Memoirs of the Faculty of Engineering, Okayama University volume39 issue1
2005-01 発行
Geometric fitting is one of the most fundamental problems of computer vision. In [8], the author derived a theoretical accuracy bound (KCR lower bound) for geometric fitting in general and proved that maximum likelihood (ML) estimation is statistically optimal. Recently, Chernov and Lesort [3] proved a similar result, using a weaker assumption. In this paper, we compare their formulation with the author’s and describe the background of the problem. We also review recent topics including semiparametric models and discuss remaining issues.