start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1138
end-page=1149
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11’s nature in colorectal cancers and others.
en-copyright=
kn-copyright=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaNaoko
en-aut-sei=Mizuta
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamakawaAtsuko
en-aut-sei=Yamakawa
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=S100A11
kn-keyword=S100A11
en-keyword=Desmosome
kn-keyword=Desmosome
en-keyword=TCF signaling
kn-keyword=TCF signaling
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1371307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness.
en-copyright=
kn-copyright=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Kasano-CamonesCarlos Ichiro
en-aut-sei=Kasano-Camones
en-aut-mei=Carlos Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NinomiyaKazumi
en-aut-sei=Ninomiya
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=6
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=7
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=15
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=17
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=18
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=19
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=20
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=21
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=22
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=invasion
kn-keyword=invasion
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=NF-κB
kn-keyword=NF-κB
en-keyword=MMP9
kn-keyword=MMP9
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=4
article-no=
start-page=431
end-page=447
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3—namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects.
en-copyright=
kn-copyright=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AudebertLéna
en-aut-sei=Audebert
en-aut-mei=Léna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshizawaChikako
en-aut-sei=Yoshizawa
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=REIC/Dkk-3
kn-keyword=REIC/Dkk-3
en-keyword=PD-L1
kn-keyword=PD-L1
en-keyword=Immune checkpoint
kn-keyword=Immune checkpoint
en-keyword=Cancer therapy
kn-keyword=Cancer therapy
END
start-ver=1.4
cd-journal=joma
no-vol=174
cd-vols=
no-issue=6
article-no=
start-page=533
end-page=548
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230919
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson’s disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PhooMay Tha Zin
en-aut-sei=Phoo
en-aut-mei=May Tha Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=JNK
kn-keyword=JNK
en-keyword=PARK2
kn-keyword=PARK2
en-keyword=Parkinson’sdisease
kn-keyword=Parkinson’sdisease
en-keyword=Phosphorylation
kn-keyword=Phosphorylation
en-keyword=SARM1
kn-keyword=SARM1
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1371342
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240326
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lysyl oxidase-like 4 promotes the invasiveness of triple-negative breast cancer cells by orchestrating the invasive machinery formed by annexin A2 and S100A11 on the cell surface
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-β1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain.
Methods: Cell invasion was assessed using a transwell-based assay, protein–protein interactions by an immunoprecipitation–Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography.
Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion.
Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.
en-copyright=
kn-copyright=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=7
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=14
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=16
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=17
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=18
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=19
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=20
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=annexin A2
kn-keyword=annexin A2
en-keyword=S100A11
kn-keyword=S100A11
en-keyword=plasmin
kn-keyword=plasmin
en-keyword=cancer microenvironment
kn-keyword=cancer microenvironment
END
start-ver=1.4
cd-journal=joma
no-vol=108
cd-vols=
no-issue=
article-no=
start-page=110717
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD+-biosynthetic and consuming enzymes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasuiYu
en-aut-sei=Yasui
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OisoKazuma
en-aut-sei=Oiso
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=NMNAT2
kn-keyword=NMNAT2
en-keyword=SARM1
kn-keyword=SARM1
en-keyword=NAD+
kn-keyword=NAD+
en-keyword=STAT1/3
kn-keyword=STAT1/3
en-keyword=IFN-γ
kn-keyword=IFN-γ
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=1142907
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer.
Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells’ activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach.
Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin β-1, resulting in the locking of integrin β-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth.
Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin β-1 on the cell surface.
en-copyright=
kn-copyright=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-Ich
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ich
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Surgery & Bio-Bank of General Surgery, TheFourth Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=5
en-affil=Department of Microbiology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=12
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology
kn-affil=
affil-num=13
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=14
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=15
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=annexin A2
kn-keyword=annexin A2
en-keyword=integrin
kn-keyword=integrin
en-keyword=cancer microenvironment
kn-keyword=cancer microenvironment
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=1142886
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230223
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LOXL1 and LOXL4 are novel target genes of the Zn2+-bound form of ZEB1 and play a crucial role in the acceleration of invasive events in triple-negative breast cancer cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: EMT has been proposed to be a crucial early event in cancer metastasis. EMT is rigidly regulated by the action of several EMT-core transcription factors, particularly ZEB1. We previously revealed an unusual role of ZEB1 in the S100A8/A9-mediated metastasis in breast cancer cells that expressed ZEB1 at a significant level and showed that the ZEB1 was activated on the MCAM-downstream pathway upon S100A8/A9 binding. ZEB1 is well known to require Zn2+ for its activation based on the presence of several Zn-finger motifs in the transcription factor. However, how Zn2+-binding works on the pleiotropic role of ZEB1 through cancer progression has not been fully elucidated.
Methods: We established the engineered cells, MDA-MB-231 MutZEB1 (MDA-MutZEB1), that stably express MutZEB1 (Delta Zn). The cells were then evaluated in vitro for their invasion activities. Finally, an RNA-Seq analysis was performed to compare the gene alteration profiles of the established cells comprehensively.
Results: MDA-MutZEB1 showed a significant loss of the EMT, ultimately stalling the invasion. Inclusive analysis of the transcription changes after the expression of MutZEB1 (Delta Zn) in MDA-MB-231 cells revealed the significant downregulation of LOX family genes, which are known to play a critical role in cancer metastasis. We found that LOXL1 and LOXL4 remarkably enhanced cancer invasiveness among the LOX family genes with altered expression.
Conclusions: These findings indicate that ZEB1 potentiates Zn2+-mediated transcription of plural EMT-relevant factors, including LOXL1 and LOXL4, whose upregulation plays a critical role in the invasive dissemination of breast cancer cells.
en-copyright=
kn-copyright=
en-aut-name=HirabayashiDaisuke
en-aut-sei=Hirabayashi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaAkihiro
en-aut-sei=Maruyama
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=15
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=18
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=epithelial-to-mesenchymal transition
kn-keyword=epithelial-to-mesenchymal transition
en-keyword=triple-negative breast cancer
kn-keyword=triple-negative breast cancer
en-keyword=zinc
kn-keyword=zinc
en-keyword=ZEB1
kn-keyword=ZEB1
en-keyword=metastasis
kn-keyword=metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=18
article-no=
start-page=10300
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220907
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-Rich Glycoprotein Suppresses the S100A8/A9-Mediated Organotropic Metastasis of Melanoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.
en-copyright=
kn-copyright=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=14
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=16
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=17
en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=18
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=S100A8/A9
kn-keyword=S100A8/A9
en-keyword=HRG
kn-keyword=HRG
en-keyword=metastasis
kn-keyword=metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=
article-no=
start-page=100768
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.
en-copyright=
kn-copyright=
en-aut-name=BajkowskaKarolina
en-aut-sei=Bajkowska
en-aut-mei=Karolina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Gede Yoni KomalasariNi Luh
en-aut-sei=Gede Yoni Komalasari
en-aut-mei=Ni Luh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Winarsa RumaI. Made
en-aut-sei=Winarsa Ruma
en-aut-mei=I. Made
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=Kasano-CamonesCarlos Ichiro
en-aut-sei=Kasano-Camones
en-aut-mei=Carlos Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=11
en-affil=University of Surrey
kn-affil=
affil-num=12
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=13
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=14
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Metastasis
kn-keyword=Metastasis
en-keyword=Epithelial-mesenchymal transition
kn-keyword=Epithelial-mesenchymal transition
en-keyword=Solute carrier family 22 member 18 antisense
kn-keyword=Solute carrier family 22 member 18 antisense
en-keyword=S100A8/A9
kn-keyword=S100A8/A9
en-keyword=Neuroplastin
kn-keyword=Neuroplastin
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=
article-no=
start-page=100619
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201907
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Convenient methodology for extraction and subsequent selective propagation of mouse melanocytes in culture from adult mouse skin tissue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mouse melanoma B16-BL6 cells are useful cells for cancer metastatic studies. To understand the metastatic principle at molecular levels, it is necessary to carry out experiments in which cancer cells and their normal counterparts are compared. However, unlike normal human melanocytes, preparation of normal mouse melanocytes is quite difficult due to the lack of marketing and insufficient information on an established protocol for primary culture of mouse melanocytes. In this study, we aimed to establish a convenient method for primary culture of mouse melanocytes on the basis of the protocol for human melanocytes. The main obstacles to preparing pure mouse melanocytes are how to digest mouse skin tissue and how to reduce the contamination of keratinocytes and fibroblasts. The obstacles were overcome by collagenase digestion for skin specimens, short time trypsinization for separating melanocytes and keratinocytes, and use of 12-O-Tetradecanoylphorbol 13-acetate (TPA) and cholera toxin in the culture medium. These supplements act to prevent the proliferation of keratinocytes and fibroblasts, respectively. The convenient procedure enabled us to prepare a pure culture of normal mouse melanocytes. Using enriched normal mouse melanocytes and cancerous B16-BL6 cells, we compared the expression levels of melanoma cell adhesion molecule (MCAM), an important membrane protein for melanoma metastasis, in the cells. The results showed markedly higher expression of MCAM in B16-BL6 cells than in normal mouse melanocytes.
en-copyright=
kn-copyright=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Melanocytes
kn-keyword=Melanocytes
en-keyword=Melanoma
kn-keyword=Melanoma
en-keyword=Metastasis
kn-keyword=Metastasis
en-keyword=Primary culture
kn-keyword=Primary culture
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=7
article-no=
start-page=627
end-page=640
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201907
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear. In this study, we found for the first time that an extracellular cytokine, S100A8/A9, accelerates breast cancer growth and metastasis upon binding to a cell surface receptor, melanoma cell adhesion molecule (MCAM). Our molecular analyses revealed an important role of ETS translocation variant 4 (ETV4), which is significantly activated in the region downstream of MCAM upon S100A8/A9 stimulation, in breast cancer progression in vitro as well as in vivo. The MCAM-mediated activation of ETV4 induced a mobile phenotype called epithelial-mesenchymal transition (EMT) in cells, since we found that ETV4 transcriptionally upregulates ZEB1, a strong EMT inducer, at a very high level. In contrast, downregulation of either MCAM or ETV4 repressed EMT, resulting in greatly weakened tumor growth and lung metastasis. Overall, our results revealed that ETV4 is a novel transcription factor regulated by the S100A8/A9-MCAM axis, which leads to EMT through ZEB1 and thereby to metastasis in breast cancer cells. Thus, therapeutic strategies based on our findings might improve patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IiokaHidekazu
en-aut-sei=Iioka
en-aut-mei=Hidekazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SaitoKen
en-aut-sei=Saito
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuboMiyoko
en-aut-sei=Kubo
en-aut-mei=Miyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PutrantoEndy Widya
en-aut-sei=Putranto
en-aut-mei=Endy Widya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MurakamiTakashi
en-aut-sei=Murakami
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=LiuMing
en-aut-sei=Liu
en-aut-mei=Ming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=HibinoToshihiko
en-aut-sei=Hibino
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=6
en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada
kn-affil=
affil-num=21
en-affil=Department of Microbiology, Faculty of Medicine, Saitama Medical University
kn-affil=
affil-num=22
en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=23
en-affil=Department of Dermatology, Tokyo Medical University
kn-affil=
affil-num=24
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=26
en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=289
cd-vols=
no-issue=34
article-no=
start-page=23389
end-page=23402
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=DNAX-activating protein 10 (DAP10) membrane adaptor associates with receptor for advanced glycation end products (RAGE) and modulates the RAGE-triggered signaling pathway in human keratinocytes.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AoyamaYumi
en-aut-sei=Aoyama
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HibinoToshihiko
en-aut-sei=Hibino
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Widya PutrantoEndy
en-aut-sei=Widya Putranto
en-aut-mei=Endy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Winarsa Ruma I. Made
en-aut-sei=Winarsa Ruma
en-aut-mei= I. Made
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KataokaKen
en-aut-sei=Kataoka
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IwatsukiKeiji
en-aut-sei=Iwatsuki
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HuhNam-ho
en-aut-sei=Huh
en-aut-mei=Nam-ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Shiseido Research Center, Advanced Science Research
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=8
en-affil=Interdisciplinary Research Organization, University of Miyazaki
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Biotechnology, Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Biotechnology, Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=13
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell Biology
kn-keyword=Cell Biology
en-keyword=Keratinocyte
kn-keyword=Keratinocyte
en-keyword=Psoriasis
kn-keyword=Psoriasis
en-keyword=Receptor for Advanced Glycation End Products (RAGE)
kn-keyword=Receptor for Advanced Glycation End Products (RAGE)
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=2
article-no=
start-page=83
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2013 Incentive Award of the Okayama Medical Association in General Medical Science (2013 Yuuki Prize)
kn-title=平成25年度岡山医学会賞 総合研究奨励賞(結城賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=村田等
kn-aut-sei=村田
kn-aut-mei=等
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院医歯薬学総合研究科 細胞生物学
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=4
article-no=
start-page=938
end-page=944
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibition of RAGE signaling through the intracellular delivery of inhibitor peptides by PEI cationization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface receptor and a member of the immunoglobulin superfamily. RAGE is involved in a wide range of inflammatory, degenerative and hyper-proliferative disorders which span over different organs by engaging diverse ligands, including advanced glycation end products, S100 family proteins, high-mobility group protein B1 (HMGB1) and amyloid beta. We previously demonstrated that the cytoplasmic domain of RAGE is phosphorylated upon the binding of ligands, enabling the recruitment of two distinct pairs of adaptor proteins, Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) and myeloid differentiation protein 88 (MyD88). This engagement allows the activation of downstream effector molecules, and thereby mediates a wide variety of cellular processes, such as inflammatory responses, apoptotic cell death, migration and cell growth. Therefore, inhibition of the binding of TIRAP to RAGE may abrogate intracellular signaling from ligand-activated RAGE. In the present study, we developed inhibitor peptides for RAGE signaling (RAGE-I) by mimicking the phosphorylatable cytosolic domain of RAGE. RAGE-I was efficiently delivered into the cells by polyethylenimine (PEI) cationization. We demonstrated that RAGE-I specifically bound to TIRAP and abrogated the activation of Cdc42 induced by ligand-activated RAGE. Furthermore, we were able to reduce neuronal cell death induced by an excess amount of S100B and to inhibit the migration and invasion of glioma cells in vitro. Our results indicate that RAGE-I provides a powerful tool for therapeutics to block RAGE-mediated multiple signaling.
en-copyright=
kn-copyright=
en-aut-name=PutrantoEndy Widya
en-aut-sei=Putranto
en-aut-mei=Endy Widya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KataokaKen
en-aut-sei=Kataoka
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaHidenori
en-aut-sei=Yamada
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutamiJun-Ichiro
en-aut-sei=Futami
en-aut-mei=Jun-Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HuhNam-Ho
en-aut-sei=Huh
en-aut-mei=Nam-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cell Biol
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cell Biol
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cell Biol
affil-num=4
en-affil=
kn-affil=Okayama Univ Sci, Fac Sci, Dept Life Sci
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Nat Sci & Biotechnol, Dept Med Bioengn Sci
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Nat Sci & Biotechnol, Dept Med Bioengn Sci
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cell Biol
affil-num=8
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cell Biol
en-keyword=receptor for advanced glycation end products
kn-keyword=receptor for advanced glycation end products
en-keyword=Toll-interleukin 1 receptor domain-containing adaptor protein
kn-keyword=Toll-interleukin 1 receptor domain-containing adaptor protein
en-keyword=cationization
kn-keyword=cationization
en-keyword=S100B
kn-keyword=S100B
en-keyword=cell death
kn-keyword=cell death
en-keyword=cell migration
kn-keyword=cell migration
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=7
article-no=
start-page=1562
end-page=1569
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2010
dt-pub=20100401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have recently shown that an adenovirus carrying REIC/Dkk-3 (Ad-REIC) exhibits a potent tumor-specific cell-killing function for various human cancers. It has also become evident that some human cancers are resistant to Ad-REIC-induced apoptosis. The aim of the present study was to determine the molecular mechanisms of resistance to Ad-REIC. First, we isolated resistant clones from a human prostate cancer cell line, PC3, after repeated exposure to Ad-REIC. Infection efficiency of the adenovirus vector and expression level of REIC/Dkk-3 in the resistant clones were similar to those in the parental PC3 cells. By screening for alteration in levels and functional status of proteins involved in Ad-REIC-induced apoptosis, we found that BiP/GRP78, an ER-residing chaperone protein, was expressed at higher levels consistently among resistant cells. Expression levels of BiP and rates of apoptosis induced by Ad-REIC were inversely correlated. Down-regulation of BiP with siRNA sensitized the resistant cells to Ad-REIC in vivo as well as in culture. These results indicate that BiP is a major determinant of resistance to Ad-REIC-induced apoptosis. Thus BiP is useful for diagnosis of inherent and acquired resistance of cancers and also as a target molecule to overcome resistance to the gene therapeutic Ad-REIC.
en-copyright=
kn-copyright=
en-aut-name=TanimotoRyuta
en-aut-sei=Tanimoto
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbarzuaFernando
en-aut-sei=Abarzua
en-aut-mei=Fernando
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KataokaKen
en-aut-sei=Kataoka
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuroseKaoru
en-aut-sei=Kurose
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HuhNam-Ho
en-aut-sei=Huh
en-aut-mei=Nam-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=REIC
kn-keyword=REIC
en-keyword=Dkk
kn-keyword=Dkk
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=GRP78
kn-keyword=GRP78
en-keyword=ER stress
kn-keyword=ER stress
END
start-ver=1.4
cd-journal=joma
no-vol=284
cd-vols=
no-issue=21
article-no=
start-page=14236
end-page=14244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2009
dt-pub=20090522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overexpression of REIC/Dkk-3 in Normal Fibroblasts Suppresses Tumor Growth via Induction of Interleukin-7
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously showed that the tumor suppressor gene REIC/Dkk-3, when overexpressed by an adenovirus (Ad-REIC), exhibited a dramatic therapeutic effect on human cancers through a mechanism triggered by endoplasmic reticulum stress. Adenovirus vectors show no target cell specificity and thus may elicit unfavorable side effects through infection of normal cells even upon intra-tumoral injection. In this study, we examined possible effects of Ad-REIC on normal cells. We found that infection of normal human fibroblasts (NHF) did not cause apoptosis but induced production of interleukin (IL)-7. The induction was triggered by endoplasmic reticulum stress and mediated through IRE1 alpha, ASK1, p38, and IRF-1. When Ad-REIC-infected NHF were transplanted in a mixture with untreated human prostate cancer cells, the growth of the cancer cells was significantly suppressed. Injection of an IL-7 antibody partially abrogated the suppressive effect of Ad-REIC-infected NHF. These results indicate that Ad-REIC has another arm against human cancer, an indirect host-mediated effect because of overproduction of IL-7 by mis-targeted NHF, in addition to its direct effect on cancer cells.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaKen
en-aut-sei=Kataoka
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbarzuaFernando
en-aut-sei=Abarzua
en-aut-mei=Fernando
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimotoRyuta
en-aut-sei=Tanimoto
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ThanSwe Swe
en-aut-sei=Than
en-aut-mei=Swe Swe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KuroseKaoru
en-aut-sei=Kurose
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KashiwakuraYuji
en-aut-sei=Kashiwakura
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HuhNam-ho
en-aut-sei=Huh
en-aut-mei=Nam-ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=10
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=11
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=12
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=13
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2008
dt-pub=20080325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ポリエチレンイミンカチオン化を用いたタンパク質細胞内導入技術の開発と細胞機能の人工制御への応用
kn-title=Development of a protein transduction technology using polyethylenimine-cationization, and application to regulation of cellular function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=村田等
kn-aut-sei=村田
kn-aut-mei=等
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END