (FBPc). The findings suggest that buffer-gas cooling may be effective for large molecules introduced via laser ablation. High-resolution electronic spectroscopy, combined with other experimental and theoretical studies, will be useful in understanding the quantum properties of molecules. These findings also serve as a guide for quantum chemical calculations of large molecules. en-copyright= kn-copyright= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TobaruReo en-aut-sei=Tobaru en-aut-mei=Reo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYuiki en-aut-sei=Takahashi en-aut-mei=Yuiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiramotoAyami en-aut-sei=Hiramoto en-aut-mei=Ayami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwakuniKana en-aut-sei=Iwakuni en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumaSusumu en-aut-sei=Kuma en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnomotoKatsunari en-aut-sei=Enomoto en-aut-mei=Katsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BabaMasaaki en-aut-sei=Baba en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Division of Physics, Mathematics, and Astronomy, California Institute of Technology kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for Laser Science, University of Electro-Communications kn-affil= affil-num=6 en-affil=Atomic, Molecular and Optical Physics Laboratory, RIKEN kn-affil= affil-num=7 en-affil=5Department of Physics, University of Toyama kn-affil= affil-num=8 en-affil=Molecular Photoscience Research Center, Kobe University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=22 article-no= start-page=3686 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Natural Cross-Kingdom Spread of Apple Scar Skin Viroid from Apple Trees to Fungi en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viroids are the smallest known infectious agents that are thought to only infect plants. Here, we reveal that several species of plant pathogenic fungi that were isolated from apple trees infected with apple scar skin viroid (ASSVd) carried ASSVd naturally. This finding indicates the spread of viroids to fungi under natural conditions and further suggests the possible existence of mycoviroids in nature. A total of 117 fungal isolates were isolated from ASSVd-infected apple trees, with the majority (85.5%) being an ascomycete Alternaria alternata and the remaining isolates being other plant-pathogenic or -endophytic fungi. Out of the examined samples, viroids were detected in 81 isolates (69.2%) including A. alternata as well as other fungal species. The phenotypic comparison of ASSVd-free specimens developed by single-spore isolation and ASSVd-infected fungal isogenic lines showed that ASSVd affected the growth and pathogenicity of certain fungal species. ASSVd confers hypovirulence on ascomycete Epicoccum nigrum. The mycobiome analysis of apple tree-associated fungi showed that ASSVd infection did not generally affect the diversity and structure of fungal communities but specifically increased the abundance of Alternaria species. Taken together, these data reveal the occurrence of the natural spread of viroids to plants; additionally, as an integral component of the ecosystem, viroids may affect the abundance of certain fungal species in plants. Moreover, this study provides further evidence that viroid infection could induce symptoms in certain filamentous fungi. en-copyright= kn-copyright= en-aut-name=TianMengyuan en-aut-sei=Tian en-aut-mei=Mengyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WeiShuang en-aut-sei=Wei en-aut-mei=Shuang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BianRuiling en-aut-sei=Bian en-aut-mei=Ruiling kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LuoJingxian en-aut-sei=Luo en-aut-mei=Jingxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaiHuanhuan en-aut-sei=Tai en-aut-mei=Huanhuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HadidiAhmed en-aut-sei=Hadidi en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SunLiying en-aut-sei=Sun en-aut-mei=Liying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=2 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=3 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=4 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=5 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=6 en-affil=College of Agronomy, Northwest A&F University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=U.S. Department of Agriculture, Agricultural Research Service kn-affil= affil-num=9 en-affil=College of Plant Health and Medicine, Qingdao Agricultural University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Viroid kn-keyword=Viroid en-keyword=filamentous fungi kn-keyword=filamentous fungi en-keyword=cross-infection kn-keyword=cross-infection en-keyword=hypovirulence kn-keyword=hypovirulence en-keyword=Mycobiome kn-keyword=Mycobiome END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=21 article-no= start-page=7564 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221028 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Does Multifunctional Acrylate's Addition to Methacrylate Improve Its Flexural Properties and Bond Ability to CAD/CAM PMMA Block? en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the effects of a multifunctional acrylate copolymer-Trimethylolpropane Triacrylate (TMPTA) and Di-pentaerythritol Polyacrylate (A-DPH)-on the mechanical properties of chemically polymerized acrylic resin and its bond strength to a CAD/CAM polymethyl methacrylate (PMMA) disk. The methyl methacrylate (MMA) samples were doped with one of the following comonomers: TMPTA, A-DPH, or Trimethylolpropane Trimethacrylate (TMPTMA). The doping ratio ranged from 10 wt% to 50 wt% in 10 wt% increments. The flexural strength (FS) and modulus (FM) of PMMA with and without comonomer doping, as well as the shear bond strength (SBS) between the comonomer-doped PMMA and CAD/CAM PMMA disk, were evaluated. The highest FS (93.2 +/- 4.2 MPa) was obtained when doped with 20 wt% of TMPTA. For TMPTMA, the FS decreased with the increase in the doping ratio. For SBS, TMPTA showed almost constant values (ranging from 7.0 to 8.2 MPa) regardless of the doping amount, and A-DPH peaked at 10 wt% doping (8.7 +/- 2.2 MPa). TMPTMA showed two peaks at 10 wt% (7.2 +/- 2.6 MPa) and 40 wt% (6.5 +/- 2.3 MPa). Regarding the failure mode, TMPTMA showed mostly adhesive failure between the CAD/CAM PMMA disk and acrylic resin while TMPTA and A-DPH showed an increased rate of cohesive or mixed failures. Acrylate's addition as a comonomer to PMMA provided improved mechanical properties and bond strength to the CAD/CAM PMMA disk. en-copyright= kn-copyright= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IrieMasao en-aut-sei=Irie en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinagiShogo en-aut-sei=Minagi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=2 en-affil=Health Research Institute, National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=3 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=5 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Prosthodontics, Okayama University kn-affil= en-keyword=acrylate kn-keyword=acrylate en-keyword=methacrylate kn-keyword=methacrylate en-keyword=CAD/CAM kn-keyword=CAD/CAM en-keyword=flexural strength kn-keyword=flexural strength en-keyword=shear bond strength kn-keyword=shear bond strength END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=12 article-no= start-page=1697 end-page=1699 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection of Enterobacter cloacae complex strain with a blaNDM-1-harboring plasmid from an elderly resident at a long-term care facility in Okayama, Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amidst the global spread of antimicrobial resistance, New Delhi metallo-beta-lactamase (NDM)-type carbapenemase-producing Enterobacterales (CPE) remain uncommon in Japan, and the detection of such highly drug-resistant organisms is limited to inbound cases. There is little evidence regarding the prevalence of NDM beta-lactamase gene (blaNDM)-harboring CPE in the domestic community, especially in the provincial cities of Japan. Herein, we report the isolation of a blaNDM-1-harboring plasmid in Enterobacter cloacae complex strain isolated from an elderly woman without a history of traveling abroad who had resided in a long-term care facility in Okayama, Japan. The multidrug-resistant blaNDM-harboring CPE isolate was detected in a stool sample of the patient during routine screening at admission. We performed whole-genome sequencing analysis of the isolate using MiSeq (Illumina) and MinION (Oxford Nanopore Technologies) platforms. The isolate was identified as sequence type 171, which has predominantly been reported in the United States and China. The blaNDM-1 gene was encoded on the 46,161 bp IncX3 plasmid, with sequence similarity to plasmids of similar size isolated from individuals in China. Collectively, the genomic data suggest that an imported CPE isolate may have spread among healthy individuals in the regional area of Japan. en-copyright= kn-copyright= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaHaruto en-aut-sei=Yamada en-aut-mei=Haruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Bacteriology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Clinical Laboratory, Okayama City Hospital kn-affil= affil-num=5 en-affil=Department of Bacteriology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Antimicrobial resistance kn-keyword=Antimicrobial resistance en-keyword=Carbapenemase-producing Enterobacterales kn-keyword=Carbapenemase-producing Enterobacterales en-keyword=Carbapenem-resistant Enterobacterales kn-keyword=Carbapenem-resistant Enterobacterales en-keyword=New Delhi metallo--lactamase (NDM) kn-keyword=New Delhi metallo--lactamase (NDM) en-keyword=Enterobacter cloacae complex kn-keyword=Enterobacter cloacae complex END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=957890 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction
The aim of the present study was to characterize the profile and diversity of the oral microbiome of a periodontally non-severe group with >= 20 teeth in comparison with a severe periodontitis group of elderly Japanese people.
Methods
A total of 50 patients who had >= 20 teeth and aged >= 60 years were recruited, and 34 participants (13 non-severe participants) were analyzed. After oral rinse (saliva after rinsing) sample collection, the V3-V4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, richness, and evenness), and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A linear discriminant analysis effect size was calculated to identify bacterial species in the periodontally non-severe group.
Results
The periodontally non-severe group showed lower alpha diversity than that of the severe periodontitis group (p <0.05); however, the beta diversities were not significantly different. A higher relative abundance of four bacterial species (Prevotella nanceiensis, Gemella sanguinis, Fusobacterium periodonticum, and Haemophilus parainfluenzae) was observed in the non-severe group than that in the severe periodontitis group.
Conclusion
The oral microbiome in elderly Japanese people with >= 20 teeth and a non-severe periodontal condition was characterized by low alpha diversity and the presence of four bacterial species. en-copyright= kn-copyright= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuharaDaiki en-aut-sei=Fukuhara en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IslamMd Monirul en-aut-sei=Islam en-aut-mei=Md Monirul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SawadaNanami en-aut-sei=Sawada en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakashimaYukiho en-aut-sei=Nakashima en-aut-mei=Yukiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakaharaMomoko en-aut-sei=Nakahara en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SumitaIchiro en-aut-sei=Sumita en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Preventive Dentistry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oral microbiome kn-keyword=oral microbiome en-keyword=elderly people kn-keyword=elderly people en-keyword=diversity kn-keyword=diversity en-keyword=bacteria kn-keyword=bacteria en-keyword=non-severe periodontal condition kn-keyword=non-severe periodontal condition END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=11 article-no= start-page=1578 end-page=1581 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High frequency of extended-spectrum beta-lactamase-producing Enterobacteriaceae carriers at a Japanese long-term care hospital en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Long-term care hospitals (LTCHs) are at a high risk for the inflow and spread of antimicrobial resistance (AMR) pathogens. However, owing to limited laboratory resources, little is known about the extent to which AMR organisms are endemic.

Methods: We performed active surveillance for carbapenem-resistant Enterobacteriaceae (CRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) in newly admitted patients at Marugame Medical Center, a nearly 200-bedded LTCH located in Kagawa, Japan. From August to December 2021, we tested stool samples from patients wearing diapers and confirmed the genetic variants using specific PCR assays. We also collected clinical variables and compared them between AMR carriers and non-carriers.

Results: Stool samples were collected from 75 patients, with a median age of 84 years. CRE strain was not detected, but 37 strains of ESBL-E were isolated from 32 patients (42.7%). During the study period, 4.9% of in-hospital patients (37 per 756 patients) were identified to be ESBL-E carriers in the routine microbiological processing, suggesting that active surveillance detected approximately 9-fold more ESBL-E carriers. The bla(CTM-M-9) group was the most common (38.5%), followed by the bla(TEM) (26.9%). The clinical backgrounds of the ESBL-E non-carriers and carriers were not significantly different.

Conclusion: Our active screening demonstrated that nearly half of the patients hospitalized or transferred to a Japanese LTCH were colonized with ESBL-E. We highlight the enforcement of universal basic infection prevention techniques at LTCHs where patients carrying AMR pathogens gather. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYuji en-aut-sei=Onishi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinoharaNatsumi en-aut-sei=Shinohara en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokuyasuMayumi en-aut-sei=Tokuyasu en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ImanishiAki en-aut-sei=Imanishi en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaharLutfun en-aut-sei=Nahar en-aut-mei=Lutfun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Clinical Laboratory, Marugame Medical Center kn-affil= affil-num=3 en-affil=Clinical Laboratory, Marugame Medical Center kn-affil= affil-num=4 en-affil=Department of Nursing, Marugame Medical Center kn-affil= affil-num=5 en-affil=Department of Nursing, Marugame Medical Center kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Aging society kn-keyword=Aging society en-keyword=Antimicrobial resistance kn-keyword=Antimicrobial resistance en-keyword=Carbapenem-resistant Enterobacteriaceae kn-keyword=Carbapenem-resistant Enterobacteriaceae en-keyword=Extended-spectrum beta-lactamase kn-keyword=Extended-spectrum beta-lactamase en-keyword=Infection prevention and control kn-keyword=Infection prevention and control END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue=7 article-no= start-page=1019 end-page=1022 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Screening of bacterial DNA in bile sampled from healthy dogs and dogs suffering from liver- or gallbladder-associated disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although the biliary system is generally aseptic, gallbladder microbiota has been reported in humans and some animals apart from dogs. We screened and analyzed the bacterial deoxyribonucleic acid in canine gallbladders using bile sampled from 7 healthy dogs and 52 dogs with liver- or gallbladder-associated disease. PCR screening detected bacteria in 17.3% of diseased dogs (9/52) and none in healthy dogs. Microbiota analysis of PCR-positive samples showed that the microbial diversity differed between liver- and gallbladder-associated disease groups. Thus, a specific bacterial community appears to occur at a certain frequency in the bile of diseased dogs. en-copyright= kn-copyright= en-aut-name=NEOSakurako en-aut-sei=NEO en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TAKEMURA-UCHIYAMAIyo en-aut-sei=TAKEMURA-UCHIYAMA en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UCHIYAMAJumpei en-aut-sei=UCHIYAMA en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MURAKAMIHironobu en-aut-sei=MURAKAMI en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SHIMAAyaka en-aut-sei=SHIMA en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KAYANUMAHideki en-aut-sei=KAYANUMA en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YOKOYAMATaiki en-aut-sei=YOKOYAMA en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TAKAGISatoshi en-aut-sei=TAKAGI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KANAIEiichi en-aut-sei=KANAI en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HISASUEMasaharu en-aut-sei=HISASUE en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=Anicom Specialty Medical Institute Inc. kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=10 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=bile kn-keyword=bile en-keyword=bile microbiota kn-keyword=bile microbiota en-keyword=gallbladder kn-keyword=gallbladder en-keyword=hospitalized dog kn-keyword=hospitalized dog en-keyword=laboratory dog kn-keyword=laboratory dog END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1004184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction. en-copyright= kn-copyright= en-aut-name=OgasaharaTsubasa en-aut-sei=Ogasahara en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiAkihiro en-aut-sei=Takahashi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=6 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Brachypodium distachyon kn-keyword=Brachypodium distachyon en-keyword=monocotyledonous plant kn-keyword=monocotyledonous plant en-keyword=microbe-associated molecular pattern kn-keyword=microbe-associated molecular pattern en-keyword=time-series transcriptome analysis kn-keyword=time-series transcriptome analysis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=890048 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anxiolytic-like effects of hochuekkito in lipopolysaccharide-treated mice involve interleukin-6 inhibition en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hochuekkito (HET) is a Kampo medicine used to treat postoperative and post-illness general malaise and decreased motivation. HET is known to regulate immunity and modulate inflammation. However, the precise mechanism and effects of HET on inflammation-induced central nervous system disorders remain unclear. This study aimed to assess the effect of HET on inflammation-induced anxiety-like behavior and the mechanism underlying anxiety-like behavior induced by lipopolysaccharide (LPS). Institute of Cancer Research mice were treated with LPS (300 mu g/kg, intraperitoneally), a bacterial endotoxin, to induce systemic inflammation. The mice were administered HET (1.0 g/kg, orally) once a day for 2 weeks before LPS treatment. The light-dark box test and the hole-board test were performed 24 h after the LPS injection to evaluate the effects of HET on anxiety-like behaviors. Serum samples were obtained at 2, 5, and 24 h after LPS injection, and interleukin-6 (IL-6) levels in serum were measured. Human and mouse macrophage cells (THP-1 and RAW264.7 cells, respectively) were used to investigate the effect of HET on LPS-induced IL-6 secretion. The repeated administration of HET prevented anxiety-like behavior and decreased serum IL-6 levels in LPS-treated mice. HET significantly suppressed LPS-induced IL-6 secretion in RAW264.7 and THP-1 cells. Similarly, glycyrrhizin, one of the chemical constituents of HET, suppressed LPS-induced anxiety-like behaviors. Our study revealed that HET ameliorated LPS-induced anxiety-like behavior and inhibited IL-6 release in vivo and in vitro. Therefore, we postulate that HET may be useful against inflammation-induced anxiety-like behavior. en-copyright= kn-copyright= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMizuki en-aut-sei=Nakamura en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoDaiki en-aut-sei=Matsumoto en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoshikaKota en-aut-sei=Hoshika en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiromizuShoya en-aut-sei=Shiromizu en-aut-mei=Shoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwataNaohiro en-aut-sei=Iwata en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EsumiSatoru en-aut-sei=Esumi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KajizonoMakoto en-aut-sei=Kajizono en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= en-keyword=anxiolytic kn-keyword=anxiolytic en-keyword=inflammation kn-keyword=inflammation en-keyword=immunomodulation kn-keyword=immunomodulation en-keyword=macrophages kn-keyword=macrophages en-keyword=Kampo medicine kn-keyword=Kampo medicine END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=34 article-no= start-page=e30241 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Site-specific differences in T lymphocyte composition of the gastric mucosa after Helicobacter pylori eradication en-subtitle= kn-subtitle= en-abstract= kn-abstract=In our earlier work, we revealed that inflammation of the lesser curvature of the gastric body and antrum could constitute independent risk factors for gastric cancer development, while inflammation of the greater curvature was not. The aims of this study were as follows: first, to reveal the differences between T lymphocyte populations of the gastric antrum and the greater and lesser curvatures of the gastric body in patients after Helicobacter pylori eradication; second, to analyze the correlation between the composition of the stomach-resident T lymphocytes and time from H. pylori eradication; and third, to evaluate the sex differences in T lymphocyte subsets after H. pylori eradication. To investigate site-specific differences in stomach-resident T lymphocytes after H. pylori eradication, we performed flow cytometry analysis on samples taken from the gastric antrum, greater curvature of the gastric body, and lesser curvature of the gastric body of 20 patients. We also analyzed the correlation between the composition of the stomach-resident T lymphocytes and the time from H. pylori eradication. The lymphocyte subsets of the antrum and lesser curvature of the body were similar. In contrast, compared to those in the greater curvature of the gastric body, CD4(+)/CD3(+) lymphocyte subsets (43.8 +/- 19.4% vs 31.7 +/- 14.6%) were elevated in the lesser curvature of the body, whereas CD8(+)/CD3(+) (67.1 +/- 21.3% vs 80.4 +/- 12.0%), CD7(+)/CD3(+) (91.2 +/- 4.6% vs 93.7 +/- 3.8%), CCR4(+)/CD3(+) (7.7 +/- 8.1% vs 10.4 +/- 7.0%), CD45RA(+)/CD3(+)CD4(+) (27.2 +/- 24.8% vs 39.5 +/- 20.8%), and CD45RA(+)/CD3(+)CD4(-) (14.2 +/- 11.1% vs 18.7 +/- 11.5) were lower. Linear regression analysis showed a negative correlation between the time after H. pylori eradication and CD4(+)/CD3(+) (P < .05, R-2 = 0.198). There were no significant differences between men and women with respect to the lymphocyte populations. These results indicate that there are site-specific differences in lymphocyte composition in the stomach after H. pylori eradication. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeNatsuki en-aut-sei=Watanabe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeMakoto en-aut-sei=Abe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaeHiroyuki en-aut-sei=Sakae en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=eradication kn-keyword=eradication en-keyword=flow cytometry kn-keyword=flow cytometry en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori en-keyword=T lymphocytes kn-keyword=T lymphocytes END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=399 end-page=408 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gene Expression Profiling between Patient Groups with High and Low Ki67 Levels after Short-term Preoperative Aromatase Inhibitor Treatment for Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=According to a recent report, a low Ki67 level after short-term preoperative hormone therapy (post-Ki67) might suggest a more favorable prognosis compared with a high post-Ki67 level in patients with hormone receptorpositive/human epidermal growth factor 2-negative (HR+/HER2?) breast cancer with high levels of Ki67. This study aimed to evaluate the pre-treatment genetic differences between these two patient groups. Forty-five luminal B-like patients were stratified into two groups, namely, a group with high (HH) and one with low (HL) Ki67 levels after short-term preoperative aromatase inhibitor (AI) treatment. We compared pre-treatmentgene expression profiles between the two groups. In gene level analysis, there was no significant difference between the two groups by the class comparison test. In pathway analysis, five metabolism-related gene sets were significantly upregulated in the HL group (p?0.05). In the search for novel targets, five genes (PARP, BRCA2, FLT4, CDK6, and PDCD1LG2) showed significantly higher expression in the HH group (p?0.05). Several metabolism-related pathways were associated with sensitivity to AI. In the future, it will be necessary to seek out new therapeutic strategies for the poor prognostic group with high post-Ki67. en-copyright= kn-copyright= en-aut-name=KajiwaraYukiko en-aut-sei=Kajiwara en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamotoTakayuki en-aut-sei=Iwamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhuYidan en-aut-sei=Zhu en-aut-mei=Yidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KochiMariko en-aut-sei=Kochi en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Departments of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=short-term hormone therapy kn-keyword=short-term hormone therapy en-keyword=gene expression profiling kn-keyword=gene expression profiling en-keyword=Ki-67 kn-keyword=Ki-67 en-keyword=targeted therapy kn-keyword=targeted therapy END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=385 end-page=390 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Perioperative Clinical Course Variables Associated with Length of Hospital Stay after Primary Intracranial Meningioma Resection en-subtitle= kn-subtitle= en-abstract= kn-abstract=The relationship between perioperative clinical course variables and postoperative length of hospital stay (LOS) in patients undergoing primary intracranial meningioma resection has not been fully elucidated. We therefore aimed to identify the perioperative clinical course variables that predict postoperative LOS in such patients. We retrospectively collected data concerning demographics, tumor characteristics, and perioperative clinical course variables in 76 patients who underwent primary intracranial meningioma resection between January 2010 and December 2019, and tested for associations with postoperative LOS. Univariate analyses showed that younger age, fewer days to postoperative initiation of standing/walking, preoperative independence in activities of daily living (ADL), and ADL independence one week after surgery were associated with shorter postoperative LOS. Multiple regression analyses with these factors identified that days to stand/walk initiation and ADL independence one week after surgery were associated with postoperative LOS. Based on these results, we conclude that rehabilitation programs that promote early mobilization and the early acquisition of independence may reduce postoperative LOS in patients who undergo primary intracranial meningioma resection. en-copyright= kn-copyright= en-aut-name=ManabeTomotaka en-aut-sei=Manabe en-aut-mei=Tomotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakeKeisuke en-aut-sei=Miyake en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KajiYoshio en-aut-sei=Kaji en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKento en-aut-sei=Ninomiya en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujitaChiaki en-aut-sei=Fujita en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaShouichi en-aut-sei=Tanaka en-aut-mei=Shouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaShin en-aut-sei=Morita en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamiyaTakashi en-aut-sei=Tamiya en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoTetsuji en-aut-sei=Yamamoto en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Rehabilitation, Kagawa University Hospital kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Faculty of Medicine, Kagawa University kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University kn-affil= affil-num=4 en-affil=Department of Rehabilitation, Kagawa University Hospital kn-affil= affil-num=5 en-affil=Department of Division of Clinical Nutrition, Faculty of Medicine, Kagawa University kn-affil= affil-num=6 en-affil=Department of Rehabilitation, Kagawa University Hospital kn-affil= affil-num=7 en-affil=Department of Rehabilitation, Kagawa University Hospital kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Faculty of Medicine, Kagawa University kn-affil= affil-num=9 en-affil=Department of Rehabilitation, Kagawa University Hospital kn-affil= en-keyword=early mobilization kn-keyword=early mobilization en-keyword=functional independence kn-keyword=functional independence en-keyword=perioperative clinical course kn-keyword=perioperative clinical course en-keyword=length of hospital stay kn-keyword=length of hospital stay en-keyword=meningioma kn-keyword=meningioma END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=10 article-no= start-page=1433 end-page=1435 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Candida dubliniensis fungemia in a patient with severe COVID-19: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Candida dubliniensis phenotypically mimics Candida albicans in its microbiological features; thus, its clinical characteristics have yet to be fully elucidated. Here we report the case of a 68-year-old Japanese man who developed C. dubliniensis fungemia during treatment for severe coronavirus disease 2019 (COVID-19). The pa-tient was intubated and received a combination of immunosuppressants, including high-dose methylpredniso-lone and two doses of tocilizumab, as well as remdesivir, intravenous heparin, and ceftriaxone. A blood culture on admission day 11 revealed Candida species, which was confirmed as C. dubliniensis by mass spectrometry. An additional sequencing analysis of the 26S rDNA and ITS regions confirmed that the organism was 100% identical to the reference strain of C. dubliniensis (ATCC MYA-646). Considering the simultaneous isolation of C. dubliniensis from a sputum sample, the lower respiratory tract could be an entry point for candidemia. Although treatment with micafungin successfully eradicated the C. dubliniensis fungemia, the patient died of COVID-19 progression. In this case, aggressive immunosuppressive therapy could have caused the C. dubliniensis fungemia. Due to insufficient clinical reports on C. dubliniensis infection based on definitive diagnosis, the whole picture of the cryptic organism is still unknown. Further accumulation of clinical and microbiological data of the pathogen is needed to elucidate their clinical significance. en-copyright= kn-copyright= en-aut-name=KakehiAyaka en-aut-sei=Kakehi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IhoriyaHiromi en-aut-sei=Ihoriya en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TairaYuki en-aut-sei=Taira en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamotoKenta en-aut-sei=Nakamoto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HigashikageAkihito en-aut-sei=Higashikage en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Candida dubliniensis kn-keyword=Candida dubliniensis en-keyword=Candidemia kn-keyword=Candidemia en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=Sequencing analysis kn-keyword=Sequencing analysis END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=8 article-no= start-page=1352 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimization of Microchannels and Application of Basic Activation Functions of Deep Neural Network for Accuracy Analysis of Microfluidic Parameter Data en-subtitle= kn-subtitle= en-abstract= kn-abstract=The fabrication of microflow channels with high accuracy in terms of the optimization of the proposed designs, minimization of surface roughness, and flow control of microfluidic parameters is challenging when evaluating the performance of microfluidic systems. The use of conventional input devices, such as peristaltic pumps and digital pressure pumps, to evaluate the flow control of such parameters cannot confirm a wide range of data analysis with higher accuracy because of their operational drawbacks. In this study, we optimized the circular and rectangular-shaped microflow channels of a 100 mu m microfluidic chip using a three-dimensional simulation tool, and analyzed concentration profiles of different regions of the microflow channels. Then, we applied a deep learning (DL) algorithm for the dense layers of the rectified linear unit (ReLU), Leaky ReLU, and Swish activation functions to train and test 1600 experimental and interpolation of data samples which obtained from the microfluidic chip. Moreover, using the same DL algorithm, we configured three models for each of these three functions by changing the internal middle layers of these models. As a result, we obtained a total of 9 average accuracy values of ReLU, Leaky ReLU, and Swish functions for a defined threshold value of 6 x 10(-5) using the trial-and-error method. We applied single-to-five-fold cross-validation technique of deep neural network to avoid overfitting and reduce noises from data-set to evaluate better average accuracy of data of microfluidic parameters. en-copyright= kn-copyright= en-aut-name=AhmedFeroz en-aut-sei=Ahmed en-aut-mei=Feroz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuMasashi en-aut-sei=Shimizu en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakaiKenji en-aut-sei=Sakai en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Department of Medical Bioengineering, Okayama University kn-affil= en-keyword=microfluidics kn-keyword=microfluidics en-keyword=fluid dynamics kn-keyword=fluid dynamics en-keyword=3D simulation kn-keyword=3D simulation en-keyword=ReLU dense layers kn-keyword=ReLU dense layers en-keyword=Leaky ReLU kn-keyword=Leaky ReLU en-keyword=swish activation functions kn-keyword=swish activation functions en-keyword=deep learning model kn-keyword=deep learning model END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=70053 end-page=70067 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improvement and Evaluation of Data Consistency Metric CIL for Software Engineering Data Sets en-subtitle= kn-subtitle= en-abstract= kn-abstract=Software data sets derived from actual software products and their development processes are widely used for project planning, management, quality assurance and process improvement, etc. Although it is demonstrated that certain data sets are not fit for these purposes, the data quality of data sets is often not assessed before using them. The principal reason for this is that there are not many metrics quantifying fitness of software development data. In that respect, this study makes an effort to fill in the void in literature by devising a new and efficient assessment method of data quality. To that end, we start as a reference from Case Inconsistency Level (CIL), which counts the number of inconsistent project pairs in a data set to evaluate its consistency. Based on a follow-up evaluation with a large sample set, we depict that CIL is not effective in evaluating the quality of certain data sets. By studying the problems associated with CIL and eliminating them, we propose an improved metric called Similar Case Inconsistency Level (SCIL). Our empirical evaluation with 54 data samples derived from six large project data sets shows that SCIL can distinguish between consistent and inconsistent data sets, and that prediction models for software development effort and productivity built from consistent data sets achieve indeed a relatively higher accuracy. en-copyright= kn-copyright= en-aut-name=GanMaohua en-aut-sei=Gan en-aut-mei=Maohua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YucelZeynep en-aut-sei=Yucel en-aut-mei=Zeynep kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MondenAkito en-aut-sei=Monden en-aut-mei=Akito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Software kn-keyword=Software en-keyword=Measurement kn-keyword=Measurement en-keyword=Estimation kn-keyword=Estimation en-keyword=Data integrity kn-keyword=Data integrity en-keyword=Redundancy kn-keyword=Redundancy en-keyword=Data models kn-keyword=Data models en-keyword=Software engineering kn-keyword=Software engineering en-keyword=Data quality metric kn-keyword=Data quality metric en-keyword=data inconsistency kn-keyword=data inconsistency en-keyword=software project data analysis kn-keyword=software project data analysis en-keyword=software effort estimation kn-keyword=software effort estimation en-keyword=software productivity estimation kn-keyword=software productivity estimation END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=10 article-no= start-page=1207 end-page=1228 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamic allocations for currency investment strategies en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study conducts out-of-sample tests for returns on individual currency investment strategies and the weights on the universe of these strategies. We focus upon five investment strategies: carry, momentum, value, dollar carry, and conditional FX correlation risk. The performances of our predictive models are evaluated using both statistical and economic measures. Within a dynamic asset allocation framework, an investor adjusts investment strategy weights based upon results of the prediction models. We find that our predictive model outperforms our benchmark, which uses historical average information in terms of statistical and economic measures. When the Sharpe ratio of the benchmark model is 0.52, our predictive model generates economic gain of approximately 1.16% per annum over the benchmark. These findings are robust to the changes in investorsf risk aversion and target volatility for portfolio optimization. en-copyright= kn-copyright= en-aut-name=NakagawaKei en-aut-sei=Nakagawa en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakemotoRyuta en-aut-sei=Sakemoto en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Innovation Lab, Nomura Asset Management Co. Ltd. kn-affil= affil-num=2 en-affil=Faculty of Humanities and Social Sciences, Okayama University kn-affil= en-keyword=Currency portfolio kn-keyword=Currency portfolio en-keyword=out-of-sample predictability kn-keyword=out-of-sample predictability en-keyword=economic value kn-keyword=economic value en-keyword=portfolio optimization kn-keyword=portfolio optimization en-keyword=risk diversification kn-keyword=risk diversification END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=8 article-no= start-page=1320 end-page=1333 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Cancer research has been conducted using cultured cells as part of drug discovery testing, but conventional two-dimensional culture methods are unable to reflect the complex tumor microenvironment. On the other hand, three-dimensional cultures have recently been attracting attention as in vitro models that more closely resemble the in vivo physiological environment. The purpose of this study was to establish a 3D culture method for oral cancer and to verify its practicality.
Materials and Methods: Three-dimensional cultures were performed using several oral cancer cell lines. Western blotting was used for protein expression analysis of the collected cell masses (spheroids), and H-E staining was used for structural observation. The cultures were exposed to cisplatin and cetuximab and the morphological changes of spheroids over time and the expression changes of target proteins were compared.
Results: Each cell line formed spheroidal cell aggregates and showed enhancement of cell adhesion molecules over time. H-E staining showed tumor tissue-like structures specific to each cell line. Cisplatin showed concentration-dependent antitumor effects due to loss of cell adhesion and spheroid disruption in each cell line, while cetuximab exhibited antitumor effects that correlated with EGFR expression in each cell line.
Conclusion: Spheroids made from oral cancer cell lines appeared to have tumor-like characteristics that may reflect their clinical significance. In the future, it may become possible to produce tumor spheroids from tissue samples of oral cancer patients, and then apply them to drug screening and to develop individualized diagnostic and treatment methods. en-copyright= kn-copyright= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoKohei en-aut-sei=Sato en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraTomoya en-aut-sei=Nakamura en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaYume en-aut-sei=Yoshida en-aut-mei=Yume kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataShogo en-aut-sei=Murata en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaKunihiro en-aut-sei=Yoshida en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanemotoHideka en-aut-sei=Kanemoto en-aut-mei=Hideka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmemoriKoki en-aut-sei=Umemori en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ObataKyoichi en-aut-sei=Obata en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=RyumonShoji en-aut-sei=Ryumon en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HasegawaKazuaki en-aut-sei=Hasegawa en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkuiTatsuo en-aut-sei=Okui en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oral cancer kn-keyword=oral cancer en-keyword=spheroid kn-keyword=spheroid en-keyword=three-dimensional culture kn-keyword=three-dimensional culture en-keyword=anticancer drug kn-keyword=anticancer drug END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=913619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata. en-copyright= kn-copyright= en-aut-name=KhanHaris Ahmed en-aut-sei=Khan en-aut-mei=Haris Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=phytopathogenic fungi kn-keyword=phytopathogenic fungi en-keyword=mycovirome kn-keyword=mycovirome en-keyword=next-generation sequencing kn-keyword=next-generation sequencing en-keyword=Diplodia seriata kn-keyword=Diplodia seriata en-keyword=Botryosphaeriaceae kn-keyword=Botryosphaeriaceae en-keyword=ssRNA virus kn-keyword=ssRNA virus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=virus kn-keyword=virus en-keyword=virus interaction kn-keyword=virus interaction END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=7 article-no= start-page=918 end-page=922 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vancomycin MIC creep progresses in methicillin-resistant Staphylococcus aureus despite the national antimicrobial stewardship campaign: Single facility data in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of nosocomial and community infections, and vancomycin (VCM) is widely recommended as a first-line therapeutic drug. Minimum inhibitory concentrations (MICs) of VCM <2 mu g/mL are defined as susceptible, but increases in these levels, known as "VCM MIC creep" have been reported. The aim of this study was to investigate VCM MIC creep during the promotion of a national antimicrobial stewardship campaign.
Methods: We collected data from 2013 to 2020 on S. aureus isolated at the clinical microbiology laboratory at Okayama University Hospital, Japan. We calculated the annual proportions of MRSA isolation rates by MIC levels for nosocomial and community samples and estimated annual percentage changes in the antimicrobial use density of the VCM.
Results: Of the 1,716 MRSA isolates, no strains showed intermediate or resistant ranges of VCM MIC levels. By 2020, the proportion of MRSA with an MIC of <0.5 mu g/mL decreased to 35.4%, while that with an MIC of 1 mu g/ mL increased to 64.1% over time. The annual percentage changes of the VCM antimicrobial use density significantly increased without any trend change point (average 8.1%, p = 0.035). There was no clear correlation between the VCM AUD and annual proportion of nosocomial MRSA with MIC 1 mu g/mL (correlation coefficient 0.48; p value = 0.24).
Conclusion: We demonstrated a deteriorating situation of VCM MIC creep among MRSA strains isolated at our university hospital during the national antimicrobial stewardship campaign. en-copyright= kn-copyright= en-aut-name=FujimoriTakumi en-aut-sei=Fujimori en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IioKoji en-aut-sei=Iio en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HigashionnaTsukasa en-aut-sei=Higashionna en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KakehiAyaka en-aut-sei=Kakehi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkuraMami en-aut-sei=Okura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MinabeHiroshi en-aut-sei=Minabe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokoyamaYukika en-aut-sei=Yokoyama en-aut-mei=Yukika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HigashikageAkihito en-aut-sei=Higashikage en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=6 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=7 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=8 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital kn-affil= en-keyword=Antimicrobial resistance kn-keyword=Antimicrobial resistance en-keyword=Methicillin-resistant Staphylococcus aureus kn-keyword=Methicillin-resistant Staphylococcus aureus en-keyword=Vancomycin kn-keyword=Vancomycin en-keyword=Minimum inhibitory concentration kn-keyword=Minimum inhibitory concentration en-keyword=Creep kn-keyword=Creep en-keyword=Antimicrobial resistance kn-keyword=Antimicrobial resistance en-keyword=Methicillin-resistant Staphylococcus aureus kn-keyword=Methicillin-resistant Staphylococcus aureus en-keyword=Vancomycin kn-keyword=Vancomycin en-keyword=Minimum inhibitory concentration kn-keyword=Minimum inhibitory concentration en-keyword=Creep kn-keyword=Creep END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=9 article-no= start-page=753 end-page=757 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220628 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Simulation for ultrasound]guided renal biopsy using boiled egg en-subtitle= kn-subtitle= en-abstract= kn-abstract=Real-time ultrasound-guided renal biopsy is generally applied to diagnose multiple kidney diseases. A practical simulation model is desired since it is an invasive technique with higher risks of complications such as bleeding. We developed a simple simulation tool for ultrasound-guided renal biopsy using boiled eggs. Boiled chicken eggs were embedded in the agar, and a biopsy simulation was performed using a real-time ultrasound-guided technique as the renal biopsy simulator by trainees and biopsyproficient nephrologists, and the feedback from the participants was obtained. The ultrasonographic evaluation revealed a clear contrast between egg yolk and white, which clearly mimicked the kidney cortex and medulla region. In addition, we observed the needle entering the egg white under needle penetration, and we obtained the biopsy core consisting of egg white. As for the simulations, all the participants succeeded in obtaining the appropriate samples. A total of 92% of the trainees agreed that the simulation could reduce their fears of performing renal biopsies in patients. In addition, all the trainees and biopsy-proficient nephrologists recommend using the simulator for trainees before conducting renal biopsies on patients. The total cost of the simulator was low (< USD 1/simulator). Collectively, our simulation tool using boiled eggs may be a good candidate for practical simulation models of renal biopsy. en-copyright= kn-copyright= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Japan kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Japan kn-affil= affil-num=3 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Japan kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Japan kn-affil= en-keyword=Renal biopsy kn-keyword=Renal biopsy en-keyword=clinical nephrology kn-keyword=clinical nephrology en-keyword=ultrasound kn-keyword=ultrasound END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=6 article-no= start-page=227 end-page=282 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective en-subtitle= kn-subtitle= en-abstract= kn-abstract=Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher 18O, 17O, and 54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10fs of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation. en-copyright= kn-copyright= en-aut-name=NAKAMURAEizo en-aut-sei=NAKAMURA en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KOBAYASHIKatsura en-aut-sei=KOBAYASHI en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TANAKARyoji en-aut-sei=TANAKA en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KUNIHIROTak en-aut-sei=KUNIHIRO en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KITAGAWAHiroshi en-aut-sei=KITAGAWA en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=POTISZILChristian en-aut-sei=POTISZIL en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OTATsutomu en-aut-sei=OTA en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SAKAGUCHIChie en-aut-sei=SAKAGUCHI en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YAMANAKAMasahiro en-aut-sei=YAMANAKA en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=RATNAYAKEDilan M. en-aut-sei=RATNAYAKE en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TRIPATHIHavishk en-aut-sei=TRIPATHI en-aut-mei=Havishk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KUMARRahul en-aut-sei=KUMAR en-aut-mei=Rahul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AVRAMESCUMaya-Liliana en-aut-sei=AVRAMESCU en-aut-mei=Maya-Liliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TSUCHIDAHidehisa en-aut-sei=TSUCHIDA en-aut-mei=Hidehisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YACHIYusuke en-aut-sei=YACHI en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MIURAHitoshi en-aut-sei=MIURA en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ABEMasanao en-aut-sei=ABE en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FUKAIRyota en-aut-sei=FUKAI en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FURUYAShizuho en-aut-sei=FURUYA en-aut-mei=Shizuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HATAKEDAKentaro en-aut-sei=HATAKEDA en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HAYASHITasuku en-aut-sei=HAYASHI en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HITOMIYuya en-aut-sei=HITOMI en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KUMAGAIKazuya en-aut-sei=KUMAGAI en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MIYAZAKIAkiko en-aut-sei=MIYAZAKI en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NAKATOAiko en-aut-sei=NAKATO en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=NISHIMURAMasahiro en-aut-sei=NISHIMURA en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=OKADATatsuaki en-aut-sei=OKADA en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=SOEJIMAHiromichi en-aut-sei=SOEJIMA en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SUGITASeiji en-aut-sei=SUGITA en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SUZUKIAyako en-aut-sei=SUZUKI en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=USUITomohiro en-aut-sei=USUI en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YADAToru en-aut-sei=YADA en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=YAMAMOTODaiki en-aut-sei=YAMAMOTO en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=YOGATAKasumi en-aut-sei=YOGATA en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=YOSHITAKEMiwa en-aut-sei=YOSHITAKE en-aut-mei=Miwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=ARAKAWAMasahiko en-aut-sei=ARAKAWA en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=FUJIIAtsushi en-aut-sei=FUJII en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=HAYAKAWAMasahiko en-aut-sei=HAYAKAWA en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=HIRATANaoyuki en-aut-sei=HIRATA en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=HIRATANaru en-aut-sei=HIRATA en-aut-mei=Naru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=HONDARie en-aut-sei=HONDA en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=HONDAChikatoshi en-aut-sei=HONDA en-aut-mei=Chikatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=HOSODASatoshi en-aut-sei=HOSODA en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=IIJIMAYu-ichi en-aut-sei=IIJIMA en-aut-mei=Yu-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=IKEDAHitoshi en-aut-sei=IKEDA en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=ISHIGUROMasateru en-aut-sei=ISHIGURO en-aut-mei=Masateru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=ISHIHARAYoshiaki en-aut-sei=ISHIHARA en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=IWATATakahiro en-aut-sei=IWATA en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=KAWAHARAKosuke en-aut-sei=KAWAHARA en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=KIKUCHIShota en-aut-sei=KIKUCHI en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=KITAZATOKohei en-aut-sei=KITAZATO en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MATSUMOTOKoji en-aut-sei=MATSUMOTO en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=MATSUOKAMoe en-aut-sei=MATSUOKA en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MICHIKAMITatsuhiro en-aut-sei=MICHIKAMI en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MIMASUYuya en-aut-sei=MIMASU en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MIURAAkira en-aut-sei=MIURA en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MOROTATomokatsu en-aut-sei=MOROTA en-aut-mei=Tomokatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=NAKAZAWASatoru en-aut-sei=NAKAZAWA en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=NAMIKINoriyuki en-aut-sei=NAMIKI en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NODAHirotomo en-aut-sei=NODA en-aut-mei=Hirotomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=NOGUCHIRina en-aut-sei=NOGUCHI en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=OGAWANaoko en-aut-sei=OGAWA en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=OGAWAKazunori en-aut-sei=OGAWA en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OKAMOTOChisato en-aut-sei=OKAMOTO en-aut-mei=Chisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=ONOGo en-aut-sei=ONO en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=OZAKIMasanobu en-aut-sei=OZAKI en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=SAIKITakanao en-aut-sei=SAIKI en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=SAKATANINaoya en-aut-sei=SAKATANI en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=SAWADAHirotaka en-aut-sei=SAWADA en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=SENSHUHiroki en-aut-sei=SENSHU en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=SHIMAKIYuri en-aut-sei=SHIMAKI en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=SHIRAIKei en-aut-sei=SHIRAI en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=TAKEIYuto en-aut-sei=TAKEI en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=TAKEUCHIHiroshi en-aut-sei=TAKEUCHI en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=TANAKASatoshi en-aut-sei=TANAKA en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=TATSUMIEri en-aut-sei=TATSUMI en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=TERUIFuyuto en-aut-sei=TERUI en-aut-mei=Fuyuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=TSUKIZAKIRyudo en-aut-sei=TSUKIZAKI en-aut-mei=Ryudo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=WADAKoji en-aut-sei=WADA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=YAMADAManabu en-aut-sei=YAMADA en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=YAMADATetsuya en-aut-sei=YAMADA en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=YAMAMOTOYukio en-aut-sei=YAMAMOTO en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=YANOHajime en-aut-sei=YANO en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=YOKOTAYasuhiro en-aut-sei=YOKOTA en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=YOSHIHARAKeisuke en-aut-sei=YOSHIHARA en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=YOSHIKAWAMakoto en-aut-sei=YOSHIKAWA en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=YOSHIKAWAKent en-aut-sei=YOSHIKAWA en-aut-mei=Kent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=FUJIMOTOMasaki en-aut-sei=FUJIMOTO en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=WATANABESei-ichiro en-aut-sei=WATANABE en-aut-mei=Sei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=TSUDAYuichi en-aut-sei=TSUDA en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=7 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=8 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=9 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=10 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=11 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=12 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=13 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=14 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=15 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=16 en-affil=Department of Information and Basic Science, Nagoya City University kn-affil= affil-num=17 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=18 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=19 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=20 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=21 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=22 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=23 en-affil=Marine Works Japan, Ltd. kn-affil= affil-num=24 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=25 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=26 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=27 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=28 en-affil=Marine Works Japan, Ltd. kn-affil= affil-num=29 en-affil=Graduate School of Science, The University of Tokyo kn-affil= affil-num=30 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=31 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=32 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=33 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=34 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=35 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=36 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=37 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=38 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=39 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=40 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=41 en-affil=Faculty of Science and Technology, Kochi University kn-affil= affil-num=42 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=43 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=44 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=45 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=46 en-affil=Department of Physics and Astronomy, Seoul National University kn-affil= affil-num=47 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=48 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=49 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=50 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=51 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=52 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=53 en-affil=Observatoire de Paris kn-affil= affil-num=54 en-affil=Faculty of Engineering, Kindai University kn-affil= affil-num=55 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=56 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=57 en-affil=Graduate School of Environmental Studies, Nagoya University kn-affil= affil-num=58 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=59 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=60 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=61 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=62 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=63 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=64 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=65 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=66 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=67 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=68 en-affil=College of Science, Rikkyo University kn-affil= affil-num=69 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=70 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=71 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=72 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=73 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=74 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=75 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=76 en-affil=Graduate School of Science, The University of Tokyo kn-affil= affil-num=77 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=78 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=79 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=80 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=81 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=82 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=83 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=84 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=85 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=86 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=87 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=88 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=89 en-affil=Graduate School of Environmental Studies, Nagoya University kn-affil= affil-num=90 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=6 article-no= start-page=2443 end-page=2452 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Data regarding the in-depth surface marker profiles of gastric tissue-resident lymphocytes in autoimmune and Helicobacter pylori-associated gastritis are lacking. In this study, we investigated potential differences in lymphocyte composition between these profiles. We enrolled patients with autoimmune (n = 14), active (current infection of H. pylori in the stomach; n = 10), and inactive gastritis (post-eradication of H. pylori; n = 20). Lymphocytes were isolated from the greater curvature of the stomach and lesser curvature of the body and analyzed using flow cytometry. The CD8(+)/CD3(+) and CD4(+)/CD3(+) ratios differed between the samples. Body CD4(+)/antrum CD4(+), which is calculated by dividing the CD4(+)/CD3(+) ratio in the body by that in the antrum, was significantly higher in autoimmune gastritis (3.54 +/- 3.13) than in active (1.47 +/- 0.41) and inactive gastritis (1.42 +/- 0.77). Antrum CD8(+)/CD4(+) in autoimmune gastritis (7.86 +/- 7.23) was also higher than that in active (1.49 +/- 0.58) and inactive gastritis (2.84 +/- 2.17). The area under the receiver operating characteristic curve of antrum CD8(+)/CD4(+) was 0.842, and the corresponding optimal cutoff point was 4.0, with a sensitivity of 71.4% and a specificity of 93.3%. We propose that an antrum CD8(+)/CD4(+) ratio > 4.0 is a potential diagnostic marker for autoimmune gastritis. en-copyright= kn-copyright= en-aut-name=KametakaDaisuke en-aut-sei=Kametaka en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirabataAraki en-aut-sei=Hirabata en-aut-mei=Araki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=flow cytometry kn-keyword=flow cytometry en-keyword=autoimmune gastritis kn-keyword=autoimmune gastritis en-keyword=atrophic gastritis kn-keyword=atrophic gastritis en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=15 article-no= start-page=12795 end-page=12802 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Eco-Benign Orange-Hued Pigment Derived from Aluminum-Enriched Biogenous Iron Oxide Sheaths en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inorganic pigments have been widely used due to their low cost of production, strong hiding power, and chemical resistance; nevertheless, they have limited hue width and chromaticity. To eliminate these disadvantages, we herein propose the use of an ingenious biotemplate technique to produce Al-enriched biogenic iron oxide (BIOX) materials. Spectrophotometric color analysis showed that high levels of Al inclusion on heat-treated BIOX samples produced heightened yellowish hues and lightness. The Al-enriched BIOX sheaths exhibited a stable tubular structure and excellent thermal stability of color tones after heating at high temperatures and repetitive heat treatments. Ultrastructural analysis and mechanical destruction experiments revealed that the highly chromatic orange-hue of these pigments are ascribed probably to an ingenious cylindrical nanocomposite architecture composed of putative Fe-included low crystalline Al oxide regions and hematite particles embedded therein. The present work therefore demonstrates that the bioengineered material can serve as an epochal orange-hued inorganic pigment with low toxicity and marked thermostability that should meet large industrial demand. en-copyright= kn-copyright= en-aut-name=TamuraKatsunori en-aut-sei=Tamura en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OshimaYuri en-aut-sei=Oshima en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuseYuta en-aut-sei=Fuse en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunohTatsuki en-aut-sei=Kunoh en-aut-mei=Tatsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanishiMakoto en-aut-sei=Nakanishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NanbaTokuro en-aut-sei=Nanba en-aut-mei=Tokuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakadaJun en-aut-sei=Takada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=281 end-page=290 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histone Demethylase Jmjd3 Regulates the Osteogenic Differentiation and Cytokine Expressions of Periodontal Ligament Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal ligament (PDL) cells are critical for the bone remodeling process in periapical lesions since they can differentiate into osteoblasts and secrete osteoclastogenesis-promoting cytokines. Post-translational histone modifications including alterations of the methylation status of H3K27 are involved in cell differentiation and inflammatory reaction. The histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes methylation of H3K27. We investigated whether Jmjd3 is involved in the osteogenic differentiation and secretion of PDL cellsf inflammatory factors. Jmjd3 expression in periapical lesions was examined by immunostaining. Using siRNA specific for Jmjd3 or the specific Jmjd3 inhibitor GSK-J4, we determined Jmjd3fs roles in osteogenic differentiation and cytokine production by real-time RT-PCR. The locations of Jmjd3 and NF-B were analyzed by immunocytochemistry. Compared to healthy PDLs, the periapical lesion samples showed higher Jmjd3 expression. Treatment with GSK-J4 or Jmjd3 siRNA suppressed PDL cellsf osteogenic differentiation by suppressing the expressions of bone-related genes (Runx2, Osterix, and osteocalcin) and mineralization. Jmjd3 knockdown decreased the expressions of cytokines (TNF-, IL-1, and IL-6) induced by lipopolysaccharide extracted from Porphyromonas endodontalis (Pe-LPS). Pe-LPS induced the nuclear translocations of Jmjd3 and NF-B; the latter was inhibited by GSK-J4 treatment. Jmjd3 appears to regulate PDL cellsf osteogenic differentiation and proinflammatory cytokine expressions. en-copyright= kn-copyright= en-aut-name=YuBo en-aut-sei=Yu en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangRui en-aut-sei=Wang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LuoHuikun en-aut-sei=Luo en-aut-mei=Huikun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangDi en-aut-sei=Yang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangSimo en-aut-sei=Wang en-aut-mei=Simo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YuYaqiong en-aut-sei=Yu en-aut-mei=Yaqiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=QiuLihong en-aut-sei=Qiu en-aut-mei=Lihong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=2 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=3 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=4 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=5 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=6 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= affil-num=7 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease kn-affil= en-keyword=periapical lesions kn-keyword=periapical lesions en-keyword=histone demethylase Jmjd3 kn-keyword=histone demethylase Jmjd3 en-keyword=periodontal ligament cell kn-keyword=periodontal ligament cell en-keyword=osteogenic differentiation kn-keyword=osteogenic differentiation en-keyword=proinflammatory cytokines kn-keyword=proinflammatory cytokines END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue= article-no= start-page=124 end-page=136 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Managements of sleep bruxism in adult: A systematic review en-subtitle= kn-subtitle= en-abstract= kn-abstract=This systematic review aimed to update the management of sleep bruxism (SB) in adults, as diagnosed using polysomnography (PSG) and/or electromyography (EMG). Management methods covered were oral appliance therapy (OAT) with stabilization splints, cognitive-behavioral therapy (CBT), biofeedback therapy (BFT), and pharmacological therapy. A comprehensive search was conducted on MEDLINE, Cochrane Library, and Web of Science up to October 1st, 2021. Reference list searches and hand searches were also performed by an external organization. Two reviewers for each therapy independently performed article selection, data extraction, and risk of bias assessment. The reviewers resolved any disagreements concerning the assortment of the articles by discussion. Finally, 11, 3, 14, and 22 articles were selected for each therapy. The results suggested that OAT tended to reduce the number of SB events, although there was no significant difference compared to other types of splints, that the potential benefits of CBT were not well supported, and that BFT, rabeprazole, clonazepam, clonidine, and botulinum toxin type A injection showed significant reductions in specific SB parameters, although several side effects were reported. It can be concluded that more methodologically rigorous randomized large-sample long-term follow-up clinical trials are needed to clarify the efficacy and safety of management for SB. en-copyright= kn-copyright= en-aut-name=MinakuchiHajime en-aut-sei=Minakuchi en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujisawaMasanori en-aut-sei=Fujisawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeYuka en-aut-sei=Abe en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaTakashi en-aut-sei=Iida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkiKyosuke en-aut-sei=Oki en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkuraKazuo en-aut-sei=Okura en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanabeNorimasa en-aut-sei=Tanabe en-aut-mei=Norimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiyamaAkira en-aut-sei=Nishiyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Fixed Prosthodontics, Department of Restorative & Biomaterials Sciences, Meikai University School of Dentistry kn-affil= affil-num=3 en-affil=Department of Prosthodontics, School of Dentistry, Showa University kn-affil= affil-num=4 en-affil=Department of Oral Function and Fixed Prosthodontics, Nihon University School of Dentistry at Matsudo kn-affil= affil-num=5 en-affil=Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University kn-affil= affil-num=6 en-affil=Department of Stomatognathic Function and Occlusal Reconstruction, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=7 en-affil=Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University kn-affil= affil-num=8 en-affil=General Dentistry, Comprehensive Patient Care, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= en-keyword=Sleep bruxism kn-keyword=Sleep bruxism en-keyword=Management kn-keyword=Management en-keyword=Systematic review kn-keyword=Systematic review en-keyword=Oral appliances kn-keyword=Oral appliances en-keyword=Biofeedback therapy kn-keyword=Biofeedback therapy en-keyword=Cognitive-behavioral therapy kn-keyword=Cognitive-behavioral therapy en-keyword=Pharmacological therapy kn-keyword=Pharmacological therapy END start-ver=1.4 cd-journal=joma no-vol=179 cd-vols= no-issue= article-no= start-page=107513 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples en-subtitle= kn-subtitle= en-abstract= kn-abstract=A paper-based device (PAD) capable of colorimetric detection was developed to determine the presence of glutamate in various food samples. The PAD employs an enzymatic reaction with glutamate followed by an oxidation reaction with N-benzoyl leucomethylene blue (BLMB) in the presence of horseradish peroxidase. The designed PAD consists of a sample introduction zone connected to a channel that transports a sample solution to three detection zones. The detection zones contain pre-deposited reagents: glutamate oxidase, horseradish peroxidase, BLMB, a phosphate buffer, and poly(acrylic acid). The PAD is perpendicularly immersed into a sample solution and bent at a right angle using a 3D-printed holder to allow the sample to simultaneously flow into three different detection zones. When the PAD is immersed into a sample containing glutamate, glutamate oxidase produces hydrogen peroxide, which changes the pale blue color of BLMB to a deep blue color in the presence of horseradish peroxidase. Under the optimum conditions, the calibration curve between the logarithm of the glutamate concentrations and the color intensity was linear within a range of from 5 x 10(-6) mol L-1 to 10(-2) and with a correlation coefficient of 0.994. Using this system, the PAD successfully determined glutamate in soup stocks, sauces, snacks, and tomato juice without the need of complicated sample pretreatment. These results agreed with those of a commercially available glutamate assay kit, which was employed as a certification method (t(stat )= 1.95, t(crit )= 2.57). The developed PAD is simple, easy to fabricate, portable, and could be used outside of equipped laboratories to determine the presence of glutamate in food samples. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwasakiHiroshi en-aut-sei=Iwasaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OchiaiKenta en-aut-sei=Ochiai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NambaHaruka en-aut-sei=Namba en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Glutamate kn-keyword=Glutamate en-keyword=Paper-based analytical device kn-keyword=Paper-based analytical device en-keyword=Enzymatic reaction kn-keyword=Enzymatic reaction END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=4 article-no= start-page=1194 end-page=1200 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dip-and-Read, Organic Solvent-Compatible, Paper-Based Analytical Devices Equipped with Chromatographic Separation for Indole Analysis in Shrimp en-subtitle= kn-subtitle= en-abstract= kn-abstract=We developed an organic solvent-compatible paper-based analytical device (PAD) for the quantitative analysis of indole, which is an indicator of shrimp freshness. Although indole is insoluble in water, ethyl acetate is a suitable solvent to dissolve and extract indole from shrimp. The PADs are fabricated using a cutting method that allows the use of an organic solvent because no hydrophobic barrier is needed to form fluidic channels. Ehrlich's reagent consists of 4-(dimethylamino)benzaldehyde and p-dimethylaminobenzaldehyde and was deposited onto the reaction zone of the PAD followed by lamination to prevent evaporation of the ethyl acetate. Samples are introduced into the PAD via immersion in organic sample solutions. When the PAD is immersed into an indole solution of ethyl acetate in a closed bottle, the sample solution penetrates the channel of the PAD and successively flows into the detection zone to form a hydrophilic colored product. The PADs provide a linear relationship between the logarithm of the indole concentration and the color intensity within a range of 1.0-20 ppm with correlation coefficients of r2 > 0.99. The limits of detection and quantification are 0.36 and 0.71 ppm, respectively. Relative standard deviations for both the intraday (n = 2) and interday (n = 3) precision were less than 2.5%. In the indole analysis of shrimp, the PADs separated the interfering orange-colored astaxanthin in the extract from the colored product of indole via the paper chromatographic principle. We used the PADs to investigate the degradation of shrimp, and the results showed a rapid increase in the indole level after 7 days. High-performance liquid chromatography verified the accuracy of the PADs by showing good agreement with the obtained indole levels. en-copyright= kn-copyright= en-aut-name=SeetasangSasikarn en-aut-sei=Seetasang en-aut-mei=Sasikarn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Ehrlichfs reagent kn-keyword=Ehrlichfs reagent en-keyword=astaxanthin kn-keyword=astaxanthin en-keyword=chromatography kn-keyword=chromatography en-keyword=indole kn-keyword=indole en-keyword=paper-based device kn-keyword=paper-based device en-keyword=shrimp kn-keyword=shrimp END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic Paper-based Analytical Devices Coupled with Coprecipitation Enrichment Show Improved Trace Analysis of Copper Ions in Water Samples en-subtitle= kn-subtitle= en-abstract= kn-abstract=The present study was focused on improving sensitivity to trace levels of Cu(II) by subjecting microfluidic paper based analytical devices ( PADs) to a preconcentration process via coprecipitation using aluminum hydroxide. The experimental conditions were optimized for the pH of the coprecipitation, centrifugation, and amounts of reagents that were deposited onto ? PADs for Cu(II) assay. The resultant limit of detection reached as low as 0.003 mg L 1 with a linear range of 0.01 2.00 mg L 1 . The relative standard deviations for intra and inter day precision were 3.2 and 4.6%, respectively (n = 9). Spiked water samples were analyzed using the PADs after coprecipitation preconcentration. The results were verified by comparing them with thos e of inductively coupled plasma optical emission spectrometry (ICP OES). Recoveries ranged from 97.1 104% and from 98.7 105% using the present method and ICP OES, respectively. These results suggest that the simple, highly sensitive, and inexpensive propos ed method would be helpful for analyzing trace levels of Cu(II) in water samples in poorly equipped laboratories. en-copyright= kn-copyright= en-aut-name=MUHAMMEDAbdellah en-aut-sei=MUHAMMED en-aut-mei=Abdellah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HUSSENAhmed en-aut-sei=HUSSEN en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=2 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Microfluidic paper based analytical device kn-keyword=Microfluidic paper based analytical device en-keyword=Coprecipitation kn-keyword=Coprecipitation en-keyword=Preconcentration kn-keyword=Preconcentration en-keyword=Aluminum hydroxide kn-keyword=Aluminum hydroxide en-keyword=Copperion kn-keyword=Copperion en-keyword=bathocuproine kn-keyword=bathocuproine END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue= article-no= start-page=249 end-page=261 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modulation of p53 expression in cancer-associated fibroblasts prevents peritoneal metastasis of cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are associated with the establishment and progression of peritoneal metastasis. This study investigated the efficacy of replicative oncolytic adenovirus-mediated p53 gene therapy (OBP-702) against CAFs and peritoneal metastasis of gastric cancer (GC). Higher CAF expression in the primary tumor was associated with poor prognosis of GC, and higher CAF expression was also observed with peritoneal metastasis in immunohistochemical analysis of clinical samples. And, we found transcriptional alteration of p53 in CAFs relative to normal gastric fibroblasts (NGFs). CAFs increased the secretion of cancer-promoting cytokines, including interleukin-6, and gained resistance to chemotherapy relative to NGFs. OBP-702 showed cytotoxicity to both GC cells and CAFs but not to NGFs. Overexpression of wild-type p53 by OBP-702 infection caused apoptosis and autophagy of CAFs and decreased the secretion of cancer-promoting cytokines by CAFs. Combination therapy using intraperitoneal administration of OBP-702 and paclitaxel synergistically inhibited the tumor growth of peritoneal metastases and decreased CAFs in peritoneal metastases. OBP-702, a replicative oncolytic adenovirus-mediated p53 gene therapy, offers a promising biological therapeutic strategy for peritoneal metastasis, modulating CAFs in addition to achieving tumor lysis. en-copyright= kn-copyright= en-aut-name=OgawaToshihiro en-aut-sei=Ogawa en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TabuchiMotoyasu en-aut-sei=Tabuchi en-aut-mei=Motoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuiEma en-aut-sei=Mitsui en-aut-mei=Ema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UneYuta en-aut-sei=Une en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Oncolys BioPharma kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=869393 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Engineering Cancer/Testis Antigens With Reversible S-Cationization to Evaluate Antigen Spreading en-subtitle= kn-subtitle= en-abstract= kn-abstract=Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus-mediated REIC/Dkk-3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy. en-copyright= kn-copyright= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuiMirei en-aut-sei=Masui en-aut-mei=Mirei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KakimiKazuhiro en-aut-sei=Kakimi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University kn-affil= affil-num=6 en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital kn-affil= affil-num=7 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=autoantibody kn-keyword=autoantibody en-keyword=biomarker kn-keyword=biomarker en-keyword=protein engineering kn-keyword=protein engineering en-keyword=cancer-immunity cycle kn-keyword=cancer-immunity cycle en-keyword=immune monitoring kn-keyword=immune monitoring en-keyword=cancer kn-keyword=cancer en-keyword=testis antigens kn-keyword=testis antigens END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=1 article-no= start-page=1 end-page=25 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Depositional history of the Paleogene to Neogene valley fill deposits and topographic change in the Kibi Plateau region, Okayama City, Southwest Japan kn-title=RskgnɕzÑOnEVOn̕zE͐ϑƌÒnϑJ en-subtitle= kn-subtitle= en-abstract=The deposition of the Paleogene to Neogene sediments in the Kibi Plateau region played an important role to form the Kibi Plateau Surface. Study area is situated in the southern part of the Kibi Plateau. Field work has been continued more than 30 years and traced distribution of the deposits which make clear the paleo-topography. Sedimentary facies of deposits were observed to understand depositional environments. Without Fission-Track zircon dating from tuff samples, we could not divide and define the formations. The Paleogene Kibi Group and the latest Paleogene to Neogene Bihoku Group are distributed in the study area. The Kibi Group is unusual deposits which filled steep valley in mountain area and comprise the Tomiyoshi Formation (36 to 34 Ma) and the Tsudaka Formation (29 to 27 Ma). The formations are fluvial deposits and have similar litho-facies. The distribution of the formations indicate drainage system when deposited. Conglomerates with imbricate structure are the major component of the formations and sandstones and mudstones (sometimes with plant fragments and rootlets) are associated. The Bihoku Group is composed of the fluvial Yagane Formation (24.5 to 25.5 Ma) and the shallow marine Nichiouji Formation (15 to 16 Ma). The formations have the same depositional basin of low relief valley. The Yagane Formation is composed of conglomerate, sandstone, mudstone and coaly mudstone. The Nichiouji Formation is composed of well sorted sandstone with marine fossils. kn-abstract= en-copyright= kn-copyright= en-aut-name=TanakaHajime en-aut-sei=Tanaka en-aut-mei=Hajime kn-aut-name=c kn-aut-sei=c kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiShigeyuki en-aut-sei=Suzuki en-aut-mei=Shigeyuki kn-aut-name=ؖΔV kn-aut-sei= kn-aut-mei=ΔV aut-affil-num=2 ORCID= affil-num=1 en-affil=Seibu Engineering Consultants Co., Ltd. kn-affil=ZpRT^g affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil=Rw E_ en-keyword=Kibi Plateau Surface kn-keyword=Kibi Plateau Surface en-keyword=Paleogene kn-keyword=Paleogene en-keyword=Kibi Group kn-keyword=Kibi Group en-keyword=Miocene kn-keyword=Miocene en-keyword=Bihoku Group kn-keyword=Bihoku Group END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=3 article-no= start-page=127 end-page=152 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220520 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Estimation of Saving Rates by Age Group in Japan using 2019 National Survey of Family Income, Consumption and Wealth kn-title=NKʒ~F2019NSƌv\pv en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper estimates saving rates by age group in case of Japan using 2019 National Survey of Family Income, Consumption and Wealthi NSFICWj. NSFICW is a large-scale survey with sample size of about 48,000 households for consumption expenditure and about 92,000 households for household revenue. We usually have saving rates of households, but those of individual are needed to investigate the effects of the decreasing birthrate and aging population on the average saving rates of macroeconomic level. This paper estimates the saving rates by age group. Some assumptions of transfers of income within a household are set. The results show the appropriate patterns of saving rates for age group, which are consistent to the life-cycle hypothesis. The saving rates of age after the middle 30s until 50s are in the rage between 30 to 38 percent. Then the rates drop after retirement. The rate over 75 years old is 1.3 percent. We also fi nd that the gap between retirement age and the starting point of public pension benefit brings drop and back of saving rates at the age of 60s. en-copyright= kn-copyright= en-aut-name=TsuriMasao en-aut-sei=Tsuri en-aut-mei=Masao kn-aut-name=މY kn-aut-sei= kn-aut-mei=Y aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Rww@ЉȊw en-keyword=Saving rates kn-keyword=Saving rates en-keyword=Disposal income kn-keyword=Disposal income en-keyword=Consumption expenditure kn-keyword=Consumption expenditure en-keyword=Aging population kn-keyword=Aging population END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=13 article-no= start-page=2519 end-page=2530 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 ~ 2.0 mm2) and gigahertz-broadband characteristics with low reflection (?8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms. en-copyright= kn-copyright= en-aut-name=OshimiKeisuke en-aut-sei=Oshimi en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraYushi en-aut-sei=Nishimura en-aut-mei=Yushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsubaraTsutomu en-aut-sei=Matsubara en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasuaki en-aut-sei=Tanaka en-aut-mei=Masuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShikohEiji en-aut-sei=Shikoh en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhaoLi en-aut-sei=Zhao en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZouYajuan en-aut-sei=Zou en-aut-mei=Yajuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KomatsuNaoki en-aut-sei=Komatsu en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkadoYuta en-aut-sei=Ikado en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakezawaYuka en-aut-sei=Takezawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Kage-NakadaiEriko en-aut-sei=Kage-Nakadai en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IzutsuYumi en-aut-sei=Izutsu en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshizatoKatsutoshi en-aut-sei=Yoshizato en-aut-mei=Katsutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MoritaSaho en-aut-sei=Morita en-aut-mei=Saho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TokunagaMasato en-aut-sei=Tokunaga en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YukawaHiroshi en-aut-sei=Yukawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BabaYoshinobu en-aut-sei=Baba en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TekiYoshio en-aut-sei=Teki en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraMasazumi en-aut-sei=Fujiwara en-aut-mei=Masazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science, Osaka City University kn-affil= affil-num=3 en-affil=Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University kn-affil= affil-num=4 en-affil=Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University kn-affil= affil-num=5 en-affil=Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University kn-affil= affil-num=6 en-affil=State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Human and Environmental Studies, Kyoto University kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University kn-affil= affil-num=11 en-affil=Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, kn-affil= affil-num=12 en-affil=Department of Biology, Faculty of Science, Niigata University kn-affil= affil-num=13 en-affil=Synthetic biology laboratory, Graduate school of medicine, Osaka City University kn-affil= affil-num=14 en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University kn-affil= affil-num=15 en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University kn-affil= affil-num=16 en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University kn-affil= affil-num=17 en-affil=Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University kn-affil= affil-num=18 en-affil=Department of Chemistry, Graduate School of Science, Osaka City University kn-affil= affil-num=19 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=2 article-no= start-page=137 end-page=143 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in Plasma Clozapine Levels after Smoking Cessation in Japanese Inpatients with Schizophrenia: A Retrospective Cohort Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although reported for Caucasians, changes in plasma clozapine levels after smoking cessation in East Asians remain unclear. We here investigated plasma clozapine levels before and after smoking cessation in Japanese inpatients with schizophrenia. We conducted a retrospective chart review of 14 inpatients with schizophrenia who were being treated with clozapine between June 1, 2019, and July 31, 2019 and who were smokers as of July 1, 2019, the day on which a smoking ban was instituted in the tertiary public psychiatric hospital. The primary outcome was individual differences in plasma clozapine levels between before and after the smoking ban, which were compared using paired t-tests. The mean plasma clozapine level was significantly increased, by 213.4 ng/mL (95% CI 119.9-306.8; p<0.01) or 53.2%. Four of the 14 inpatients experienced clinically significant side effects, such as myoclonus, drooling, and amnesia, due to the development of high plasma clozapine levels. Our findings indicated that close monitoring of plasma clozapine levels before and after smoking cessation and prior dose adjustment of clozapine may be necessary, to prevent a significant risk of developing high plasma clozapine levels, even in Japanese patients. en-copyright= kn-copyright= en-aut-name=TsukaharaMasaru en-aut-sei=Tsukahara en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SoRyuhei en-aut-sei=So en-aut-mei=Ryuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YadaYuji en-aut-sei=Yada en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KodamaMasafumi en-aut-sei=Kodama en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KishiYoshiki en-aut-sei=Kishi en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamadaNorihito en-aut-sei=Yamada en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Psychiatry, Okayama Psychiatric Medical Center kn-affil= affil-num=2 en-affil=Department of Psychiatry, Okayama Psychiatric Medical Center kn-affil= affil-num=3 en-affil=Department of Psychiatry, Okayama Psychiatric Medical Center kn-affil= affil-num=4 en-affil=Department of Psychiatry, Okayama Psychiatric Medical Center kn-affil= affil-num=5 en-affil=Department of Psychiatry, Okayama Psychiatric Medical Center kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Asian kn-keyword=Asian en-keyword=clozapine kn-keyword=clozapine en-keyword=schizophrenia kn-keyword=schizophrenia en-keyword=smoking kn-keyword=smoking END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=3 article-no= start-page=502 end-page=509 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202232 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between serum miRNAs and gingival gene expression in an obese rat model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction
Recent studies have reported a relationship between periodontitis and obesity; however, the mechanisms of obesityfs effects on periodontitis are not well understood. On the other hand, microRNAs (miRNAs) are known to play key roles in the post-transcriptional regulation gene expression by suppressing translation and protein synthesis. We examined the association between obesity-related miRNAs and gene expression in gingival tissue using miRNA?messenger RNA (mRNA) pairing analysis in an obese rat model.

Methods
Sixteen male Wistar rats aged 8 weeks old were divided into two groups: the control group was fed a normal powdered food for 8 weeks, and the obesity group was fed a high-fat diet for 8 weeks. Distance from the cement?enamel junction to the alveolar bone crest of the first molars was measured. miRNA microarray analysis was performed on samples of serum and gingival tissue; the resulting data were used to calculate fold changes in miRNA levels in the obesity group relative to the control group, and miRNA?mRNA pairing analysis was performed to identify mRNAs potentially targeted by miRNAs of interest.

Results
Alveolar bone loss in the obesity group exceeded that in the control group (p = .017). miRNA?mRNA pairing analysis identified an association between 4 miRNAs (miR-759, miR-9a-3p, miR-203b-3p, and miR-878) that were differentially expressed in the obesity and control groups and 7 genes (Ly86, Arid5b, Rgs18, Mlana, P2ry13, Kif1b, and Myt1) expressed in gingival tissue.

Conclusion
This study revealed that several miRNAs play an important role in the mechanism of periodontal disease progression induced by the obesity. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiTerumasa en-aut-sei=Kobayashi en-aut-mei=Terumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugiuraYoshio en-aut-sei=Sugiura en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YonedaToshiki en-aut-sei=Yoneda en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=experimental animal model kn-keyword=experimental animal model en-keyword=microRNA kn-keyword=microRNA en-keyword=mRNA kn-keyword=mRNA en-keyword=obesity kn-keyword=obesity en-keyword=periodontitis kn-keyword=periodontitis END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue= article-no= start-page=521 end-page=525 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Isolation and identification of soil bacteria resistant to surfactants in washing detergents en-subtitle= kn-subtitle= en-abstract= kn-abstract=Linear alkylbenzene sulfonate (LAS) and polyoxyethylene lauryl ether (POLE) are the major surfactants in washing detergents. In the present study, we isolated surfactant-resistant bacteria from soil samples collected from a sports ground and a farm field. The samples were treated with 2.0% LAS or POLE at 25C for 30?min and cultivated on agar plates at 25C for several days, after which manifold bacterial colonies were isolated. Thereafter, we tested the ability of each bacterial isolate to resist the antibacterial activity of the surfactant. Ten LAS-resistant strains were isolated, and all were found to be Gram-negative bacteria such as Enterobacter and Pseudomonas. On the other hand, 18 POLE-resistant strains were isolated, of which 14 were Gram-positive bacteria including Bacillus and Microbacterium. Notably, one POLE-resistant strain was identified as Bacillus cereus, a potential causative agent for foodborne illness. The genera of LAS- and POLE-resistant bacteria did not overlap. Therefore, the combination of LAS and POLE could be more effective to eliminate soil bacteria from clothes and/or daily necessities. en-copyright= kn-copyright= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkuboNaomi en-aut-sei=Okubo en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsumoriSatoko en-aut-sei=Mitsumori en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama]City Okayama Japan kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama]City Okayama Japan kn-affil= en-keyword=Surfactant kn-keyword=Surfactant en-keyword=Washing detergent kn-keyword=Washing detergent en-keyword=Linear alkylbenzene sulfonate kn-keyword=Linear alkylbenzene sulfonate en-keyword=Soil bacteria kn-keyword=Soil bacteria END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=11 article-no= start-page=e0259633 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antimicrobial prescription practices for outpatients with acute respiratory tract infections: A retrospective, multicenter, medical record-based study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antimicrobial stewardship for outpatients with acute respiratory tract infections (ARTIs) should be urgently promoted in this era of antimicrobial resistance. Previous large-sample studies were based on administrative data and had limited reliability. We aimed to identify current antimicrobial prescription practices for ARTIs by directly basing on medical records. This multicenter retrospective study was performed from January to December in 2018, at five medical institutes in Japan. We targeted outpatients aged >= 18 years whose medical records revealed International Classification of Diseases (ICD-10) codes suggesting ARTIs. We divided the eligible cases into three age groups (18-64 years, 65-74 years, and >= 75 years). We defined broad-spectrum antimicrobials as third-generation cephalosporins, macrolides, fluoroquinolones, and faropenem. Primary and secondary outcomes were defined as the proportion of antimicrobial prescriptions for the common cold and other respiratory tract infections, respectively. Totally, data of 3,940 patients were collected. Of 2,914 patients with the common cold, 369 (12.7%) were prescribed antimicrobials. Overall, compared to patients aged >= 75 years (8.5%), those aged 18-64 years (16.6%) and those aged 65-74 years (12.1%) were frequently prescribed antimicrobials for the common cold (odds ratio [95% confidential interval]; 2.15 [1.64-2.82] and 1.49 [1.06-2.09], respectively). However, when limited to cases with a valid diagnosis of the common cold by incorporating clinical data, no statistical difference was observed among the age groups. Broad-spectrum antimicrobials accounted for 90.2% of the antimicrobials used for the common cold. Of 1,026 patients with other respiratory infections, 1,018 (99.2%) were bronchitis, of which antimicrobials were prescribed in 49.9% of the cases. Broad-spectrum antimicrobials were the main agents prescribed, accounting for nearly 90% of prescriptions in all age groups. Our data suggested a favorable practice of antimicrobial prescription for outpatients with ARTIs in terms of prescribing proportions, or quantitative aspect. However, the prescriptions were biased towards broad-spectrum antimicrobials, highlighting the need for further antimicrobial stewardship in the outpatient setting from a qualitative perspective. en-copyright= kn-copyright= en-aut-name=IshidaTomoharu en-aut-sei=Ishida en-aut-mei=Tomoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHiroko en-aut-sei=Ogawa en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObikaMikako en-aut-sei=Obika en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KataokaHitomi en-aut-sei=Kataoka en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanayamaYoshihisa en-aut-sei=Hanayama en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=1 article-no= start-page=157 end-page=165 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observing Phylum-Level Metazoan Diversity by Environmental DNA Analysis at the Ushimado Area in the Seto Inland Sea en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dynamics of microscopic marine plankton in coastal areas is a fundamental theme in marine biodiversity research, but studies have been limited because the only available methodology was collection of plankton using plankton-nets and microscopic observation. In recent years, environmental DNA (eDNA) analysis has exhibited potential for conducting comprehensive surveys of marine plankton diversity in water at fixed points and depths in the ocean. However, few studies have examined how eDNA analysis reflects the actual distribution and dynamics of organisms in the field, and further investigation is needed to determine whether it can detect distinct differences in plankton density in the field. To address this, we analyzed eDNA in seawater samples collected at 1 km intervals at three depths over a linear distance of approximately 3.0 km in the Seto Inland Sea. The survey area included a location with a high density of Acoela (Praesagittifera naikaiensis). However, the eDNA signal for this was little to none, and its presence would not have been noticed if we did not have this information beforehand. Meanwhile, eDNA analysis enabled us to confirm the presence of a species of Placozoa that was previously undiscovered in the area. In summary, our results suggest that the number of sequence reads generated from eDNA samples in our project was not sufficient to predict the density of a particular species. However, eDNA can be useful for detecting organisms that have been overlooked using other methods. en-copyright= kn-copyright= en-aut-name=KawashimaTakeshi en-aut-sei=Kawashima en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaMasa-aki en-aut-sei=Yoshida en-aut-mei=Masa-aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazawaHideyuki en-aut-sei=Miyazawa en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoHiroaki en-aut-sei=Nakano en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoNatumi en-aut-sei=Nakano en-aut-mei=Natumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamadaMayuko en-aut-sei=Hamada en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Genetics kn-affil= affil-num=2 en-affil=Marine Biological Science Section, Education and Research Center Biological Resources, Faculty of Life and Environmental Science, Shimane University kn-affil= affil-num=3 en-affil=National Institute of Genetics kn-affil= affil-num=4 en-affil=Shimoda Marine Research Center, University of Tsukuba kn-affil= affil-num=5 en-affil=Department of Biology, Nara Medical University kn-affil= affil-num=6 en-affil=Ushimado Marine Institute, Okayama University kn-affil= affil-num=7 en-affil=Ushimado Marine Institute, Okayama University kn-affil= en-keyword=eDNA kn-keyword=eDNA en-keyword=marine invertebrate kn-keyword=marine invertebrate en-keyword=Xenacoelomorpha kn-keyword=Xenacoelomorpha en-keyword=Acoela kn-keyword=Acoela en-keyword=Praesagittifera naikaiensis kn-keyword=Praesagittifera naikaiensis en-keyword=Placozoa kn-keyword=Placozoa en-keyword=Trichoplax adhaerens kn-keyword=Trichoplax adhaerens END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=1 article-no= start-page=41 end-page=49 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Urinary Protein-to-creatinine Ratios Predict Recurrence in Pediatric and Young Adult Cases of Minimal Change Nephrotic Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-dose steroids are required for the treatment of minimal change nephrotic syndrome (MCNS), especially for episodes of recurrence. Predicting and avoiding recurrence can help reduce the steroid dose, but prediction is currently difficult. We herein examined whether changes in laboratory data, especially the urinary protein- to-creatinine ratio (UTP/UCr), can predict clinical recurrence. We also assessed differences in clinical features between children and young adults. We included 36 patients with MCNS; for each case, we retrospectively studied laboratory data during stable remission and pre-recurrence, with the gstableh period defined as all but the 6 weeks before recurrence, and pre-recurrence defined as the 4}2 weeks before recurrence. UTP/UCr, serum albumin, etc. were measured every 5 years during stable periods. We divided patients into cohorts by age at recurrence, < 15 years and ? 15 years, and compared stable and pre-recurrence values for the two groups. UTP/UCr values during stable periods tended to be higher in younger patients. UTP/UCr and serum albumin showed statistically significant changes during pre-recurrence periods, but only in those aged ? 15 years. Thus, clinical features of recurrence differed depending on age. Signs of recurrence can be confirmed via UTP/UCr or serum albumin several weeks before recurrence in patients ? 15 years. en-copyright= kn-copyright= en-aut-name=MiyaharaHiroyuki en-aut-sei=Miyahara en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyaiTakayuki en-aut-sei=Miyai en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AyaKunihiko en-aut-sei=Aya en-aut-mei=Kunihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=minimal change nephrotic syndrome kn-keyword=minimal change nephrotic syndrome en-keyword=recurrence kn-keyword=recurrence en-keyword= urinary protein to creatinine ratio kn-keyword= urinary protein to creatinine ratio END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=1 article-no= start-page=33 end-page=39 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma Concentrations of Trace Elements Selenium and Cobalt During and After Coronary Artery Bypass Grafting Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Trace elements selenium (Se) and cobalt (Co) are essential in the human body, and a correlation between Se and cardiac surgery has been suggested. We investigated the plasma concentrations of Se and Co during and after coronary artery bypass grafting (CABG) surgery under cardiopulmonary bypass (CPB). From December 2019 to January 2020, preoperative plasma samples from isolated first-time CABG patients (n=20; 10 males, 10 females) were prospectively collected post-anesthesia and before CPB (T1), 45 min after CPB started (T2), 90 min after CPB started (T3), and postoperative days 1 (T4), and day 4 (T5). The plasma concentrations of Se and Co were measured. The Se concentration was significantly decreased at T2 (105.24}4.08 vs. 68.56}2.42 g/L, p<0.001) and T3 (105.24}4.08 vs. 80.41}3.40 g/L, p<0.001). The Co concentration was significantly decreased at T4 (0.35}0.19 vs. 0.26}0.13 g/L, p<0.01) and T5 (0.35}0.19 vs. 0.23}0.11 g/L, p<0.001). Five patients developed atrial fibrillation (AF); there was no other operative mortality or major morbidity. This is the first report of alterations of plasma Se and Co concentrations during and after CABG surgery. Our results may indicate that Se supplementation before or during CABG and Co supplementation after CABG may become necessary for patients undergoing CABG. en-copyright= kn-copyright= en-aut-name=ZhouJia-Yi en-aut-sei=Zhou en-aut-mei=Jia-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HouHai-Tao en-aut-sei=Hou en-aut-mei=Hai-Tao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangShi-Fu en-aut-sei=Wang en-aut-mei=Shi-Fu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangQin en-aut-sei=Yang en-aut-mei=Qin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HeGuo-Wei en-aut-sei=He en-aut-mei=Guo-Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital kn-affil= affil-num=2 en-affil=Unit of Perfusion, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospita kn-affil= affil-num=3 en-affil=Unit of Perfusion, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital kn-affil= affil-num=4 en-affil=The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital kn-affil= affil-num=5 en-affil=The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital kn-affil= en-keyword=trace element kn-keyword=trace element en-keyword=CABG kn-keyword=CABG en-keyword=cardiopulmonary bypass kn-keyword=cardiopulmonary bypass en-keyword=selenium kn-keyword=selenium en-keyword=cobalt kn-keyword=cobalt END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=1 article-no= start-page=25 end-page=32 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development and Evaluation of a Short-time Imaging Method for the Clinical Study of the Apparent Diffusion Coefficient Subtraction Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=The apparent diffusion coefficient subtraction method (ASM) was developed as a new restricted diffusionweighted imaging technique for magnetic resonance imaging (MRI). The usefulness of the ASM has been established by in vitro basic research using a bio-phantom, and clinical research on the application of the ASM for the human body is needed. Herein, we developed a short-time sequence for ASM imaging of the heads of healthy volunteers (n=2), and we investigated the similarity between the obtained ASM images and diffusion kurtosis (DK) images to determine the utility of the ASM for clinical uses. This study appears to be the first to report ASM images of the human head. We observed that the short-time sequence for the ASM imaging of the head can be scanned in approx. 3 min at 1.5T MRI. The noise reduction effect of median filter processing was confirmed on the ASM images scanned by this sequence. The obtained ASM images showed a weak correlation with the DK images, indicating that the ASM images are restricted diffusion-weighted images. The new shorttime imaging sequence could thus be used in clinical studies applying the ASM. en-copyright= kn-copyright= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimuraYuuki en-aut-sei=Yoshimura en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamadaKentaro en-aut-sei=Hamada en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KhasawnehAbdullah en-aut-sei=Khasawneh en-aut-mei=Abdullah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KonishiKohei en-aut-sei=Konishi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshizakaHinata en-aut-sei=Ishizaka en-aut-mei=Hinata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShimizuYudai en-aut-sei=Shimizu en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamitsuYuki en-aut-sei=Nakamitsu en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KamizakiRyo en-aut-sei=Kamizaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=apparent diffusion coefficient kn-keyword=apparent diffusion coefficient en-keyword=apparent diffusion coefficient subtraction method kn-keyword=apparent diffusion coefficient subtraction method en-keyword=diffusion kurtosis imaging kn-keyword=diffusion kurtosis imaging en-keyword=restricted diffusion kn-keyword=restricted diffusion en-keyword=short-time imaging kn-keyword=short-time imaging END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of targetable kinases in idiopathic pulmonary fibrosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1-5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF. en-copyright= kn-copyright= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SenooSatoru en-aut-sei=Senoo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakasukaTakamasa en-aut-sei=Nakasuka en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=17 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=Idiopathic pulmonary fibrosis kn-keyword=Idiopathic pulmonary fibrosis en-keyword=RNA sequencing kn-keyword=RNA sequencing en-keyword=Molecular therapeutic target kn-keyword=Molecular therapeutic target en-keyword=Personalized therapy kn-keyword=Personalized therapy END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=30 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mitigation of groundwater iron-induced clogging by low-cost bioadsorbent in open loop geothermal heat pump systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=Green energy production from natural resources can reduce emissions of greenhouse gases and pollutants from burning of fossil fuels in power plants. Recently, groundwater geothermal energy (GGE) is harnessed by deploying closed- and open-loop heat systems. In open-loop geothermal heat pump systems (OLGHPS), groundwater is reinjected into aquifer after harnessing GGE. Nevertheless, OLGHPS face noxious clogging issue because of elusive chemistry (corrosion or precipitation) of chemical species, principally of iron (Fe), in pipes and aquifers during reinjection process via oxidation reactions. Plethora of filtering materials are available for removal of ions, but these are quite expensive and environmentally unsafe. More recently, low-cost, eco-friendly, green filtering materials gain much interest. These materials can remove ions from groundwater that can minimize clogging in heat exchange systems, injection wells, and aquifer. In the present study, three filtering materials, i.e., wooden charcoal (biomaterial), yamazuna fine sand, and volcanic ash, were tested to estimate their Fe removal capacity. In upward flow mode with minimum oxygen-water contact, serial column (each with 6 ports) experiments were conducted under constant pressure head and constant velocity conditions. Columns were connected to well water having dissolved Fe concentration of 10.85 mg L-1. Sampling was done at the well, column inlets, column's six sampling ports and column outlets, and samples were analyzed for Fe by atomic absorption spectroscopy. Related tested parameters include pH, EC, temperature, turbidity, porosity, particle diameter, and dissolved oxygen. Volcanic ash showed less Fe removal, while sand filter showed substantial reduction in velocity. Biomaterial (wooden charcoal) displayed higher Fe adsorption capacity compared to other materials that can be ascribed to its surface chemistry and functional groups. Under different flow rates, maximum Fe content of 3.5 g Fe kg(-1) dry charcoal was obtained. By considering a safety factor and influence of groundwater composition, it is possible to design a biomaterial-based iron filter system to minimize Fe-induced chemical clogging in OLGHPS which is an eco-friendly, green energy source. en-copyright= kn-copyright= en-aut-name=FujitaClaudia en-aut-sei=Fujita en-aut-mei=Claudia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkhtarM. Shahbaz en-aut-sei=Akhtar en-aut-mei=M. Shahbaz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HidakaRay en-aut-sei=Hidaka en-aut-mei=Ray kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigakiMakoto en-aut-sei=Nishigaki en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Dissolved iron removal kn-keyword=Dissolved iron removal en-keyword=Chemical clogging kn-keyword=Chemical clogging en-keyword=Open-loop geothermal systems kn-keyword=Open-loop geothermal systems en-keyword=Retention potential kn-keyword=Retention potential en-keyword=Wooden charcoal kn-keyword=Wooden charcoal END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=1 article-no= start-page=10 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211229 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of Urinary Diagnostic Biomarker for IgA Nephropathy by Lectin Microarray en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction. The pathogenic roles of aberrantly glycosylated IgA1 have been reported. However, it is unexplored whether the profiling of urinary glycans contributes to the diagnosis of IgAN.
Methods. We conducted the retrospective study enrolling 493 patients who underwent renal biopsy at Okayama University Hospital between Dec. 2010 and Sep. 2017. We performed lectin microarray in urine samples and investigated whether c-statistics of the reference standard diagnosis model employing hematuria, proteinuria, and serum IgA was improved by adding the urinary glycan intensity.
Results. Among 45 lectins, 3 lectins showed a significant improvement of the models: Amaranthus caudatus lectin (ACA) with the difference of c-statistics 0.038 [95%CI, 0.019 - 0.058, P < 0.001], Agaricus bisporus lectin (ABA) 0.035 [95%CI, 0.015 - 0.055, P < 0.001], Maackia amurensis lectin (MAH) 0.035 [95%CI, 0.015 - 0.054, P < 0.001]. In 3 lectins, each signal plus reference standard showed good reclassification (category free NRI and relative IDI) and good model fitting associated with the improvement of AIC and BIC. Stratified by eGFR, the discriminatory ability of ACA plus reference standard was maintained, suggesting the robust renal function-independent diagnostic performance of ACA. By decision curve analysis, there was a 3.45% net benefit by adding urinary glycan intensity of ACA to reference standard at the pre-defined threshold probability of 40%. Conclusions. The reduction of Gal(1-3)GalNAc (T-antigen), Sia(2-3)Gal(1-3)GalNAc (Sialyl T), and Sia(2-3)Gal(1-3)Sia(2-6)GalNAc (disialyl-T) was suggested by binding specificities of 3 lectins. C1GALT1 and COSMC were responsible for the biosynthesis of these glycans, and they were known to be downregulated in IgAN. The urinary glycan analysis by ACA is useful and robust non-invasive strategy for the diagnosis of IgAN. en-copyright= kn-copyright= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiseKoki en-aut-sei=Mise en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawakitaChieko en-aut-sei=Kawakita en-aut-mei=Chieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugiyamaHitoshi en-aut-sei=Sugiyama en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugawaraRyosuke en-aut-sei=Sugawara en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HirabayashiJun en-aut-sei=Hirabayashi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=GlycoTechnica Ltd. kn-affil= affil-num=11 en-affil=Institute for Glyco-core Research, Nagoya University kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Glomerulonephritis kn-keyword=Glomerulonephritis en-keyword=IgA nephropathy kn-keyword=IgA nephropathy en-keyword=Diagnostic biomarkers kn-keyword=Diagnostic biomarkers en-keyword=Lectins kn-keyword=Lectins en-keyword=Glycomics kn-keyword=Glycomics END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue= article-no= start-page=1 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enriched CD45RA(-)CD62L(+) central memory T and decreased CD3(+)CD56(+) natural killer T lymphocyte subsets in the rectum of ulcerative colitis patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives To investigate the distinctive features of lymphocytes promoting inflammation in ulcerative colitis. Methods We performed flow cytometric analysis of peripheral blood mononuclear cells (PBMCs) and colorectal mucosa lymphocytes in ulcerative colitis patients (n = 13) and control patients (n = 5). Results CD62L(+)/CD3(+)CD4(+) (35.7 +/- 14.0% vs. 19.9 +/- 6.4%) and CD62L(+)/CD3(+)CD4(-) cells (17.1 +/- 17.4% vs. 2.4 +/- 3.9%) were higher in the rectum of ulcerative colitis patients than in control patients. Subpopulation analysis revealed that CD45RA(-)CD62L(+)/CD3(+)CD4(+), that is, central memory T cell fraction in CD4(+) T cells, was significantly increased in the rectum of ulcerative colitis, compared to that in control patients (23.3 +/- 10.5% vs. 8.2 +/- 4.0%). Comparison of rectum and colon samples in ulcerative colitis patients indicated that CD56(+)/CD3(+) was decreased in the rectum compared to that in the colon (11.3 +/- 12.5% vs. 21.3 +/- 16.5%). The ratio of CD56(+)/CD3(+) was also decreased in the rectum of active ulcerative colitis patients compared to that in ulcerative colitis patients at the endoscopic remission stages (2.8 +/- 1.7% vs. 18.5 +/- 13.3%). Conclusion We demonstrated that CD62L(+) T lymphocytes, particularly the CD45RA(-)CD62L(+) T cell subset that represents central memory T cells, were increased in the rectum of patients with ulcerative colitis. In addition, the CD56(+)/CD3(+) subset (natural killer T cells) was decreased in the rectum compared to that of less inflamed colonic mucosa. These results suggest that the enrichment of central memory T lymphocytes and the reduction of natural killer T cells in the gut mucosa are involved in the pathogenesis of ulcerative colitis. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeNatsuki en-aut-sei=Watanabe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=central memory T cell kn-keyword=central memory T cell en-keyword=flow cytometry kn-keyword=flow cytometry en-keyword=natural killer T cells kn-keyword=natural killer T cells en-keyword=peripheral blood mononuclear cell kn-keyword=peripheral blood mononuclear cell en-keyword=ulcerative colitis kn-keyword=ulcerative colitis END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=26 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Terahertz waves have gained increasingly more attention because of their unique characteristics and great potential in a variety of fields. In this study, we introduced the recent progress of our versatile terahertz chemical microscope (TCM) in the detection of small biomolecules, ions, cancer cells, and antibody-antigen immunoassaying. We highlight the advantages of our TCM for chemical sensing and biosensing, such as label-free, high-sensitivity, rapid response, non-pretreatment, and minute amount sample consumption, compared with conventional methods. Furthermore, we demonstrated its new application in detection of allergic-related histamine at low concentration in buffer solutions. en-copyright= kn-copyright= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoKosuke en-aut-sei=Sato en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaYuichi en-aut-sei=Yoshida en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakaiKenji en-aut-sei=Sakai en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=terahertz chemical microscope kn-keyword=terahertz chemical microscope en-keyword=potential distribution kn-keyword=potential distribution en-keyword=label-free kn-keyword=label-free en-keyword=biological substances kn-keyword=biological substances en-keyword=cancer cells kn-keyword=cancer cells en-keyword=antibody-antigen kn-keyword=antibody-antigen en-keyword=histamine kn-keyword=histamine END start-ver=1.4 cd-journal=joma no-vol=162 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Valence control of charge and orbital frustrated system YbFe2O4 with electrochemical Li+ intercalation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report an attempt valence control of the mixed valence iron triangular oxide YbFe2O4 to develop an effective technique controling the frustration of charges in strongly correlated electron systems. The electrochemical doping of Li + into YbFe2O4 was examined on a cell-type sample similar to the Li-ion secondary battery cell. Systematic changes in the lattice constant and Fe ? Fe and Fe?Yb distance were observed with Li doping. Maximum value of the doping was over 300 mAh/g. An EXAFS experiment indicated that Li positioned between Yb octahedron layer (U-layer) and Fe-bipyramidal layer (W-layer). However, detailed change of iron valence state of YbFe2O4was not clearly observed because of the superimpose of the signal from iron metal nano particles in XANES observation. We discuss that the uncertainty might arise from the inhomogeneous distribution of the sample particle size, which might prevent the homogeneous doping of Li because the doping occurs on the surface of each nano-particles. en-copyright= kn-copyright= en-aut-name=MuraseS. en-aut-sei=Murase en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaY. en-aut-sei=Yoshikawa en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraK. en-aut-sei=Fujiwara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukadaY. en-aut-sei=Fukada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeranishiT. en-aut-sei=Teranishi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanoJ. en-aut-sei=Kano en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiT. en-aut-sei=Fujii en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaY. en-aut-sei=Inada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaM. en-aut-sei=Katayama en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiiK. en-aut-sei=Yoshii en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsujiT. en-aut-sei=Tsuji en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsumuraD. en-aut-sei=Matsumura en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IkedaN. en-aut-sei=Ikeda en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=9 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=10 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=11 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=12 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=RFe2O4 kn-keyword=RFe2O4 en-keyword=YbFe2O4 kn-keyword=YbFe2O4 en-keyword=Triangular lattice kn-keyword=Triangular lattice en-keyword=Charge frustration kn-keyword=Charge frustration en-keyword=Spin frustration kn-keyword=Spin frustration en-keyword=Orbital frustration kn-keyword=Orbital frustration en-keyword=Frustration control kn-keyword=Frustration control en-keyword=Li doping kn-keyword=Li doping END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=13 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Estimation of periodontal pocket surface area in small to medium dogs: a proof-of-concept study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Periodontal disease is the most common dental disease in dogs. Although the systemic effects of periodontal disease have not been clarified in veterinary science, it is necessary to evaluate the effects of periodontal disease in clinical trials in the future. There have been a few clinical attempts made, however, to assess the severity of periodontal inflammation and its impact on the systemic health of dogs. Meanwhile, in the field of dentistry for humans, the periodontal inflamed surface area (PISA) and periodontal epithelial surface area (PESA) have been used to quantitatively assess the degree of periodontal disease affecting a single tooth as well as the overall extent of periodontitis. Recent studies have also suggested the use of these assessments to examine the relationship between periodontal inflammation and systemic health.

Results
The estimation formula for a dog's periodontal pocket surface area (PPSA), an alternative to PISA and PESA in humans, was established using body weight and periodontal pocket depth. Actual values were measured using extracted teeth from various dog breeds and sizes (2.3-25.0 kg of body weight) to obtain universal regression equations for PPSA. Altogether, 625 teeth from 73 dogs of 16 breeds were extracted and subsequently analyzed for morphological information. PPSA was measured in 61 dogs of 10 breeds with periodontal disease using the established estimation formulas, and the correlation between PPSA and preoperative blood chemistry data was analyzed accordingly. A strong correlation was found between PPSA and serum globulin (r = 0.71) while moderate correlations were found for C-reactive protein (r = 0.54) and serum albumin (r = -0.51).

Conclusions
Estimation formulas using body weight and the 6-point probing depth were established for determining PPSA. Direct correlations between PPSA and several blood test results were observed in the study sample. Taken together, these results suggest that PPSA could be useful for evaluating the effects of periodontitis on systemic conditions in dogs. en-copyright= kn-copyright= en-aut-name=TamuraKazuya en-aut-sei=Tamura en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tokuzen-TaiMasako en-aut-sei=Tokuzen-Tai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SiddiquiYasir Dilshad en-aut-sei=Siddiqui en-aut-mei=Yasir Dilshad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Tamura-NaitoHitomi en-aut-sei=Tamura-Naito en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaharaYoshiharu en-aut-sei=Nagahara en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Hatanaka-TakeuchiKazu en-aut-sei=Hatanaka-Takeuchi en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pathophysiology?Periodontal Science, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology?Periodontal Science, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Nagahara Animal Hospital kn-affil= affil-num=6 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathophysiology?Periodontal Science, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathophysiology?Periodontal Science, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Dog kn-keyword=Dog en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Periodontal pocket surface area kn-keyword=Periodontal pocket surface area en-keyword=Estimation method kn-keyword=Estimation method en-keyword=Periodontology kn-keyword=Periodontology END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=41 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Whole Exome-Sequencing of Pooled Genomic DNA Samples to Detect Quantitative Trait Loci in Esotropia and Exotropia of Strabismus in Japanese en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Esotropia and exotropia are two major phenotypes of comitant strabismus. It remains controversial whether esotropia and exotropia would share common genetic backgrounds. In this study, we used a quantitative trait locus (QTL)-sequencing pipeline for diploid plants to screen for susceptibility loci of strabismus in whole exome sequencing of pooled genomic DNAs of individuals. Methods: Pooled genomic DNA (2.5 ng each) of 20 individuals in three groups, Japanese patients with esotropia and exotropia, and normal members in the families, was sequenced twice after exome capture, and the first and second sets of data in each group were combined to increase the read depth. The SNP index, as the ratio of variant genotype reads to all reads, and (SNP index) values, as the difference of SNP index between two groups, were calculated by sliding window analysis with a 4 Mb window size and 10 kb slide size. The rows of 200 gNhs were inserted as a putative 200-b spacer between every adjoining locus to depict (SNP index) plots on each chromosome. SNP positions with depth < 20 as well as SNP positions with SNP index of <0.3 were excluded. Results: After the exclusion of SNPs, 12,242 SNPs in esotropia/normal group and 12,108 SNPs in exotropia/normal group remained. The patterns of the (SNP index) plots on each chromosome appeared different between esotropia/normal group and exotropia/normal group. When the consecutive groups of SNPs on each chromosome were set at three patterns: SNPs in each cytogenetic band, 50 consecutive sliding SNPs, and SNPs in 4 Mb window size with 10 kb slide size, p values (Wilcoxon signed rank test) and Q values (false discovery rate) in a few loci as Manhattan plots showed significant differences in comparison between the (SNP index) in the esotropia/normal group and exotropia/normal group. Conclusions: The pooled DNA sequencing and QTL mapping approach for plants could provide overview of genetic background on each chromosome and would suggest different genetic backgrounds for two major phenotypes of comitant strabismus, esotropia and exotropia. en-copyright= kn-copyright= en-aut-name=ZhangJingjing en-aut-sei=Zhang en-aut-mei=Jingjing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamasakiIchiro en-aut-sei=Hamasaki en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Barley and Wild Plant Resource Center, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=strabismus kn-keyword=strabismus en-keyword=esotropia kn-keyword=esotropia en-keyword=exotropia kn-keyword=exotropia en-keyword=diploid plant kn-keyword=diploid plant en-keyword=human kn-keyword=human en-keyword=quantitative trait locus (QTL) kn-keyword=quantitative trait locus (QTL) en-keyword=pooled genomic DNA kn-keyword=pooled genomic DNA en-keyword=chromosome kn-keyword=chromosome en-keyword=single nucleotide polymorphism (SNP) kn-keyword=single nucleotide polymorphism (SNP) en-keyword=whole exome sequencing kn-keyword=whole exome sequencing END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=11 article-no= start-page=788 end-page=793 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Errors in causal inference: an organizational schema for systematic error and random error en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference.

Methods
We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability.

Results
Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of gexchangeabilityh between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods.

Conclusions
Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsudaToshihide en-aut-sei=Tsuda en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MansourniaMohammad Ali en-aut-sei=Mansournia en-aut-mei=Mohammad Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Epidem iology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Human Ecology, Graduate School of Environmenta l and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama University, kn-affil= affil-num=4 en-affil=Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences kn-affil= affil-num=5 en-affil=Department of Information Science, Faculty of Informatics, Okayama University of Science kn-affil= en-keyword=bias kn-keyword=bias en-keyword=causality kn-keyword=causality en-keyword=epidemiologic methods kn-keyword=epidemiologic methods END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=11 article-no= start-page=405 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Formation Mechanism of Tempering-Induced Martensite in Ti-10Mo-7Al Alloy kn-title=Ti?10Mo?7Al̏Ė߂UN}eTCǧ`@\ en-subtitle= kn-subtitle= en-abstract= kn-abstract=The formation mechanism of AA?martensite (AAMt) induced by tempering at 450?550 for a short time was investigated using Ti?10Mo?7Al alloy. The solution treated and quenched (STQ) sample was composed of phase and a small amount of AAMq, and a large amount of AAMt was generated by rapid tempering at 550?3 s using a salt bath. However, AAMt was completely transformed into a single phase by aging at 200 for 3 min. Reversibility was observed between the AAMt transformation and the reverse transformation. In?situ high?temperature X?ray diffraction measurements revealed that AAMq reverse transformation occurred at 200 and that a thermally activated AAiso was generated at 450 due to the slow heating rate. In?situ optical microscopic observation of STQ sample with rapid lamp heating revealed that AAMt was formed during heating process. However, AAMt did not generate under following conditions; that is, a slow heating rate, thin sample plate, and a small temperature difference until tempering by preheating. On the other hand, rapid tempering using thick plate from liquid nitrogen (?196) to 250 was performed to ensure a sufficient temperature difference, but AAMt was not generated at all. From the cross?sectional observation of the STQ plate, it was found that AAMq was hardly formed on the surface of the sample, but was formed abundantly inside the sample. On the other hand, in the rapidly tempered plate, a large amount of AAMt was distributed in the surface layer than inside sample. These results suggest that the thermal compressive stress induced by rapid heat treatment contributes to the formation of ''M. en-copyright= kn-copyright= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name=|× kn-aut-sei=| kn-aut-mei=× aut-affil-num=1 ORCID= en-aut-name=YasunoMikiko en-aut-sei=Yasuno en-aut-mei=Mikiko kn-aut-name=q kn-aut-sei= kn-aut-mei=q aut-affil-num=2 ORCID= en-aut-name=IkemotoMasaki en-aut-sei=Ikemoto en-aut-mei=Masaki kn-aut-name=r{ kn-aut-sei=r{ kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoHiroyuki en-aut-sei=Ando en-aut-mei=Hiroyuki kn-aut-name=K kn-aut-sei= kn-aut-mei=K aut-affil-num=4 ORCID= en-aut-name=ShimizuIchiro en-aut-sei=Shimizu en-aut-mei=Ichiro kn-aut-name=Y kn-aut-sei= kn-aut-mei=Y aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=Rww@RȊw affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=Rww@RȊw affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=Rww@RȊw affil-num=4 en-affil=Faculty of Engineering, Okayama University kn-affil=RwHw affil-num=5 en-affil=Faculty of Engineering, Okayama University of Science kn-affil=RȑwHw en-keyword=''?martensite kn-keyword=''?martensite en-keyword=thermal stress kn-keyword=thermal stress en-keyword=tempering kn-keyword=tempering en-keyword=in situ observation kn-keyword=in situ observation en-keyword=reverse transformation kn-keyword=reverse transformation END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=24 article-no= start-page=13276 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of NK-5962 on Gene Expression Profiling of Retina in a Rat Model of Retinitis Pigmentosa en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. Methods: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. Results: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K?Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. Conclusions: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K?Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa. en-copyright= kn-copyright= en-aut-name=LiuShihui en-aut-sei=Liu en-aut-mei=Shihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajiMary en-aut-sei=Miyaji en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosoyaOsamu en-aut-sei=Hosoya en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=apoptosis kn-keyword=apoptosis en-keyword=drug kn-keyword=drug en-keyword=retina kn-keyword=retina en-keyword=photoreceptors kn-keyword=photoreceptors en-keyword=retinitis pigmentosa kn-keyword=retinitis pigmentosa en-keyword=extracellular exosome kn-keyword=extracellular exosome en-keyword=extracellular matrix organization kn-keyword=extracellular matrix organization en-keyword=PI3K?Akt signaling pathway kn-keyword=PI3K?Akt signaling pathway en-keyword=SERPINF1 kn-keyword=SERPINF1 en-keyword=pigment epithelium-derived factor (PEDF) kn-keyword=pigment epithelium-derived factor (PEDF) END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=11 article-no= start-page=e003134 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Patients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples.

Methods
We established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort.

Results
Two patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance.

Conclusions
The TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer. en-copyright= kn-copyright= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HonobeAkiko en-aut-sei=Honobe en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawasakiTomonori en-aut-sei=Kawasaki en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FukushimaSatoshi en-aut-sei=Fukushima en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IkeharaYuzuru en-aut-sei=Ikehara en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MatsueHiroyuki en-aut-sei=Matsue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=2 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=3 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=6 en-affil=Research Institute, Chiba Cancer Center kn-affil= affil-num=7 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=8 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=9 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=10 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=11 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=12 en-affil=Department of Pathology, Saitama Medical University International Medical Center kn-affil= affil-num=13 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=14 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University kn-affil= affil-num=16 en-affil=Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine kn-affil= affil-num=17 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=19 en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center kn-affil= affil-num=20 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=763 end-page=766 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Efficacy and Safety of Sitafloxacin 200 mg Once Daily for Refractory Genitourinary Tract Infections en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this ongoing trial is to evaluate the clinical efficacy and safety of sitafloxacin (STFX) 200 mg once daily (QD) for 7 days in patients with refractory genitourinary tract infections, which include recurrent or complicated cystitis, complicated pyelonephritis, bacterial prostatitis, and epididymitis. The primary endpoint is the microbiological efficacy at 5-9 days after the last administration of STFX. Recruitment began in February 2021, and the target total sample size is 92 participants. en-copyright= kn-copyright= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatariShogo en-aut-sei=Watari en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaoKentaro en-aut-sei=Nagao en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakoTomoko en-aut-sei=Sako en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IshiiAyano en-aut-sei=Ishii en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=17 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=18 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=19 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=20 en-affil=Department of Urology, Okayama University Hospital kn-affil= en-keyword=genitourinary tract infections kn-keyword=genitourinary tract infections en-keyword=fluoroquinolone resistance kn-keyword=fluoroquinolone resistance en-keyword=extended-spectrum beta-lactamase kn-keyword=extended-spectrum beta-lactamase END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=3-4 article-no= start-page=361 end-page=371 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of Create ML in microscopy image classifications: a simple and inexpensive deep learning pipeline for non-data scientists en-subtitle= kn-subtitle= en-abstract= kn-abstract=Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientistsf own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images. en-copyright= kn-copyright= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurutaTomoyuki en-aut-sei=Furuta en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuniyoshiDaichi en-aut-sei=Kuniyoshi en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiharaMegumi en-aut-sei=Ishihara en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishimaYuji en-aut-sei=Kishima en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataMinoru en-aut-sei=Murata en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HoshinoAtsushi en-aut-sei=Hoshino en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakatsukaHirotomo en-aut-sei=Takatsuka en-aut-mei=Hirotomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=5 en-affil=Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=6 en-affil=Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=7 en-affil=Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman kn-affil= affil-num=8 en-affil=National Institute for Basic Biology kn-affil= affil-num=9 en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology kn-affil= en-keyword=Machine learning kn-keyword=Machine learning en-keyword=deep learning kn-keyword=deep learning en-keyword=mitotic cell kn-keyword=mitotic cell en-keyword=chromosome kn-keyword=chromosome en-keyword=tetrad kn-keyword=tetrad en-keyword=microscope kn-keyword=microscope END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=663 end-page=667 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Clinical Trial Evaluating the Usefulness of Tailored Antimicrobial Prophylaxis Using Rectal-culture Screening Media Prior to Transrectal Prostate Biopsy: A Multicenter, Randomized Controlled Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this report is to introduce an on-going, multicenter, randomized controlled trial to evaluate whether tailored antimicrobial prophylaxis guided by rectal culture screening prevents acute bacterial prostatitis following transrectal prostate biopsy (TRPB). Patients will be randomized into an intervention or non-intervention group; tazobactam-piperacillin or levofloxacin will be prophylactically administered according to the results of rectal culture prior to TRPB in the intervention group whereas levofloxacin will be routinely given in the non-intervention group. The primary endpoint is the occurrence rate of acute bacterial prostatitis after TRPB. Recruitment begins in April, 2021 and the target total sample size is 5,100 participants. en-copyright= kn-copyright= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiyamaYoshiki en-aut-sei=Hiyama en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitanoHiroyuki en-aut-sei=Kitano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaHiroki en-aut-sei=Yamada en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoTakayuki en-aut-sei=Goto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoTsubasa en-aut-sei=Kondo en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShigemuraKatsumi en-aut-sei=Shigemura en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakenakaTadasu en-aut-sei=Takenaka en-aut-mei=Tadasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TeishimaJun en-aut-sei=Teishima en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiyataYasuyoshi en-aut-sei=Miyata en-aut-mei=Yasuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IshikawaKiyohito en-aut-sei=Ishikawa en-aut-mei=Kiyohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TakaokaEi-Ichiro en-aut-sei=Takaoka en-aut-mei=Ei-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MiyazakiJun en-aut-sei=Miyazaki en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiSatoshi en-aut-sei=Takahashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MasumoriNaoya en-aut-sei=Masumori en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KiyotaHiroshi en-aut-sei=Kiyota en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FujisawaMasato en-aut-sei=Fujisawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YamamotoShingo en-aut-sei=Yamamoto en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SakumaTakafumi en-aut-sei=Sakuma en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KusumiNorihiro en-aut-sei=Kusumi en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=IchikawaTakaharu en-aut-sei=Ichikawa en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=NasuYoshitsugu en-aut-sei=Nasu en-aut-mei=Yoshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=TsugawaMasaya en-aut-sei=Tsugawa en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Hakodate Goryoukaku Hospital kn-affil= affil-num=4 en-affil=Hiroshima University Hospital kn-affil= affil-num=5 en-affil=Jikei University Katsushika Medical Center kn-affil= affil-num=6 en-affil=Kyoto University Hospital kn-affil= affil-num=7 en-affil=Nagasaki University Hospital kn-affil= affil-num=8 en-affil=Kobe University Hospital kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Japanese Red Cross Okayama Hospital kn-affil= affil-num=15 en-affil=Hiroshima University Hospital kn-affil= affil-num=16 en-affil=Nagasaki University Hospital kn-affil= affil-num=17 en-affil=Fujita Health University Hospital kn-affil= affil-num=18 en-affil=Internationla University of Health and Welfare Hospital kn-affil= affil-num=19 en-affil=Internationla University of Health and Welfare Hospital kn-affil= affil-num=20 en-affil=Sapporo Medical University Hospital kn-affil= affil-num=21 en-affil=Sapporo Medical University Hospital kn-affil= affil-num=22 en-affil=Jikei University Katsushika Medical Center kn-affil= affil-num=23 en-affil=Kobe University Hospital kn-affil= affil-num=24 en-affil=Hyogo College of Medicine College Hospital kn-affil= affil-num=25 en-affil=Okayama Medical Center kn-affil= affil-num=26 en-affil=Okayama Medical Center kn-affil= affil-num=27 en-affil=Okayama Medical Center kn-affil= affil-num=28 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=29 en-affil=Okayama Rosai Hospital kn-affil= affil-num=30 en-affil=Okayama City General Medical Center kn-affil= affil-num=31 en-affil=Department of Urology, Okayama University Hospital kn-affil= affil-num=32 en-affil=Department of Urology, Okayama University Hospital kn-affil= en-keyword=antibiotic prophylaxis kn-keyword=antibiotic prophylaxis en-keyword=selective culture media kn-keyword=selective culture media en-keyword=prostate biopsy kn-keyword=prostate biopsy en-keyword=fluoroquinolone-resistant kn-keyword=fluoroquinolone-resistant en-keyword=extended- spectrum beta-lactamase kn-keyword=extended- spectrum beta-lactamase END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=611 end-page=623 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relation Between Identity Disclosure to Family Members and Mental Health in Japanese Transgender People en-subtitle= kn-subtitle= en-abstract= kn-abstract=Family members are critical mediators of the experiences of transgender people. We studied whether transgen-der subjects had disclosed their identity to their families and their familiesf reactions after the disclosure. We also evaluated the subjectsf mental state and its association with disclosure status. Transgender people were recruited for this anonymous questionnaire survey in the Okayama University Hospital gender clinic. Subjects disclosed their identity to family members at the following rates: 68.7% to the father, 89.1% to the mother, 59.1% to a brother, 77.8% to a sister, and 47.6% to grandparents. Fathers had the lowest rate (26.7%) of posi-tive reactions, while over 50% of fathers showed an ambiguous response. Approximately 20% of parents showed a negative response. The majority of parents agreed to hormonal treatment and sex-reassignment sur-gery and that the transgender child should live with the gender they wanted to express. However, the rate of subjects with mood and anxiety disorders according to the Kessler 6 scale was significantly higher in those who experienced negative or ambiguous reactions from family members compared to those who experienced posi-tive reactions. Educational and mental health professionals should support the disclosure process of transgen-der people as well as their family members. en-copyright= kn-copyright= en-aut-name=ZhouYu en-aut-sei=Zhou en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurutaniMichiyo en-aut-sei=Furutani en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AthurupanaRukmali en-aut-sei=Athurupana en-aut-mei=Rukmali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=disclosure kn-keyword=disclosure en-keyword=family functioning kn-keyword=family functioning en-keyword=gender nonconformity kn-keyword=gender nonconformity en-keyword=mental health kn-keyword=mental health en-keyword=transgender kn-keyword=transgender END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=575 end-page=583 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Accuracy of Acetabular Cup Implantation, as a Function of Body Mass Index and Soft-tissue Thickness, with a Mechanical Intraoperative Support Device: A Retrospective Observational Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=HipCOMPASS, a mechanical intraoperative support device used in total hip arthroplasty (THA), improves the cup-alignment accuracy. However, the alignment accuracy achieved by HipCOMPASS has not been specifically examined in obese patients. In this study, we retrospectively evaluated the relation between alignment accuracy and several obesity-related parameters in 448 consecutive patients who underwent primary THA using HipCOMPASS. We used computed tomography (CT) to measure the preoperative soft-tissue thickness of the anterior-superior iliac spine (ASIS) and pubic symphysis and the differences between preoperative and postoperative cup angle based on the cup-alignment error. We found significant correlations between the absolute value of radiographic anteversion difference and body mass index (r = 0.205), ASIS thickness (r = 0.419), and pubic symphysis thickness (r = 0.434). The absolute value of radiographic inclination difference was significantly correlated with ASIS (r = 0.257) and pubic symphysis thickness (r = 0.202). The receiver operating characteristic curve showed a pubic symphysis thickness of 37.2 mm for a ? 5 implantation error in both radiographic inclination and anteversion simultaneously. The cup-alignment error for HipCOMPASS was large in patients whose pubic symphysis thickness was ? 37.2 mm on preoperative CT. Our results indicate that methods other than HipCOMPASS, including computed tomography-based navigation systems, might be preferable in obese patients. en-copyright= kn-copyright= en-aut-name=SuzukiHayato en-aut-sei=Suzuki en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImaiNorio en-aut-sei=Imai en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiranoYuki en-aut-sei=Hirano en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EndoNaoto en-aut-sei=Endo en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=2 en-affil=Division of Comprehensive Musculoskeletal Medcine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=3 en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=4 en-affil=Division of Orthopedic Surgery, Niigata Prefectural Tsubame Rosai Hospital kn-affil= en-keyword=HipCOMPASS kn-keyword=HipCOMPASS en-keyword=total hip arthroplasty kn-keyword=total hip arthroplasty en-keyword=cup-alignment accuracy kn-keyword=cup-alignment accuracy en-keyword=body mass index kn-keyword=body mass index en-keyword=soft-tissue thickness kn-keyword=soft-tissue thickness END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=e00077-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202193 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Use of Recombinant Endolysin to Improve Accuracy of Group B Streptococcus Tests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Group B Streptococcus (GBS) causes serious neonatal infection via vertical transmission. The prenatal GBS screening test is performed at the late stage of pregnancy to avoid risks of infection. In this test, enrichment culture is performed, followed by GBS identification. Selective medium is used for the enrichment; however, Enterococcus faecalis, which is a potential contaminant in swab samples, can interfere with the growth of GBS. Such bacterial contamination can lead to false-negative results. Endolysin, a bacteriophage-derived enzyme, degrades peptidoglycan in the bacterial cell wall; it is a promising antimicrobial agent for selectively eliminating specific bacterial genera/species. In this study, we used the recombinant endolysin EG-LYS, which is specific to E. faecalis; the endolysin potentially enriched GBS in the selective culture. First, in the false-negative model (coculture of GBS and E. faecalis, which disabled GBS detection in the subsequent GBS identification test), EG-LYS treatment at 0.1 mg/ml improved GBS detection. Next, we used 548 vaginal swabs to test the efficacy of EG-LYS treatment in improving GBS detection. EG-LYS treatment (0.1 mg/ml) increased the GBS-positive ratio to 17.9%, compared to 15.7% in the control (phosphate-buffered saline [PBS] treatment). In addition, there were an increased number of GBS colonies under EG-LYS treatment in some samples. The results were supported by the microbiota analysis of the enriched cultures. In conclusion, EG-LYS treatment of the enrichment culture potentially improves the accuracy of the prenatal GBS screening test. en-copyright= kn-copyright= en-aut-name=MatsuiHidehito en-aut-sei=Matsui en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgataMasaya en-aut-sei=Ogata en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasukawaTadahiro en-aut-sei=Nasukawa en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoShin-ichiro en-aut-sei=Kato en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HigashideMasato en-aut-sei=Higashide en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanakiHideaki en-aut-sei=Hanaki en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=?mura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=5 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=6 en-affil=Kochi University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=8 en-affil=Kotobiken Medical Laboratories, Inc., Tsukuba kn-affil= affil-num=9 en-affil=?mura Satoshi Memorial Institute, Kitasato University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=574 cd-vols= no-issue=15 article-no= start-page=117149 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterogeneity within refractory organic matter from CM2 Carbonaceous Chondrites: Evidence from Raman spectroscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=CM2 chondrites experienced widespread aqueous and short term thermal alteration on their parent bodies. Whilst previous Raman spectroscopic investigations have investigated insoluble organic matter (IOM), they have not taken into account the binary nature of IOM. Studies employing mass spectrometry have indicated that IOM also known as macromolecular organic matter (MOM) is in fact composed of two distinct fractions: labile organic matter (LOM) and refractory organic matter (ROM). The ROM component represents the aromatic rich and heteroatom poor component of IOM/MOM, whilst the LOM fraction represents a more heteroatom and aliphatic rich component. Here we report Raman 2D maps and spectroscopic data for Murchison and Mighei, both before and after chemical degradation, which attacks and liberates LOM. The removal of LOM simulates the effects of aqueous alteration, where ester and ether bonds are broken and is thought to release some components to the soluble organic matter (SOM) fraction, also known as the free organic matter fraction (FOM). Raman spectroscopy can be used to reveal the nature of bonding (sp2and sp3) within carbonaceous materials such as meteoritic organic matter, through evaluation of the D and G band peak centres and FWHM values from the recorded data. The presence of sp3orbitals indicates that the organic materials contain aliphatic linkages and/or heteroatoms. Statistical analysis of the Raman parameters obtained here indicates that the organic matter originating the Raman response is indistinguishable between the bulk (chemically untreated) and chemically degraded (treated with KOH and HI) samples. Such an observation indicates that the ROM fraction is the major contributor to the Raman response of meteoritic organic matter and thus Raman spectroscopy is unlikely to record any aqueous alteration processes that have affected meteoritic organic matter. Therefore, studies which use Raman to probe the IOM are investigating just one of the components of IOM and not the entire fraction. Studies that aim to investigate the effects of aqueous alteration on meteoritic organic matter should use alternate techniques to Raman spectroscopy. Furthermore, the indistinguishable nature of the Raman response of ROM from Murchison and Mighei suggests these meteorites inherited a ROM component that is chemically similar, reflecting either a common process for the formation of CM2 meteoritic ROM and/or that these meteorites probed the same ROM reservoir. en-copyright= kn-copyright= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MontgomeryWren en-aut-sei=Montgomery en-aut-mei=Wren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SephtonMark A. en-aut-sei=Sephton en-aut-mei=Mark A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Imaging and Analysis Centre, The Natural History Museum kn-affil= affil-num=3 en-affil=Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London kn-affil= en-keyword=carbonaceous chondrite kn-keyword=carbonaceous chondrite en-keyword=Raman spectroscopy kn-keyword=Raman spectroscopy en-keyword=refractory organic matter kn-keyword=refractory organic matter en-keyword=heterogeneity kn-keyword=heterogeneity en-keyword=alteration kn-keyword=alteration END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=715545 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat en-subtitle= kn-subtitle= en-abstract= kn-abstract=Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaNaoto en-aut-sei=Yoshida en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamadaTetsuo en-aut-sei=Tamada en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=College of Plant Health and Medicine, Qingdao Agricultural University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Betaflexiviridae kn-keyword=Betaflexiviridae en-keyword=quinvirus kn-keyword=quinvirus en-keyword=bymovirus kn-keyword=bymovirus en-keyword=yellow mosaic disease kn-keyword=yellow mosaic disease en-keyword=wheat kn-keyword=wheat en-keyword=virome kn-keyword=virome en-keyword=soil borne kn-keyword=soil borne en-keyword=variants kn-keyword=variants END start-ver=1.4 cd-journal=joma no-vol=E99.D cd-vols= no-issue=12 article-no= start-page=2943 end-page=2955 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=2016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rule-Based Sensor Data Aggregation System for M2M Gateways en-subtitle= kn-subtitle= en-abstract= kn-abstract=To reduce the server load and communication costs of machine-to-machine (M2M) systems, sensor data are aggregated in M2M gateways. Aggregation logic is typically programmed in the C language and embedded into the firmware. However, developing aggregation programs is difficult for M2M service providers because it requires gatewayspecific knowledge and consideration of resource issues, especially RAM usage. In addition, modification of aggregation logic requires the application of firmware updates, which are risky. We propose a rule-based sensor data aggregation system, called the complex sensor data aggregator (CSDA), for M2M gateways. The functions comprising the data aggregation process are subdivided into the categories of filtering, statistical calculation, and concatenation. The proposed CSDA supports this aggregation process in three steps: the input, periodic data processing, and output steps. The behaviors of these steps are configured by an XML-based rule. The rule is stored in the data area of flash ROM and is updatable through the Internet without the need for a firmware update. In addition, in order to keep within the memory limit specified by the M2M gatewayfs manufacturer, the number of threads and the size of the working memory are static after startup, and the size of the working memory can be adjusted by configuring the sampling setting of a buffer for sensor data input. The proposed system is evaluated in an M2M gateway experimental environment. Results show that developing CSDA configurations is much easier than using C because the configuration decreases by 10%. In addition, the performance evaluation demonstrates the proposed systemfs ability to operate on M2M gateways. en-copyright= kn-copyright= en-aut-name=NakamuraYuichi en-aut-sei=Nakamura en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriguchiAkira en-aut-sei=Moriguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IrieMasanori en-aut-sei=Irie en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaTaizo en-aut-sei=Kinoshita en-aut-mei=Taizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Hitachi, Ltd. kn-affil= affil-num=2 en-affil=Hitachi Solutions, Ltd. kn-affil= affil-num=3 en-affil=Hitachi Solutions, Ltd. kn-affil= affil-num=4 en-affil=Hitachi, Ltd. kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology at Okayama University kn-affil= en-keyword=M2M gateway kn-keyword=M2M gateway en-keyword=sensor data aggregation kn-keyword=sensor data aggregation en-keyword=in memory processing kn-keyword=in memory processing en-keyword=IoT(the Internet of Things) kn-keyword=IoT(the Internet of Things) END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=4305 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210714 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrafast olivine-ringwoodite transformation during shock compression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Meteorites from interplanetary space often include high-pressure polymorphs of their constituent minerals, which provide records of past hypervelocity collisions. These collisions were expected to occur between kilometre-sized asteroids, generating transient high-pressure states lasting for several seconds to facilitate mineral transformations across the relevant phase boundaries. However, their mechanisms in such a short timescale were never experimentally evaluated and remained speculative. Here, we show a nanosecond transformation mechanism yielding ringwoodite, which is the most typical high-pressure mineral in meteorites. An olivine crystal was shock-compressed by a focused high-power laser pulse, and the transformation was time-resolved by femtosecond diffractometry using an X-ray free electron laser. Our results show the formation of ringwoodite through a faster, diffusionless process, suggesting that ringwoodite can form from collisions between much smaller bodies, such as metre to submetre-sized asteroids, at common relative velocities. Even nominally unshocked meteorites could therefore contain signatures of high-pressure states from past collisions. en-copyright= kn-copyright= en-aut-name=OkuchiTakuo en-aut-sei=Okuchi en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SetoYusuke en-aut-sei=Seto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomiokaNaotaka en-aut-sei=Tomioka en-aut-mei=Naotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuokaTakeshi en-aut-sei=Matsuoka en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AlbertazziBruno en-aut-sei=Albertazzi en-aut-mei=Bruno kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HartleyNicholas J. en-aut-sei=Hartley en-aut-mei=Nicholas J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InubushiYuichi en-aut-sei=Inubushi en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriKento en-aut-sei=Katagiri en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KodamaRyosuke en-aut-sei=Kodama en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=PikuzTatiana A. en-aut-sei=Pikuz en-aut-mei=Tatiana A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PurevjavNarangoo en-aut-sei=Purevjav en-aut-mei=Narangoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyanishiKohei en-aut-sei=Miyanishi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SatoTomoko en-aut-sei=Sato en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SekineToshimori en-aut-sei=Sekine en-aut-mei=Toshimori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SuedaKeiichi en-aut-sei=Sueda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TanakaKazuo A. en-aut-sei=Tanaka en-aut-mei=Kazuo A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TangeYoshinori en-aut-sei=Tange en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TogashiTadashi en-aut-sei=Togashi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmedaYuhei en-aut-sei=Umeda en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YabuuchiToshinori en-aut-sei=Yabuuchi en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=OzakiNorimasa en-aut-sei=Ozaki en-aut-mei=Norimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=3 en-affil=Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=4 en-affil=Institute for Open and Transdisciplinary Research Initiatives, Osaka University kn-affil= affil-num=5 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=6 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute, kn-affil= affil-num=8 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=9 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=10 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=11 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=12 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=13 en-affil=Graduate School of Science, Hiroshima University kn-affil= affil-num=14 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=15 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=16 en-affil=Graduate School of Engineering, Osaka University kn-affil= affil-num=17 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=18 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=19 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=20 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=21 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=22 en-affil=Graduate School of Engineering, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=e0254268 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RANKL expression in chondrocytes and its promotion by lymphotoxin-alpha in the course of cartilage destruction during rheumatoid arthritis en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the expression and localization of the receptor activator nuclear factor kappa B ligand (RANKL) in cartilage from patients with rheumatoid arthritis (RA) of relevance to cartilage degeneration. We also examined the role of exogenous lymphotoxin (LT)-alpha on RANKL expression in human chondrocytes and its effect on in vitro osteoclast differentiation. Cartilage and synovial fluid samples were obtained from 45 patients undergoing total joint replacement surgery or joint puncture, including 24 patients with osteoarthritis (OA) and 21 patients with RA. RANKL expression in articular cartilage was examined by immunohistochemistry. LT-alpha concentrations in synovial fluid were measured using an enzyme-linked immunosorbent assay (ELISA). Normal human chondrocytes were stimulated with LT-alpha, and the relative mRNA levels of RANKL, osteoprotegerin (OPG), matrix metalloproteinase-9, and vascular endothelial growth factor were examined by real-time polymerase chain reaction. Soluble RANKL protein in culture media was measured using ELISA, and membrane-bound RANKL protein in cells was examined by western blotting. Co-cultures of human chondrocytes with peripheral blood mononuclear cells (PBMCs) were stimulated with macrophage-colony stimulating factor and LT-alpha, and osteoclast differentiation was evaluated by staining for tartrate-resistant acid phosphatase. LT-alpha concentrations were higher in RA synovial fluid than in OA samples. The population of RANKL-positive chondrocytes of RA cartilage was higher than that of OA cartilage, and correlated with cartilage degeneration. Stimulation of cultured human chondrocytes by LT-alpha increased RANKL expression, the RANKL/OPG ratio, and angiogenic factors. Membrane-bound RANKL in chondrocytes was up-regulated after stimulation of LT-alpha, whereas soluble RANKL in culture medium did not increase. Co-cultures of human chondrocytes and PBMCs demonstrated that LT-alpha stimulated human chondrocytes to produce RANKL and induced osteoclastic differentiation of PBMCs. RANKL produced by chondrocytes may contribute to cartilage destruction during RA and LT-alpha could promote the expression of RANKL in human chondrocytes. en-copyright= kn-copyright= en-aut-name=TakeshitaAyumu en-aut-sei=Takeshita en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasuYoshihisa en-aut-sei=Nasu en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanedaDaisuke en-aut-sei=Kaneda en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhashiHideki en-aut-sei=Ohashi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=132 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210622 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An improved apparent polar wander path for southwest Japan: post-Cretaceous multiphase rotations with respect to the Asian continent en-subtitle= kn-subtitle= en-abstract= kn-abstract=To construct the Mesozoic apparent polar wander path (APWP) for the inner arc of the southwestern Japanese islands (referred to as southwest Japan) and compare it to that of East Asia, a 110 Ma paleomagnetic pole for southwest Japan was determined. Mudstone and sandstone samples were collected from 16 sites for paleomagnetic analysis in the Lower Cretaceous Inakura Formation of the Inakura area in the central part of southwest Japan. A high-temperature magnetization component, with unblocking temperatures of 670-695 degrees C, was isolated from 12 sites of red mudstone. Of these, 11 sites revealed a primary remanent magnetization during the Early Cretaceous. The primary directions combined with the previously reported ones provide a new mean direction (D = 79.7 degrees, I = 47.4 degrees, alpha(95) = 6.5 degrees, N = 17), and a corresponding paleomagnetic pole that is representative of southwest Japan (24.6 degrees N, 203.1 degrees E, A(95) = 6.8 degrees). The Early Cretaceous paleomagnetic pole, together with the Late Cretaceous and Cenozoic poles, constitute a new APWP for southwest Japan. The new APWP illustrates a standstill polar position during 110-70 Ma, suggesting tectonic quiescence of this region. This standstill was followed by two large tracks during the Cenozoic. We interpret these tracks as clockwise tectonic rotations of southwest Japan that occurred twice during the Cenozoic. The earlier tectonic rotation occurred for a tectonic unit positioned below northeast China, the Liaodong and Korean Peninsulas, and southwest Japan (East Tan-Lu Block) during the Paleogene. The later rotation took place only under southwest Japan during the Neogene. Cenozoic multiphase rifting activity in the eastern margin of the Asian continent was responsible for the tectonic rotations that are observed from the paleomagnetic studies. Intermittent rifting may constitute a series of phenomena due to asthenospheric convection, induced by the growth of the Eurasian mega-continent in the Mesozoic. en-copyright= kn-copyright= en-aut-name=UnoKoji en-aut-sei=Uno en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeharaYuta en-aut-sei=Idehara en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaDaichi en-aut-sei=Morita en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurukawaKuniyuki en-aut-sei=Furukawa en-aut-mei=Kuniyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Business Administration, Aichi University kn-affil= en-keyword=Apparent polar wander path kn-keyword=Apparent polar wander path en-keyword=Cretaceous kn-keyword=Cretaceous en-keyword=Southwest Japan kn-keyword=Southwest Japan en-keyword=East Asia kn-keyword=East Asia END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=12 article-no= start-page=3286 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biological Effects of Bioresorbable Materials in Alveolar Ridge Augmentation: Comparison of Early and Slow Resorbing Osteosynthesis Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to investigate the bone healing properties and histological environment of a u-HA/PLLA/PGA (u-HA-uncalcined and unsintered hydroxyapatite, PLLA-Poly L-lactic acid, PGA-polyglycolic acid) composite device in humans, and to understand the histological dynamics of using this device for maxillofacial treatments. Twenty-one subjects underwent pre-implant maxillary alveolar ridge augmentation with mandibular cortical bone blocks using u-HA/PLLA or u-HA/PLLA/PGA screws for fixation. Six months later, specimens of these screws and their adjacent tissue were retrieved. A histological and immunohistochemical evaluation of these samples was performed using collagen 1a, ALP (alkaline phosphatase), and osteocalcin. We observed that alveolar bone augmentation was successful for all of the subjects. Upon histological evaluation, the u-HA/PLLA screws had merged with the bone components, and the bone was directly connected to the biomaterial. In contrast, direct bone connection was not observed for the u-HA/PLLA/PGA screw. Immunohistological findings showed that in the u-HA/PLLA group, collagen 1a was positive for fibers that penetrated vertically into the bone. Alkaline phosphatase was positive only in the u-HA/PLLA stroma, and the stroma was negative for osteocalcin. In this study, u-HA/PLLA showed a greater bioactive bone conductivity than u-HA/PLLA/PGA and a higher biocompatibility for direct bone attachment. Furthermore, u-HA/PLLA was shown to have the potential for bone formation in the stroma. en-copyright= kn-copyright= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoSawako en-aut-sei=Ono en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukiYoshihiko en-aut-sei=Furuki en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= en-keyword=poly L-lactic acid kn-keyword=poly L-lactic acid en-keyword=uncalcined and unsintered hydroxyapatite kn-keyword=uncalcined and unsintered hydroxyapatite en-keyword=polyglycolic acid kn-keyword=polyglycolic acid en-keyword=alveolar ridge augmentation kn-keyword=alveolar ridge augmentation END start-ver=1.4 cd-journal=joma no-vol=139 cd-vols= no-issue= article-no= start-page=111633 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic pulmonary fibrosis (IPF) is the most common and most deadly form of interstitial lung disease. Osteopontin (OPN), a matricellular protein with proinflammatory and profibrotic properties, plays a major role in several fibrotic diseases, including IPF; OPN is highly upregulated in patients' lung samples. In this study, we knocked down OPN in a bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model using small interfering RNA (siRNA) to determine whether the use of OPN siRNA is an effective therapeutic strategy for IPF. We found that fibrosing areas were significantly smaller in specimens from OPN siRNA-treated mice. The number of alveolar macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid was also reduced in OPN siRNA-treated mice. Regarding the expression of epithelial-mesenchymal transition (EMT)-related proteins, the administration of OPN-siRNA to BLM-treated mice upregulated E-cadherin expression and downregulated vimentin expression. Moreover, in vitro, we incubated the human alveolar adenocarcinoma cell line A549 with transforming growth factor (TGF)-beta 1 and subsequently transfected the cells with OPN siRNA. We found a significant upregulation of Col1A1, fibronectin, and vimentin after TGF-beta 1 stimulation in A549 cells. In contrast, a downregulation of Col1A1, fibronectin, and vimentin mRNA levels was observed in TGF-beta 1-stimulated OPN knockdown A549 cells. Therefore, the downregulation of OPN effectively reduced pulmonary fibrotic and EMT changes both in vitro and in vivo. Altogether, our results indicate that OPN siRNA exerts a protective effect on BLM-induced PF in mice. Our results provide a basis for the development of novel targeted therapeutic strategies for IPF. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UctepeEyyup en-aut-sei=Uctepe en-aut-mei=Eyyup kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OpokuGabriel en-aut-sei=Opoku en-aut-mei=Gabriel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkemuraKentaro en-aut-sei=Ikemura en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InagakiJunko en-aut-sei=Inagaki en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GunduzMehmet en-aut-sei=Gunduz en-aut-mei=Mehmet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GunduzEsra en-aut-sei=Gunduz en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeShogo en-aut-sei=Watanabe en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Ac?badem Labmed Ankara Tissue Typing Laboratory kn-affil= affil-num=3 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=5 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Otolaryngology, Moriya Keiyu Hospital kn-affil= affil-num=9 en-affil=Department of Otolaryngology, Moriya Keiyu Hospital kn-affil= affil-num=10 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=12 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=13 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Pulmonary fibrosis kn-keyword=Pulmonary fibrosis en-keyword=Osteopontin kn-keyword=Osteopontin en-keyword=Epithelial-mesenchymal transition kn-keyword=Epithelial-mesenchymal transition END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=323 end-page=334 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gender Expression among Transgender Women in Japan: Support Is Needed to Improve Social Passing as a Woman en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gender expression is important for transgender women to improve their social passing as women. Herein, a questionnaire about the status of gender expression and support needs was distributed to 54 transgender women aged 17-71 in Japan. Most of the respondents noted that they had found it relatively difficult to handle physical changes and weight gain due to hormone treatment. They also found it difficult to enact and sustain practices such as a feminine use of voice and to use women-only services, whereas practicing and continuing with routine skin and hair care and feminine mannerisms were relatively easy for them. In the questionnaire regarding the support for gender transitioning, many items showed only a small percentage of the transgender women had received the support that they were looking for, and most of their needs for support were not addressed. Some of the factors that increased the respondentsf needs and achievement of gender expression as women included estrogen treatment, sex reassignment surgery, and living as a woman; these aspects met their support needs as well. Gender support professionals need to coordinate and collaborate with specialists in areas such as nutritional guidance and voice training to enable transgender women to improve the extent to which they can socially epassf as women. en-copyright= kn-copyright= en-aut-name=FurutaniMichiyo en-aut-sei=Furutani en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YuZhou en-aut-sei=Yu en-aut-mei=Zhou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=transgender kn-keyword=transgender en-keyword=gender expression kn-keyword=gender expression en-keyword=social passing as a woman kn-keyword=social passing as a woman en-keyword=real life experience kn-keyword=real life experience en-keyword=gender transition kn-keyword=gender transition END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=307 end-page=314 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation into the Effect of Breast Volume on Irradiation Dose Distribution in Asian Women with Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reports on irradiation dose distribution in breast cancer radiotherapy with sufficient sample size are limited in Asian patients. Elucidating dose distribution in Asian patients is particularly important as their breast volume differs compared to patients in Europe and North America. Here, we examined dose distribution in the irradiation field relative to breast volume for three irradiation methods historically used in our facility. We investigated the influence of breast volume on each irradiation method for Asian women. A total of 573 women with early-stage breast cancer were treated with breast-conserving surgery and adjuvant radiotherapy. Three methods were compared: wedge (W), field-in-field (FIF), and wedge-field-in-field (W-FIF). In patients with small breast volume, FIF decreased low- and high-dose areas within the planning target volume, and increased optimal dose area more than W. In patients with medium and large breast volumes, FIF decreased high-dose area more than W. The absolute values of correlation coefficients of breast volume to low-, optimal-, and high-dose areas and mean dose were significantly lower in FIF than in W. The correlation coefficients of V107% were 0.00 and 0.28 for FIF and W, respectively. FIF is an excellent irradiation method that is less affected by breast volume than W in Asian breast cancer patients. en-copyright= kn-copyright= en-aut-name=IshizakaHinata en-aut-sei=Ishizaka en-aut-mei=Hinata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KhasawnehAbdullah en-aut-sei=Khasawneh en-aut-mei=Abdullah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamadaKentaro en-aut-sei=Hamada en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KonishiKohei en-aut-sei=Konishi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugiyamaSoichi en-aut-sei=Sugiyama en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatanabeKenta en-aut-sei=Watanabe en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshioKotaro en-aut-sei=Yoshio en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatayamaNorihisa en-aut-sei=Katayama en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OgataTakeshi en-aut-sei=Ogata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IharaHiroki en-aut-sei=Ihara en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Proton Beam Therapy,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=14 en-affil=Department of Radiology, Iwakuni Clinical Center kn-affil= affil-num=15 en-affil=Department of Radiology, Tsuyama Chuo Hospital kn-affil= affil-num=16 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=17 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=dose distribution kn-keyword=dose distribution en-keyword=irradiation method kn-keyword=irradiation method en-keyword=breast volume kn-keyword=breast volume END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=10223 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein as a prognostic biomarker for sepsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Various biomarkers have been proposed for sepsis; however, only a few become the standard. We previously reported that plasma histidine-rich glycoprotein (HRG) levels decreased in septic mice, and supplemental infusion of HRG improved survival in mice model of sepsis. Moreover, our previous clinical study demonstrated that HRG levels in septic patients were lower than those in noninfective systemic inflammatory response syndrome patients, and it could be a biomarker for sepsis. In this study, we focused on septic patients and assessed the differences in HRG levels between the non-survivors and survivors. We studied ICU patients newly diagnosed with sepsis. Blood samples were collected within 24 h of ICU admission, and HRG levels were determined using an enzyme-linked immunosorbent assay. Ninety-nine septic patients from 11 institutes in Japan were included. HRG levels were significantly lower in non-survivors (n=16) than in survivors (n=83) (median, 15.1 [interquartile ranges, 12.7-16.6] vs. 30.6 [22.1-39.6] mu g/ml; p<0.01). Survival analysis revealed that HRG levels were associated with mortality (hazard ratio 0.79, p<0.01), and the Harrell C-index (predictive power) for HRG was 0.90. These results suggested that HRG could be a novel prognostic biomarker for sepsis. en-copyright= kn-copyright= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiiKenzo en-aut-sei=Ishii en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiharaYuko en-aut-sei=Mihara en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology, Fukuyama City Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue= article-no= start-page=105946 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy and safety of short-term (3 days) enoxaparin in preventing venous thromboembolism after gastric cancer surgery: A single-center, prospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pharmacologic prophylaxis such as enoxaparin for venous thromboembolism (VTE) is rarely used in Japan, even following abdominal cancer surgery, for which it is recommended in relevant guidelines (at least 7 days of use) along with mechanical prophylaxis with intermittent pneumatic compression. Reasons for enoxaparinfs unpopularity include concerns over postoperative bleeding and its inconvenience in clinical practice. Here, we conducted a prospective clinical study of short-term (3 days) use of enoxaparin, which is considered to minimally impact postoperative management without increasing bleeding risk.
Methods: Gastric cancer patients who underwent gastrectomy received enoxaparin for 3 days from postoperative day (POD) 1 to 4. The primary endpoint was the incidence of deep vein thrombosis (DVT), which was examined primarily via Doppler ultrasonography of the lower limbs between POD 8 and 14. The planned sample size was 70, which was calculated based on an estimated incidence rate of 9% and an upper limit of incidence rate of 20%, with alpha of 0.05 and beta of 0.2.
Results: A total of 70 gastric cancer patients were enrolled, and ultimately, 68 patients received the protocol intervention and DVT evaluation. Sixty-seven patients completed 6 enoxaparin injections, but 1 patient did not complete the course due to abdominal bleeding after initiation. The incidence of DVT was 4.4% (3/68), and the 95% upper confidence interval was 12.2%, lower than the 20% threshold we set as the upper limit of DVT incidence. DVT was detected only in the peripheral veins of the lower extremities in all 3 affected patients. The incidence of bleeding-related complications, which were not severe, was 1.5% (1/68).
Conclusions: Short-term (3 days) use of enoxaparin was shown to be effective and safe for VTE prophylaxis, comparable to regular use (at least 7 days), in postoperative management of gastric cancer surgery. en-copyright= kn-copyright= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuwadaKazuya en-aut-sei=Kuwada en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsumuraTomoko en-aut-sei=Tsumura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishizakiMasahiko en-aut-sei=Nishizaki en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HinotsuShiro en-aut-sei=Hinotsu en-aut-mei=Shiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Biostatistics and Data Management, Sapporo Medical University School of Medicine kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=5 article-no= start-page=587 end-page=597 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unusual oral mucosal microbiota after hematopoietic cell transplantation with glycopeptide antibiotics: potential association with pathophysiology of oral mucositis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Severe oral mucositis occurs frequently in patients receiving hematopoietic stem cell transplantation (HCT). Oral mucosal bacteria can be associated with progression of oral mucositis, and systemic infection may occur via ulcerative oral mucositis. However, little information is available regarding the oral microbiota after HCT. Here, PCR-denaturing gradient gel electrophoresis (DGGE) was performed to characterize the oral mucosal microbiota, which can be affected by antibiotics, before and after HCT. Sixty reduced-intensity HCT patients were enrolled. Three patients with the least antibiotic use (quinolone prophylaxis and/or -lactam monotherapy group) and three patients with the most antibiotic use (-lactam-glycopeptide combination therapy group) were selected. Bacterial DNA samples obtained from the oral mucosa before and after HCT were subjected to PCR-DGGE. The trajectory of oral mucositis was evaluated. The oral mucosal microbiota in the -lactam-glycopeptide combination therapy group was different from that in the quinolone prophylaxis and/or -lactam monotherapy group, and Staphylococcus spp. and Enterococcus spp. were identified. Lautropia mirabilis was dominant in one patient. Ulcerative oral mucositis was observed only in the -lactam-glycopeptide combination therapy group. In conclusion, especially with the use of strong antibiotics, such as glycopeptides, the oral mucosal microbiota differed completely from that under normal conditions, and consisted of Staphylococcus spp., Enterococcus spp., and unexpectedly L. mirabilis. The normal oral microbiota consists not only of bacteria, but these unexpected bacteria could be involved in the pathophysiology as well as systemic infection via oral mucositis. Our results can be used as the basis for future studies in larger patient populations. en-copyright= kn-copyright= en-aut-name=MuroMisato en-aut-sei=Muro en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SogaYoshihiko en-aut-sei=Soga en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiguchiTomoko en-aut-sei=Higuchi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=hematopoietic stem cell transplantation kn-keyword=hematopoietic stem cell transplantation en-keyword=oral mucositis kn-keyword=oral mucositis en-keyword=microbiota kn-keyword=microbiota en-keyword=antibiotics kn-keyword=antibiotics en-keyword=PCR-denaturing gradient gel electrophoresis kn-keyword=PCR-denaturing gradient gel electrophoresis END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=181 end-page=186 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Appearance of Multidrug-Resistant Opportunistic Bacteria on the Gingiva During Leukemia Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Dentists generally recognize the importance of periodontal treatment inpatients with leukemia, with the most attention paid to preventing the development of odontogenic infection. For physicians, the worst type of infection is one caused by multidrug-resistant bacteria. Here, we report a patient with an abnormal increase in multidrug-resistant opportunistic bacteria in the gingiva during hematopoietic cell transplantation (HCT).

Methods: A 53-year-old woman receiving HCT for leukemia had an insufficient blood cell count for invasive periodontal treatment before HCT. Even brushing caused difficulties with hemostasis. Therefore, frequent pocket irrigation and local minocycline administration were performed.

Results: The multidrug-resistant opportunistic bacterium Stenotrophomonas maltophilia was detected first in phlegm 2 days before HCT, and it was detected in a gingival smear and a blood sample 7 and I I days after HCT, respectively. The patient developed sepsis on day I I and died 14 days after HCT. Frequent irrigation and local antibiotic application were ineffective against S. maltophilia on the gingiva. Inflammatory gingiva without scaling and root planing showed bleeding tendency, and this interfered with the eradication of this bacterium.

Conclusions: The gingiva in patients undergoing leukemia treatment acts as sites of proliferation and reservoirs for multidrug-resistant opportunistic bacteria. Severe systemic infection by multidrug-resistant bacteria in such patients with leukemia also may involve the gingiva. To prevent abnormal increases in such bacteria on the gingiva, scaling and/or root planing before chemotherapy, which reduces bleeding on brushing during the neutropenic period caused by chemotherapy, may contribute to infection control in such patients, although it was impossible in this case. en-copyright= kn-copyright= en-aut-name=SogaYoshihiko en-aut-sei=Soga en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoTakashi en-aut-sei=Saito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraFusanori en-aut-sei=Nishimura en-aut-mei=Fusanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshimaruFumihiko en-aut-sei=Ishimaru en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MineshibaJunji en-aut-sei=Mineshiba en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MineshibaFumi en-aut-sei=Mineshiba en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayaHirokazu en-aut-sei=Takaya en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoHideaki en-aut-sei=Sato en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KudoChieko en-aut-sei=Kudo en-aut-mei=Chieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KokeguchiSusumu en-aut-sei=Kokeguchi en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanimotoMitsune en-aut-sei=Tanimoto en-aut-mei=Mitsune kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Global Health and Environmental Sciences ? Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Pathophysiology ? Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bacteria kn-keyword=bacteria en-keyword=drug resistance kn-keyword=drug resistance en-keyword=gingiva kn-keyword=gingiva en-keyword=leukemia kn-keyword=leukemia en-keyword=opportunistic infections kn-keyword=opportunistic infections END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=9 article-no= start-page=1169 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210423 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pinhole Multistep Centrifuge Outflow Method for Estimating Unsaturated Hydraulic Properties with Small Volume Soil Samples en-subtitle= kn-subtitle= en-abstract= kn-abstract=If soil hydraulic conductivity or water holding capacity could be measured with a small volume of samples, it would benefit international fields where researchers can only carry a limited amount of soils out of particular regions. We performed a pinhole multistep centrifuge outflow method on three types of soil, which included granite decomposed soil (Masa soil), volcanic ash soil (Andisol soil), and alluvial clayey soil (paddy soil). The experiment was conducted using 2 mL and 15 mL centrifuge tubes in which pinholes were created on the top and bottom for air intrusion and outflow, respectively. Water content was measured at 5, 15, and 30 min after applying the centrifuge to examine the equilibrium time. The results showed that pinhole drainage worked well for outflow, and 15 or 30 min was sufficient to obtain data for each step. Compared with equilibrium data, the retention curve was successfully optimized. Although the curve shape was similar, unsaturated hydraulic conductivities deviated largely, which implied that K-s caused convergence issues. When K-s was set as a measured constant, the unsaturated hydraulic properties converged well and gave excellent results. This method can provide soil hydraulic properties of regions where soil sampling is limited and lacks soil data. en-copyright= kn-copyright= en-aut-name=BuiLong Thanh en-aut-sei=Bui en-aut-mei=Long Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=unsaturated hydraulic conductivity kn-keyword=unsaturated hydraulic conductivity en-keyword=retention curve kn-keyword=retention curve en-keyword=multistep outflow kn-keyword=multistep outflow en-keyword=centrifuge method kn-keyword=centrifuge method en-keyword=HYDRUS kn-keyword=HYDRUS en-keyword=inverse solution kn-keyword=inverse solution END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of posterior root remnant cells and horn cells of the medial meniscus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose/Aim of the study: Previous studies have noted distinctions between medial meniscus posterior root and horn cells. However, the characteristics of root remnant cells have not been explored in detail. The purpose of this study was to evaluate the gene expression levels, proliferation, and resistance to mechanical stress of remnant and horn cells. Materials and Methods: Medial meniscus tissue samples were obtained from patients who underwent total or uni-compartmental knee arthroplasty. Cellular morphology, sry-type HMG box 9, type II collagen, and chondromodulin-I gene expression levels were analyzed. Collagen synthesis was assessed by immunofluorescence staining. Proliferation analysis after 4 h-cyclic tensile strain was performed. Results: Horn cells displayed triangular morphology, whereas root remnant cells appeared fibroblast-like. sry-type HMG box 9 mRNA expression levels were similar in both cells, but type II collagen and chondromodulin-I mRNA expressions were observed only in horn cells. The ratio of type II collagen-positive cells in horn cells was about 10-fold higher than that in root remnant cells, whereas the ratio of sry-type HMG box 9-positive cells was similar. A significant increase in proliferation was observed in root remnant cells compared to that in horn cells. Further, under cyclic tensile strain, the survival rate was higher in root remnant cells than in horn cells. Conclusions: Medial meniscus root remnant cells showed higher proliferation and resistant properties to cyclic tensile strain than horn cells and showed no chondromodulin-I expression. Preserving the medial meniscus posterior root remnant during pullout repair surgery might maintain mechanical stress-resistant tissue and support healing. en-copyright= kn-copyright= en-aut-name=ZhangXiming en-aut-sei=Zhang en-aut-mei=Ximing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranakaTakaaki en-aut-sei=Hiranaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=XueHaowei en-aut-sei=Xue en-aut-mei=Haowei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KintakaKeisuke en-aut-sei=Kintaka en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyazawaShinichi en-aut-sei=Miyazawa en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=posterior root remnant cells kn-keyword=posterior root remnant cells en-keyword=posterior horn cells kn-keyword=posterior horn cells en-keyword=collagen synthesis kn-keyword=collagen synthesis en-keyword=anti-angiogenic gene kn-keyword=anti-angiogenic gene END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=431 end-page=443 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChanSiu Kit en-aut-sei=Chan en-aut-mei=Siu Kit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=4 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=11 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=18 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=19 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=20 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=23 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=time-resolved serial crystallography kn-keyword=time-resolved serial crystallography en-keyword=X-ray free-electron lasers kn-keyword=X-ray free-electron lasers en-keyword=membrane proteins kn-keyword=membrane proteins en-keyword=photosystem II kn-keyword=photosystem II en-keyword=serial crystallography kn-keyword=serial crystallography en-keyword=molecular movies kn-keyword=molecular movies en-keyword=protein structures kn-keyword=protein structures END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=1876 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of Demineralization Inhibition Effects of Dentin Desensitizers Using Swept-Source Optical Coherence Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to evaluate the mechanism of action and the inhibiting effects of two types of desensitizers against dentin demineralization using pre-demineralized hypersensitivity tooth model in vitro. In this study, we confirmed that a hypersensitivity tooth model from our preliminary experiment could be prepared by immersing dentin discs in an acetic acid-based solution with pH 5.0 for three days. Dentin discs with three days of demineralization were prepared and applied by one of the desensitizers containing calcium fluoro-alumino-silicate glass (Nanoseal, NS) or fluoro-zinc-silicate glass (Caredyne Shield, CS), followed by an additional three days of demineralization. Dentin discs for three days of demineralization (de3) and six days of demineralization (de6) without the desensitizers were also prepared. The dentin discs after the experimental protocol were scanned using swept-source optical coherence tomography (SS-OCT) to image the cross-sectional (2D) view of the samples and evaluate the SS-OCT signal. The signal intensity profiles of SS-OCT from the region of interest of 300, 500, and 700 mu m in depth were obtained to calculate the integrated signal intensity and signal attenuation coefficient. The morphological differences and remaining chemical elements of the dentin discs were also analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. SS-OCT images of CS and NS groups showed no obvious differences between the groups. However, SS-OCT signal profiles for both the CS and NS groups showed smaller attenuation coefficients and larger integrated signal intensities than those of the de6 group. Reactional deposits of the desensitizers even after the additional three days of demineralization were observed on the dentin surface in NS group, whereas remnants containing Zn were detected within the dentinal tubules in CS group. Consequently, both CS and NS groups showed inhibition effects against the additional three days of demineralization in this study. Our findings demonstrate that SS-OCT signal analysis can be used to monitor the dentin demineralization and inhibition effects of desensitizers against dentin demineralization in vitro. en-copyright= kn-copyright= en-aut-name=MatsuzakiKumiko en-aut-sei=Matsuzaki en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimadaYasushi en-aut-sei=Shimada en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinnoYasuo en-aut-sei=Shinno en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoSerina en-aut-sei=Ono en-aut-mei=Serina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamajiKozo en-aut-sei=Yamaji en-aut-mei=Kozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OharaNaoko en-aut-sei=Ohara en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SadrAlireza en-aut-sei=Sadr en-aut-mei=Alireza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SumiYasunori en-aut-sei=Sumi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TagamiJunji en-aut-sei=Tagami en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiyamaMasahiro en-aut-sei=Yoshiyama en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, Department of Restorative Dentistry, University of Washington kn-affil= affil-num=8 en-affil=Center of Advanced Medicine for Dental and Oral Diseases, Department for Advanced Dental Research, National Center for Geriatrics and Ger Ontology kn-affil= affil-num=9 en-affil=Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=10 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SS-OCT kn-keyword=SS-OCT en-keyword=dentin desensitizer kn-keyword=dentin desensitizer en-keyword=dentin demineralization kn-keyword=dentin demineralization END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Element concentrations of chondrule constituents, supplement to: Tak Kunihiro et al. (2021): The trace element composition of chondrule constituents: Implications for sample return methodologies and the chondrule silicate reservoir. Meteorit Planet Sci en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KunihiroTak en-aut-sei=Kunihiro en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=115 end-page=123 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Awareness of Complications of Dental Treatment in Patients Treated with Drugs Affecting the Immune System : A Nationwide Questionnaire Survey of Dental Practitioners in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study was to investigate the awareness and experience, among dental practitioners, of adverse events resulting from dental treatment of patients undergoing therapy with drugs that affect the immune system [angiogenesis inhibitors, biological agents, immunosuppressants, and disease-modifying anti-rheumatic drugs (DMARDs)]. For this purpose, a nationwide questionnaire survey was conducted. Questionnaires were sent to 2,050 dentists, of which 206 (10.1%) were completed and returned. The results showed that most dentists were aware of complications associated with dental treatment of patients treated with drugs that affect the immune system, and about half had actually experienced such complications. Delayed wound healing, osteonecrosis of the jaw (ONJ), and postoperative infections were reported. Whereas approximately 50% of dentists did not discontinue the drugs during dental treatment, about 18% did. During temporary drug discontinuation, some patients experienced aggravation of the primary disease, such as worsening of rheumatism, growth of tumors, and rejection reactions of transplanted organs. As for medical cooperation, only less than half of the dentists were asked for oral hygiene management by a physician prior to starting the drug treatment. Prospective studies are needed because evidence for dental treatments in patients treated with these drugs remains limited. en-copyright= kn-copyright= en-aut-name=HitomiNishizaki en-aut-sei=Hitomi en-aut-mei=Nishizaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshinariMorimoto en-aut-sei=Yoshinari en-aut-mei=Morimoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaShin-ichi en-aut-sei=Yamada en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuritaHiroshi en-aut-sei=Kurita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaAkira en-aut-sei=Tanaka en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiAkira en-aut-sei=Yamaguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyataMasaru en-aut-sei=Miyata en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshikawaHiromasa en-aut-sei=Yoshikawa en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YanamotoSouichi en-aut-sei=Yanamoto en-aut-mei=Souichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ImaiYutaka en-aut-sei=Imai en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University kn-affil= affil-num=2 en-affil=Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University kn-affil= affil-num=3 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=4 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=5 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=6 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=7 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=8 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=9 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= affil-num=10 en-affil=The survey and research-planning committee, Japanese Society for Dentistry of Medically Compromised Patient kn-affil= en-keyword=angiogenesis inhibitor kn-keyword=angiogenesis inhibitor en-keyword=biological agent kn-keyword=biological agent en-keyword=disease-modifying antirheumatic drug (DMARD) kn-keyword=disease-modifying antirheumatic drug (DMARD) en-keyword=immunosuppressant kn-keyword=immunosuppressant en-keyword=medication-related osteonecrosis of the jaw (MRONJ) kn-keyword=medication-related osteonecrosis of the jaw (MRONJ) END start-ver=1.4 cd-journal=joma no-vol=413 cd-vols= no-issue= article-no= start-page=3339 end-page=3347 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Speciation of chromium in water samples using microfluidic paper-based analytical devices with online oxidation of trivalent chromium en-subtitle= kn-subtitle= en-abstract= kn-abstract= Speciation of chromium (Cr) was demonstrated using microfluidic paper-based analytical devices (-PADs) that permit the colorimetric determination of hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) via online oxidation. The -PADs consist of left and right channels that allow the simultaneous measurements of Cr(VI) and total Cr based on the colorimetric reaction of Cr(VI) with 1,5-diphenylcarbazide (DPC). For the determination of Cr(VI), a sample solution was directly reacted with DPC in the left channels whereas total Cr was determined in the right channels, which permitted online oxidation in the pretreatment zone containing cerium (IV) (Ce(IV)) followed by a colorimetric reaction with DPC. We found that the online oxidation of Cr(III) proceeded 100% whereas Ce(IV) inhibited the reaction of Cr(VI) with DPC. Therefore, speciation can be achieved by measuring the Cr(VI) and total Cr in the left and right channels followed by the subtraction of Cr(VI) from total Cr. The limits of detection and quantification were 0.008 and 0.02 mg L?1 for Cr(VI) and 0.07 and 0.1 mg L?1 for Cr(III) or total Cr, respectively. The linear dynamic ranges were 0.02?100 mg L?1 and 0.1?60 mg L?1 for Cr(VI) and Cr(III), respectively. The RSDs were less than 7.5%. The results obtained using -PADs were in good agreement with those obtained via ICP-OES with recoveries of 92?108% for Cr(III) and 108?110% for Cr (VI) using -PADs, and 106?110% for total Cr using ICP-OES. Thus, the -PADs could potentially be utilized for the speciation of chromium in developing countries where environmental pollution and the availability of sophisticated instruments are significant problems. en-copyright= kn-copyright= en-aut-name=MuhammedAbdellah en-aut-sei=Muhammed en-aut-mei=Abdellah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HussenAhmed en-aut-sei=Hussen en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=2 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Chromium kn-keyword=Chromium en-keyword=Cr(III) kn-keyword=Cr(III) en-keyword=Cr(VI) kn-keyword=Cr(VI) en-keyword=Online oxidation kn-keyword=Online oxidation en-keyword=Speciation kn-keyword=Speciation END start-ver=1.4 cd-journal=joma no-vol=559 cd-vols= no-issue= article-no= start-page=119928 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Experimental variable effects on laser heating of inclusions during Raman spectroscopic analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract= Raman spectroscopy for fluid, melt, and mineral inclusions provides direct insight into the physicochemical conditions of the environment surrounding the host mineral at the time of trapping. However, the obtained Raman spectral characteristics such as peak position are modified because of local temperature enhancement of the inclusions by the excitation laser, which might engender systematic errors and incorrect conclusions if the effect is not corrected. Despite the potentially non-negligible effects of laser heating, the laser heating coefficient (B) (C/mW) of inclusions has remained unsolved. For this study, we found B from experiments and heat transport simulation to evaluate how various parameters such as experimental conditions, mineral properties, and inclusion geometry affect B of inclusions. To assess the parameters influencing laser heating, we measured B of a total of 19 CO2-rich fluid inclusions hosted in olivine, orthopyroxene, clinopyroxene, spinel, and quartz. Our results revealed that the measured B of fluid inclusions in spinel is highest (approx. 6?C/mW) and that of quartz is lowest (approx. 1?~?10?2?C/mW), consistent with earlier inferences. Our simulation results show that the absorption coefficient of the host mineral is correlated linearly with B. It is the most influential parameter when the absorption coefficient of the host mineral (h) is larger than that of an inclusion (inc). Furthermore, although our results indicate that both the inclusion size and depth have little effect on B if h?>?inc, the thickness and radius of the host mineral slightly influence B. These results suggest that the choice of inclusion size and depth to be analyzed in a given sample do not cause any systematic error in the Raman data because of laser heating, but the host radius and thickness, which can be adjusted to some degree at the time of sample preparation, can cause systematic errors between samples.Our results demonstrate that, even with laser power of 10?mW, which is typical for inclusion analysis, the inclusion temperature rises to tens or hundreds of degrees during the analysis, depending especially on the host mineral geometry and optical properties. Therefore, correction of the heating effects will be necessary to obtain reliable data from Raman spectroscopic analysis of inclusions. This paper presents some correction methods for non-negligible effects of laser heating. en-copyright= kn-copyright= en-aut-name=HagiwaraYuuki en-aut-sei=Hagiwara en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKenta en-aut-sei=Yoshida en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonedaAkira en-aut-sei=Yoneda en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TorimotoJunji en-aut-sei=Torimoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoJunji en-aut-sei=Yamamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Science, Hokkaido University kn-affil= affil-num=2 en-affil=Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Ore Genesis Research Unit, Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=5 en-affil=The Hokkaido University Museum kn-affil= en-keyword=Finite element method kn-keyword=Finite element method en-keyword=Inclusions kn-keyword=Inclusions en-keyword=Laser heating kn-keyword=Laser heating en-keyword=Raman spectroscopy kn-keyword=Raman spectroscopy END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=380 end-page=388 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A comparison of colorimetric and visual methods for the assessment of masticatory performance with color-changeable chewing gum in older persons en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/purpose
Color-changeable chewing gum is used for the evaluation of masticatory performance. However, it is currently unclear whether colorimetric and visual assessment methods yield consistent results. This study aimed to clarify the consistency between colorimetric and visual methods used for the evaluation of color changes in color-changeable chewing gum.
Materials and methods
The sample comprised 644 older persons (mean age, 75.4?}?6.4 years). The chewing gum was masticated 60 times at the participant's own chewing rate and then expectorated. The color of the chewing gum was evaluated with the E values and a? values, measured using a colorimeter, and the 10 Color Shades (10CSh) and 5 Color Scales (5CSc), using visual evaluation. Spearman's correlation analysis was performed to examine the correlation between the results obtained by the four methods. The significance level was set at ?=?0.05.
Results
The E values, a? values, 10CSh scores, and 5CSc scores were all significantly correlated. The highest correlation coefficient (0.979) was between the E values and a? values. The lowest correlation coefficient (0.847) was between the a? values and 5CSc scores. Decreased masticatory performance was observed with increased age.
Conclusion
Significant correlations were found for all four methods used in the assessment of masticatory performance with color-changeable chewing gum. While visually based assessments are valid, colorimetric methods are more sensitive to smaller changes in masticatory performance. en-copyright= kn-copyright= en-aut-name=KugimiyaYoshihiro en-aut-sei=Kugimiya en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYutaka en-aut-sei=Watanabe en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirobeMaki en-aut-sei=Shirobe en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotohashiYoshiko en-aut-sei=Motohashi en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotokawaKeiko en-aut-sei=Motokawa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EdahiroAyako en-aut-sei=Edahiro en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OharaYuki en-aut-sei=Ohara en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RyuMasahiro en-aut-sei=Ryu en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IgarashiKentaro en-aut-sei=Igarashi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoshinoDaichi en-aut-sei=Hoshino en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakajimaJunko en-aut-sei=Nakajima en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaTakayuki en-aut-sei=Ueda en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TaniguchiYu en-aut-sei=Taniguchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OgawaToru en-aut-sei=Ogawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaekawaKenji en-aut-sei=Maekawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TamakiKatsushi en-aut-sei=Tamaki en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KitamuraAkihiko en-aut-sei=Kitamura en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShinkaiShoji en-aut-sei=Shinkai en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HiranoHirohiko en-aut-sei=Hirano en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College kn-affil= affil-num=2 en-affil=Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=3 en-affil=The Tokyo Metropolitan Support Center for Preventative Long-term and Frail Elderly Care kn-affil= affil-num=4 en-affil=Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=5 en-affil=Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=6 en-affil=Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=7 en-affil=Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=8 en-affil=Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College kn-affil= affil-num=9 en-affil=Removable Prosthodontics, Nihon University School of Dentistry at Matsudo kn-affil= affil-num=10 en-affil=Special Needs Dentistry, Division of Community Based Comprehensive Dentistry, School of Dentistry, Showa University kn-affil= affil-num=11 en-affil=Department of Oral Medicine and Hospital Dentistry, Tokyo Dental College kn-affil= affil-num=12 en-affil=Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College kn-affil= affil-num=13 en-affil=Center for Health and Environmental Risk Research, National Institute for Environmental Studies kn-affil= affil-num=14 en-affil=Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry kn-affil= affil-num=15 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Critical Care Medicine and Dentistry, Division of Prosthodontic Dentistry for Function of TMJ and Occlusion, Graduate School of Dentistry, Kanagawa Dental University kn-affil= affil-num=17 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=19 en-affil=Social Sciences and Human Care, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=20 en-affil=Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology kn-affil= en-keyword=Aged kn-keyword=Aged en-keyword=Chewing gum kn-keyword=Chewing gum en-keyword=Colorimetry kn-keyword=Colorimetry en-keyword=Color kn-keyword=Color en-keyword=Mastication kn-keyword=Mastication END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue= article-no= start-page=360 end-page=364 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Best practices for the extraction of genomic DNA from formalin]fixed paraffin]embedded tumor tissue for cancer genomic profiling tests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, two cancer genomic profiling tests have been approved in Japan and implemented in routine clinical practice: the FDA]approved FoundationOne CDx test, and the OncoGuide NCC Oncopanel test. The quality and quantity of DNA significantly affects the sequencing results; therefore, preparing a sufficient amount of high]quality DNA for clinical cancer genomic profiling tests is important. We examined the best practices for the extraction of cancer genomic DNA from formalin]fixed paraffin]embedded (FFPE) tumor tissues of pancreatic, lung and colon cancer specimens. We found that the quality of cancer genomic DNA extracted from 10]m]thick FFPE samples improved significantly, compared with that from 4]m]thick FFPE samples, suggesting that 10]m]thick FFPE samples are preferable for clinical cancer genomic profiling tests. For convenience, we created a quick reference table for calculating the required number of FFPE slides. en-copyright= kn-copyright= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaHiromi en-aut-sei=Matsuoka en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SanehiraEtsuko en-aut-sei=Sanehira en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuokaMasashi en-aut-sei=Matsuoka en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= en-keyword=cancer genomic profiling tests kn-keyword=cancer genomic profiling tests en-keyword=formalin]fixed paraffin]embedded (FFPE) tumor tissue kn-keyword=formalin]fixed paraffin]embedded (FFPE) tumor tissue en-keyword= genomic DNA extraction kn-keyword= genomic DNA extraction END start-ver=1.4 cd-journal=joma no-vol=807 cd-vols= no-issue= article-no= start-page=140851 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of microstructural characteristics on the hydrogen embrittlement characteristics of austenitic, ferritic, and ? duplex stainless steels en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hydrogen embrittlement (HE) characteristics of (AS), (FS), and ? duplex (DS) stainless steels were examined experimentally and numerically. Severe HE occurred in the DS sample, whereas weak HE was detected in the AS and FS samples. This was attributed to the high hydrogen concentrations at the DS-trapping sites. Hydrogen trapping occurred in the low atomic density zones in the boundaries between and phases in DS sample. The chemical bonding between atomic-scale phase boundaries was weakened by hydrogen penetration. This resulted in a crack growth along the DS / phase boundaries. The ductility of DS decreased as the hydrogen content increased, especially when it exceeded 15 ppm. In contrast, the weak HE observed among AS and FS samples was attributed to the small hydrogen levels that infiltrated both samples. Finally, HE mechanism was proposed on the basis of these experimental results. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTakafumi en-aut-sei=Fujiwara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Hydrogen embrittlement kn-keyword=Hydrogen embrittlement en-keyword=Stainless steel kn-keyword=Stainless steel en-keyword=Austenite kn-keyword=Austenite en-keyword=Ferrite kn-keyword=Ferrite en-keyword=Duplex phase kn-keyword=Duplex phase END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210322 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95?? resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamaguchiTasuku en-aut-sei=Hamaguchi en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YonekuraKoji en-aut-sei=Yonekura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= affil-num=3 en-affil=Biostructural Mechanism Laboratory, RIKEN Spring-8 Center kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END