このエントリーをはてなブックマークに追加
ID 57456
フルテキストURL
著者
Sumi, Tomonari Research Institute for Interdisciplinary Science, Department of Chemistry, Faculty of Science, Okayama University ORCID Kaken ID publons researchmap
Klumpp, Stefan Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces
抄録
We present a chemomechanical network model of the rotary molecular motor F1-ATPase which quantitatively describes not only the rotary motor dynamics driven by ATP hydrolysis but also the ATP synthesis caused by forced reverse rotations. We observe a high reversibility of F1-ATPase, that is, the main cycle of ATP synthesis corresponds to the reversal of the main cycle in the hydrolysis-driven motor rotation. However, our quantitative analysis indicates that torque-induced mechanical slip without chemomechanical coupling occurs under high external torque and reduces the maximal efficiency of the free energy transduction to 40–80% below the optimal efficiency. Heat irreversibly dissipates not only through the viscous friction of the probe but also directly from the motor due to torque-induced mechanical slip. Such irreversible heat dissipation is a crucial limitation for achieving a 100% free-energy transduction efficiency with biological nanomachines because biomolecules are easily deformed by external torque.
キーワード
F-1-ATPase
rotary molecular motor
chemomechanical network model
free-energy transduction efficiency
ATP synthesis
torque-induced mechanical slip
発行日
2019-04-24
出版物タイトル
Nano Letters
19巻
5号
出版者
American Chemical Society
開始ページ
3370
終了ページ
3378
ISSN
15306984
NCID
AA11511812
資料タイプ
学術雑誌論文
言語
English
OAI-PMH Set
岡山大学
著作権者
Copyright © 2019 American Chemical Society
論文のバージョン
author
PubMed ID
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1021/acs.nanolett.9b01181
助成機関名
日本学術振興会
助成番号
18KK0151 : Understanding solvent-mediated forces with diverse responses to ions, co-solvents, and temperature