start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The eukaryotic-like characteristics of small GTPase, roadblock and TRAPPC3 proteins from Asgard archaea en-subtitle= kn-subtitle= en-abstract= kn-abstract=Membrane-enclosed organelles are defining features of eukaryotes in distinguishing these organisms from prokaryotes. Specification of distinct membranes is critical to assemble and maintain discrete compartments. Small GTPases and their regulators are the signaling molecules that drive membrane-modifying machineries to the desired location. These signaling molecules include Rab and Rag GTPases, roadblock and longin domain proteins, and TRAPPC3-like proteins. Here, we take a structural approach to assess the relatedness of these eukaryotic-like proteins in Asgard archaea, the closest known prokaryotic relatives to eukaryotes. We find that the Asgard archaea GTPase core domains closely resemble eukaryotic Rabs and Rags. Asgard archaea roadblock, longin and TRAPPC3 domain-containing proteins form dimers similar to those found in the eukaryotic TRAPP and Ragulator complexes. We conclude that the emergence of these protein architectures predated eukaryogenesis, however further adaptations occurred in proto-eukaryotes to allow these proteins to regulate distinct internal membranes. en-copyright= kn-copyright= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkilCaner en-aut-sei=Akil en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SenjuYosuke en-aut-sei=Senju en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=12 article-no= start-page=eabm2225 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin). The guanosine 5′-triphosphate (GTP)–bound structure resembles a microtubule protofilament, with GTP bound between subunits, coordinating the “+” end subunit through a network of water molecules and unexpectedly by two cations. A water molecule is located suitable for GTP hydrolysis. Time course crystallography and electron microscopy revealed conformational changes on GTP hydrolysis. OdinTubulin forms tubules at high temperatures, with short curved protofilaments coiling around the tubule circumference, more similar to FtsZ, rather than running parallel to its length, as in microtubules. Thus, OdinTubulin represents an evolutionary stage intermediate between prokaryotic FtsZ and eukaryotic microtubule-forming tubulins. en-copyright= kn-copyright= en-aut-name=AkılCaner en-aut-sei=Akıl en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AliSamson en-aut-sei=Ali en-aut-mei=Samson kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GaillardJérémie en-aut-sei=Gaillard en-aut-mei=Jérémie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiWenfei en-aut-sei=Li en-aut-mei=Wenfei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HayashidaKenichi en-aut-sei=Hayashida en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiroseMika en-aut-sei=Hirose en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoTakayuki en-aut-sei=Kato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OshimaAtsunori en-aut-sei=Oshima en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujishimaKosuke en-aut-sei=Fujishima en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BlanchoinLaurent en-aut-sei=Blanchoin en-aut-mei=Laurent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab kn-affil= affil-num=5 en-affil=National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University kn-affil= affil-num=6 en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University kn-affil= affil-num=7 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=8 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=9 en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University kn-affil= affil-num=10 en-affil=Tokyo Institute of Technology, Earth-Life Science Institute (ELSI) kn-affil= affil-num=11 en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab kn-affil= affil-num=12 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=890 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota. Calcium-regulated actin filament assembly predates eukaryogenesis and was present in the last common ancestor of Asgard archaea Loki, Heim, and Thorarchaeota. en-copyright= kn-copyright= en-aut-name=AkilCaner en-aut-sei=Akil en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Orhant-PriouxMagali en-aut-sei=Orhant-Prioux en-aut-mei=Magali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BaskaranYohendran en-aut-sei=Baskaran en-aut-mei=Yohendran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SenjuYosuke en-aut-sei=Senju en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChotchuangPhatcharin en-aut-sei=Chotchuang en-aut-mei=Phatcharin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuengsaenDuangkamon en-aut-sei=Muengsaen en-aut-mei=Duangkamon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SchulteAlbert en-aut-sei=Schulte en-aut-mei=Albert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ManserEdward en-aut-sei=Manser en-aut-mei=Edward kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BlanchoinLaurent en-aut-sei=Blanchoin en-aut-mei=Laurent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=3 en-affil=CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA kn-affil= affil-num=4 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=7 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=8 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=9 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=10 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis kn-affil= affil-num=11 en-affil=CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=297 cd-vols= no-issue= article-no= start-page=101071 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A structural model for (GlcNAc)2 translocation via a periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=VhCBP is a periplasmic chitooligosaccharide-binding protein mainly responsible for translocation of the chitooligosaccharide (GlcNAc)2 across the double membranes of marine bacteria. However, structural and thermodynamic understanding of the sugar-binding/-release processes of VhCBP is relatively less. VhCBP displayed the greatest affinity toward (GlcNAc)2, with lower affinity for longer-chain chitooligosaccharides [(GlcNAc)3–4]. (GlcNAc)4 partially occupied the closed sugar-binding groove, with two reducing-end GlcNAc units extending beyond the sugar-binding groove and barely characterized by weak electron density. Mutation of three conserved residues (Trp363, Asp365, and Trp513) to Ala resulted in drastic decreases in the binding affinity toward the preferred substrate (GlcNAc)2, indicating their significant contributions to sugar binding. The structure of the W513A–(GlcNAc)2 complex in a ‘half-open’ conformation unveiled the intermediary step of the (GlcNAc)2 translocation from the soluble CBP in the periplasm to the inner membrane–transporting components. Isothermal calorimetry data suggested that VhCBP adopts the high-affinity conformation to bind (GlcNAc)2, while its low-affinity conformation facilitated sugar release. Thus, chitooligosaccharide translocation, conferred by periplasmic VhCBP, is a crucial step in the chitin catabolic pathway, allowing Vibrio bacteria to thrive in oceans where chitin is their major source of nutrients. en-copyright= kn-copyright= en-aut-name=KitaokuYoshihito en-aut-sei=Kitaoku en-aut-mei=Yoshihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukamizoTamo en-aut-sei=Fukamizo en-aut-mei=Tamo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KumsaoadSawitree en-aut-sei=Kumsaoad en-aut-mei=Sawitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UbonbalPrakayfun en-aut-sei=Ubonbal en-aut-mei=Prakayfun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugintaWipa en-aut-sei=Suginta en-aut-mei=Wipa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=2 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=3 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=4 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=5 article-no= start-page=eabd5271 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The structure of the actin filament uncapping complex mediated by twinfilin en-subtitle= kn-subtitle= en-abstract= kn-abstract= Uncapping of actin filaments is essential for driving polymerization and depolymerization dynamics from capping protein–associated filaments; however, the mechanisms of uncapping leading to rapid disassembly are unknown. Here, we elucidated the x-ray crystal structure of the actin/twinfilin/capping protein complex to address the mechanisms of twinfilin uncapping of actin filaments. The twinfilin/capping protein complex binds to two G-actin subunits in an orientation that resembles the actin filament barbed end. This suggests an unanticipated mechanism by which twinfilin disrupts the stable capping of actin filaments by inducing a G-actin conformation in the two terminal actin subunits. Furthermore, twinfilin disorders critical actin-capping protein interactions, which will assist in the dissociation of capping protein, and may promote filament uncapping through a second mechanism involving V-1 competition for an actin-binding surface on capping protein. The extensive interactions with capping protein indicate that the evolutionary conserved role of twinfilin is to uncap actin filaments. en-copyright= kn-copyright= en-aut-name=MwangangiDennis M. en-aut-sei=Mwangangi en-aut-mei=Dennis M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ManserEdward en-aut-sei=Manser en-aut-mei=Edward kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) kn-affil= affil-num=2 en-affil=Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=295 cd-vols= no-issue=14 article-no= start-page=4464 end-page=4476 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vivo crystals reveal critical features of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and the PDZ2 domain of Na+/H+ exchange cofactor NHERF1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)–PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions −1 and −3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice. en-copyright= kn-copyright= en-aut-name=MartinEleanor R. en-aut-sei=Martin en-aut-mei=Eleanor R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BarbieriAlessandro en-aut-sei=Barbieri en-aut-mei=Alessandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FordRobert C. en-aut-sei=Ford en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester kn-affil= affil-num=2 en-affil=School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester kn-affil= affil-num=3 en-affil=School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=PDZ domain kn-keyword=PDZ domain en-keyword=X-ray crystallography kn-keyword=X-ray crystallography en-keyword=molecular modeling kn-keyword=molecular modeling en-keyword=protein complex kn-keyword=protein complex en-keyword=protein crystallization kn-keyword=protein crystallization en-keyword=crystal structure kn-keyword=crystal structure en-keyword=cystic fibrosis transmembrane conductance regulator (CFTR) kn-keyword=cystic fibrosis transmembrane conductance regulator (CFTR) en-keyword=cystic fibrosis kn-keyword=cystic fibrosis en-keyword=ion channel kn-keyword=ion channel en-keyword=protein-protein interaction kn-keyword=protein-protein interaction en-keyword=SLC9A3 regulator 1 (SLC9A3R1) kn-keyword=SLC9A3 regulator 1 (SLC9A3R1) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=117 end-page=33 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200818 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea en-subtitle= kn-subtitle= en-abstract= kn-abstract=Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures. en-copyright= kn-copyright= en-aut-name=AkılCaner en-aut-sei=Akıl en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Orhant-PriouxMagali en-aut-sei=Orhant-Prioux en-aut-mei=Magali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BaskaranYohendran en-aut-sei=Baskaran en-aut-mei=Yohendran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ManserEdward en-aut-sei=Manser en-aut-mei=Edward kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BlanchoinLaurent en-aut-sei=Blanchoin en-aut-mei=Laurent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Molecular and Cell Biology, Agency for Science, Technology and Research kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=CytomorphoLab, Interdisciplinary Research Institute of Grenoble kn-affil= affil-num=4 en-affil=aInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research kn-affil= affil-num=5 en-affil=aInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research kn-affil= affil-num=6 en-affil=CytomorphoLab, Interdisciplinary Research Institute of Grenoble kn-affil= affil-num=7 en-affil=cResearch Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=actin kn-keyword=actin en-keyword=gelsolin kn-keyword=gelsolin en-keyword=Asgard archaea kn-keyword=Asgard archaea en-keyword=eukaryogenesis kn-keyword=eukaryogenesis en-keyword=X-ray crystallography kn-keyword=X-ray crystallography END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=6 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tree of motility : A proposed history of motility systems in the tree of life en-subtitle= kn-subtitle= en-abstract= kn-abstract=Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility. en-copyright= kn-copyright= en-aut-name=MiyataMakoto en-aut-sei=Miyata en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UyedaTaro Q. P. en-aut-sei=Uyeda en-aut-mei=Taro Q. P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumoriYoshihiro en-aut-sei=Fukumori en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaShun‐ichi en-aut-sei=Fukushima en-aut-mei=Shun‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HarutaShin en-aut-sei=Haruta en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HommaMichio en-aut-sei=Homma en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InabaKazuo en-aut-sei=Inaba en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoKentaro en-aut-sei=Kato en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KenriTsuyoshi en-aut-sei=Kenri en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinositaYoshiaki en-aut-sei=Kinosita en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KojimaSeiji en-aut-sei=Kojima en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MinaminoTohru en-aut-sei=Minamino en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MoriHiroyuki en-aut-sei=Mori en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraShuichi en-aut-sei=Nakamura en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakaneDaisuke en-aut-sei=Nakane en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakayamaKoji en-aut-sei=Nakayama en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishiyamaMasayoshi en-aut-sei=Nishiyama en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ShibataSatoshi en-aut-sei=Shibata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimabukuroKatsuya en-aut-sei=Shimabukuro en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TamakoshiMasatada en-aut-sei=Tamakoshi en-aut-mei=Masatada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TaokaAzuma en-aut-sei=Taoka en-aut-mei=Azuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TashiroYosuke en-aut-sei=Tashiro en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TulumIsil en-aut-sei=Tulum en-aut-mei=Isil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=WadaHirofumi en-aut-sei=Wada en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=WakabayashiKen‐ichi en-aut-sei=Wakabayashi en-aut-mei=Ken‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Waseda University kn-affil= affil-num=4 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=6 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=7 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=8 en-affil=Shimoda Marine Research Center, University of Tsukuba kn-affil= affil-num=9 en-affil=Graduate School of Life Sciences, Toyo University kn-affil= affil-num=10 en-affil=Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=12 en-affil=Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases kn-affil= affil-num=13 en-affil=Department of Physics, Oxford University kn-affil= affil-num=14 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=15 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=16 en-affil=Institute for Frontier Life and Medical Sciences, Kyoto University kn-affil= affil-num=17 en-affil=Department of Applied Physics, Graduate School of Engineering, Tohoku University kn-affil= affil-num=18 en-affil=Department of Physics, Gakushuin University kn-affil= affil-num=19 en-affil=Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=20 en-affil=Department of Physics, Faculty of Science and Engineering, Kindai University kn-affil= affil-num=21 en-affil=Molecular Cryo‐Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=22 en-affil=Department of Chemical and Biological Engineering, National Institute of Technology, Ube College kn-affil= affil-num=23 en-affil=Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=24 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=25 en-affil=Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University kn-affil= affil-num=26 en-affil=Department of Botany, Faculty of Science, Istanbul University kn-affil= affil-num=27 en-affil=Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University kn-affil= affil-num=28 en-affil=Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= en-keyword=appendage kn-keyword=appendage en-keyword=cytoskeleton kn-keyword=cytoskeleton en-keyword=flagella kn-keyword=flagella en-keyword=membrane remodeling kn-keyword=membrane remodeling en-keyword=Mollicutes kn-keyword=Mollicutes en-keyword=motor protein kn-keyword=motor protein en-keyword=peptidoglycan kn-keyword=peptidoglycan en-keyword=three domains kn-keyword=three domains END