start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=8 article-no= start-page=e02141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stroking hardness changes the perception of affective touch pleasantness across different skin sites en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human unmyelinated tactile afferents (CT afferents) in hairy skin are thought to be involved in the transmission of affective aspects of touch. How the perception of affective touch differs across human skin has made substantial progress; however, the majority of previous studies have mainly focused on the relationship between stroking velocities and pleasantness ratings. Here, we investigate how stroking hardness affects the perception of affective touch. Affective tactile stimulation was given with four different hardness of brushes a three different forces, which were presented to either palm or forearm. To quantify the physical factors of the stimuli (brush hardness), ten naive, healthy participants assessed brush hardness using a seven-point scale. Based on these ten participants, five more participants were added to rate the hedonic value of brush stroking using a visual analogue scale (VAS). We found that pleasantness ratings over the skin resulted in a preference for light, soft stroking, which was rated as more pleasant when compared to heavy, hard stroking. Our results show that the hairy skin of the forearm is more susceptible to stroking hardness than the glabrous of the palm in terms of the perception of pleasantness. These findings of the current study extend the growing literature related to the effect of stroking characteristics on pleasantness ratings. en-copyright= kn-copyright= en-aut-name=YuJiabin en-aut-sei=Yu en-aut-mei=Jiabin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuQiong en-aut-sei=Wu en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiSatoshi en-aut-sei=Takahashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjimaYoshimichi en-aut-sei=Ejima en-aut-mei=Yoshimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Neuroscience kn-keyword=Neuroscience en-keyword=Pleasantness ratings kn-keyword=Pleasantness ratings en-keyword=Affective tactile kn-keyword=Affective tactile en-keyword=Physical factors kn-keyword=Physical factors en-keyword=CT afferents kn-keyword=CT afferents en-keyword=Stroking hardness kn-keyword=Stroking hardness END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=8 article-no= start-page=e02306 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness and safety of low-concentrated ozonized water for the reduction of contamination in dental unit water lines en-subtitle= kn-subtitle= en-abstract= kn-abstract= Contamination of dental unit waterlines (DUWL) with heterotrophic bacteria can cause problems in immune compromised patients (aged, tumor and organ transplantation-patients). We focused on the use of low-concentrated ozonized water (OZW) as the biofilm formation restraint system for DUWL. Here, we examined the effects of low-concentrated OZW on the growth of bacteria and related biofilm formation and harmfulness to dental unit components (DUCs) in vitro.
Objectives
To evaluate the bactericidal effects of OZW on biofilms in DUWL and DUC in vitro.
Methods
Low-concentrated OZW (0.4 mg/L) was generated using an OZS-PTDX generator. Heterotrophic bacterial biofilms in old DUWL tubes and Candia albicans solution (control microbe) were treated with OZW for 1 h with gentle agitation before static culturing for 96 h in Reasoner's 2A liquid media. The control solutions were 0.1% cetylpyridinium chloride (CPC), chlorinated tap water (TW), and phosphate-buffered saline (PBS). Adenosine triphosphate (ATP) amounts of the microbes were measured and the biofilms of these microbes were observed using scanning electron microscopy (SEM). Moreover, surfaces of DUC soaked in OZW and TW were observed by SEM.
Results
The OZW reduced ATP levels in microbes to 50% compared to TW and PBS treatment, although CPC reduced it below detection limits. SEM observation revealed deformation of microbes cultured with OZW, whereas no changes were seen on DUC surfaces.
Conclusions
Low-concentrated OZW is bactericidal against heterotrophic bacteria biofilms and it is not harmful to DUC, suggesting that it might be useful in preventing DUWL contamination. en-copyright= kn-copyright= en-aut-name=Okubo Keisuke en-aut-sei=Okubo en-aut-mei= Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ito Takashi en-aut-sei=Ito en-aut-mei= Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Shiota Yasuyoshi en-aut-sei=Shiota en-aut-mei= Yasuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Kawata Yusuke en-aut-sei=Kawata en-aut-mei= Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Yamamoto Tadashi en-aut-sei=Yamamoto en-aut-mei= Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Takashiba Shogo en-aut-sei=Takashiba en-aut-mei= Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Biofilm kn-keyword=Biofilm en-keyword=Dental chair unit water line (DUWL) kn-keyword=Dental chair unit water line (DUWL) en-keyword=Heterotrophic bacteria kn-keyword=Heterotrophic bacteria en-keyword=Low-concentration kn-keyword=Low-concentration en-keyword=Materials science kn-keyword=Materials science en-keyword=Ozonized water kn-keyword=Ozonized water END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=8 article-no= start-page=e02141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190831 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stroking hardness changes the perception of affective touch pleasantness across different skin sites en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human unmyelinated tactile afferents (CT afferents) in hairy skin are thought to be involved in the transmission of affective aspects of touch. How the perception of affective touch differs across human skin has made substantial progress; however, the majority of previous studies have mainly focused on the relationship between stroking velocities and pleasantness ratings. Here, we investigate how stroking hardness affects the perception of affective touch. Affective tactile stimulation was given with four different hardness of brushes at three different forces, which were presented to either palm or forearm. To quantify the physical factors of the stimuli (brush hardness), ten naïve, healthy participants assessed brush hardness using a seven-point scale. Based on these ten participants, five more participants were added to rate the hedonic value of brush stroking using a visual analogue scale (VAS). We found that pleasantness ratings over the skin resulted in a preference for light, soft stroking, which was rated as more pleasant when compared to heavy, hard stroking. Our results show that the hairy skin of the forearm is more susceptible to stroking hardness than the glabrous of the palm in terms of the perception of pleasantness. These findings of the current study extend the growing literature related to the effect of stroking characteristics on pleasantness ratings. en-copyright= kn-copyright= en-aut-name=YuJiabin en-aut-sei=Yu en-aut-mei=Jiabin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuQiong en-aut-sei=Wu en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiSatoshi en-aut-sei=Takahashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjimaYoshimichi en-aut-sei=Ejima en-aut-mei=Yoshimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary, Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Affective tactile kn-keyword=Affective tactile en-keyword=CT afferents; Neuroscience kn-keyword=CT afferents; Neuroscience en-keyword=Physical factors kn-keyword=Physical factors en-keyword=Pleasantness ratings kn-keyword=Pleasantness ratings en-keyword=Stroking hardness. kn-keyword=Stroking hardness. END