このエントリーをはてなブックマークに追加
ID 41503
フルテキストURL
タイトル(別表記)
Nonlinear Generalizations of Tucker's Theorem on Inequality Systems
著者
藤本 喬雄
石山 健一
抄録
This note is to prove Tucker's theorem on linear inequalities based on the proof method of minimax theorems which uses Kakutani's fixed point theorem. One device is necessary to convert the minimax theorems to Tucker's formulation. This is a slight restriction on the image sets when creating a set-valued map. We also present nonlinear generalizations of Tucker's theorem employing the same method. All we need is that the set of variable values for which an objective function attains its maximum is convex. This objective function is a convex combination of functions. We also present a proof of the fact that a local characterization of inequality systems, when a given mapping is differentiable, can be made global provided the mapping is concave.
備考
研究ノート (Note)
発行日
1999-12-10
出版物タイトル
岡山大学経済学会雑誌
出版物タイトル(別表記)
Okayama Economic Review
31巻
3号
出版者
岡山大学経済学会
出版者(別表記)
The Economic Association of Okayama University
開始ページ
163
終了ページ
171
ISSN
0386-3069
NCID
AN00032897
資料タイプ
学術雑誌論文
言語
Japanese
論文のバージョン
publisher
査読
有り
Eprints Journal Name
oer